
Reasoning about Programs

Jeremy Bradley and Francesca Toni

Room 372. Office hour - Tuesdays at noon. Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

Induction [01/2005] – p.1/64

Haskell Lectures I

Proving correctness of Haskell functions

Induction over natural numbers
summing natural numbers: sumInts
summing fractions: sumFracs
natural number sequence: uList
proving induction works

Structural induction

Induction over Haskell data structures
induction over lists: subList, revList
induction over user-defined structures:
evalBoolExpr

Induction [01/2005] – p.2/64

Haskell Lectures II

Proving correctness of Haskell functions

Failed induction: nub

Tree sort example: sortInts, flattenTree,
insTree

Induction [01/2005] – p.3/64

Induction Example

Given the following Haskell program:
sumInts :: Int -> Int
sumInts 1 = 1
sumInts n = n + (sumInts (n-1))

There are constraints on its input i.e. on the
variable r in the function call sumInts r

What is its output?

sumInts r = r + (r − 1) + · · ·+ 2 + 1

=
r

∑

n=1

n

Induction [01/2005] – p.4/64

sumInts: Example

Input constraints are the pre-conditions of a
function

Output requirements are the post-conditions
for a function

Function should be rewritten with conditions:

-- Pre-condition: n >= 1
-- Post-condition: sumInts r = ?
sumInts :: Int -> Int
sumInts 1 = 1
sumInts n = n + (sumInts (n-1))

Induction [01/2005] – p.5/64

sumInts: Example

Variable and output

n sumInts n

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

-- Pre-condition: n >= 1

-- Post-condition: sumInts r = ?

sumInts :: Int -> Int

sumInts 1 = 1

sumInts n = n + (sumInts (n-1))

Induction [01/2005] – p.6/64

sumInts: Example

Let’s guess that the post-condition for
sumInts should be:

sumInts n =
n

2
(n + 1)

How do we prove our conjecture?

We use induction

Induction [01/2005] – p.7/64

Induction in General

The structure of an induction proof always
follows the same pattern:

State the proposition being proved: e.g. P (n)

Identify and prove the base case: e.g. show
true at n = 1

Identify and state the induction hypothesis as
assumed e.g. assumed true for the case,
n = k

Prove the n = k + 1 case is true as long as
the n = k case is assumed true. This is the
induction step

Induction [01/2005] – p.8/64

sumInts: Induction

1. Base case, n = 1:
sumInts 1 = 1

2
× 2 = 1

2. Induction hypothesis,
n = k: Assume
sumInts k = k

2
(k + 1)

3. Induction step, n = k + 1:
Using assumption, we
need to show that:
sumInts (k + 1) =
k+1

2
(k + 2)

Trying to prove for all
n ≥ 1:

sumInts n =
n

2
(n + 1)

Induction [01/2005] – p.9/64

sumInts: Induction Step

Need to keep in mind 3 things:
Definition: sumInts n = n + (sumInts (n− 1))

Induction assumption: sumInts k = k

2
(k + 1)

Need to prove: sumInts (k + 1) = k+1

2
(k + 2)

Case, n = k + 1:

sumInts (k + 1) = (k + 1) + sumInts k

= (k + 1) +
k

2
(k + 1)

= (k + 1)(1 +
k

2
)

=
k + 1

2
(k + 2)

Induction [01/2005] – p.10/64

Induction Argument

An infinite argument:

Base case: P (1) is true

Induction Step: P (k) ⇒ P (k + 1) for all k ≥ 1

P (1) ⇒ P (2) is true
P (2) ⇒ P (3) is true
P (3) ⇒ P (4) is true
. . .

and so P (n) is true for any n ≥ 1

Induction [01/2005] – p.11/64

Example: sumFracs

Given the following program:
-- Pre-condition: n >= 1

-- Post-condition: sumFracs n = n / (n + 1)

sumFracs :: Int -> Ratio Int

sumFracs 1 = 1 % 2

sumFracs n = (1 % (n * (n + 1)))

+ (sumFracs (n - 1))

Equivalent to asking:

1

1× 2
+

1

2× 3
+

1

3× 4
+ · · ·+

1

n(n + 1)
=

n

n + 1

Induction [01/2005] – p.12/64

sumFracs: Induction

Proving that post-condition holds:
Base case, n = 1: sumFracs 1 = 1/2 (i.e. post-condition true)

Assume, n = k: sumFracs k = k/(k + 1)

Induction step, n = k + 1:

sumFracs (k + 1) =
1

(k + 1)(k + 2)
+ sumFracs k

=
1

(k + 1)(k + 2)
+

k

k + 1

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

Induction [01/2005] – p.13/64

Strong Induction

Induction arguments can have:
an induction step which depends on more
than one assumption

as long as the assumption cases are < the
induction step case
e.g. it may be that P (k − 5) and P (k − 3) and
P (k − 2) have to be assumed true to show
P (k + 1) true
this is called strong induction and occasionally
course-of-values induction

several base conditions if needed
e.g. P (1), P (2), . . . , P (5) may all be base cases

Induction [01/2005] – p.14/64

Example: uList function

Given the following program:
uList :: Int -> Int
uList 1 = 1
uList 2 = 5
uList n = 5 * (uList (n-1))

- 6 * (uList (n-2))

Pre-condition: call uList r with r ≥ 1

Post-condition: require uList r = 3r − 2r

Induction [01/2005] – p.15/64

Induction Example

In mathematical terms induction problem looks
like:

We define a sequence of integers, un, where
un = 5un−1 − 6un−2 for n ≥ 2 and base cases
u1 = 1, u2 = 5.

We want to prove, by induction, that:
un = uList n = 3n − 2n

(Note that this time we have two base cases)

Induction [01/2005] – p.16/64

Proof by Induction

Start with the base cases, n = 1, 2

uList 1 = 31 − 21 = 1

uList 2 = 32 − 22 = 5

State induction hypothesis for n = k (that
you’re assuming is true for the next step):

uList k = 3k − 2k

Induction [01/2005] – p.17/64

Proof by Induction

Looking to prove: uList (k + 1) = 3k+1 − 2k+1

Prove induction step for n = k + 1 case, by
using the induction hypothesis case:

uList (k + 1) = 5 ∗ uList k− 6 ∗ uList (k− 1)

= 5(3k − 2k)− 6(3k−1 − 2k−1)

= 5(3k − 2k)− 2× 3k + 3× 2k

= 3× 3k − 2× 2k

= 3k+1 − 2k+1

Note we had to use the hypothesis twice

Induction [01/2005] – p.18/64

Induction Argument

An infinite argument for induction based on
natural numbers:

Base case: P (0) is true

Induction Step: P (k) ⇒ P (k + 1) for all k ∈ IN

P (0) ⇒ P (1) is true
P (1) ⇒ P (2) is true
P (2) ⇒ P (3) is true
. . .

and so P (n) is true for any n ∈ IN

(Note: Induction can start with any value base case that is appropriate for the property

being proved. It does not have to be 0 or 1)
Induction [01/2005] – p.19/64

Proof by Contradiction

We have a proposition P (n) which we have
proved by induction, i.e.

P (0) is true

P (k) ⇒ P (k + 1) for all k ∈ IN

Taken this to mean P (n) is true for all n ∈ IN

Let’s assume instead that despite using
induction on P (n), P (n) is not true for all
n ∈ IN

If we can show that this assumption gives us
a logical contradiction, then we will know that
the assumption was false

Induction [01/2005] – p.20/64

Proof of Induction

Proof relies on fact that:
the set of natural numbers
IN = {0, 1, 2, 3, . . .} has a least element
also any subset of natural numbers has a
least element: e.g. {8, 13, 87, 112} or
{15, 17, 21, 32}

and so the natural numbers are ordered.
i.e. < is defined for all pairs of natural
numbers (e.g. 4 < 7)

Induction [01/2005] – p.21/64

Proof of Induction

Assume P (n) is not true for all n ∈ IN

⇒ There must be largest subset of natural
numbers, S ⊂ IN, for which P (n) is not true.
(0 6∈ S)

⇒ The set S must have a least element m > 0,
as it is a subset of the natural numbers

⇒ P (m) is false, but P (m− 1) must be true
otherwise m− 1 would be least element of S

However we have proved that
P (k) ⇒ P (k + 1) for all k ∈ IN

⇒ P (m− 1) ⇒ P (m) is true. Contradiction!
Induction [01/2005] – p.22/64

Induction in General

In general we can perform induction across
data structures (i.e. the same or similar proof
works) if:
1. the data structure has a least element or

set of least elements
2. an ordering exists between the elements of

the data structure

For example for a list:
[] is the least element
xs < ys if length xs < length ys

Induction [01/2005] – p.23/64

Induction over Data Structures

Given a conjecture P (xs) to test:

Induction on [a]:
Base case: test true for xs = []

Assume true for xs = zs :: [a]

Induction step: prove for xs = (z : zs)

For structure MyList:

data MyList a = EmptyList | Cons a (MyList a)

Base case: test true for xs = EmptyList

Assume true for general xs = zs :: MyList a

Induction step: prove for xs = Cons z zs for any z

Induction [01/2005] – p.24/64

Induction over Data Structures

Given a conjecture P (xs) to test:

For a binary tree:

data BTree a

= BTempty

| BTnode (BTree a) a (BTree a)

Base case: test true for xs = BTempty

Assume true for general cases: xs = t1 :: BTree a

and xs = t2 :: BTree a

Induction step: prove true for xs = BTnode t1 z t2

for any z

Induction [01/2005] – p.25/64

Structural Induction in General I

The structure of an structural induction proof
always follows the same pattern:

For generic data structure:
data DataS a

= Rec1 (DataS a) | Rec2 (DataS a) (DataS a) |...

| Base1 | Base2 | ...

State the proposition being proved: e.g.
P (xs :: DataS a)

Identify and prove the base cases: e.g. show P (xs)

true at xs = Base1, Base2, . . .

Induction [01/2005] – p.26/64

Structural Induction in General II

For generic data structure:
data DataS a

= Rec1 (DataS a) | Rec2 (DataS a) (DataS a) |...

| Base1 | Base2 | ...

Identify and state the induction hypothesis as
assumed e.g. assume P (xs) true for all cases,
xs = zs

Finally, assuming all the xs = zs cases are true.
Prove the induction step P (xs) true for the cases
xs = Rec1 zs1, xs = Rec2 zs1 zs2, . . .

Induction [01/2005] – p.27/64

Example: subList

subList xs ys removes any element in ys

from xs

subList :: Eq a => [a] -> [a] -> [a]

subList [] ys = []

subList (x:xs) ys

| elem x ys = subList xs ys

| otherwise = (x:subList xs ys)

P (xs) = for any ys, no elements of ys exist in
subList xs ys

Is this a post-condition for subList?

Induction [01/2005] – p.28/64

Induction: subList

Base case, xs = []:
P ([]) = for any ys, no elements of ys exist in
(subList [] ys) = []. i.e. True.

Assume case xs = zs:
P (zs) = for any ys, no elements of ys exist in
(subList zs ys)

Induction step, (require to prove) case
xs = (z : zs):

P (z : zs) = for any ys, no elements of ys exist in
(subList (z : zs) ys)

Induction [01/2005] – p.29/64

Induction: subList

Induction step, xs = (z : zs):
P (z : zs) = for any ys, no elements of ys exist in
(subList (z : zs) ys)

subList (z : zs) ys

=







subList zs ys : if z ∈ ys

(z : subList zs ys) : if z 6∈ ys

P (z : zs) =







P (zs) : if z ∈ ys

(z 6∈ ys) AND P(zs) : if z 6∈ ys

Induction [01/2005] – p.30/64

Example: revList

Given the following program:

revList :: [a] -> [a]

revList [] = []

revList (x:xs) = (revList xs) ++ [x]

We want to prove the following property:
P (xs) = for any ys :

revList (xs++ys) = (revList ys)++(revList xs)

Induction [01/2005] – p.31/64

Induction: revList

Program:

revList :: [a] -> [a]

revList [] = []

revList (x:xs) = (revList xs) ++ [x]

Base case, xs = []:
P ([]) = for any ys,

revList ([]++ys) = (revList ys)

= (revList ys)++[]

= (revList ys)++(revList [])

Induction [01/2005] – p.32/64

Induction: revList

Assume case, xs = zs:
P (zs) = for any ys:

revList (zs++ys) = (revList ys)++(revList zs)

Induction step, xs = (z : zs):
P (z : zs) = for any ys,

revList ((z : zs)++ys)

= revList (z : (zs++ys))

= (revList (zs++ys))++[z]

= ((revList ys)++(revList zs))++[z]

= (revList ys)++((revList zs)++[z])

= (revList ys)++(revList (z : zs))

Induction [01/2005] – p.33/64

Example: BoolExpr

Given the following representation of a
Boolean expression:

data BoolExpr

= BoolAnd BoolExpr BoolExpr

| BoolOr BoolExpr BoolExpr

| BoolNot BoolExpr

| BoolTrue

| BoolFalse

Induction [01/2005] – p.34/64

Example: BoolExpr

The following function attempts to simplify a
BoolExpr:

evalBoolExpr :: BoolExpr -> BoolExpr

evalBoolExpr BoolTrue = BoolTrue

evalBoolExpr BoolFalse = BoolFalse

evalBoolExpr (BoolAnd x y)

= (evalBoolExpr x) ‘boolAnd‘ (evalBoolExpr y)

evalBoolExpr (BoolOr x y)

= (evalBoolExpr x) ‘boolOr‘ (evalBoolExpr y)

evalBoolExpr (BoolNot x)

= boolNot (evalBoolExpr x)

Induction [01/2005] – p.35/64

Example: BoolExpr

Definition of boolNot:

-- Pre-condition: input BoolTrue or BoolFalse

boolNot :: BoolExpr -> BoolExpr

boolNot BoolTrue = BoolFalse

boolNot BoolFalse = BoolTrue

boolNot _

= error ("boolNot: input should be"

++ "BoolTrue or BoolFalse")

Induction [01/2005] – p.36/64

Example: BoolExpr

Definitions of boolAnd and boolOr:

boolAnd :: BoolExpr -> BoolExpr -> BoolExpr

boolAnd x y

| isBoolTrue x = y

| otherwise = BoolFalse

boolOr :: BoolExpr -> BoolExpr -> BoolExpr

boolOr x y

| isBoolTrue x = BoolTrue

| otherwise = y

isBoolTrue :: BoolExpr -> Bool

isBoolTrue BoolTrue = True

isBoolTrue = False
Induction [01/2005] – p.37/64

Induction: BoolExpr

Trying to prove statement:
For all ex, P (ex) = (evalBoolExpr ex) evaluates to
BoolTrue or BoolFalse

Base cases: ex = BoolTrue; ex = BoolFalse:
P (BoolTrue) = (evalBoolExpr BoolTrue) =

BoolTrue

P (BoolFalse) = (evalBoolExpr BoolFalse) =

BoolFalse

Induction [01/2005] – p.38/64

Induction: BoolExpr

Assume cases, ex = kx, kx1, kx2:
e.g. P (kx) = (evalBoolExpr kx) evaluates to
BoolTrue or BoolFalse

Three inductive steps:
1. Case ex = BoolNot kx

P (BoolNot kx)

= (evalBoolExpr (BoolNot kx))

= boolNot (evalBoolExpr kx)

=







BoolFalse : if (evalBoolExpr kx) = BoolTrue

BoolTrue : otherwise

Induction [01/2005] – p.39/64

Induction: BoolExpr

Assume cases, ex = kx, kx1, kx2:
e.g. P (kx1) = (evalBoolExpr kx1) evaluates to
BoolTrue or BoolFalse

2. Case ex = BoolAnd kx1 kx2

P (BoolAnd kx1 kx2)

= (evalBoolExpr (BoolAnd kx1 kx2))

= (evalBoolExpr kx1) ‘boolAnd‘ (evalBoolExpr kx2)

=















(evalBoolExpr kx2) : if (evalBoolExpr kx1)

= BoolTrue

BoolFalse : otherwise

Induction [01/2005] – p.40/64

Induction: BoolExpr

Assume cases, ex = kx, kx1, kx2:
e.g. P (kx2) = (evalBoolExpr kx2) evaluates to
BoolTrue or BoolFalse

3. Case ex = BoolOr kx1 kx2

P (BoolOr kx1 kx2)

= (evalBoolExpr (BoolOr kx1 kx2))

= (evalBoolExpr kx1) ‘boolOr‘ (evalBoolExpr kx2)

=







BoolTrue : if (evalBoolExpr kx1) = BoolTrue

(evalBoolExpr kx2) : otherwise

Induction [01/2005] – p.41/64

Example: nub

What happens if you try to prove something
that is not true?

nub [from Haskell List library] removes
duplicate elements from an arbitrary list

nub :: Eq a => [a] -> [a]

nub [] = []

nub (x:xs) = x : filter (x /=) (nub xs)

We are going to attempt to prove:
For all lists, xs, P (xs) = for any ys :

nub (xs++ys) = (nub xs)++(nub ys)

Induction [01/2005] – p.42/64

Induction: nub

False proposition:
For all lists, xs, P (xs) = for any ys :

nub (xs++ys) = (nub xs)++(nub ys)

Base case, xs = []:

P ([]) = for any ys,

nub ([]++ys)

= nub ys

= []++(nub ys)

= (nub [])++(nub ys)

Induction [01/2005] – p.43/64

Induction: nub

Assume case, xs = ks:
P (ks) = for any ys,
nub (ks++ys) = (nub ks)++(nub ys)

Inductive step, xs = (k : ks):
P (k : ks) = for any ys,

nub ((k : ks)++ys)

= nub (k : (ks++ys))

= k : (filter (k /=) (nub (ks++ys)))

= k : filter (k /=) ((nub ks)++(nub ys))

= (k : filter (k /=) (nub ks))++(filter (k /=) (nub ys))

= (nub (k : ks))++(filter (k /=) (nub ys))

Induction [01/2005] – p.44/64

Example: nub

Review of failed induction:
Our proposition was: P (ks) = for any ys,
nub (ks++ys) = (nub ks)++(nub ys)

If true, we would expect the inductive step to give
us: P (k : ks) = for any ys,
nub ((k : ks)++ys) = (nub (k : ks))++(nub ys)

In fact we actually got: P (k : ks) = for any ys,
nub ((k : ks)++ys) =

(nub (k : ks))++(filter (k /=) (nub ys))

Hence the induction failed

Induction [01/2005] – p.45/64

Induction: Beware!

Good news:
If you can prove a statement by induction –
then it’s true!

Bad news!
If an induction proof fails – it’s not
necessarily false!

i.e. induction proofs can fail because:
the statement is not true
induction is not an appropriate proof
technique for a given problem

Induction [01/2005] – p.46/64

Fermat’s Last Theorem

Fermat stated and didn’t prove that:

xn + yn = zn

had no positive integer solutions for n ≥ 3

Base case: it’s been proved that x3 + y3 = z3

has no solutions

Assuming: xk + yk = zk has no solutions for
n ≥ 3

There is no way of showing that xk+1 + yk+1

does not have (only) k + 1 identical factors,
from the assumption for the n = k case

Induction [01/2005] – p.47/64

Induction over Data Structures

Given a conjecture P (xs) to test:

For a binary tree:

data BTree a

= BTempty

| BTnode (BTree a) a (BTree a)

Base case: test true for xs = BTempty

Assume true for general cases: xs = t1 :: BTree a

and xs = t2 :: BTree a

Induction step: prove true for xs = BTnode t1 z t2

for any z

Induction [01/2005] – p.48/64

Induction in General

In general we can perform induction across
data structures (i.e. the same or similar proof
works) if:
1. the data structure has a least element or

set of least elements
2. an ordering exists between the elements of

the data structure

For example for a list:
[] is the least element
xs < ys if length xs < length ys

Induction [01/2005] – p.49/64

Well-founded Induction

For this induction we need an ordering
function < for trees (as we already have for
lists)

< is a well-founded relation on a set/datatype
S if there is no infinite decreasing sequence.
i.e. t1 < t2 < t3 < · · · where t1 is a minimal
element
For trees, t1, t2 :: BTree a, t1 < t2 if
numBTelem t1 < numBTelem t2

numBTelem :: BTelem a -> Int

numBTelem BTempty = 0

numBTelem (BTnode lhs x rhs)

= 1 + (numBTelem lhs) + (numBTelem rhs)
Induction [01/2005] – p.50/64

Example: Tree Sort

We are going to sort a list of integers using
the tree data structure:

data BTree a

= BTempty

| BTnode (BTree a) a (BTree a)

and function, sortInts:

sortInts :: [Int] -> [Int]

sortInts xs = flattenTree ts where

ts = foldr insTree BTempty xs

Induction [01/2005] – p.51/64

Example: Tree Sort

flattenTree creates an inorder list of all
elements of t

-- pre-condition: input tree is sorted

flattenTree :: BTree a -> [a]

flattenTree BTempty = []

flattenTree (BTnode lhs i rhs)

= (flattenTree lhs) ++ [i]

++ (flattenTree rhs)

inorder: = lhs ++ element ++ rhs

preorder: = element ++ lhs ++ rhs

postorder: = lhs ++ rhs ++ element
Induction [01/2005] – p.52/64

Example: Tree Sort

insTree inserts an integer into the correct
place in a sorted tree

-- pre-condition: input tree is pre-sorted,

-- i is arbitrary Int

-- post-condition: output is sorted tree

-- containing all previous elements and i

insTree :: Int -> BTree Int -> BTree Int

insTree i BTempty = (BTnode BTempty i BTempty)

insTree i (BTnode t1 x t2)

| i < x = (BTnode (insTree i t1) x t2)

| otherwise = (BTnode t1 x (insTree i t2))

Induction [01/2005] – p.53/64

Example: Tree Sort

In order to show that sortInts does sort the
integers – we need to show:

flattenTree does produce an inorder
traversal of a tree
insTree

inserts the relevent element
keeps the tree sorted
does not modify any of the pre-existing
elements

Induction [01/2005] – p.54/64

Induction: flattenTree

Proposition: P (t) = (flattenTree t) creates
inorder listing of all elements of t

Base case, t = BTempty:

P (BTempty) = (flattenTree BTempty) = []

Assume cases, t = t1 and t2, e.g. :
P (t1) = (flattenTree t1) creates inorder
listing of all elements of t1

Induction [01/2005] – p.55/64

Induction: flattenTree

Proposition: P (t) = (flattenTree t) creates
inorder listing of all elements of t

Inductive step, t = BTnode t1 i t2:

P (BTnode t1 i t2)

= (flattenTree (BTnode t1 i t2))

= (flattenTree t1)++[i]++(flattenTree t2)

Induction [01/2005] – p.56/64

Induction: insTree

We can split the proof of correctness of
insTree into two inductions:
1. keeps the tree sorted after the element is

inserted
2. inserts the relevent element and does not

modify any of the pre-existing elements

Induction [01/2005] – p.57/64

Induction 1: insTree

A tree (BTnode t1 x t2) is sorted if
t1 and t2 are sorted
all elements in t1 are less than x

all elements in t2 are greater than or equal
to x

Define induction hypothesis to be:

P (t) = for any i, (insTree i t) is sorted

Induction [01/2005] – p.58/64

Induction 1: insTree

Base case, t = BTempty:
P (BTempty) = for any i,

insTree i BTempty = BTnode BTempty i BTempty

is sorted

Assume P (t) true for cases,
BTempty ≤ t < BTnode t1 i′ t2

e.g. P (t1) = for any i,

(insTree i t1) is sorted

Induction [01/2005] – p.59/64

Induction 1: insTree

Induction step, case t = BTnode t1 i′ t2:
P (BTnode t1 i′ t2) = for any i,

insTree i (BTnode t1 i′ t2)

=

{

BTnode (insTree i t1) i′ t2 : if i < i′

BTnode t1 i′ (insTree i t2) : otherwise

By our assumptions, we know that t1, t2,
(insTree i t1), (insTree i t2) are sorted

Induction [01/2005] – p.60/64

Induction 2: insTree

Q(t) = there exist some ms, ns such that:
(ms++[i]++ns) = (flattenTree (insTree i t))

(flattenTree t) = (ms++ns)

Base case, t = BTempty:
Q(BTempty) = there exist some ms, ns such that:

(ms++[i]++ns)

= (flattenTree (insTree i BTempty))

= flattenTree (BTnode BTempty i BTempty)

= (flattenTree BTempty)++[i]++(flattenTree BTempty)

= []++[i]++[]

i.e. ms = ns = []

(flattenTree BTempty) = [] = (ms++ns)

Induction [01/2005] – p.61/64

Induction 2: insTree

Q(t) = there exist some ms, ns such that:
(ms++[i]++ns) = (flattenTree (insTree i t))

(flattenTree t) = (ms++ns)

Assume cases, t = t1, t2:
Q(t1) = there exist some ms1, ns1 such that:

(ms1++[i]++ns1) = (flattenTree (insTree i t1))

(flattenTree t1) = (ms1++ns1)

Q(t2) = there exist some ms2, ns2 such that:
(ms2++[i]++ns2) = (flattenTree (insTree i t2))

(flattenTree t2) = (ms2++ns2)

Induction [01/2005] – p.62/64

Induction 2: insTree

(Part 1) Case t = BTnode t1 i′ t2:
Q(BTnode t1 i′ t2) = there exist some ms, ns such that:

if i < i′ :

(ms++[i]++ns)

= (flattenTree (insTree i (BTnode t1 i′ t2)))

= flattenTree (BTnode (insTree i t1) i′ t2)

= (flattenTree (insTree i t1))++[i′]++(flattenTree t2)

i.e. ms = ms1 and ns = ns1++[i′]++ms2++ns2

flattenTree (BTnode t1 i′ t2)

= (flattenTree t1)++[i′]++(flattenTree t2)

= ms1++ns1++[i′]++ms2++ns2

= ms++ns

Induction [01/2005] – p.63/64

Induction 2: insTree

(Part 2) Case t = BTnode t1 i′ t2:
Q(BTnode t1 i′ t2) = there exist some ms, ns such that:

if i ≥ i′ :

(ms++[i]++ns)

= (flattenTree (insTree i (BTnode t1 i′ t2)))

= flattenTree (BTnode t1 i′ (insTree i t2))

= (flattenTree t1)++[i′]++(flattenTree (insTree i t2))

i.e. ms = ms1++ns1++[i′]++ms2 and ns = ns2

flattenTree (BTnode t1 i′ t2)

= (flattenTree t1)++[i′]++(flattenTree t2)

= ms1++ns1++[i′]++ms2++ns2

= ms++ns

Induction [01/2005] – p.64/64

	Haskell Lectures I
	Haskell Lectures II
	Induction Example
	sumInts: Example
	sumInts: Example
	sumInts: Example
	Induction in General
	sumInts: Induction
	sumInts: Induction Step
	Induction Argument
	Example: sumFracs
	sumFracs: Induction
	Strong Induction
	Example: uList function
	Induction Example
	Proof by Induction
	Proof by Induction
	Induction Argument
	Proof by Contradiction
	Proof of Induction
	Proof of Induction
	Induction in General
	hspace {-1cm}Induction over Data Structures
	hspace {-1cm}Induction over Data Structures
	hspace {-5mm}Structural Induction in General I
	hspace {-5mm}Structural Induction in General II
	Example: subList
	Induction: subList
	Induction: subList
	Example: revList
	Induction: revList
	Induction: revList
	Example: BoolExpr
	Example: BoolExpr
	Example: BoolExpr
	Example: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Example: nub
	Induction: nub
	Induction: nub
	Example: nub
	Induction: Beware!
	Fermat's Last Theorem
	hspace {-1cm}Induction over Data Structures
	Induction in General
	Well-founded Induction
	Example: Tree Sort
	Example: Tree Sort
	Example: Tree Sort
	Example: Tree Sort
	Induction: flattenTree
	Induction: flattenTree
	Induction: insTree
	Induction 1: insTree
	Induction 1: insTree
	Induction 1: insTree
	Induction 2: insTree
	Induction 2: insTree
	Induction 2: insTree
	Induction 2: insTree

