
Distributed Algorithms 1

Asynchronous algorithms

Essentially, Asynchronous Models make no
assumptions about time.
Execution time (No bound on time to execute a local
process step; however, time to execute a local step is finite)
Communication time (No bound on message transmission
delay)
No synchronized clocks (no rounds)

Main differences involve liveness conditions (uncertainty
caused by asynchrony and distribution)

Generally more difficult to program than synchronous
More general than most actual distributed systems
More general and portable algorithms as have fewer
assumptions.

Distributed Algorithms, Nancy Lynch – Chapters 8, 9, 10 Distributed Algorithms 2

Asynchronous Shared Memory Model

1

2

n

.

.

.

processes Shared memory

First look at these
systems as

o simpler

o possible to
translate into
asynch networks

We neglect failures
and just deal with
asynchrony.

Distributed Algorithms 3

Shared Variables and Processes

Each process described by an algorithm, and
formally modelled by a state-machine:

(start, states, trans)

start - initial states
states – set of states

trans - set of transitions
- maps current state and shared variable

values to new state and new values.

i

Each shared variable defined by set of
values, initial value and read/write
capabilities by processes.

Distributed Algorithms 4

Mutual Exclusion for 2 processes (based on Dekker/Dijkstra)

Two processes n1, n2 compete for access to their
critical regions (ie. Access to a reusable resource).

Informal Algorithm:
When process n(i) wants to enter, it sets its flag(i).
If the other process’s flag is set, it does not enter
but resets flag(i) and tries again.
If the other process’s flag is not set, it enters the
critical region.
It resets flag(i) after leaving the region.

Properties: mutual exclusion (safety)
no deadlock (safety)
no starvation (liveness) Lynch – Chapter 10

Distributed Algorithms 5

Mutual exclusion

Process n(i):
…
Try:

flag(i):= true;
if flag((i%2)+1) then {flag(i):= false; go to Try}

else { enter critical region;
use resource
exit critical region }

flag(i):= false;
…

shared variables: flag(i:1..2):Bool, initially false,
writeable by n(i), readable by all.

R
remainder

T
try

C
critical

E
exit

Distributed Algorithms 6

Properties - Safety
EXCLUSION:

Need to argue that not possible for n1 and n2 to be in C, even in
presence of asynchronous execution (full interleaving).

Informal PROOF by contradiction:
Consider that both n1 and n2 are in C. Both flag 1 and flag 2
must be set, and remain set from before C to E .
Consider that n1 set its flag first: then n2 must remain in T and
cannot enter C as flag 1 was set. Similarly for n2. Hence
contradiction.
Consider that they set their flags “simultaneously”: then both
remain in T and neither can enter C. Hence contradiction.

Formal PROOF requires that every state is specified with its pre-
and post-condition, and that arguments are made about every
possible execution sequence.

cf. model checking

Distributed Algorithms 7

Properties - Safety
fluent

CRITICAL[i:1..2] = <n[i].enter, n[i].exit>

//safety property

assert

EXCLUSION = [] ! (CRITICAL[1] && CRITICAL[2])

//Witness

assert

WITNESS_EXCLUSION = !EXCLUSION

Similarly for DEADLOCK - proof or safety check

LTSA safety demo

Distributed Algorithms 8

Properties - Safety

LTSA safety demo

Violation of LTL property:
@WITNESS_EXCLUSION

Trace to terminal set of states:

Cycle in terminal set:

n.1.flag.1.setTrue

n.1.flag.2.0

n.1.enter CRITICAL.1

n.1.exit

n.1.flag.1.setFalse

Distributed Algorithms 9

Properties - Liveness
FREEDOM FROM STARVATION:
Any process that reaches T eventually enters C.

fluent TRYING[i:1..2] = <n[i].flag[i].setTrue,

n[i].enter>

assert NoSTARVATION = forall[i:1..2]

[](TRYING[i] -> <> CRITICAL[i])

Since all processes repeatedly satisfy TRYING[i], we simply check:
assert

NoSTARVATION = forall[i:1..2] [] <> CRITICAL[i]

LTSA models strong fairness using fair choice:
Fair Choice: If a choice over a set of transitions is executed infinitely often,

then every transition in the set is executed infinitely often.
LTSA demo

Distributed Algorithms 10

Fairness
But, this does not guarantee freedom from lockout or starvation
under less fair, more adverse conditions. For adverse execution
conditions, we cannot assume strong fairness. Formally:
Strong Fairness:

for every transition, if it is enabled infinitely often, it is taken
infinitely often. []<>p -> []<>q

Weak Fairness
for every transition, if it is enabled continuously from some point
on, it is taken infinitely often. <>[]p -> []<>q

No Fairness:
for every transition, even if it is enabled continuously from some

point on, it may not be taken unless no other transitions are
enabled.

Distributed Algorithms 11

Fairness
Which is the most appropriate fairness assumption?

For algorithm generality, we would like to impose the least
constraint, where satisfaction of a property is such that …

no fairness -> weak fairness -> strong fairness

In practice, we need to consider Process scheduling: :
(Distributed) Processes generally obey a form of fairness, where
the local scheduler ensures that every process has an opportunity
to execute, if enabled.

A process is enabled if any of its transitions is enabled.
ie. Local scheduling ensures that a process eventually executes
(a transition) if any of its transitions are enabled infinitely often.

Distributed Algorithms 12

Fairness of Processes

How can we specify and check for this?

We therefore test our algorithms under three fairness
conditions:
Strong Fairness: (as before)
Form of “Weak Fairness”:

a combination of strong fairness of processes and no fairness
of transitions.

No Fairness: (as before)

NOTE: Fairness assumptions are only needed for liveness,
and do not affect safety properties.

Distributed Algorithms 13

Weak Fairness
Model checking:

assert (fairness) -> (property).

We assert that, for those executions which satisfy the fairness
condition, the required property is satisfied.

Specifying weak fairness for cyclic processes:
assert WEAKFAIR =

forall processes[i] []<> {any action of [i]}

Satisfied by those executions which always eventually include
transitions in every process [i]. Violated by those executions
which allow any process to be ignored.

Distributed Algorithms 14

Weak Fairness
assert WEAKFAIR =

forall[i:1..2] []<> {n[i].{actions of n(i)}}

assert

WEAK_NoSTARVATION = (WEAKFAIR -> NoSTARVATION)

LTSA liveness demo

NOTE:
if no executions satisfy WEAKFAIR, then WEAK_NoSTARVATION
will be trivially satisfied! We must therefore check that there
are some witnesses for WEAKFAIR

assert WITNESS_WEAKFAIR = !WEAKFAIR

Strong fairness?

Weak fairness?

No fairness?

Distributed Algorithms 15

Weak Fairness

LTSA liveness demo

Violation of LTL property: @WEAK_NoSTARVATION

Trace to terminal set of states:

n.1.flag.1.setTrue

n.2.flag.2.setTrue

Cycle in terminal set:

n.1.flag.2.1

n.1.flag.1.setFalse

n.1.flag.1.setTrue

n.2.flag.1.1

n.2.flag.2.setFalse

n.2.flag.2.setTrue

LTL Property Check in: 156ms

Distributed Algorithms 16

Mutual Exclusion for 2 processes (Peterson2P)

Two processes n1, n2 compete for access to their
critical regions, using a shared variable, turn.

Informal Algorithm:
When process n(i) wants to enter,

set flag(i) and set turn to i;
While the other process’s flag is set and turn=i

{null};
Enter the critical region;

//other process’s flag is not set or turn!=i,
Reset flag(i) after leaving the region.

Properties: mutual exclusion (safety)
freedom from deadlock (safety)
freedom from starvation (liveness)

Distributed Algorithms 17

Mutual exclusion

Process n(i):
…

flag(i):= true;
turn := i;
while flag((i%2)+1) && turn=i {null};

enter critical region;
…

exit critical region;
flag(i):= false

…

shared variables: turn:1..2, initially undef, read/write by all.
flag(i:1..2):Bool, initially false, writeable by n(i), readable by all.

R
remainder

T
try

C
critical

E
exit

Distributed Algorithms 18

EXCLUSION:
Not possible for n1 and n2 to be in C, even in presence of
asynchronous execution (full interleaving).

Informal PROOF:
Consider that n1 wishes to gain access. It sets flag(1) and sets
turn to 1.
If n2 is not competing, then flag(2) is not set and n1 can enter
C. If n2 is competing, then it depends on turn. If n1 sets turn
to 1 then n2 sets it 2, n1 can enter C, but not n2; if n2 then n1
sets turn, n2 can enter C, but not n1.
ie. For a process n(i) to be in C, then both flag(i) and turn!=i.

Formal PROOF requires that every state is specified with its pre-
and post-condition, and that arguments are made about every
possible execution sequence.

Properties

cf. LTSA model checking

Distributed Algorithms 19

Properties
STARVATION-FREEDOM:
Any process that reaches T eventually enters C.

Informally, if n1 is waiting in T, it will be given priority by
turn when n2 exits from C. Even if n2 competes, it will give
priority to n1 by setting turn to 2.

Strong fairness?
Weak fairness?
No fairness?

LTSA demo

Distributed Algorithms 20

Properties
Violation of LTL property: @WITNESS_WEAK_NoSTARVATION
Trace to terminal set of states:

n.2.flag.2.setTrue
Cycle in terminal set:

n.1.flag.1.setTrue
n.2.turn.setto.2
n.1.turn.setto.1
n.2.flag.1.1
n.2.turn.1
n.2.enter CRITICAL.2
n.2.exit
n.2.flag.2.setFalse
n.1.flag.2.0
n.1.turn.1
n.1.enter CRITICAL.1
n.1.exit
n.1.flag.1.setFalse
n.2.flag.2.setTrue

LTL Property Check in: 0ms

LTSA liveness demo

Distributed Algorithms 21

Mutual Exclusion for N processes? (PetersonNP)
How can we generalise this two process algorithm to
deal with N Processes? Series of competitions…

Informal Algorithm:
Use Peterson2P iteratively in a series of N-1
competitions at levels 1, 2, ..N-1, each with own turn.
At each successive competition level k, Peterson2P
ensures at least one loser i, whose turn(k) is i if all
compete.
At level 1, at most N-1 processes can proceed.
At level 2, at most N-2. …
At level N-1, at most 1.

Properties: mutual exclusion (safety)
freedom from deadlock (safety)
freedom from starvation (liveness) Distributed Algorithms 22

Mutual exclusion

Process n(i):
…

For k=1 to N-1 do
flag(i) := k;
turn(k) := i;
while (∃j!=i: flag(j)>=k) && turn(k)=i {null};

enter critical region;
…
exit critical region;

flag(i):= 0
…

shared variables:
turn(k:1..N-1):1..N initially undef, read/write by all.
flag(i:1..N):1..N-1, initially 0, writeable by n(i), readable by all.

R
remainder

T
try

C
critical

E exit

Distributed Algorithms 23

Question
Argue (informally) that PetersonNP preserves the required
property of EXCLUSION.

//safety property

assert

EXCLUSION = []!(forall[i:1..N-1]

(CRITICAL[i] && CRITICAL[i+1..N]))

LTSA model checking

STARVATION-FREEDOM:

Strong fairness?
Weak fairness?
No fairness?

Distributed Algorithms 24

Weak NoStarvation
Violation of LTL property: @WITNESS_WEAK_NoSTARVATION

Trace to terminal set of states:

n.2.flag.2.setto.1

n.3.flag.3.setto.1

n.3.turn.1.setto.3

n.2.turn.1.setto.2

n.3.flag.1.0

n.3.turn.1.2

n.3.flag.2.1

n.3.turn.1.2

n.3.flag.3.1

n.3.turn.1.2

n.3.flag.3.setto.2

n.3.turn.2.setto.3

Cycle in terminal set:

n.1.flag.1.setto.1

n.1.turn.1.setto.1

n.1.flag.1.1

n.2.flag.1.1

n.2.turn.1.1

n.2.flag.2.1

n.2.turn.1.1
n.2.flag.3.2

n.2.turn.1.1
n.2.flag.2.setto.2

n.2.turn.2.setto.2

n.2.flag.1.1
n.2.turn.2.2

n.2.flag.2.2
n.3.flag.1.1

n.3.turn.2.2
n.3.flag.2.2

n.3.turn.2.2

n.3.flag.3.2
n.3.turn.2.2

n.3.enter CRITICAL.3
n.3.exit

… ...
n.2.enter CRITICAL.2

n.2.exit
… ...

n.1.enter CRITICAL.1

n.1.exit

Distributed Algorithms 25

Mutual Exclusion for N processes? (PetersonNP)

Alternative generalisation of Peterson2P to deal with
N Processes? Tournament of N=2level processes …

Informal Algorithm:

Properties: mutual exclusion (safety)
freedom from deadlock (safety)
freedom from starvation (liveness)

1 2 3 4 5 7 86

Level 3

Level 2

Level 100 01 10 11

0 1

λ

Distributed Algorithms 26

Notes

This section has introduced asynchronous algorithms
which share variables, and important fairness
considerations for liveness property checking.

Can these algorithms can be implemented in a
distributed fashion?

The shared data can be encapsulated in processes
which support communication via message passing
rather than read/write.

