
© Kramer

The Skeleton
in the Software Cupboard

The Skeleton
in the Software Cupboard

Jeff Kramer

Distributed Software Engineering
Department of Computing

Imperial College
London

© Kramer

Chapter 1. Once upon a time…..

© Kramer

Distributed Software

Distribution is inherent in the
world

objects, individuals,

Interaction is inevitable with
distribution.

computer communication, speech,

Interacting software components

© Kramer

Distributed software engineering?

Models
Mathematical Abstractions

- reasoning and property checking

Prototypes
Simplified implementations

- property checking in practice

Systems
Compositions of subsystems

 built from proven components.

© Kramer

Chapter 2. Early experience.....

“configuration
programming”

CONIC

© Kramer

The first generation of distributed software engineers

© Kramer

British Coal - automation and remote monitoring

0LQH�'UDLQDJH
3XPS�

7KH�LQVWDOODWLRQ
LV�XVHG�WR�SXPS
WR�WKH�VXUIDFH
WKH�ZDWHU�WKDW
FROOHFWV�LQ�D
VXPS�DW�WKH
ERWWRP�RI�D
PLQH�VKDIW�

Carbon Monoxide

To surface
To surface control room

Methane
sensor Airflow

sensor

sensor

High water level detector

Low water level detector

PUMP

PUMP
CONTROL
STATION

ENVIRONMENT
MONITORING
STATION

SUMP

© Kramer

CONIC - a basis for “configuration programming”

g Configuration Language

to express structure

g Dynamic configuration

g Software tools -

compilers, checkers,

run-time environment, graphical display

Separation of concerns - separate structure from
component programming

© Kramer

components + configuration
description

Structural view - for construction and evolution

evolved configuration
description

change
script

system

Construction/
implementation

evolved system

changes

© Kramer

Experience

CONIC
CONIC was widely distributed to academic and
industrial research establishments.

‘83-’89

Universities in UK, Germany, France, Belgium
Sweden, Canada, Japan, Korea.

Industries such as British Coal, British
Petroleum, British Telecom, GEC.

© Kramer

Experience

CONIC

‘83-’89
g Underground monitoring and communications

g Multi-loop self-tuning adaptive controllers

g Process control plant automation

g Parallel algorithms - FFT

g Image processing

g Programming environments

g Teaching distributed programming

... and used for a wide range of applications

© Kramer

Distributed software engineering?

Models

Systems

Mathematical Abstractions

- reasoning and property checking

Prototypes
Simplified implementations

- property checking in practice

Compositions of subsystems

 built from proven components.

© Kramer

Main Principle of Configuration Programming

Description
and
Construction

 “The configuration language used for
structural description should be separate
from the programming language used
for programming components.”

 “The configuration language used for
structural description should be separate
from the specification language used for
modelling component behaviour.”

Modelling
and
Analysis?

Can we apply this experience to

© Kramer

Chapter 3. A simple problem

Socrates

Plato

© Kramer

Dining Philosophers

)LYH�SKLORVRSKHUV�VLW�DURXQG�D
FLUFXODU�WDEOH��(DFK�SKLORVRSKHU
VSHQGV�KLV�OLIH�DOWHUQDWLYHO\
WKLQNLQJ�DQG�HDWLQJ��,Q�WKH�FHQWUH
RI�WKH�WDEOH�LV�D�ODUJH�ERZO�RI
VSDJKHWWL��$�SKLORVRSKHU�QHHGV
WZR�IRUNV�WR�HDW�D�KHOSLQJ�RI
VSDJKHWWL�

0

1

23

4
0

1

2

3

4

2QH�IRUN�LV�SODFHG�EHWZHHQ�HDFK
SDLU�RI�SKLORVRSKHUV�DQG�WKH\�DJUHH
WKDW�HDFK�ZLOO�RQO\�XVH�WKH�IRUN�WR�KLV
LPPHGLDWH�ULJKW�DQG�OHIW�

© Kramer

Dining Philosophers implementation

PHIL0

FORK0

PHIL1

FORK1

FORK2

FORK3

FORK4

PHIL2PHIL3

PHIL4

get

put

get

get

get

getget

get

get

get

get

put

put

put

putput

put

put

put

put

© Kramer

Deadlock

7KH�'LQLQJ�3KLORVRSKHUV�SURJUDP
GHDGORFNV�ZKHQ�HYHU\
SKLORVRSKHU�KDV�REWDLQHG�KLV
ULJKW�IRUN��1R�SKLORVRSKHU�FDQ
REWDLQ�KLV�OHIW�IRUN�DQG�VR�QR
SURJUHVV�FDQ�EH�PDGH�

7KH\�DUH�ZDLWLQJ�IRU�D�FRQGLWLRQ
WKDW�ZLOO�QHYHU�EHFRPH�WUXH
�L�H��OHIW�IRUN�EHFRPLQJ�IUHH��

© Kramer

Behaviour analysis

&RXOG�ZH�KDYH�PRGHOOHG�WKLV�DQG�SUHGLFWHG
WKDW�GHDGORFN�ZDV�SRVVLEOH"

,I�ZH�SURSRVH�D�ZD\�WR�FRUUHFW�LW��FDQ�ZH
EH�VXUH�WKDW�ZH�KDYH�FRUUHFWHG�LW�IRU�DOO
SRVVLEOH�VLWXDWLRQV"

© Kramer

Chapter 4. Darwin, an architecture description language

© Kramer

Darwin support for multiple views

Structural View

Behavioural View

Analysis

Service View

Construction/
implementation

© Kramer

structural view - components and interfaces

right:I left:I
PHIL

component PHIL {
portal right:I ;

 left:I ;
}

A component in Darwin
can have one or more
interfaces.

interface I {
get ;
put ;

}

At this abstract level, an
interface is simply a set
of names.

These refer to actions in a
specification or functions in
an implementation.

© Kramer

structural view - composite components & binding

Composite components
are constructed from
more primitive
components using
 inst - instantiation
and bind - binding.

right left

plato fork
PAIR

right leftright left

component PAIR {
portal right; left;

}

inst plato : PHIL;
fork : FORK;

bind plato.right -- right;
fork.left -- left;
plato.left -- fork.right;

© Kramer

Darwin architecture description language (ADL)

u Darwin describes structure.

u Darwin architecture specification is
independent of component behaviour and
component interaction.

u Darwin provides a framework for
describing system construction and
behaviour.

© Kramer

Chapter 5. Behavioural view …..

© Kramer

primitive component behaviour - Action Prefix

Component:

Process specification :

PHIL = (think
-> right.get -> left.get
-> eat
-> right.put -> left.put

-> PHIL).

action prefix:

->

PHIL

right left

© Kramer

PHIL Labelled Transition System - LTS

0 1

think

2 3 4 5

right.get left.get right.put

left.put

eat

© Kramer

philosopher component - animation, trace and LTS

© Kramer

primitive component behaviour - Choice

FORK

right left

Component:

Process specification :

FORK = (left.get -> left.put -> FORK

 | right.get -> right.put -> FORK).

choice: |

© Kramer

FORK Labelled Transition System - LTS

0 1 2

right.put

right.get

left.put

left.get

© Kramer

fork component - LTS animation, trace and LTS

© Kramer

Primitive Component - summary

u Component behaviour is modelled
by a finite state process (LTS)
using:
l action prefix ->

l choice |

l guarded recursion

u Portal interface represents an
action (or set of actions) in which
the component can engage.

© Kramer

composite component behaviour

right left

plato fork

PAIR

right leftright left

||PAIR = (plato:PHIL || fork:FORK)

 /{right/plato.right,

 left/fork.left,

 plato.left/fork.right}

 @{right,left}.

parallel
composition:||

portal interface
alphabet: @

relabel: /

© Kramer

Composite Component - summary

u Composition in Darwin is modelled as
parallel composition ||.

(Interleaving of all the actions)

u Binding in Darwin is modelled by
relabelling /.

(Processes synchronise on actions that
they have in common)

u Composition expressions are direct
translations from Darwin architecture
descriptions.

© Kramer

Darwin composition of the dining philosophers

component DINERS(int N=5){
 forall i=0 to N-1 {

 inst
phil[i] : PHIL;
fork[i] : FORK;

 }
}

 bind
phil[i].left -- fork[i].right;
phil[i].right --

fork[((i-1)+N)%N].left;

© Kramer

DINERS Specification

||DINERS(N=5) =

 (phil[0..N-1]:PHIL || fork[0..N-1]:FORK)

State Space:
 6 * 6 * 6 * 6 * 6 * 3 * 3 * 3 * 3 * 3 = 1889568

 /{phil[i:0..N-1].left / fork[i].right,

 phil[i:0..N-1].right /

 fork[((i-1)+N)%N].left

 }.

© Kramer

Chapter 6. Behaviour analysis

© Kramer

Reachability analysis

Searches the system state space for deadlock states
and error states arising from property violations.

A deadlock occurs when the system enters a state with
no outgoing transitions:

30 1 2

© Kramer

Dining philosophers - analysis

Composing
 potential DEADLOCK..
States Composed: 2163 Transitions: 8770 in 1760ms
Trace to DEADLOCK:

phil.0.think
phil.0.right.get
phil.1.think
phil.1.right.get
phil.2.think
phil.2.right.get
phil.3.think
phil.3.right.get
phil.4.think
phil.4.right.get

© Kramer

Deadlock Avoidance

3HUKDSV�GHDGORFN�FRXOG�EH�DYRLGHG�LQ�WKH�'LQLQJ�3KLORVRSKHUV
V\VWHP�E\�PDNLQJ�RQH�RI�WKH�SKLORVRSKHUV�SLFN�XS�KLV�IRUNV�LQ
WKH�UHYHUVH�RUGHU�"

PHIL(I=0) = (think -> PHILcheck),
PHILcheck =
 (when I==0 left.get -> right.get -> EAT
 | when !I==0 right.get -> left.get -> EAT),
EAT =(eat -> right.put -> left.put -> PHIL).

�L�H��SKLO����JHWV�OHIW�EHIRUH�ULJKW��

© Kramer

analysis

||DINERS(N=5) =

 (phil[i:0..N-1]:PHIL(i) || fork[0..N-1]:FORK)

/

States Composed: 2163 Transitions: 8770 in 1870ms
No deadlocks/errors

Result.....

© Kramer

Specifying properties

6DIHW\�SURSHUWLHV�DUH�VSHFLILHG�E\�GHWHUPLQLVWLF�ILQLWH
VWDWH�SURFHVVHV�FDOOHG�SURSHUW\�DXWRPDWD�

7KH�SURSHUW\�12*/87721<�DVVHUWV�WKDW�LI�D�SKLORVRSKHU
L�HDWV��WKHQ�RQH�RI�WKH�RWKHU�SKLORVRSKHUV�M�HDWV�QH[W
�SKLORVRSKHU�L�GRHV�QRW�HDW�WZLFH�LQ�VXFFHVVLRQ��

property NOGLUTTONY =
 (phil[i:0..4].eat ->

(when i>0 phil[j:0..i-1].eat -> NOGLUTTONY
|when i<4 phil[j:i+1..4].eat -> NOGLUTTONY)

).

© Kramer

checking properties

Composing
 property NOGLUTTONY violation..........
States Composed: 9768 Transitions: 39703 in 17740ms
Trace to property violation in NOGLUTTONY:

phil.0.think
phil.0.left.get
phil.0.right.get
phil.0.eat
phil.0.right.put
phil.0.left.put
phil.0.think
phil.0.left.get
phil.0.right.get
phil.0.eat

© Kramer

Ring of Dining Philosophers using PAIRs?

right left

plato fork

PAIR

right leftright left

||PAIR = (plato:PHIL || fork:FORK)

 /{right/plato.right,

 left/fork.left,

 plato.left/fork.right}

 @{right,left}.

© Kramer

Ring of PAIRs

PHIL FORK

FORK

FORK

PHIL

PHIL FORK

PHIL

FORK

PHIL

pai
r[3

]

pair[0]p
a
i
r
[
4
]

pair[2]

p
a
i
r
[
1
]

© Kramer

DINERSPairs Specification

||DINERSPairs(N=5) = (pair[0..N-1]:PAIR)

 / {pair[i:0..N-1].right /

pair[((i-1)+N)%N].left }.

Composing
 potential DEADLOCK
States Composed: 82 Transitions: 265 in 50ms
Trace to DEADLOCK:

pair.0.right.get
pair.1.right.get
pair.2.right.get
pair.3.right.get
pair.4.right.get

© Kramer

Chapter 7. Another example....

a

b

x

a

b

LTS

© Kramer

Pump for Mine Drainage

)RU�VDIHW\
UHDVRQV��WKH
SXPS�PXVW�QRW
EH�VWDUWHG�RU
FRQWLQXH�UXQQLQJ
ZKHQ�WKH
SHUFHQWDJH�RI
PHWKDQH�LQ�WKH
DWPRVSKHUH
H[FHHGV�D�VDIH
OLPLW�

Carbon Monoxide

To surface
To surface control room

Methane
sensor Airflow

sensor

sensor

High water level detector

Low water level detector

PUMP

PUMP
CONTROL
STATION

ENVIRONMENT
MONITORING
STATION

SUMP

© Kramer

pump control system

||PUMPSTATION = (PUMP||LEVEL||PUMPCONTROL).

||MINESYSTEM = (PUMPSTATION||OP||METH).

start
stop

PUMP

PUMP
CONTROL

PUMPSTATION

LEVEL

OP

METH

high
low

limit
safe

enable
disable

MINESYSTEM

© Kramer

Methane safety property

7HVW�WKDW�WKH�SXPS�LV�VWRSSHG�LI�WKH�PHWKDQH�OHYHO
UHDFKHV�WKH�OLPLW�ZKHQ�WKH�SXPS�LV�UXQQLQJ��VWDUWHG��

© Kramer

Property analysis

Composition:
PUMPSTATION = PUMP || LEVEL || PUMPCONTROL
Composition:
MINESYSTEM = PUMPSTATION || OP || METH
Composition:
MINESYSTEMtest = MINESYSTEM || METHANEProperty
State Space:
 112 * 4 = 448
Composing
States Composed: 160 Transitions: 640 in 160ms
No deadlocks/errors

© Kramer

Action hiding and minimisation

||MINESYSTEMhide = MINESYSTEM

@ {safe,limit,high,low,

 enable,disable,start,stop}.

Composing
States Composed: 112 Transitions: 424 in 110ms
minimised in 550ms
Minimised States: 9

Result.....

© Kramer

Compositional Reachability Analysis:
We construct the system incrementally from
subcomponents, based on the software architecture.
State reduction is achieved by hiding actions not in
their interfaces and minimising.

Scalability

The problem with reachability analysis is
that the state space “explodes”
exponentially with increasing problem size.

How do we hope to alleviate this problem?

© Kramer

Distributed software engineering?

Models

Systems

Mathematical Abstractions

- reasoning and property checking

Prototypes
Simplified implementations

- property checking in practice

Compositions of subsystems

 built from proven components.

© Kramer

Chapter 8. Some Lessons

© Kramer

Software tools - the need for automated support

Automated software tools are
essential to support software
engineers in the design process.

Techniques which are not
amenable to automation are
unlikely to survive in practice.

© Kramer

Software Technology - the need for teams

Software technology research
necessarily involves both
theory and practice, in the
form of experimental
implementations.

This is best conducted by
small teams of researchers
with a shared vision.

© Kramer

The next generation of distributed software engineers

© Kramer

The need to strive for Clarity and Simplicity

“It has been my experience with literary critics and
academics in this country, that clarity looks a lot
like laziness and ignorance and childishness and
cheapness to them. Any idea which can be grasped
immediately is for them, by definition, something
they knew all the time.”

Kurt Vonnegut

© Kramer

Chapter 9. In Conclusion....

© Kramer

What is the skeleton in the software cupboard?

Software architecture is the
overall structure of a system
in terms of its constituent
components and their
interconnections. It can be
used to provide the skeleton
upon which to flesh out the
particular details of concern.

© Kramer

Software Architecture

For analysis, we can associate
behavioural descriptions with the
components and reason about the
behaviour of systems composed
of these components according
to the architecture.

For system construction, we can
associate implementations with
the components of the
architecture.

© Kramer

View consistency

Systems developed in this way
have an explicit structural
skeleton which, being shared,
helps to maintain consistency
between the system and the
various elaborated views.

© Kramer

Time to come out of the software cupboard !

