The Skeleton
INn the Software Cupboard

Distributed Softwar e Engineering
- bepartment of Computing]
Imperial College

[ondon

© Kramer

Chapter 1. Once upon a time

© Kramer

Distributed Software

| nter acting softwar e components

© Kramer

© Kramer

Prototypes

Mathematical Abstractions

- reasoning and property checking

Simplified implementations

- property checking in practice

Compositions of subsystems

built from proven components.

Chapter 2. Early experience

“configuration
programming’”

© Kramer

The first generation of distributed software engineers

DSEEM heIEariya ears

starring Jeff Kramer « Morris Sloman « Jeff Mugae . .

Coeting Anne OF Nell Special Effects Marankes Culay Stunt Cocsdinafor Kenin Twacie
Boxeshlines Keng Ng Colow Consultant Bashar Muselbeh

© Kramer

British Coal - automation and remote monitoring

To surface control room | e Cli Clge
To surface Ellm .
Methane I\E/II\CID\I/\II ﬁ%%MNECIB\I !
Sensor Airflow — STATION —-[
SensorCarbon Monoxide IS Used o pump
sensor J
CONTROL S
STATION the water that
collects ina
. sump at the
High water level detector
bottom of a
4 L4
Low water level detector mine s I.

© Kramer

CONIC - a basis for “configuration programming”

Separation of ‘estruct
Component or

B Configuration Language

.
A
- -~

© Kramer

Structural view - for construction and evolution

Construction/
iImplementation

© Kramer

Experience

‘83-'89

© Kramer

Experience

'83-'89

B Teaching distributed programming

© Kramer

Distributed software engineering?

Mathematical Abstractions m‘

- reasoning and property checking

Simplified implementations
Prototypes o _
- property checking in practice

V

Compositions of subsystems x‘

built from proven components.

© Kramer

Main Principle of Configuration Programming

BIcSeglelsiels “Th
| I | LT U 1

| Il Ill'f-l Il"l

ﬂiﬁﬁiﬁr
Al

or
\ =4 |

and structural description shou

d beparate

Construction from the programming languagsed

Y o

"l"

lr-lllllllll"

((Hll

‘or
A4 |

" lll(—‘ll
e B

Can we apply this experience.to

“The confio

uration lanauao

structural description shou

-IAAIL p_7_«

TOMm

IllEprLl

for

MO
LI~ 4

ll: ‘Hl

Illl com
S AT

© Kramer

Chapter 3. A simple problem

© Kramer

Dining Philosophers

Five philosophers sit

al
cir'cuiar' table. Each philosopher

enas IID I

(7))
LE»
n

i each

Py [Py
—\nin ~ f\hi ACA

Qi v Vou

that each will only use the fork to his

immediate right and left.

© Kramer

Dining Philosophers implementation

© Kramer

Deadlock

e

deadlocks wh

PIIUbUPICF

ob’ram hIS Ief‘r for

 progress can be maad

ey are waiting for a condition

@wi never hecome trie
L) 1IN V ol SLOLVIIIWV T GNW

.

© Kramer

Behaviour analysis

9

Could we have modelled this and predicted
that deadlock was possible?

If we propose a way to correct it, can we
be sure that we have corrected it for all
possible situations?

© Kramer

Chapter 4. Darwin, an architecture description language

© Kramer

0
=
D
>
@
o
m
-
&
| -
e
Y
]
| -
@)
o
o
-
0
=
=
| -
M
A

Strllr"llrﬁ \VA

I UULLUT CU VvV 1

S EeNaviolra
I TAAVIUUT QU

(*NnnNnctriictinnN/
O UrNouauc uyulily

Analysis

© Kramer

structural view - components and interfaces

N 4

r_" \- I..: 7_
Jarwin Al

this abstract level, an

can have one or more

Interface is simply a set

Interfaces. of names.

These refer to actlons N

Ifrcation O'l'

Y

)

A4 I | IVI!

P |
St el \J

Corroonent P | |

)
W G

aYaYs pan |
JUI U QL

© Kramer

structural view - composite components & binding

m Composite components
dl e CONStructed 1rory

plato fork .

CO—() () :

_ _ _ (O OF I
right . rlght .Ieft com

. INst - Instantiation
r. ht; | eft; and Dlﬂ(]-[)lﬂ(]lﬂg.

ol ato : PHI

1

to. ri
K. | e

T M)
L U,

t

© Kramer

Darwin architecture description language (ADL)

Darwin describes structure.

P _ A
!—‘— i
- - - |] L] |]
4)ar\y - aliya’ a¥agla a ifala
| 4 U\ w, | L LA W

ndependent 0)] component behaviour and

“
)

arwin

— 4

describing |
behaviour.

© Kramer

© Kramer

primitive component behaviour - Action Prefix

© Kramer

PHIL Labelled Transition System - LTS

think right.get left.get eat right.put

left.put

© Kramer

philosopher component - animation, trace and LTS

think «|[" think —
right.get [right.get
left.get [left.get
v eat
t

[right.put tlmﬂc@'ight.ge @eﬂ gﬁt./—ernt\@'ight.pm
r IEI:LI]UI: K
left put

© Kramer

primitive component behaviour - Choice

Component:

FORK = (left.get -> left.put -> FORK

T Ylit .. Yy =~ 1 1T ylit . Jul =~ 1T\UIaA\NIN J. |

© Kramer

FORK Labelled Transition System - LTS

left.put

© Kramer

fork component - LTS animation, trace and LTS

=3 LTS Draw - FORK

Drawe File

[nght.get
[~ right.put

© Kramer

Primitive Component - summary

~-Component

N - 1 o A 1 uf /it i

by afinite state process (LTS)

W
NG ‘
‘ | using:
Y RV -action prefix - >
4d

choice
-guardeo

Portal interface represents an

ne com - can engage
Ll N OUT T L \ >

© Kramer

composite component behaviour

parallel
composition:
[| [| I. "
relabel: /
PAI R (platoPHL fork: FORK)

left/fork.left,

@rin t | eft)
Ilﬂll\.’l\lll. [

© Kramer

Composite Component - summary

» Binding in Da
relabelling / .

(Processes synchronise on actions that

descriptions.

© Kramer

Darwin composition of the dining philosophers

ponent DI NERS(I nt N=5)
>~

forall i=0 to N-1 {

I NS

I 11

ﬂhi

=

Hl L;

for

FORK;

bi nd

olal

1.1 ef

t -- fork[i].right;

I
J111l

v 1
« I 1 U

s

f Or
I Ul

J

© Kramer

DINERS Specification

n 1 £ 5L
| 1T 1
] | | A2 | <

ri nht /
. 1 | HIIL |

| fork[((i-1)+N)%\| .|l eft

State Space:
6*6*6*6*6*3*3*3* 3* 3=1889568

© Kramer

Chapter 6. Behaviour analysis

© Kramer

Reachability analysis

deadlock state
ror states arising from property violations.

/\

© Kramer

Dining philosophers - analysis

Composing

ohil . 1.think

phil.1.right.
phil.2.think

© Kramer

Deadlock Avoidance

Perha

rne revers

PHI L(1=0) = (think -> PH Lcheck),

PHI Lcheck

(when | == left.get -> right.get -> EAT

| when ! == right.get -> left.get -> EAT),
EAT =(eat ->right.put -> left.put -> PHL).

ore rig

© Kramer

analysis

| | DI NERS(NE5) =
(phil[i:0..N-1]:PHIL(i) || fork[O..N1]: FORK)

States Composed: 2163 Transitions: 8770 in 1870ms

No deadlocks/errors

© Kramer

Specifying properties

e properTy automata.

property NOGLUTTONY =
(phil[1:0..4].eat ->
(when 1 >0 phil[j:0..1-1].eat -> NOGLUTTONY
| when 1 <4 phil[]:1+1..4].eat -> NOGLUTTONY)

The property NOGLUTTONY asserts Tha’r |

~ At ~ I N P Wl YV

2drTs, the othel P \ Uaup
(philosopher i does not eat twice in suc

7~
{ |
.
- | " | E

© Kramer

checking properties

Composing
CllClClSllV.i‘lﬁlEl -!l-lﬁli‘l'-V‘lCllflllCli—

States Composed: 9768 Transitions: 39703 in 17740ms
Traceto property violation in NOGLUTTONY: :

ohil.0.think
ohil.0.left.get

© Kramer

Ring of Dining Philosophers using PAIRs?

lato fork
() .p 0.0) (O
rlght Ieftrlght .Jrefr

1 4 ™1 11 [d 1 j— VAN
N at o PHI for k- FORK)
AL U 1 LI | B == I Ul LI NI | \I\/

left/fork.left,

@ri aht | eft)
Ilﬂll\.’l\lll. [

© Kramer

© Kramer

DINERSPairs Specification

DI NERSPai rs(N=5) = (pair[0..N1]:PA R
[{pair[i:0..N1].right /
pair[((i-1)+N) %N .l eft }.

|

9
potential DEADL OCK

— StatesCombosed: 82 Transitions-—265ih50ms—

Traceto DEADLOCK:

. M
Aala Ara)
W

ioai r .2.riéht.éet

© Kramer

Chapter 7. Another example....

© Kramer

Pump for Mine Drainage

‘n" 2 g -Ln Y
To surface control room Oor odlcel y
To surface reasons, the
ENVIRONMENT
Methane MONITORING pump musT not
SENsSOr Airflow — STATION ~d 4
sensorC on M 3
on ono e e *
saernsor X! continue r'unnlng
PUMP dhon+he
CONTROL en ine

STATION

in the

High water level detector

Low water level detector

© Kramer

pump control system

NESYSTEM
/PUMPSTATION

PUMP: |
start
stop
PUMP

Vel | CONTROL
N o

| | PUMPSTATI ON = (PUMP| | LEVEL| | PUMPCONTROL) .
| | M NESYSTEM = (PUVPSTATI ON| | OP| | METH) .

© Kramer

Methane safety property

Test that the pump is stopped if the methane level
reaches the limit when the pump Is running (started). E

© Kramer

Property analysis

P =\

tron-:
CIT Ul 1

PUMPSTATION = PUMP || LEVEL || PUMPCONTROL

EQYCTE
EoT ot =1

IVI!I\! VAL — IDUIVIID\Q)-!-AT!OI\! OID IVIETI]
Composition:

= METHANEPro
State Space:

112 * 4 = 448

Ta)

N
Ilﬂ

No deadlocks/errors

© Kramer

Action hiding and minimisation

M NESYSTEMhi de = M N

@{safe,limt, high,]low,

States Composed: 112 Transitions. 424 in 110ms
minimised in 550ms
Minimised States. 9

© Kramer

Scalability

1€ DIFroNIem ‘\l"\l’i Nnfre ﬂahl | y |lr|lvn.|.1l._

that the state space “explodes”
exponentially with increasing problem size.

How do we hopeto alleviate this problem?

f\t'\l

fal'a'al'al
ompo

\A/lo AN
VVC LUUILISL

m Favla '\ / 'aYalAWia

'tona chabtility Analysis.
ruct t | aly
SUDCOMPOrer DU Or] LHe SOIriwalre c li I C
State reduction is achieved by hiding actions not in
heir interfaces and minimising:

PaYa'al
Ul L1

-
da
|

© Kramer

Distributed software engineering?

© Kramer

Prototypes

vV

Mathematical Abstractions L

- reasoning and property checking

Simplified implementations

- property checking in practice

V

Compositions of subsystems x‘

built from proven components.

Chapter 8. Some Lessons

N

© Kramer

Software tools - the need for automated support

I PRy N . —~
’“\u- | I | - S :99 !
N)

engineersin the design process.

"echniques which

amenable to automation are
unlikely to survive in practice.

© Kramer

Software Technology - the need for teams

'tware technology researc
necessarily involves both
theory and practice, in the
mplementations.

:A:A NSNS [| =
SIS D CON(
A — 4 B — 4 A4 — 4 BN |

SIlA cal 1S O

with a shared vision.

© Kramer

The next generation of distributed software engineers

The need to strive for Clarity and Simplicity

“It has been my experience with literary critics a
academics in this country, that clarity looks a lot
like laziness and ignorance and childishness ang
cheapness to them. Any idea which can be grasEss
Immediately Is for them, by definition, something
they knew all the time.”

Kurt Vonnegut

© Kramer

Chapter 9. In Conclusion....

© Kramer

What is the skeleton in the software cupboard?

N\

Fha/aroa archit rirai1c tho
SOHtWware arciattecture s the

1N terms of 1ts constituent

components and their

‘erconnections. It can be

upon which to flesh out the

© Kramer

Software Architecture

ﬁﬁ%ﬁﬁﬁﬂﬂﬁﬂ:ﬁ:ﬁﬂﬂ' oOn, WeCan

associate Implementations with

the components of the

arcnitecture.

For analysis, we can associate

lescripti thth
"M
|

nonents anc
' O systems CoOmpoSsec

these components according

Halal lalalks a
LG |7 L L .

" 1
> 7 e Y

S

al

daVlAV VZa V]
LHro vvaly

1N
i

OLU UL LU

a\Ila'l a.ddBlaidlla

I 1 Ul

nelps to maintain consistency

View consistency

© Kramer

Time to come out of the software cupboard !

© Kramer

