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Chapter 1. Once upon a time
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Distributed Software

| nter acting softwar e components
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Prototypes

Mathematical Abstractions

- reasoning and property checking

Simplified implementations

- property checking in practice

Compositions of subsystems

built from proven components.




Chapter 2. Early experience

“configuration
programming’”
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The first generation of distributed software engineers
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starring Jeff Kramer « Morris Sloman « Jeff Mugae . .
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British Coal - automation and remote monitoring
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CONIC - a basis for “configuration programming”

Separation of ‘estruct
Component or

B Configuration Language
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Structural view - for construction and evolution

Construction/
iImplementation
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Experience

‘83-'89
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Experience

'83-'89

B Teaching distributed programming
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Distributed software engineering?

Mathematical Abstractions m‘

- reasoning and property checking

Simplified implementations
Prototypes o _
- property checking in practice

V

Compositions of subsystems x‘

built from proven components.
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Main Principle of Configuration Programming
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Chapter 3. A simple problem
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Dining Philosophers

Five philosophers sit

al
cir'cuiar' table. Each philosopher

enas IID I

(7))
LE»
n

i each

Py [ Py
—\nin ~ f\hi ACA

Qi v Vou

that each will only use the fork to his

immediate right and left.
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Dining Philosophers implementation
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Deadlock

e

deadlocks wh
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Behaviour analysis

9

Could we have modelled this and predicted
that deadlock was possible?

If we propose a way to correct it, can we
be sure that we have corrected it for all
possible situations?
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Chapter 4. Darwin, an architecture description language
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structural view - components and interfaces
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structural view - composite components & binding

m Composite components
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Darwin architecture description language (ADL)

Darwin describes structure.
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primitive component behaviour - Action Prefix
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PHIL Labelled Transition System - LTS

think  right.get left.get eat right.put

left.put
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philosopher component - animation, trace and LTS

think  «|[" think —
right.get [ right.get
left.get [ left.get
v eat
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primitive component behaviour - Choice

Component:

FORK = ( left.get -> left.put -> FORK

T Ylit .. Yy =~ 1 1T ylit . Jul =~ 1T\UIaA\NIN J. |
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FORK Labelled Transition System - LTS

left.put
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fork component - LTS animation, trace and LTS

=3 LTS Draw - FORK

Drawe  File
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[~ right.put
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Primitive Component - summary
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composite component behaviour

parallel
composition:
[ | [ | I. "
relabel: /
PAI R (platoPHL fork: FORK)
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Composite Component - summary

» Binding in Da
relabelling / .

(Processes synchronise on actions that

descriptions.
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Darwin composition of the dining philosophers

ponent DI NERS( I nt N=5)
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DINERS Specification

n 1 £ 5L
| 1T 1
] | | A2 | <
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| fork[((i-1)+N)%\| .|l eft

State Space:
6*6*6*6*6*3*3*3* 3* 3=1889568
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Chapter 6. Behaviour analysis
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Reachability analysis

deadlock state
ror states arising from property violations.

/\
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Dining philosophers - analysis

Composing

ohil . 1.think

phil.1.right.
phil.2.think

© Kramer




Deadlock Avoidance

Perha

rne revers

PHI L(1=0) = (think -> PH Lcheck),

PHI Lcheck

( when | == left.get -> right.get -> EAT

| when ! == right.get -> left.get -> EAT),
EAT =(eat ->right.put -> left.put -> PHL).

ore rig
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analysis

| | DI NERS( NE5) =
(phil[i:0..N-1]:PHIL(i) || fork[O..N1]: FORK)

States Composed: 2163 Transitions: 8770 in 1870ms

No deadlocks/errors
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Specifying properties

e properTy automata.

property NOGLUTTONY =
(phil[1:0..4].eat ->
(when 1 >0 phil[j:0..1-1].eat -> NOGLUTTONY
| when 1 <4 phil[]:1+1..4].eat -> NOGLUTTONY)

The property NOGLUTTONY asserts Tha’r |
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checking properties

Composing
CllClClSllV.i‘lﬁlEl -!l-lﬁli‘l'-V‘lCllflllCli—

States Composed: 9768 Transitions: 39703 in 17740ms
Traceto property violation in NOGLUTTONY: :

ohil.0.think
ohil.0.left.get
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Ring of Dining Philosophers using PAIRs?

lato fork
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DINERSPairs Specification

DI NERSPai rs(N=5) = (pair[0..N1]:PA R
[ {pair[i:0..N1].right /
pair[((i-1)+N) %N .l eft }.
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Chapter 7. Another example....
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Pump for Mine Drainage
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pump control system

NESYSTEM
/PUMPSTATION

PUMP: |
start
stop
PUMP

Vel | CONTROL
N o

| | PUMPSTATI ON = ( PUMP| | LEVEL| | PUMPCONTROL) .
| | M NESYSTEM = ( PUVPSTATI ON| | OP| | METH) .
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Methane safety property

Test that the pump is stopped if the methane level
reaches the limit when the pump Is running (started). E
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Property analysis

P =\

tron-:
CIT Ul 1

PUMPSTATION = PUMP || LEVEL || PUMPCONTROL

EQYCTE
EoT ot =1

IVI!I\! VAL — IDUIVIID\Q)-!-AT!OI\! OID IVIETI ]
Composition:

= METHANEPro
State Space:

112 * 4 = 448

Ta)

N
Ilﬂ

No deadlocks/errors
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Action hiding and minimisation

M NESYSTEMhi de = M N

@{safe,limt, high,]low,

States Composed: 112 Transitions. 424 in 110ms
minimised in 550ms
Minimised States. 9
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Scalability
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that the state space “explodes”
exponentially with increasing problem size.

How do we hopeto alleviate this problem?
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Distributed software engineering?

© Kramer

Prototypes

vV

Mathematical Abstractions L

- reasoning and property checking

Simplified implementations

- property checking in practice

V

Compositions of subsystems x‘

built from proven components.




Chapter 8. Some Lessons

N
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Software tools - the need for automated support

I PRy N . —~
’“\u- | I | - S :99 !
N)

engineersin the design process.

"echniques which

amenable to automation are
unlikely to survive in practice.

© Kramer




Software Technology - the need for teams

'tware technology researc
necessarily involves both
theory and practice, in the
mplementations.
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with a shared vision.
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The next generation of distributed software engineers




The need to strive for Clarity and Simplicity

“It has been my experience with literary critics a
academics in this country, that clarity looks a lot
like laziness and ignorance and childishness ang
cheapness to them. Any idea which can be grasEss
Immediately Is for them, by definition, something
they knew all the time.”

Kurt Vonnegut
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Chapter 9. In Conclusion....
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What is the skeleton in the software cupboard?
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Software Architecture
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Time to come out of the software cupboard !
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