
On the Synthesis of Choreographies

Thesis submitted for the degree of
Doctor of Philosophy at the

University of Leicester

by

Julien Lange
Department of Computer Science

University of Leicester

August 2013



i

On the Synthesis of Choreographies
Julien Lange

Abstract. The theories based on session types stand out as effective methodologies
to specify and verify properties of distributed systems. A key result in the area shows the
suitability of choreography languages and session types as a basis for a choreography-
driven methodology for distributed software development. The methodology it advocates
is as follows: a team of programmers designs a global view of the interactions to be
implemented (i.e., a choreography), then the choreography is projected onto each role.
Finally, each program implementing one or more roles in the choreography is validated
against its corresponding projection(s).

This is an ideal methodology but it may not always be possible to design one set of
choreographies that will drive the overall development of a distributed system. Indeed,
software needs maintenance, specifications may evolve (sometimes also during the de-
velopment), and issues may arise during the implementation phase. Therefore, there is a
need for an alternative approach whereby it is possible to infer a choreography from local
behavioural specifications (i.e., session types).

We tackle the problem of synthesising choreographies from local behavioural spec-
ifications by introducing a type system which assigns – if possible – a choreography to
set of session types. We demonstrate the importance of obtaining a choreography from
local specifications through two applications. Firstly, we give three algorithms and a
methodology to help software designers refine a choreography into a global assertion,
i.e., a choreography decorated with logical formulae specifying senders’ obligations and
receivers’ requirements. Secondly, we introduce a formal model for distributed systems
where each participant advertises its requirements and obligations as behavioural con-
tracts (in the form of session types), and where multiparty sessions are started when a set
of contracts allows to synthesise a choreography.



Acknowledgements

First and foremost I would like to thank Emilio Tuosto for being such a great supervisor,
friend and colleague over these past four years. Thank you very much Emilio it has been
great working with you (and still is)!
I am grateful to my collaborators Laura Bocchi and Alceste Scalas. I am very glad I had
the chance to work with both of you.
I would like to thank Mariangiola Dezani-Ciancaglini and Nir Piterman for examining
my thesis, also for great comments and discussions during my viva.
I would like to thank my colleagues from Leicester who have had – in a way or another
– some influence on my work: Daniela Petrişan whose “puzzle” became somehow part
of this thesis; Tadeusz Litak with whom I had many discussions on early ideas on a type
system from local to global types; Roy Crole and Fer-Jan de Vries for discussions and
advice as part of my thesis committee.
I would like to thank the Department of Computer Science of the University of Leicester
for offering me the chance of working and studying here.
I am grateful to Nobuko Yoshida and Pierre-Malo Deniélou for insightful discussions
and comments.
Thank you to my other friends and (ex-)colleagues without whom working in the depart-
ment would not be what it was. Thank you to my “brother-in-PhD” Kyriakos; and thank
you to Gabriela, Octavian, Alex, Oliver, Sokkar, Muz, and all those that I am forgetting
here, for being great friends in and outside the department.
I am grateful to my parents, sisters, and grand-parents for their support and encourage-
ments during these past four years. Merci Angèle for visiting me whenever you could!
Last but not least, I would like to thank Franz Preud’homme who, fifteen years ago, gave
me a book on programming with Delphi. Had he not been around, I probably would not
have studied computer science.

ii



iii

To Angèle.



Contents

1 Introduction 1
1.1 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Synopsis and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Dyadic Session Types . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Multiparty Session Types . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Design-by-Contract for Distributed Multiparty Interactions . . . . 15
2.1.4 Session Types and Communicating Machines . . . . . . . . . . . 16

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Global versus Local Specifications . . . . . . . . . . . . . . . . . 18
2.2.2 On Synthesising Choreographies . . . . . . . . . . . . . . . . . . 22
2.2.3 Beyond Multiparty Session Types . . . . . . . . . . . . . . . . . 25
2.2.4 Other Approaches to Multiparty Sessions . . . . . . . . . . . . . 26

3 Synthesising Choreographies from Local Types 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Local Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Global Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Well-formed Global Types . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Properties of Well-formed Global Types . . . . . . . . . . . . . . 39

3.4 Synthesising Global Types . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Validation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Applying the Rules . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Properties of the Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



CONTENTS v

3.5.3 Well-formedness and Projections . . . . . . . . . . . . . . . . . 55
3.5.4 Subject Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.5 Equivalence with Original System . . . . . . . . . . . . . . . . . 66
3.5.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Amending Contracts for Choreographies 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 On Recovering History Sensitivity . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Variable Propagation . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Properties of Σ and Π . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 On Recovering Temporal Satisfiability . . . . . . . . . . . . . . . . . . . 91
4.4.1 Lifting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 Applying Λ to Branching and Recursion . . . . . . . . . . . . . . 95
4.4.3 Properties of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 A Methodology for Amending Choreographies . . . . . . . . . . . . . . 102
4.5.1 Amendment Strategies . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Applying the Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.1 Cash Withdrawal . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.2 Credit Request . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Choreography Synthesis as Contract Agreement 110
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 A Choreography-Based Contract Model . . . . . . . . . . . . . . . . . . 113
5.4 Contract-Oriented Computing and Choreographies . . . . . . . . . . . . 114

5.4.1 A Choreography-Based CO2 . . . . . . . . . . . . . . . . . . . . 115
5.4.2 On the Flexibility of Session Establishment . . . . . . . . . . . . 119

5.5 The Problem of Honesty . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Properties of Honest Networks . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusions and Future Directions 133
6.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 137



List of Figures

1.1 Choreography driven development . . . . . . . . . . . . . . . . . . . . . 2

2.1 The multiparty session types approach . . . . . . . . . . . . . . . . . . . 11
2.2 Example of generalised global type . . . . . . . . . . . . . . . . . . . . . 16
2.3 Example of communicating machines . . . . . . . . . . . . . . . . . . . 17

3.1 Global view of SBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Rules for well-formedness . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Validation rules for programs . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Typing derivation of Sex3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Seller-Buyer global type (extract) . . . . . . . . . . . . . . . . . . . . . . 75
4.2 ATM protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Credit request protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Semantics rules for CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Congruence rules for CO2 . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi



CHAPTER 1

Introduction

1.1 Motivations and Objectives
The design, implementation, and maintenance of distributed systems are not easy tasks.
This is due, notably, to the fact that many parties – with different objectives and policies
– may be involved in each one of these tasks. Also, the specification of such systems is
generally done at different levels and possibly via different formalisms, e.g., each part of a
system may be specified from internal and external perspectives, using different languages
such as BPEL [61] and UML [62]. Addressing these tasks is made even more challenging
when specifications change during the development cycle, when part of the system relies
on legacy software, or when the system must evolve in a hostile environment, e.g., when
a service relies on the dynamic discovery of other services, which might not be trusted.

In the last decade, message passing based distributed systems have been receiving
much attention both from industry [64, 65, 67] and from the research community. From
the research perspective, a major advantage is that such systems may be reasoned about
via very well established theoretical tools such as the π-calculus [56]. The suitability of
these systems for theoretical work lead to a new approach to distributed software design
and verification where types are not only used for checking, e.g., expressions and func-
tions, but also to check that, e.g., the behaviour of a client matches the behaviour of a
service offered by a server. Behavioural types, or session types, are used to assign an ab-
stract behaviour to channels which are used by distributed programs to interact with one
another.

Additionally, choreography languages such as WS-CDL [34] have been developed to
model the interactions between different services from a global point of view. Notably,
they allow software designers of different parts of a system to define – jointly – the rules
of participation in the system, without delegating the control of their part of the system to
another party. A groundbreaking work [44] relates choreography languages and session
types to promote a choreography-driven methodology for distributed software develop-

1



CHAPTER 1. INTRODUCTION 2

Choreography

Local Specificationi

Implementationi

Local Specification1

Implementation1

Local Specificationn

Implementationn

Check Check Check

Project Project Project

Figure 1.1: Choreography driven development

ment. The methodology it advocates, summarised in Figure 1.1, is as follows: a team of
programmers designs a global view of the interactions to be implemented (i.e., a chore-
ography), then the choreography is projected onto each role, or participant, finally each
program implementing one or more roles in the choreography is type-checked against its
corresponding projection(s). This approach permits, if the choreography satisfies some
properties, to guarantee safety properties such as deadlock freedom and to ensure that an
implementation abide by the specified protocol.

This is an ideal methodology, but it may not always be possible to design one set of
choreographies that will drive the overall development of a distributed system. Indeed,
software need maintenance, specifications may evolve (sometimes also during the devel-
opment), and issues may arise during the implementation phase. Therefore, there is a
need for an alternative approach whereby it is possible to infer a global point of view of
a distributed system (i.e., a choreography) from local behavioural specifications (i.e., ses-
sion types). Without such an approach the burden of (re-) constructing the choreographies
of a distributed system is on the practitioners. Often, they may choose to omit this step,
therefore creating a gap between an implementation and its specification. We propose to
tackle the problem of synthesising choreographies from local behavioural specifications
via a type system which assigns a choreography to a set of session types, if possible.

Obtaining a choreography from local specifications permits not only the methodology
above to be applicable and thus to guarantee safety properties, but also allows to keep
an implementation closer to its specification. Indeed, as the implementation progresses,
one may infer choreographies from it and check that it still matches the specification.
If there is a gap between implementation and specification, then it is possible to adapt
both specification and implementation in a semi-automatic manner (using choreography
projections and synthesis).

Keeping specifications and implementations close is not the only advantage of having
a means to synthesise a choreography from local specifications. In fact, once a chore-



CHAPTER 1. INTRODUCTION 3

ography has been obtained it may be refined into a more informative formalism, e.g,
a global assertion, that is a choreography decorated with logical formulae specifying
senders’ obligations and receivers’ requirements. We will see however that refining a
choreography into a global assertion is not always a trivial task. We will give a few tech-
niques to facilitate the task of the designer so that global assertions satisfy essential safety
properties.

In addition, synthesising choreographies may also be done at runtime to characterise
a set of services, or contracts, which are fulfilling each other’s requirements. We say that
a set of contracts is compliant if it may be assigned a choreography. An advantage of
having a choreography to represent the fact that a set of services is compliant is that it
permits to reason about meta-level properties of the interactions, e.g., if the interactions
always terminate or if the involved services will share some common properties once the
interactions have terminated.

The main objectives of the thesis are as follows. Firstly, we tackle the problem of con-
structing a global view of a distributed system (i.e., a choreography) from local specifica-
tions: we focus on the top part of Figure 1.1 and reverse the “project” arrows. Secondly,
we demonstrate the interest of obtaining a choreography from local specifications by (i)
giving techniques to help refine a choreography into a global assertion and (ii) by intro-
ducing a model for distributed systems which use choreographies as a basis for combining
services together.

1.2 Synopsis and Contributions
The thesis is divided in six chapters which we briefly summarise below.

• In the rest of this chapter, we list the published works on which the thesis is build.

• In Chapter 2, we introduce the context and foundations of our work and discuss
related literature.

• In Chapter 3, we give a construction to synthesise a choreography from local speci-
fications. This chapter represents the core contribution of this thesis: a type system
which assigns a global type to a set of local types.

• In Chapter 4, we present three algorithms and a methodology to help designers
decorate a choreography with logical predicate stating senders’ obligations and re-
ceivers’ requirements.

• In Chapter 5, we introduce a formal model for distributed systems where the syn-
thesis of choreographies is used to define a compliance relation between contracts
advertised by participants willing to cooperate.

• In Chapter 6, we conclude the thesis and discuss future research directions.



CHAPTER 1. INTRODUCTION 4

1.3 Publications
The thesis is based on the following publications (in chronological order). We describe
their correspondance with the content of the thesis and the contributions of the author.

• A Modular Toolkit for Distributed Interactions. Julien Lange and Emilio Tuosto,
PLACES 2010, [52].

– Author’s contribution: This is a paper of my own.

– This work does not appear in the thesis, but the toolkit it describes was used (i)
to identify the problem that Chapter 4 tackles (i.e., designing a well-asserted
global assertion is not an easy task) and (ii) to test the algorithms presented in
Chapter 4.

• Amending Contracts for Choreographies. Laura Bocchi, Julien Lange and Emilio
Tuosto, ICE 2011, [13].

– Author’s contribution: In this work, my contributions include: part of the
writing, part of the ideas and formalisations of the three algorithms; I had a
major contribution in the proofs, the methodology, and the idea of the lifting
algorithm.

– Corresponding part: Chapter 4.

• Three Algorithms and a Methodology for Amending Contracts for Choreogra-
phies. Laura Bocchi, Julien Lange and Emilio Tuosto, Sci. Ann. Comp. Sci., 22, [14].

– Author’s contribution: This paper is an extented version of [13] above. This
version includes all the proofs.

– Corresponding part: Chapter 4 is essentially an extended and updated version
of [14].

• Synthesising Choreographies from Local Session Types. Julien Lange and Emilio
Tuosto, CONCUR 2012, [53].

– Author’s contribution: This is a paper of my own.

– Corresponding part: Chapter 3 is major revision of [53]. The technicalities
were updated in order to match recent developments on the relationship be-
tween communicating machines and session types. In addition, all the proofs
are included in the chapter and many additional examples were added.

• Choreography Synthesis as Contract Agreement. Julien Lange and Alceste
Scalas, ICE 2013, [51].

– Author’s contribution: In this work, my contributions include: part of the
writing, part of the ideas and formalisations of our adaptation of CO2, the
variations of the fuse primitive, and the proofs.



CHAPTER 1. INTRODUCTION 5

– Corresponding part: Chapter 5 is an extended version of [51], with all the
proofs, additional examples and, notably, a larger discussion on variations of
the fuse-primitive.



CHAPTER 2

Background

We review the key theories on which our work relies and discuss a few related
approaches. We focus on (i) the basis on which our work is build – in Sec-
tion 2.1 – and (ii) on works that study the relationship between global and local
specifications – in Section 2.2.

2.1 Foundations
The theories based on session types stand out as effective methodologies to specify and
verify properties of distributed systems. Amongst the research community, they have
become a popular framework to reason about concurrent programs which communicate
via (usually asynchronous) communication channels.

Since the first paper introducing session types as a means to design and verify prop-
erties of distributed systems in the mid-nineties, many extensions and applications have
been proposed by many authors. These range from theoretical works establishing a Curry-
Howard-like isomorphism between linear logic and session types [19, 20, 70], to works
embedding session type theory into programming languages [45, 58–60], and industrial
applications [64, 65].

In this section, we introduce the key elements of session type theory. We first present
the theory of dyadic session types and its extension to multiparty session types. We then
present two extensions which are essential for the next chapters: an extension which in-
troduces design-by-contract for distributed interactions and an extension of the multiparty
session types framework to communicating machines.

6



CHAPTER 2. BACKGROUND 7

2.1.1 Dyadic Session Types
Session types were first introduced in [43, 68] by Honda et al. as a means to structure
communications in concurrent programming. Analogously to data types in traditional
programming language, where, e.g., type checking at compilation time ensures that the
arguments of a function match its definition, dyadic session types guarantee that, e.g., the
behaviour of a client-side application matches the behaviour of a service invoked on the
server-side.

The theory relies on a few ingredients that we describe below. The key ingredient
is the notion of session, that is a set of structured interactions which corresponds, for
instance, to a communication protocol (from the communication initialisation to the ter-
mination). We give an example of a session in Example 2.3 below.

The framework introduced in [43] – and most of its extensions – is based on three
main components: (i) a language used to write the processes which take part in the inter-
actions (usually a variation of the π-calculus [56]); (ii) a syntax for types that describe the
structure of the interactions (i.e., session types); and (iii) a type discipline which verifies
that processes match their types and guarantees safety properties of the interactions. We
describe informally each ingredient and illustrate how the theory works.

A session-oriented calculus. The first component is a calculus to model processes
which interact via communication channels. In order to structure the interactions between
parties, a few interaction primitives are made available to the programmers. They include
communication mechanisms à la π-calculus that deal with session channels as first-class
values. We focus on the primitives and constructs of the language which directly relate to
the rest of this thesis.

In the rest of this chapter, we let R range over process, n over public names, k over
channels, and e over values.

R ::“ npkq in R [SESSION REQUEST]

| npkq in R [SESSION ACCEPTANCE]

| k!xey ;R [SEND]

| k?pxq ;R [RECEIVE]

| k Ÿ l ; R [SELECT]

| k Ź tl1 : R1, . . . , ln : Rnu [BRANCH]

| pνkqR [RESTRICTION]

| R |R1 [PARALLEL]

| . . .

Primitives [SESSION REQUEST] and [SESSION ACCEPTANCE] deal with session creation. The former
indicates a request for a new session on public name n (i.e., a name known to other
processes). Primitive [SESSION ACCEPTANCE] is its dual: it indicates the acceptance of a new
session. These two primitives bind k in their respective continuations.

Example 2.1. A process implementing an FTP server would start with a primitive npkq
in R, indicating that it is waiting for a client request. Here n may be understood as port



CHAPTER 2. BACKGROUND 8

21, k may be understood as the port number through which the data exchange will occur,
and R is the implementation of the body of the server.

Similarly, a process implementing an FTP client would start with a primitive npkq inR,
indicating that the client sends a request to a server via port 21 (or n).1 ˛

Primitives [SEND] and [RECEIVE] allow processes to exchange data. The former indicates
the sending of a value e on a channel k; while the latter indicates the reception of a datum
from channel k, and binds x in the continuation R; once a value is received, x is replaced
by that value in R.

Primitives [SELECT] and [BRANCH] provide a select and branch mechanism which allows
participants to make an internal choice or to let the environment make a decision (external
choice). Notably, the mechanism allows to provide a simple model of (distributed) method
invocations, where a label l models the name of a method. Primitive [SELECT] indicates the
sending of a label l on channel k; and primitive [BRANCH] indicates a choice made by another
process, if label li is selected, then Ri is executed.

The construct [RESTRICTION] allows to restrict the use of channel k to the process R.
Note that [RESTRICTION] is a runtime construct, i.e., it is not available to the programmer and
appears only when sessions have been started. Concurrent processes are specified via
construct [PARALLEL] which indicates the concurrent execution of processes R and R1.

In addition to these primitives, the language features standard constructions such as if-
then-else, process definitions and invocations, terminated process 0 (trailing occurrences
are often omitted), and special primitives for sending and receiving session names. These
special primitives allow delegation, namely the fact that session channels may be com-
municated so to allow a process to delegate its “role” to another process.

We illustrate the syntax of the language in Example 2.2 below.

Example 2.2. Consider the two processes Rs and Rc below.

Rs “ npkq in
k Ź t i : k?pxq ; k!xx ˚2y,

b : k?pyq ; k!x yy u

The process Rs may be understood as a server which waits for a request on a public name
n, i.e., a name known by other processes in the system. Once a request has been received,
the server offers two operations, or branches. If the branch i is selected, then the server
receives an integer, and returns the double of this integer. If the branch b is selected, the
server receives a boolean and returns its negation.

Rc “ npkq in
ifp. . .q then k Ÿ i ; k!x3y ; k?pxq

else k Ÿ b ; k!xtruey ; k?pyq

The process Rc is a client which, essentially, exhibits the dual behaviour. Once its session
request has been accepted, it chooses either branch offered by the server – we abstract

1 Note that n may also be understood as a pair of IP address and port number.



CHAPTER 2. BACKGROUND 9

from the actual decision here. If the client chooses the i (resp. b) branch, it sends the
value 3 (resp. true) via channel k, and expects an answer which will be stored in variable
x (resp. y). ˛

The semantics of the calculus is similar to the one of the π-calculus (but for the session
creation primitives) and we illustrate it with Example 2.3.

Example 2.3. Composing the two processes of Example 2.2 in parallel, we obtain Rs |Rc,
which reduces to

pνk1q
ˆ

k1 Ź t i : k1?pxq ; k1!xx ˚2y,
b : k1?pyq ; k1!x yy u

ifp. . .q then k1 Ÿ i ; k1!x3y ; k1?pxq
else k1 Ÿ b ; k1!xtruey ; k1?pyq

˙

where k1 is a (fresh) channel restricted to these processes (i.e., no other process may use
it).

At this point we can say that a session has started: two processes have started a new
session by “meeting” via a public name n and they may now communicate “privately” via
the fresh channel k1.

If the client chooses the i branch, the system reduces to

pνk1q
`

k1 Ź t i : k1?pxq ; k1!xx ˚2y , b : k1?pyq ; k1!x yy u | k1 Ÿ i ; k1!x3y ; k1?pxq
˘

and after a few steps, we obtain:

pνk1q
`

k1!x3 ˚2y | k1?pxq
˘

and the process terminates once the client has received the value 6 via channel k1. ˛

Session types. The next components of the theory are session types, also called local
types, or end-point types. Essentially, a session type represents the abstract behaviour
of a process on a given communication channel. We give their syntax below – adapted
from [43] – and let P range over session types and a over message sorts.

P ::“ !a ;P [SEND]

| ?a ;P [RECEIVE]

| ‘tl1 : P1, . . . , ln : Pnu [INTERNAL CHOICE]

| `tl1 : P1, . . . , ln : Pnu [EXTERNAL CHOICE]

| µχ.P [RECURSION]

| χ [RECURSIVE CALL]

| 0 [END]

where a ranges over basic data types (or sorts) such as bool, int, etc.2 There is a close cor-
respondence with the primitives of the calculus presented above. Types [SEND] and [RECEIVE]

correspond to the send and receive primitives. Types [INTERNAL CHOICE] and [EXTERNAL CHOICE]

2 These may also include session types, but we abstract from such constructions in this thesis.



CHAPTER 2. BACKGROUND 10

correspond the select and branch primitives. Note that type [INTERNAL CHOICE] says that
any of the labels li may be sent, then behaviour Pi takes places. Types [RECURSION] and
[RECURSIVE CALL] are used to represent recursive behaviours. Finally, type [END] indicates the
termination of the session.

An important notion regarding dyadic session types is the one of co-type. The co-type
of a type P, written P, is defined as follows:

!a ;P “ ?a ;P ‘tl1 : P1, . . . , ln : Pnu “ `tl1 : P1, . . . , ln : Pnu 0 “ 0
?a ;P “ !a ;P `tl1 : P1, . . . , ln : Pnu “ ‘tl1 : P1, . . . , ln : Pnu

µχ.P “ µχ.P χ “ χ

Typing discipline. The final component of the framework is a typing discipline which
guarantees safety properties of the system under consideration. One of the main contri-
butions in [43] is a type system that, given a process R, permits to assign session types to
the channels used by R. The reader does not need to have a precise understanding of the
type system in the scope of this thesis, thus we only highlight the basic ideas.

The main judgement of the type system is of the form:

Θ ; Γ $ R � ∆

where Θ is an environment mapping process variables to processes (to deal with process
definitions), environment Γ maps free names (e.g., public name n in Example 2.2) to pairs
of local types, and expressions and variables to sorts. Environment ∆ maps free channels
(such as channel k in Example 2.2) to local types. We give a couple of typing rules to
show the flavour of the type system.

Θ ; Γ $ R � ∆ ¨ k : P
Θ ; Γ ¨n : xP,Py $ npkq in R � ∆

Γ $ e : a Θ ; Γ $ R � ∆ ¨ k : P
Θ ; Γ $ k!xey ;R � ∆ ¨ k : !a ;P

The left-hand side rule validates session acceptance primitive; if the environment Γ maps
a name n to a pair of dual local types and if the continuation is typable, with k : P in
environment ∆. Note that the rest of the derivation must ensure that the process uses the
channel k as advertised by type P. The right-hand side rule validates sending actions; if
the continuation is typable and the expression e is of type a.

Example 2.4. Continuing with Example 2.2, the type of channel k, from the point of view
of Rs (resp. Rc) is given by Ps (resp. Pc) below.

Ps “`ti : ?int ;!int , b : ?bool ;!boolu Pc “‘ti : !int ;?int , b : !bool ;?boolu

It is easy to see that we have Pc “ Ps and the public name n has type xPs,Pcy. ˛

The main results of [43] are that (i) if a process is typable then it will never reduce
to an error (e.g., a process receives string but was expecting a bool) and (ii) typing is
preserved by reduction (subject reduction).



CHAPTER 2. BACKGROUND 11

Global Type

Local Typei

Processi

Local Type1

Process1

Local Typen

Processn

Validate Validate Validate

Project Project Project

Figure 2.1: The multiparty session types approach

2.1.2 Multiparty Session Types
The initial theory of session types allowed only to reason about bi-party communica-
tions. In particular, the notion of co-type only makes sense for sessions that involve two
participants. Following preliminary results in [24, 25], the dyadic framework was ex-
tended in [44] to a methodology to design, implement, and verify distributed software.
The methodology – summarised in Figure 2.1 – advocates that (i) a team of program-
mers specify a global description of the protocol, i.e., a choreography (or global type).
Then, (ii) the choreography is projected onto each participant (or role) so to obtain a lo-
cal type, i.e., a description of the role that the participant plays in the session. Finally, (iii)
processes are type-checked to ensure that they validates their respective local types.

In the rest of this section, we present the main ideas introduced in [44], using the
simplified syntax from [11].

Remark 2.1. We will only briefly discuss the processes from which local types are ex-
tracted from. In this thesis, we focus on the relationship between global and local types,
i.e., the top part of Figure 2.1. The extraction of session types from processes has been
studied extensively in, e.g., [31, 43, 44].

Choreographies. Choreographies are specified by global types. Intuitively, a global
type establishes the interaction pattern for the harmonious coordination of distributed



CHAPTER 2. BACKGROUND 12

parties. The syntax of global types is given by the following productions:

G ::“ sÑr :a; G 1 [VALUE PASSING]

| sÑr : tli : GiuiPI [BRANCHING]

| G 1 |G2 [PARALLEL]

| µχ.G 1 [RECURSION]

| χ [RECURSIVE CALL]

| 0 [END]

Type [VALUE PASSING] says that participant s sends a message (of sort a) to participant r,
then the interactions in G 1 take place. Type [BRANCHING] says that participant s sends one
of the labels li to participant r. If lj is sent then the interactions in G j take place. Type
[PARALLEL] represents the concurrent run of the interactions described in G 1 and G2. Type
[RECURSION] is a recursive type for recursive conversation structure, assuming that type vari-
ables ([RECURSIVE CALL]) are guarded in the standard way. Type [END] represents the termina-
tion of the session.

We illustrate the theory via Examples 2.5, 2.6, and 2.7 adapted from [44].

Example 2.5. Below is a global type specifying a protocol with two buyers (b1 and b2)
and a seller (s). The buyers b1 and b2 want to purchase a book from s by combining their
funds.

Gex2.5 “ b1Ñs :string; (1)
sÑb1 : int; (2)
b1Ñb2 : int; (3)
b2Ñs : t ok : b2Ñs :string; (4)

sÑb2 :date; 0 , (5)
quit : 0 u (6)

In (1), b1 and s interact and exchange a book title. In (2), s sends a quote to b1. In
(3), b1 tells b2 its contribution to the purchase. In (4-6), b2 may refuse (selecting label
quit) or accept the deal (selecting label ok). In the former case, the protocol terminates
there, otherwise it continues as in (4-5), namely b2 and s exchange delivery address and
date. ˛

Remark 2.2. In [44], interactions specify a channel over which participants communi-
cate. For simplicity, we use to syntax of [11] and omit channel identities. This approach
is also reflected in recent works such as [33, 39, 40, 73].

When interactions specify channels, global types are required to satisfy a property
called linearity [44]. Linearity essentially ensures that no race may occur on a channel,
i.e., each message put on a channel may be received by exactly one participant.

Local types & projections. Local types are similar to those presented in the previous
section, except that they now specify to (resp. from) whom a message is sent (resp. ex-



CHAPTER 2. BACKGROUND 13

pected). The syntax of (multiparty) local types is as follows

P ::“ r!a ;P [SEND]

| s?a ;P [RECEIVE]

| r‘tl1 : P1, . . . , ln : Pnu [INTERNAL CHOICE]

| s`tl1 : P1, . . . , ln : Pnu [EXTERNAL CHOICE]

| µχ.P [RECURSION]

| χ [RECURSIVE CALL]

| 0 [END]

For instance, the type [INTERNAL CHOICE] says that one of the labels li may be sent to r, then
the interactions Pi take place.

If it satisfies certain conditions – which we will discuss in length in Chapter 3 – a
global type may be projected onto each participant of the choreography. The projection
is a simple syntactic operation which, given a global type G and a participant s, returns a
local type; we write Gçs for the projection of G onto participant s.

Example 2.6. We give the local types obtained by projecting the global type Gex2.5 of
Example 2.5:

Gex2.5çb1 “ s!string ;s?int ;b2!int ;0
Gex2.5çb2 “ b1?int ;s‘tok : s!string ;s?date ;0 , quit : 0u
Gex2.5çs “ b1?string ;b1!int ;b2`tok : b2?string ;b2!date ;0 , quit : 0u

The meaning of each type is straightforward, knowing the global type of Example 2.5.
For instance, the type Gex2.5çs says that the participant waits for a message of type string
from participant b1 and replies with a message of type int. Then it let b2 choose either
the quit branch, in which case its behaviour is finished; or the ok branch, in which case it
receives a string from b2 and sends back a date. ˛

Session calculus. The main differences between the syntax of processes in the dyadic
setting and the one in the multiparty setting are as follows. First, the semantics now
adopts asynchronous communications, i.e., the sending of messages is a non-blocking
operation. Second, the primitives for session request and acceptance now specify the role
a process is playing in the session. We illustrate the syntax and semantics of the calculus
in Example 2.7. below.

Example 2.7. Consider the three processes below, implementing the protocol specified
by the global type Gex2.5 in Example 2.5.

Rb1 “ nrb1spkq in k !sx”Loving Sabotage”y ; k ?spxq ; k !b2 xx{2y

Rb2 “ nrb2spkq in k ?b1 pyq ; ifpy ą 50q then k Ÿ s : quit ; 0
else k Ÿ s : ok ; k !sx”Leicester”y ; k ?spy1q

Rs “ nrsspkq in k ?b1 pzq ; k !b1 x70y ; k Ź b2t quit : 0 ,
ok : k ?spz1q ; k !sxtodayy u



CHAPTER 2. BACKGROUND 14

The process Rb1 is the implementation of the first buyer and is the one requesting the cre-
ation of a new session. Once the session has been established, b1 sends the title of a book
to the seller s, along channel k, b1 then expects a quote from the seller. Finally, b1 sends
the amount of money it is willing to share with b2. The process Rb2 is the implementation
of the second buyer. When b2 has accepted the session request, b2 receives the price that
b1 is willing to pay then decides whether or not to proceed. If the price is greater than
50, b2 aborts the purchase, otherwise, the buyer sends its address and expects and answer
from the seller. The process Rs is the implementation of the seller and is essentially sym-
metric to the other two processes. Here, we abstract from the way s retrieves the price
associated with a book and assume that all books cost 70, for simplicity.

The composition of these processes reduces as

Rb1 | Rb2 | Rs ÝÑ pνk1q
`

R1b1 | R1b2 | R1s
˘

where k1 is a (fresh) channel private to these three processes and R1b1 , R1b2 , and R1s are as
follows.

R1b1 “ k1rb1s !sx”Loving Sabotage”y ; k1rb1s?spxq ; k1rb1s !b2 xx{2y

R1b2 “ k1rb2s?b1 pyq ; ifpy ą 50q then k1rb2sŸ s : quit ; 0
else k1rb2sŸ s : ok ; k1rb2s !sx”Leicester”y ; k1rb2s?spy1q

R1s “ k1rss?b1 pzq ; k1rss !b1 x70y ; k1rssŹ b2t quit : 0 ,
ok : k1rss?spz1q ; k1rss !sxtodayyu

Observe that each instance of channel k has been replaced by a channel of the form, e.g.,
k1rb2s. For instance k1rb2s?b1 pyq says that participant b2 expects a message from b1 on the
session channel k1.3 Similarly, the prefix k1rb2sŸ s : quit says that participant b2 sends the
label quit to participant s, via channel k1. ˛

Typing & results. Typing processes in a multiparty setting is quite similar to the binary
case. The main difference being that instead of checking whether a public name n is
assigned a pair of dual types, one checks that a public name is typed by a global type and
that each process taking part in the session may be typed by one of the projections of the
global type. For instance, the rule for typing session acceptance is of the form:

Γ $ n : xGy Θ ; Γ $ R � ∆ ¨ k : Gçs
Θ ; Γ $ nrsspkq in R � ∆

which requires that n is of global type G and that the way participant s uses channel k
must match the projection of G onto s.

The main result in [44] is that, for typable processes, progress is guaranteed within
a session, i.e., given a set of processes involved in a session (which is not interleaved
with any other session), these processes will either be able to reduce further or termi-
nate. Another result shows that the behaviour of a typable process will always follow the
interactions specified by the global type, this property is called session fidelity.

3 The semantics allows for message from different sender to be re-ordered within a channel such as k1.



CHAPTER 2. BACKGROUND 15

2.1.3 Design-by-Contract for Distributed Multiparty Interactions
The multiparty sessions types framework was extended in [12], applying the ideas of
Design-by-Contract [55] to the specification and verification of distributed systems.

The main new notion is the one of global assertions which decorate global types with
logical formulae (predicates) that constrain interactions, declaring senders’ obligations
and receivers’ requirements on the values of the exchanged data and on the choice of the
branches to follow. This adds fine-grained constraints to the specification of the interac-
tion structure.

Example 2.8. Consider for instance the global assertion below, where the values of the
messages are represented by the interaction variables x and y.

Gex2.8 “ AliceÑBob : tx
ˇ

ˇxą 0u;
BobÑCarol : ty

ˇ

ˇyą xu

Gex2.8 describes a protocol with three participants, Alice, Bob, and Carol, who agree on
a “contract” constraining the interaction variables x and y. The contract stipulates that (i)
Alice has to send Bob a positive value x in the first interaction, and that (ii) Bob must
send Carol a value y strictly greater than x, fixed by Alice in the first interaction. Notice
that Bob can fulfill his pledge (i.e., the predicate y ą x in the second interaction above)
only after he has received the value x from Alice. ˛

Similarly to a global type, a global assertion G may be projected on endpoint asser-
tions that are local types constrained according to the predicates in G . For instance, the
projection on Alice in Gex2.8 is an endpoint assertion prescribing that Alice has to send
a positive value to Bob. Endpoint assertions can be used for static validation of the actual
processes implementing one or more roles in a choreography represented by G , and/or to
synthesise monitor processes for runtime checking/enforcement [32].

The calculus of [44] is augmented with predicates for checking that the sent or re-
ceived values validate the predicates so to obtain the following primitives:

k!xeypxqtψu ;R [SEND] k?pxqtψu ;R [RECEIVE]

where e is a value, x a variable and ψ a predicate. The idea is that, in the [SEND] case,
if ψte{xu evaluates to true, then the continuation R is executed, otherwise the process
reduces to an error. Similarly, in the [RECEIVE] case, the value received by the process at
runtime, say e, must be so that ψte{xu evaluates to true, otherwise the process reduces to
an error.

If a global assertion is well-asserted, namely when it obeys two precise design prin-
ciples: history-sensitivity and temporal satisfiability, it may be projected, and processes
may be type-checked against the projections. If type-checking succeeds then the system
is guaranteed to be error free.

Informally, history-sensitivity demands that a party having an obligation on a predi-
cate has enough information for choosing a set of values that guarantees it. Instead, tem-
poral satisfiability requires that the values sent in each interaction do not make predicates
of future interactions unsatisfiable.



CHAPTER 2. BACKGROUND 16

sÑb : item

cÑb :counter

bÑc :offer

bÑs :final bÑc : result

Figure 2.2: Example of generalised global type

Remark 2.3. We give a more precise account of global assertions, history-sensitivity, and
temporal satisfiability in Chapter 4.

2.1.4 Session Types and Communicating Machines
In [40], Deniélou and Yoshida introduced generalised global types, extending signifi-
cantly the expressiveness of the global types of [44] (cf. Section 2.1.2) and characterising
a relationship between communicating machines and multiparty session types. Below, we
highlight the main novelties introduced in this work which we will refer to later in this
thesis.

Overview. Generalised global types allow to describe protocols via general graphs, in-
stead of a tree-like structure. Branching constructs, parallel operator and recursive defini-
tion are replaced by gates and edges which connect interactions of the form sÑr : a. A

-gate indicates either a choice branch, merge, or a recursion; a -gate indicates either
fork or join of concurrent threads. We give an example of a generalised global type in
Example 2.9 – borrowed from [40].

Example 2.9. The global type in Figure 2.2 specifies a protocol where “a seller (s) relies
on a broker (b) to negotiate and sell an item to a client (c)” [40]. First, s sends a message
item to b. The broker then chooses whether to (i) enter a loop where the broker and the
client negotiate via offer and counter-offer messages; or (ii) the broker accepts the sale
and terminates the protocol by sending concurrently messages final and result to the seller
and the client, respectively. ˛

Interestingly, if a generalised global type satisfies some conditions it may be projected
onto local types that are, essentially, communicating machines – or communicating finite
states machines (CFSM) [16]. This permits to identify a new class of CFSMs, called
Multiparty Session Automata.



CHAPTER 2. BACKGROUND 17

s0

s1

s2

b!item

b?final

b0

b1

b2

b3 b4

b5

s?item
c!offer

c?counter

s!final c!result

c!result s!final

c0

c1c2

b?offer

b!counter
b?result

s b c

Figure 2.3: Example of communicating machines

A system of communicating machines is a list of automata which communicate via
unbounded FIFO channels, generally assuming that, given two machines, they communi-
cate via a pair of distinguished uni-directional channels. We give an example of a system
of CFSMs in Example 2.10 – again borrowed from [40].

Example 2.10. The machines in Figure 2.3 correspond to the projections of the global
type of Example 2.9. A transition b!item in machine s says that s may put a message
item on the queue from s to b. Once such a message is on the queue, machine b may fire
its transition – s?item – thus removing the message from the queue. ˛

The authors also give a translation to/from traditional local types (such as the ones
in Section 2.1.2) to communicating machines. Remarkably, these local types may now
feature concurrent threads. For instance, the local type corresponding to machine b in
Figure 2.3 explicitly shows that the actions s!final and c!result are executed concurrently.

Finally, a new session calculus is introduced in [40] so to allow these extensions to be
fully supported at the programming language level.

Remark 2.4. Global types, local types, and calculus in [40] are formally defined in terms
of a set of mutually recursive variables which may be depicted as graphs (or automata)
as shown in this section. Here, we only use the graphical notation for the sake of clarity.

Safety properties. For a generalised global type to be projected onto “safe” local types,
it must satisfy two essential conditions: local choice and linearity.

• The local choice condition requires the following for each choice in a global type.

– There is exactly one participant who makes the decision, i.e., for each -gate
with several outgoing edges, the first action of all the branches should have
the same sender.



CHAPTER 2. BACKGROUND 18

– The choice must be propagated to the other participants involved in the choice,
i.e., it cannot be the case that a participant behaves differently in two branches
without knowing which branch was chosen by the sender.

• The linearity condition ensures that no races occur within the process of a partici-
pant. To achieve this, the authors “impose that no participant can be faced with two
concurrent receptions where messages can have the same label” [40].

In addition, the authors require the generalised global types to be “sane”, e.g., there
should be exactly one starting point in the choreography, there should be at most one
finishing point, and all threads must be collected by a join.

When these conditions are satisfied, the global type may be projected onto its partic-
ipant. The system of CFSMs thus obtained is then guaranteed to satisfy the usual safety
and liveness properties. In particular, the projections are deadlock free and all messages
sent are eventually received. We discuss these properties in more details in Section 3.3.2.

2.2 Related Work
We discuss recent works that tackle the design and verification of distributed systems and
focus on those that are based either on session type theory or on choreographies. In Sec-
tion 2.2.1, we present different approaches that formalise the relationship between global
and local specifications. In Section 2.2.2, we discuss works that tackle the problem of
inferring a global specification from local ones. In Section 2.2.3, we report a few major
extensions of the theories based on session types. In Section 2.2.4, we discuss briefly a
few approaches that tackle the verification of (multiparty) session-based distributed sys-
tems without choreographies.

2.2.1 Global versus Local Specifications
A main concern in choreography-driven development is that the projections of a choreog-
raphy should respect the structure of the interactions specified by the choreography. We
distinguish three main lines of work that tackle this problem. First, Castagna et al. [28, 29]
give a presentation of global types as a formal language and relate global and local types
via a trace semantics. Second, Lanese et al. [17, 47, 50] give different notions of confor-
mance that specify whether the projections of a choreography indeed match the behaviour
specified by the choreography. Third, Bultan et al. [9, 10] focus on the notion of realis-
ability. Essentially, a choreography is realisable if “it is possible to build a distributed
system that communicates exactly as the choreography specifies” [9].

Global types and multiparty sessions. In [28, 29], the authors introduce a variation of
global types, give them a trace semantics, and discuss their properties with respect to their
projections. We survey the part of this work that is of specific interest in the scope of this
thesis.



CHAPTER 2. BACKGROUND 19

The authors allow general sequencing in global types, e.g., types of the form pG1 |G2q;
pG3 |G4q, but restrict recursive global types to iterations, i.e., global types of the form G˚
– the usual Kleene star. This allows them to define global types as a traditional formal
language and have a quite natural definition of traces of global types (and local types).

They identify a few basic properties that an implementation of a global type should
guarantee, we describe them below.

Sequentiality says that if a global type specifies an order between interactions, then all
executions of its implementation must respect this ordering. For instance, in the
global type:

s1Ñr1 :a; s2Ñr2 :b

if ts1,r1uXts2,r2u “H it is not possible for an implementation to guarantee that
these two interactions will be executed in the prescribed order.

Alternativeness states that if a global type specifies an exclusive choice between two sets
of interactions, then all the executions of its implementation must exhibit exactly
one of these sets.

Shuffling states that all the executions of the implementation of a global type must ex-
hibit some shuffling of the actions prescribed by the global type. For instance,
consider:

s1Ñr1 :a | s2Ñr2 :b

if an implementation of this global type exhibits the action on a but not the one on
b, then it violates the specification.

Fitness says that all the sequences exhibited by an implementation of a global type must
“fit” the interactions prescribed by the global type. Considering the global type

sÑr :a ` sÑr :b (2.1)

if an implementation exhibits an action unspecified by (2.1), say c, then the fitness
condition is violated, since the action c is not prescribed by the global type.

Exhaustivity states that if a sequence of interactions is specified by a global type, then
there must exist at least one execution of its implementation that exhibits these
interactions (up-to possible re-ordering). For instance, an implementation of (2.1)
such that s never sends b violates the condition.

Besides the global types violating the basic condition on sequentiality, the authors identify
two kinds of “more serious” flaws, which may be illustrated as follows. The global type
in (2.2) specifies a choreography where participant n has to behave differently in each
branch of the choice, but is unaware of which branch was selected by s.

sÑr :a; rÑn :a; nÑs :a ` sÑr :b; rÑn :a; nÑs :b (2.2)



CHAPTER 2. BACKGROUND 20

The global type in (2.3) specifies a choreography where the choice is “distributed” be-
tween participants s and n. This sort of choreography cannot be implemented without
covert channels to allow participants to agree on which branch to choose.

sÑr :a ` rÑs :b (2.3)

Remarkably, the authors are able to characterise these issues in terms of an ordering on
the traces of global types and traces of local types.

Remark 2.5. Observe that the local choice condition of [40] excludes problematic global
types such as (2.2) and (2.3).

Another important contributions of this work, is a novel (stronger) notion of progress
which, essentially, states that, given an implementation of a global type, every participant
must be able to (eventually) reach a terminated state. This is stronger that the progress
of, e.g, [44] which only requires that the implementation (as a whole) is always able to
reduce further or terminate.

Conformance. In [50], the authors identify two approaches to choreographies. The first
approach, called interaction-oriented, is best represented by choreography languages such
as WS-CDL [34] and the global types of Section 2.1.2. In our setting, we may consider
interaction-oriented choreographies (IOC) as global types. For instance, adapting the first
example of [50] to our syntax we have that

s1Ñr1 :a; s2Ñr2 :b (2.4)

is a simple IOC describing that roles s1 and r1 interact on an operation a, then roles s2
and r2 interact on an operation b.

The second approach, called process-oriented, is best illustrated by BPEL4Chor [38]
(extending WS-BPEL [61] to choreographies). In our setting, process-oriented chore-
ographies (POC) may be represented by systems of local types; for example

s1r!as | r2r?as | s2r!bs | r2r?bs (2.5)

corresponds to the IOC of (2.4), i.e., system (2.5) may be seen as the projections of
the choreography in (2.4). In fact, these two “choreographies” may exhibit different be-
haviours, e.g., there is no ordering between the actions on a and those on b in (2.5).

The authors define two languages, one for IOC and one for POC. Both languages
consist of essentially the same constructs: sequential and parallel compositions, non-
deterministic choice, empty process, and termination. The basic construct in the IOC
language is the interaction, i.e., the construct sÑr : a corresponds to an interaction be-
tween s and r on an operation a. The basic constructs in the POC language are output !a
and input ?a. The semantics of the POC language is given in two versions: synchronous
and asynchronous.

The relationship between an IOC and a POC differs depending on the communication
models one considers. The authors identify four possible semantics that we describe
below.



CHAPTER 2. BACKGROUND 21

• The synchronous semantics demands that the POC behaves as specified by the IOC,
following a synchronous semantics (i.e., corresponding send and receive occur at
the same time). For instance, in a synchronous semantics the choreography (2.4)
requires that both sending and receiving actions on a happen before the ones on b.
Given a synchronous semantics, such an ordering may be enforced in (2.4) if we
have

ts1,r1uXts2,r2u ‰H

• The sender semantics demands that the sequentiality of sending actions are pre-
served. In this case, the choreography (2.4) requires that the sending on a happens
before the sending on b, while receiving actions (by r1 and r2) may happen in any
order. This may be enforced by s2 “ s1 or s2 “ r1.

• The receiver semantics is the dual of the sender semantics, it requires that receiving
actions are ordered. This may be enforced in (2.4) by s2 “ r1 or r2 “ r1.

• The disjoint semantics requires the executions of two sequential interactions to be
totally disjoint. In the choreography (2.4), this means that the sending on b must
happen after r1 has received a. This may be enforced by r1 “ s2.

For each of the semantics above, the authors formalise a notion of conformance, based
on a bisimulation relation between POC and IOC. Then, for each notion of conformance,
the authors give connectedness conditions which guarantee that a choreography and its
projections are conformant.

Basically, the connectedness condition require that (i) there is a causality relation
between sequential action in a IOC and (ii) that there is a unique point of choice.

• The causality relation requirement rules out IOC like

s1Ñr1 :a | s2Ñr2 :a

which specifies two un-ordered interactions on the same operation. The correspond-
ing POC of this choreography are as follows:

s1r!as | r2r?as | s2r!as | r2r?as

which, according to the semantics of POC, would lead to a race condition, i.e., it
may be the case that s1 interacts with r2 (instead of s1).

• The unique point of choice condition requires that each choice is made by exactly
one participant, as in other theories such as [29, 40].

For each variations of the semantics, the authors show that if a choreography satisfies the
connectedness conditions, then it is conformant with its projections (with respect to the
semantics being considered).

Based on this work, [47] introduces a few techniques to amend choreographies so that
the connectedness conditions hold.



CHAPTER 2. BACKGROUND 22

Realisability. Bultan et al. [9, 10] tackle the problem of determining whether a chore-
ography is realisable. Essentially, a choreography is realisable if “it is possible to build a
distributed system that communicates exactly as the choreography specifies”.

Choreographies in these works take the form of conversation protocols, that are finite
state machines specifying the allowable sequence of interactions. A conversation protocol
is akin to a generalised global type (cf. Section 2.1.4), except that parallel interactions
cannot be explicitly represented, i.e., the -gate of the generalised global types has no
counterpart in conversation protocols. Analogously, the counterpart of local types (or
POC) is specified in the form of (asynchronous) communicating machines, similar to the
ones in [40] (cf. Section 2.1.4). A subtle difference with the communicating machines we
presented earlier is that each machine has now a unique buffer from which it can receive
messages. This is different from the machines presented previously where there are two
buffers for each pair of machines, one in each direction.

In [9], the authors give necessary and sufficient conditions for deciding choreography
realisability. More precisely, a choreography is realisable if there exists a system of com-
municating machines which generates exactly the set of message sequences (i.e., traces)
specified by the choreography. A choreography is realisable if and only if:

• the language accepted by the conversation protocol is equivalent to the 1-bounded
system of its projections, i.e., the transition system obtained by projecting the chore-
ography on each participant and executing the system with the additional constraint
that there is at most one symbol in each buffer, and

• the 1-bounded system satisfies a temporal logic property stating that every message
sent by any participant must eventually be consumed by a receiver.

A consequence of this result is that checking for realisability may be done efficiently,
namely, using off-the-shelf model checking tools.

2.2.2 On Synthesising Choreographies
To be the best of our knowledge, little work as been done with respect to synthesising a
global view of a distributed system from local specifications. In this section, we discuss
works which attempt to obtain a formal global descriptions from local specifications.

Synthesis of global types

In the session type setting, the most advanced result concerns the synthesis of global types
from communicating machines. We discuss briefly an older work which first mentioned
the synthesis of global types from local types.

From local types. A bottom-up approach to build choreographies is briefly studied
in [57]. This work relies on global and local types, but uses local and global graphs.
A local graph is similar to a local type while a global graph is a disjoint union of family of
local graphs. In fact, global graphs do not explicitly give the structure of the interactions
that the local types specify.



CHAPTER 2. BACKGROUND 23

From communicating machines. In [41], Deniélou and Yoshida propose a characteri-
sation of communicating machines, from which it is possible to synthesise a global type,
and a synthesis algorithm.

They use local types generated from the following grammar:

P ::“ r?tai ;PiuiPI | s!tai ;PiuiPI | µχ.P | χ | 0

which may easily be translated to communicating machines (and vice versa). These com-
municating machines are called basic CFSMs and have the following properties

• they are deterministic, i.e., all the transitions leaving a same state have different
labels,

• they have no mixed sates, i.e., all the transitions leaving a same state are either all
receiving (r?a) or all sending (r!a), and

• they are directed, i.e., all the transitions leaving a same state are labelled by an
action directed to the same machine.

The main contribution of this paper is the notion of multiparty compatibility which
generalises the notion of duality between local types from [43] (cf. Section 2.1.1). Essen-
tially, a system of CFSMs is multiparty compatible, if any action made by a machine can
be “met” by the other machines, i.e., “the idea is to check the duality between each au-
tomaton and the rest, up to the internal communications ( . . . )that the other machines will
independently perform” [41]. Since CFSMs are generally undecidable [16], this check
must be restricted to configurations of the system which are reachable by a 1-bounded
execution, i.e., an execution of the system with the additional restriction that there is at
most one symbol in each queue. Multiparty compatible systems enjoy the usual safety
properties such as deadlock freedom, etc.

The algorithm to synthesise global types from multiparty compatible systems is quite
simple and relies on a conversion from the transition system, corresponding to a syn-
chronous execution of the CFSMs, to a global type. Remarkably, the global type so
obtained is not unique and there is no special treatment of independent interactions, i.e.,
one may not synthesise a global type of the form G |G 1. However, the projections of a
synthesised global type are equivalent to the original system.

Other contributions of the authors in this paper include labelled transition system
(LTS) semantics of both local types and global types, respectively.

Service composition

In [71, 72], Wang et al. give an algorithm to represent the composition of several services
as a Petri net, such that an “optimal” representation is found. They consider three kinds
of service models: input/output, precondition/effect and stateful models.

• In an input/output model, each operation of a service is represented by a pair of
input and output data. For instance, a pair pIa,Oaq says that, in order to execute
operation a, the data Ia must have been previously generated (by other services or
operations). After the execution of a, data Oa is generated.



CHAPTER 2. BACKGROUND 24

• In a precondition/effect model, operations are defined as triples ppa,E`a ,E
´
a q. The

element pa is a set of propositions expressing the preconditions of the operation a:
all the propositions must be true before executing operation a. The positive (resp.
negative) effects E`a (resp. E´a ) specify the propositions which are true (resp. false)
after the execution of a.

• In a stateful model, a service is represented as an automaton, whose transitions
represent operations.

Remarkably, the authors show that both input/output and precondition/effect models may
be easily represented as automata. In particular, they build an automaton per operation
and per variable used in a service.

In order to compose services (i.e., automata representing services), the authors use the
parallel product of automata. The parallel product of two automata is a new automaton
which, essentially, covers all possible “private” transitions of each original automaton,
and the common transition are synchronised. Once the services have been combined into
a unique automaton, the authors use the theory of regions [3] to synthesise a Petri net,
using slight variations of well-established algorithms from [37].

One of the results presented by the authors is that the Petri net obtained from such a
transformation is optimal in the sense that it is “maximally concurrent”. However, in [71],
no result shows that the Petri net obtained from the composition of services allows to re-
cover the original services. In our terminology, it means that the authors do not guarantee
that the global view of the services can be projected to a set of services equivalent to the
original ones.

Inference of Message Sequence Charts.

In [1], Alur et al. focus on discovering whether Message Sequence Charts (MSC) [46, 54]
imply unspecified scenarios. In fact, from a set of MSCs specifying what may seem
to be correct scenarios, one may actually infer incorrect ones. This is due to the fact
that, once implemented, each participant has only a local knowledge of the system. The
authors assume that MSCs are implemented by concurrent automata, that are akin to
the communicating machines we discussed earlier, but do not necessarily feature order-
preserving communications.

The authors give precise conditions on MSCs for their implementation to be deadlock-
free and realisable. Essentially, MSCs are realisable if no other MSC may be inferable
from them, i.e., there is no other “implied” scenario. For the cases where MSCs are not
realisable, the authors propose an algorithm to synthesise implied MSCs (i.e., unspecified
scenarios which are in fact possible in the automata implementation).

Observe that the authors do not attempt to give an exhaustive global view of a dis-
tributed system, but instead focus on identifying “bad” executions. This is quite different
from the approach we adopt in our work since we actually require that the projections of
a synthesised choreography exhibits a behaviour that is equivalent to the original system.



CHAPTER 2. BACKGROUND 25

2.2.3 Beyond Multiparty Session Types
In this section, we review a few remarkable extensions of the multiparty session types.

Dynamic session types. The original multiparty session types framework only caters
for a fixed number of participants within a session. In [39], Deniélou and Yoshida intro-
duced an extension of the framework to allow participants to join dynamically an already
running session. To achieve this, the authors introduce a universal quantifier for roles
in both global and local types; so that a (potentially unlimited) number of participants
abiding by a common local type may join the session – provided that another participant
exhibits a joining point.

Global programming. In [26], Carbone et al. introduce a novel methodology to dis-
tributed software design and implementation. They propose a language for global chore-
ographies where instances of sessions are considered as first class element. In a sense
this approach is a level of abstraction higher than global types – which describe only one
session at a time. This permits to design and implement distributed systems from a global
point of view. These “meta-choreographies” may then be projected onto end-point code.
When some conditions holds for these global choreographies, the authors show that the
implementation of the system, obtained by projection, is deadlock-free.

Global progress. One shortcoming of the original works on session types is that progress
was only guaranteed within a single session. However, in realistic scenarios, a program
may be involved in several sessions, possibly with different participants. In [11, 35, 36],
the authors tackle the problem of global progress, i.e., ensuring that programs involved in
several (interleaved) sessions do not deadlock. In Example 2.11 (adapted from [35]), we
illustrate the paradigmatic example of a deadlock due to interleaved sessions.

Example 2.11. Consider the following processes:

Rs “ n1rsspk1q ; n2rsspk2q ; k1 ?rpaq ; k2 !rxby

Rr “ n1rrspk1q ; n2rrspk2q ; k2 ?spbq ; k1 !sxay

where each process initiates two sessions on n1 and n2.
The parallel composition of these processes, Rs | Rr, deadlocks when it reduces to

pνk1q pνk2q
`

k1rss?rpaq ; k2rss !rxby | k2rrs?spbq ; k1rrs !sxay
˘

where each process waits for a message from the other.
Notice that the program is well-typed in the sense of [44]. Indeed, assuming that the

global type associated to n1 is rÑs :a and that the global type associated to n2 is sÑr :b,
both processes use each channel as prescribed by the projections of its corresponding
global type. ˛



CHAPTER 2. BACKGROUND 26

Intuitively, a process has the global progress property if every receive action will even-
tually be matched by a corresponding message and every sent message is eventually con-
sumed. However, an important aspect considered in these works is that a process should
not be considered stuck if the only reason why it cannot reduce further is because some
participants are missing in order to initiate a new session. Indeed, in this case, the process
will be able to proceed as soon as other participants join the system. In other words, global
progress requires that, once a session has started, all the interactions that are supposed to
occur in this session will eventually happen.

In order to guarantee global progress, the authors rely on a slight variation on the type
system of the multiparty session types [44], which guarantees progress within a session.
In addition, they introduce an interaction type system which, roughly, ensures that there
is no circular dependencies between channel (or service) names.

2.2.4 Other Approaches to Multiparty Sessions
Many different approaches tackle the problem of designing and verifying formal models
of distributed systems, which, to some extent, distance themselves from the framework
based on global types. In this section, we discuss three approaches that are of particular
interest in the scope of this thesis.

Compliance. In [31], Castagna et al. propose a contract language for processes. The
language is akin to the π-calculus, allowing channel names to be passed around, and the
semantics of contracts is synchronous.

In order to characterise when a set of contracts has progress, they adopt a testing
approach [15] and define the notion of compliance. Essentially, a contract S is compliant
with a contract S1, if for any computation of their composition where S cannot progress
by itself, either (i) the residual of S has terminated and S1 will eventually terminate; or (ii)
the two residuals (of S and S1) can eventually synchronise. The notion of compliance is
extended to the one of well-formedness of a system of contracts; which requires that each
contract is compliant with rest of the system. Compliance is in fact similar to the notion
of multiparty compatibility of [41].

Interestingly, the authors apply their approach to a calculus similar to the one of [11,
43]. They propose a type system for this calculus which extracts contracts from processes.
Using the notion of well-formedness, they are able to give a progress result, stating that if
a process is typable (i.e., by a system of contracts) and its type is “well-formed”, then the
process is able to reduce further or has terminated.

In the same line of work, [63] proposes to “project” processes into session types
(akin to the contracts of [31] but without name passing capabilities). The author gives
an adapted notion of compliance, now called completeness which permits to characterise
when a set of session types is able to reduce further. Similarly to [31], session types may
be extracted from processes (based on a variation of the π-calculus). If the types assigned
to a process are “complete”, then progress and deadlock properties are guaranteed.

In addition, to ensure that channel delegation does not cause deadlock, the author
defines a strict partial ordering on channels which is used to check whether a channel



CHAPTER 2. BACKGROUND 27

may be sent over another one. Interestingly, this allows channels to be used in a non-
linear way, i.e, a process may send a channel to another process and still use this channel
later.

Conversation types. Caires et al. [21, 23] propose a type-based framework to analyse
and verify distributed systems. Their approach is somewhat similar to that of session
types, in the sense that they propose a calculus (inspired from the π-calculus) and a type
discipline for it. If a program is typable then it never violates the prescribed protocol
and, under some condition, it is guaranteed to have progress. The framework allows for
dynamical join and leave of participants, and nested conversations.

The framework is based on the conversation calculus [22, 69]. The main difference
with respect to the approach of Honda et al. [44] is that interactions are passing through a
conversation, i.e., a shared medium akin to a shared channel between several participants.
A conversation may be dynamically created via a shared name – similarly to a session
channels – and allows participants to dynamical join and leave a conversations by com-
municating the name of the conversation. A conversation may be typed by a conversation
type. These behavioural types take into account both internal and external behaviours of
participants in a conversation.

Contract oriented computing. In [5–7], Bartoletti et al. propose a novel approach,
called contract-oriented computing, where the interactions between distributed entities
are governed by contracts.

The life-cycle of contract-oriented computing consists of three phases. In the first
phase, the entities’ contracts are used to find an agreement where each participant’s needs
and/or offers are matched by other contracts. In the second phase, the contracts become
“binding”, i.e., each entity will be deemed culpable if it cannot meet its obligations. In
the third phase, the entities execute their tasks while monitoring their contracts.

The authors defined a new calculus, CO2 (for COntract-Oriented computing) which
may be parametrised with respect to a contract model. The calculus features basic primi-
tives that permit to instantiate the contract-oriented paradigm, such as:

• a tell primitive to advertise a contract to a broker,

• a fuse primitive allowing a broker to create a new session between a set of partici-
pants who advertised compliant contracts, and

• a do primitive, used by participants to fulfil an action specified in their contracts.

An important feature of CO2 is that it allows to identify participants who do not meet their
requirement – so that, e.g., they may face legal consequences. The authors also define the
notion of honesty, i.e., the ability of a participant to always be able to exculpate itself. In
other words, an honest participant will always fulfil the contracts it advertised.

A negative result in [7] is that it is not decidable whether or no a given process is
honest. In [7], CO2 is instantiated to a theory of bilateral contracts inspired by [30]. A
decidable approximation of honesty is introduced in [4], relying on the product between a



CHAPTER 2. BACKGROUND 28

finite state system (approximating contracts) and a Basic Parallel Process (approximating
a CO2 process).

Remark 2.6. In Chapter 5, we define formally a slight variation of CO2 where contracts
are local session types and they are compliant when it is possible to synthesise a chore-
ography from them. We also revisit the notion of honesty to our needs.



CHAPTER 3

Synthesising Choreographies from Local Session Types

We introduce a type system which allows, under some conditions, to synthe-
sise a choreography (i.e., a global type) from a set of local session types which
describe end-point behaviours (i.e., local types). We show, notably, that the pro-
jections of a synthesised global type is equivalent to the original set of local
types and that, if a set of local types is typable, then it enjoys safety and live-
ness properties.

3.1 Introduction
The multiparty session types framework proposes a methodology that (i) allows to design
a global view of the interactions – aka global type –, (ii) provides an effective analysis
of such a global view, (iii) automatically projects the global view to local end-points –
aka local types –, and (iv) type checks end-points’ code against local types. The theory
guarantees that, when the global view enjoys suitable properties (phase piiq), the end-
points typable with local types enjoy, e.g., liveness properties such as progress.

A drawback of such an approach is that it cannot be applied when the local types de-
scribing the communication patterns of end-points are not obtained by an a priori designed
global view. For instance, in service-oriented computing, one typically has independently
developed end-points that have to be combined to form larger services. Hence, deciding
if the combined service respects its specification becomes non trivial. To illustrate this,
we introduce a simple example used throughout this chapter.

Consider the system

SBS “ b1rP1s | s1rS1s | b2rP2s | s2rS2s

consisting of two buyers (b1 and b2) and two sellers (s1 and s2) running in parallel, and

29



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 30

b1Ñb2 :agreement

b2Ñb1 :ack

b1Ñs1 : request

s1Ñb1 :quote

b1Ñs1 :ok b1Ñs1 :no

s1Ñb1 :quote

b2Ñs2 : request

s2Ñb2 :quote

b2Ñs2 :ok b2Ñs2 :no

s2Ñb2 :quote

Figure 3.1: Global view of SBS

whose behaviours are specified as follows.

P1 “ b2!agreement ;b2?ack ;Q1

P2 “ b1?agreement ;b1!ack ;Q2

Qi “ si!request ;si?quote ;µχ.psi!ok ‘ si!no ;si?quote ;χq i P t1,2u

Si “ bi?request ;bi!quote ;µχ1.pbi?ok ` bi?no ;bi!quote ;χ1q i P t1,2u

where ‘ represents an internal choice and ` a choice made by the environment. In-
tuitively, the overall behaviour of SBS should be that two buyers (b1 and b2) agree on
purchasing concurrently two items from their respective sellers and try to obtain the best
price for these items. A natural question arises: is this intended behaviour actually re-
alised by SBS? Arguably, it is not immediate to answer such a question by considering
only SBS, even more so if a system involves a large number of participants, with possibly
complex behaviours.

We propose to construct a global view of distributed end-points like SBS via a slight
variation of the multiparty session types introduced in [44]. Such types formalise a global
view of the behaviour which, for SBS, resembles the diagram in Figure 3.1, where the
choreography of the overall protocol becomes much clearer.

An advantage of our approach is that we can reuse the results of the theory of mul-
tiparty session types to prove properties of end-points, e.g., safety and progress. In fact,
we show that when the choreography can be constructed, its projections correspond to the
initial end-points. Therefore, the well-formedness of the synthesised global choreography
guarantees progress and safety properties of end-points.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 31

We assume that session types are extracted from programs (relying on, e.g., [31, 43,
44]), and that they are readily available before addressing the construction of a global
type.

3.2 Local Types
We use CCS-like processes (with guarded external and internal choices) to infer a global
type from local types that correspond to the participants in the inferred choreography.
Hereafter, P is a denumerable set of participant names (ranged over by s, r, n, . . . ) and
C“ pPˆPqztpn,nq | n P Pu is a denumerable set of channel identifiers, we write sr when
ps,rq P C.

Syntax. The syntax of local types below is parametrised with respect to basic data types
such as bool, int, . . . (ranged over by a, b, c, . . . ):

S,S1 ::“ nrPs | sr : ρ | S |S1 | 0

P,Q ::“
À

iPI ri!ai;Pi |
ř

iPI s?ai;Pi | µχ.P | χ

ρ ::“ ε | a ¨ρ

A system S consists of the parallel composition of processes and queues. A process nrPs
is a behaviour P identified by n P P; we assume that, given a system S, the participant
names are all different in S. A behaviour is either an internal choice, an external choice,
or a recursive process. An internal choice

À

iPI ri!ai;Pi is guarded by output prefixes ri!ai
representing the sending of a value of sort ai on the queue sri, assuming the behaviour is
the one of participant s. We assume that

@ i, j P I : i‰ j ùñ pri,aiq ‰ prj,ajq

An external choice
ř

iPI s?ai;Pi is guarded by input prefixes s?ai representing the re-
ception of a value of sort ai from the queue sr, assuming the behaviour is the one of
participant r. We assume that

@ i, j P I : i‰ j ùñ ai ‰ aj

The asymmetry between internal and external choice, i.e., the fact that all branches of an
external choice must be prefixed by an input from a same sender s allows us to guarantee
that a choice is always made by exactly one participant (cf. Section 3.6).

We overload 0 to denote either an internal or external choice where I “H, i.e.,

0 def
“

à

iPH
ri!ai;Pi “

ÿ

iPH

s?ai ;Pi

In µχ.P, µχ is a binder for the free occurrences of χ in P. Moreover, all such free oc-
currences are prefix-guarded in P. We consider closed behaviours only (that is, behaviours



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 32

with no free occurrences of recursion variables). Also, for simplicity – and without loss
of generality since bound variables are α-convertible – we assume that bound variables
are pairwise distinct.

A program is a system with no queues, while a runtime system is a system S having
exactly one queue sr : ρ per pair of participants s and r in S. We write sr : ε whenever the
queue from s to r is empty. Given a program S, we write QpSq for the parallel composition
of the empty queues connecting all the participants in S. In the following, S,S1, . . . denote
either a program or runtime system.

Semantics. The semantics of systems is reminiscent of CCS with asynchronous and
order-preserving communications. The semantics of systems is a labelled transition sys-
tem (LTS) with labels:

α ::“ r!a | s?a

λ ::“ α | sr ¨a | a ¨sr | nrαs | sÑ r : a | rÐ s : a

Label α indicates either sending or reception by a process. Labels sr ¨a and a ¨sr respec-
tively indicate push and pop operations on queues. Label nrαs indicates a communication
action done by participant n. The next two labels indicate synchronisations between a
participant and a queue: label sÑ r : a indicates that s puts a datum on a queue sr, while
label rÐ s : a indicates that r retrieves a datum from the queue sr.

The semantics is given up to the congruence rules below.

µχ.P” Ptµχ.P{χu

S |S1 ” S1 |S S |0” S S1 | pS1 |S2q ” pS1 |S1q |S2

Note that commutativity and associativity of internal and external choice follow by
construction (i.e., by the set notation used in the sums). We often write P‘P1 (resp. P`P)
for internal (resp. external) choice. We assume that these operators are commutative and
associative, and that ; has a higher precedence than ‘ and ` .

The LTS λ
ÝÑ is the smallest relation closed under the following rules:

[EXT]
ř

iPI s?ai ;Pi
s?aj
ÝÝÑ Pj j P I [INT]

À

iPI ri!ai ;Pi
rj!aj
ÝÝÝÑ Pj j P I

[BOX]
P α
ÝÑ P1

nrPs
nrαs
ÝÝÑ n

“

P1
‰

[EQ-P]
P” Q α

ÝÑ Q1 ” P1

P α
ÝÑ P1

[POP] sr : a ¨ρ
a¨sr
ÝÝÑ sr : ρ [PUSH] sr : ρ

sr¨a
ÝÝÑ sr : ρ ¨a

[IN]
S

rrs?as
ÝÝÝÝÑ S1 S1 a¨sr

ÝÝÑ S2

S |S1 rÐs:a
ÝÝÝÝÑ S1 |S2

[OUT]
S

srr!as
ÝÝÝÑ S1 S1 sr¨a

ÝÝÑ S2

S |S1 sÑr:a
ÝÝÝÝÑ S1 |S2

[EQ-S]
S ” S1

λ
ÝÑ S2 ” S1

S λ
ÝÑ S1

[PAR]
S λ
ÝÑ S1

S |S2 λ
ÝÑ S1 |S2



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 33

Rules [EXT] and [INT] are trivial. By [POP], a queue sends the first datum, if any. By [PUSH], a
queue receives a new datum. Processes can synchronise with queues according to rules
[IN] and [OUT]. The remaining rules are standard. Let S ÝÑ if and only if there are S1 and λ

such that S λ
ÝÑ S1 and

λ1...λn
ùñ (resp. ùñ) be the reflexive transitive closure of λ

ÝÑ (resp. ÝÑ).
We adopt the following notation.1

Spnq “

#

P if S ” nrPs |S1

K otherwise
Srsrs “

#

ρ if S ” sr : ρ |S1

K otherwise

Given a system S and a participant name n, Spnq returns the behaviour of n in S, if n is in
S; and is undefined otherwise. Similarly, Srsrs returns the content of the queue sr, if the
queue is part of S.

Example 3.1. Consider SBS from the previous section, we have, e.g., SBSpb1q “ P1, while
SBSrb1b2s “ K since SBS is a program, i.e., it does not contain queues. ˛

3.3 Global Types
The global types we consider in this chapter are borrowed from [44] with minor variations.
A global type is a term derivable from the following grammar:

G ::“
ř

iPI sÑri :ai; Gi | G |G 1 | µχ.G | χ | 0

An expression of the form sÑr : a represents an interaction where s P P sends a value
of sort a to r P P (we assume that s ‰ r). The choice production

ř

iPI sÑri : ai; Gi is
guarded by prefixes sÑri : ai. The production indicates a (exclusive) choice of interac-
tions, if participant s sends a message ai to ri, then interactions Gi take place; we assume
that

@ i, j P I : i‰ j ùñ pri,aiq ‰ prj,ajq

We often write G`G 1 for the binary version of the choice production, we assume that
` is commutative and associative, and that the operator ; has a higher precedence

than ` . Concurrent interactions are written G |G 1 and indicate sets of independent
interactions. In a recursive global type µχ.G , χ is bound and guarded in G . We assume
that global types are closed and often omit trailing occurrences of 0.

Remark 3.1. The main difference with respect to the global types in [44] is that we merge
the branching constructs with the interaction prefix, similarly to [28], and we do not
require a choice construct to involve only two participants, e.g., we accept the following
global type:

sÑr1 :a; sÑr2 :a ` sÑr2 :b; sÑr1 :b

Global types are taken up-to structural congruence, defined as the smallest equivalence
relation satisfying the monoidal axioms for | and ` (with 0 as the identity element);
and the axiom

µχ.G ” G tµχ.G{χu

1We write f pxq “ K when the function f is undefined on x.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 34

Example 3.2. The first two interactions between b1 and b2 in the example of Section 3.1
are modelled by the global type G1:

G1 “ b1Ñb2 :agreement; b2Ñb1 :ack

The type G1 says that participant b1 sends a message of sort agreement to b2, then b2
replies with a message of sort ack.

Each concurrent branch of the interactions in Figure 3.1 are specified by the following
global type (where i P t1,2u)

Gi
2 “ biÑsi : request; siÑbi :quote;

µχ.pbiÑsi :ok ` biÑsi :no; siÑbi :quote; χq

The global type Gi
2 says that bi sends a request to si, who replies with a message of type

quote. Then, the two participants enter a recursion which is guarded by a choice made by
bi. If bi is satisfied with the quote, the interactions terminate here; otherwise si sends
another quote and the interactions are repeated.

Finally, the global type representing all the interactions in Figure 3.1 is given below.

GSBS “ b1Ñb2 :agreement; b2Ñb1 :ack; pG1
2 | G2

2 q

˛

The syntax of global types may specify behaviours that are not implementable. The
rest of this section borrows from [28] and [44] and adapts the requirements a global type
must fulfil to ensure that the set of interactions it prescribes is indeed feasible.

3.3.1 Well-formed Global Types
We define the conditions for a global type to be well-formed. We write P pGq (resp. C pGq)
for the set of participant (resp. channel) names in G , and fvpGq (resp. bvpGq) for the set
of free (resp. bound) variables in G , similarly for a system S.

We give a few auxiliary functions. The ready set of a global type G , written RpGq, is
defined as follows.

RpGq def
“ tsÑr :a | G ” psÑr :a; G1`G2q |G3u

Next we define a functions that computes the sets of participant which interact inde-

pendently “in the last part of a global type”. We define IndeppGq def
“ IOpH,Gq, where

IOpP ,Gq def
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

IOpts,ruYP ,G1q, if G “ sÑr :a; G1

IOpH,G1qYIOpH,G2q, if G “ G1 |G2

IOpP ,G1q, if G “ G1`G2 and IOpP ,G1q “ IOpP ,G2q

IOpP ,G1q, if G “ µχ.G1

tP u, if G “ 0 or G “ χ

K, otherwise



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 35

[WF-; ]
@ s1Ñr1 : P RpGq : ts1,r1uXts,ru ‰H $G

$sÑr :a; G

[WF- | ]
P pGqXP pG 1q “H $G $G 1

$G |G 1

[WF-µχ]
χ P fvpGq ñ |IndeppGq|“ 1 $G

$µχ.G

[WF-χ]
$χ

[WF-0]
$0

[WF-`]

@ sÑr :a P RpGq : @ s1Ñr1 :a1 P RpG 1q : s“ s1^pr,aq ‰ pr1,a1q
$G $G 1

$G`G 1

Figure 3.2: Rules for well-formedness

IOpP ,Gq is the family of sets of participants of G , so that for all N ‰M P IOpP ,Gq, the
participants in N and those in M are in different concurrent branches “in the last part of
G”. Note that IOp , q is a partial function.

Example 3.3. Continuing with the global types from Example 3.2, we have:

RpGSBSq “ RpG1q “ tb1Ñb2 :agreementu and RpG1
2 q “ tb1Ñs1 : requestu

IndeppGSBSq “ ttb1,s1u,tb2,s2uu , IndeppG1q “ ttb1,b2uu , and

IndeppG1
2 q “ ttb1,s1uu

˛

We say that G is well-formed if $G can be derived from the rules given in Figure 3.2.
We assume that each premise of the rules in Figure 3.2 does not hold whenever any of
the auxiliary function used is undefined (e.g., in [WF-µχ], if IndeppGq “ K then $µχ.G is
not derivable). In the following, we discuss the rules of Figure 3.2, which are grouped ac-
cording to three requirements: sequentiality, single threadness, and knowledge of choice.

Sequentiality [28]. Rule [WF-; ] ensures that sequentiality is preserved. In [WF-; ], the or-
dering dependency between a prefix and its continuation allows us to implement each
participant so that at least one action of the first prefix always happens before an action of
the second prefix. More concretely, this rules out, e.g.,

s1Ñr1 :a ;s2Ñr2 :b 8

where, evidently, it is not possible to guarantee that s2 sends b after r1 receives a from
s1. Since we are working in an asynchronous setting, we do not want to force both send
and receive actions of the first prefix to happen before both actions of the second one.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 36

Single threadness [44]. A participant should not appear in different concurrent branches
of a global type, so that each participant is single threaded. This is also reflected in the
calculus of Section 3.2, where parallel composition is only allowed at the system level.
Therefore, in [WF- | ], the participant names in concurrent branches must be disjoint. Rule
[WF-µχ] requires that G is single threaded, i.e., concurrent branches cannot appear under
recursion. If that was the case, a participant could appear in different concurrent branches
of the unfolding of a recursive global type. For instance, the one-time unfolding of G
below is G 1.

G “ µχ.
`

s1Ñr1 :a; χ | s2Ñr2 :b; χ
˘

G 1 “
`

s1Ñr1 :a; G
˘

|
`

s2Ñr2 :b; G
˘

8

Observe that the sets of participants in the concurrent branches of G 1 are not disjoint.

Knowledge of choice [28, 44]. Whenever a global type specifies a choice of two sets of
interactions, the decision should be made by exactly one participant. For instance,

s1Ñr1 :a; G1 ` s2Ñr2 :b; G2 8

specifies a choice made by s1 in the first branch and by s2 in the second one; this kind
of choreographies cannot be implemented (without using hidden interactions). Also, we
want to avoid global types where a participant n behaves differently in choice branches
without being aware of the choice made by others. For instance, in

sÑr :a; nÑr :c; G1 ` sÑr :b; nÑr :d; G2 8

where n ignores the choice of s and behaves differently in each branch. On the other
hand, we want global types of the following form to be accepted.

sÑr :a; nÑs :b; sÑn :a; nÑr :a
`

sÑr :b; nÑs :b; sÑn :c; nÑr :d
4

Indeed, in this case n behaves differently in each branch, but only after “being informed”
by s about the chosen branch, i.e., n always sends b, then if it receives a, it sends a again;
if it receives c, then it sends d.

Together with the definitions of the projections of a global type (cf. Definition 3.1
below) rule [WF-`] guarantees that “knowledge of choice” is respected. In particular, the
rule requires that the participant who makes the decision is the same in every branch of a
choice, while the prefixes guarding the choice must be distinct.

Definition 3.1 ( ç ). The projection of a global type G with respect to a participant n –



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 37

written Gçn – is defined by the (partial) function below.

Gçn
def
“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

s?a ;G 1çn, if G “ sÑn :a; G 1

r!a ;G 1çn, if G “ nÑr :a; G 1

G 1çn, if G “ sÑr :a; G 1 and s‰ n‰ r

G1çn ‘G2çn, if G “ G1`G2 and DnÑr : P RpGq
G1çn ZG2çn, if G “ G1`G2 and @sÑr : P RpGq : n‰ s

Giçn, if G “ G1 |G2 and n R P pG jq, i‰ j P t1,2u
µχ.G 1çn, if G “ µχ.G 1 and G 1çn‰ χ

0, if G “ µχ.G 1 and G 1çn“ χ

G , if G “ χ or G “ 0
K, otherwise

We say that a global type is projectable if Gçn is defined for all n P P pGq.

The projection map is similar to the one given in [44], but for the use of Z to project
choice branches (see Definition 3.2 below) – a similar operation is also used in [39].

The first three cases deal with prefixes and are trivial. The fourth case projects choice
branches when the considered participant is the sender. Note that if G is well-formed then
there is always a single sender participant in choice branches. The fifth case deals with
branches when the considered participant is not the sender, in which cases the branches
must be merged (see Definition 3.2 below). Concurrent branches may be projected only if
their sets of participants are disjoint. There are two cases to project recursive global types.
The first case is used to project the behaviour of participants who are indeed involved in
the recursion, while the second case deals with participants who do not appear after the
recursion definition. The other cases are trivial.

Note that a global type may be projected even if it is not well-formed, but in that case
none of the properties given below are guaranteed to hold.

Essentially, the function Z merges (if possible) the behaviour of a participant in
different choice branches, cf. Example 3.4 below.

Definition 3.2 ( Z ).

PZQ“

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

P`Q, if P“
ř

iPI s?ai ;Pi and Q“
ř

jPJ s?aj ;Q j

and @i P I : @ j P J : ai ‰ a j and I,J ‰H
ř

iPI s?ai ;PiZP1i , if P“
ř

iPI s?ai ;Pi and Q“
ř

iPI s?ai ;P1i
À

iPI ri!ai ;PiZP1i , if P“
À

iPI ri!ai ;Pi and Q“
À

iPI ri!ai ;P1i

P, if P” Q

K, otherwise

In the first case, the function merges two guarded external choices, if the message
sorts in their prefix are disjoint. This ensures that each participant knows which branch



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 38

of the global type was chosen. In the second and third cases, the function merges the
continuation of both processes, if both have the same prefix. This allows for participants
to have a common behaviour in both branches until they have enough information to know
which branch was chosen. The fourth case deals with process of the form 0 and χ.

Note that Z is a partial function, e.g., it might be the case that a participant behaves
differently in two branches without being aware of which branch was chosen, in such a
case the projection of that participant is undefined, cf. the last case of the definition.

Example 3.4. We illustrate the use of Z in a projection. Consider the global type

G “ psÑr :a; G3q `psÑr :b; G3q

such that G3 “ sÑr1 :a`sÑr1 :b, and a‰ b.

• For s, we have G3çs“ r1!a‘r1!b and Gçs“ pr!a ;G3çsq ‘pr!b ;G3çsq

The projection onto the participant that makes the choice is simple since, by well-
formedness, the sender is the same in each branch, and the guards are pairwise
distinct.

• For r, we have G3çr“ 0, since r does not appear in G3, and

Gçr “ s?a ;G3çr Zs?b ;G3çr “ s?a`s?b

i.e., Z is defined here since a‰ b.

• For r1, we have G3çr1“ s?aZs?b, which is defined since a‰ b; and we have Gçr1“
G3çr1 ZG3çr1 , which is defined since the arguments of Z are the same.

˛

For the sake of readability, we have defined the projection of a global type using the
binary operator ` . In fact, the projection of a global type is sensitive to the way choice
branches are associated, as we show in Example 3.5 below.

Example 3.5. Consider the global type below.

Gex3.5 “ sÑr :a; sÑr1 :b (1)
`

sÑr1 :b; sÑr :a (2)
`

sÑr :c; sÑr1 :d (3)

The success of the projection of Gex3.5 onto participant r (and r1) depends on how the
branches of the global type are partitioned. Let us project each branch onto r separately:

(1) : s?a (2) : s?a (3) : s?c

If Z is used to merge branches (1) and (2) first, we obtain s?a which may be merged
with branch (3), i.e., s?aZs?c“ s?a`s?c‰ K.

However, if we first merge branches (2) and (3), we obtain s?a`s?c, which may not
be merged with branch (1), i.e., ps?a`s?cq Z s?a“ K. ˛



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 39

In order to cater for global types such as Gex3.5 above, we introduce a more precise
version of the case of Definition 3.1 dealing with the projection of choice branches onto
a receiver participant.

Let G “
ř

iPI sÑri : ai; Gi, the projection of Gçn, with n P tri | i P Iu, is defined as

Gçn
def
“ G1çn ZG2çn, if the following holds:

DJ,K : JYK “ I and JXK “H such that G1 “
ř

jPJ sÑrj :aj; G j,

G2 “
ř

kPK sÑrk :ak; Gk,and

G1çn ZG2çn‰ K

Note that because Z is not used to project choice branches onto the participant who
makes the choice, there is no need to cater for associativity in that case. In addition, if the
projection of a global type onto a participant is defined, then it is unique, cf. Lemma 3.1
below.

3.3.2 Properties of Well-formed Global Types
We give the basic properties which hold for well-formed global types. Some of these
properties are based on previous results from [40], thus we show that these results are
applicable in our setting.

Lemma 3.1. For all G such that $G and G is projectable, let S “
ˇ

ˇ

nPP pGq nrGçns, the
following holds:

1. @n P P pGq : Gçn is unique.

2. @n P P pGq : Gçn is a process.

3. S is a program.

4. S | QpSq is a runtime system.

Proof. Item 1 follows from the condition that sets of participants are pairwise disjoint in
G |G 1, and commutativity and associativity of `. We show the latter by contradiction.
Assume we have G “ pG1`G2q`G3 and G 1 “ G1`pG2`G3q with Dn P P pGq such that
Gçn‰ G 1çn, Gçn‰ K, and G 1çn‰ K.

• If n is the sender, then, by Definition 3.1, we have

Gçn“ pG1çn ‘G2çnq‘G3çn and Gçn“ G1çn ‘pG2çn ‘G3çnq

and the result follows directly by definition of processes (i.e., by associativity of
‘ ).

• If n is not the sender, then we have

Gçn“ pG1çn ZG2çnqZG3çn and Gçn“ G1çn ZpG2çn ZG3çnq (3.1)

By Definition 3.2, either all the projections must be an external choice, or all the
projections must be an internal choice (otherwise merge would not be defined).



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 40

– If the projections are external choices, then by (3.1) and Definition 3.2, it
must be the case that either all the prefixes are identical or all the prefixes are
different. By contradiction, if we have

G1çn“ s?a G2çn“ s?a G3çn“ s?b

then G1çn ZpG2çn ZG3çnq is not defined. Similarly, if we have

G1çn“ s?b G2çn“ s?a G3çn“ s?a

then pG1çn ZG2çnqZG3çn is not defined. Thus, associating the branches
differently does not affect the projection.

– If the projections are internal choices then by (3.1) and Definition 3.2, it must
be the case that all the prefixes are identical (as above). Thus, associating the
branches differently does not affect the projection.

We show item 2 by induction on the structure of G .

• If G ” µχ.G 1 the result follows by induction hypothesis and the fact G çn“ 0 if
G 1çn“ χ.

• If G ” 0 or G ” χ the result holds trivially.

• If G ” sÑr : a; G 1 the result follows directly by induction hypothesis and Defini-
tion 3.1.

• If G ” G0`G1 we have to distinguish two cases. Either (i) n is the sender on each
branch, and therefore its projections are guarded by different prefixes (cf. syntax of
global types and well-formedness rules); or (ii) n is not the sender.

In this case, we know by induction hypothesis that G0çn and G1çn are processes,
we have to show that the result of G0çn ZG1çn (Definition 3.2) is indeed a process.
Note that since G is projectable, Z must always be defined. We show that if P and
Q are processes and PZQ ‰ K, then PZQ is a process. We proceed by induction
on the structure of P and Q (abstracting from commutative invocations).

– If
P”

ÿ

iPI

s?ai ;P1i and Q“
ÿ

jPJ

s?aj ;Q1j

then PZQ is defined if

@i P I : @ j P J : ai ‰ a j and I,J ‰H

and thus we have a process since both P and Q are processes and they do not
share any prefix, or if I “ J (i.e., the prefixes are the same in both processes),
and we have the result since each P1i ZQ1j is a process by induction hypothesis.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 41

– If
P”

à

iPI
ri!ai ;P1i and Q”

à

jPJ
rj!aj ;Q1j

then PZQ is defined if either P” Q, in which case PZQ“ P, and the result
follows directly; or if I “ J (i.e., the prefixes are the same in both processes),
and we have the result since each P1i ZQ1j is a process by induction hypothesis.

– If
P”

ÿ

iPI

s?ai ;P1i and Q”
à

jPJ
rj!aj ;Q1j

then PZQ“ K, i.e., a contradiction with the fact that G is projectable.

– If
P” µχ.P1 or P” 0 or P” χ

then PZQ “ P only if P ” Q, and we are done by assumption that P is a
process.

• If G ” G0 |G1, the result follows directly from induction hypothesis.

Item 3 follows directly from items 1 and 2. Item 4 follows directly from item 3 and
the definition of QpSq.

We state some results that were established in [40] and that are applicable in our
setting for the following reasons. (i) Our local types can be easily translated to commu-
nicating machines, as shown in [40]. (ii) Our global types are essentially a subset of the
generalised global types of [40]. Indeed, we allow only tree-shaped global types and do
not allow participants to appear in different concurrent branches. (iii) Participants are
single-threaded in our setting, thus the linearity condition of [40] holds trivially. (iv) The
local choice condition is satisfied for all well-formed and projectable global types. This
condition is satisfied for a global type G if for each sub-term G0`G1 of G , and for each
participant n P P pGq, n has enough information to “know” which branch of the choreog-
raphy was chosen. Indeed, by Definition 3.2, if a participant has different behaviours in
different branches of a global type, then these behaviours must be prefixed by different
inputs.

Definition 3.3 (Properties of runtime systems [40]). Let S be a runtime system, we say
that

• S is stable if
@sr P C pSq : Srsrs “ ε

• S is a deadlock if @sr P C pSq : Srsrs “ ε, and

Dn P P pSq : Spnq ” s?a ;P`P1 and @n P P pSq : Spnq ” s?a ;P`P1 _ Spnq ” 0

• S is an orphan message configuration if

@n P P pSq : Spnq ” 0 and Dsr P C pSq : Srsrs ‰ ε



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 42

• S is an unspecified reception configuration if Dr P P pSq :

Sprq ” s?a ;P`P1 ^
`

Sprq ” s?a ;P`P1 ùñ Srsrs ‰ ε ^ Srsrs ‰ a ¨ρ
˘

A stable system is a system in which all the queues are empty. A system is a deadlock
if all its queues are empty, all participants are either terminated or waiting for an input,
and there is one participant expecting a message. An orphan message configuration is a
system where all the participants have terminated their behaviours and there is one queue
that is not empty. An unspecified reception configuration is a system for which there is a
participant who is permanently unable to read a datum from one of its queues.

We can now recall the result established in [40], adapted to our setting.

Lemma 3.2 (Properties of projections [40]). For all G such that$G and G is projectable.
Let

S ”
ˇ

ˇ

nPP pGq nrGçns and Ŝ ” S | QpSq

For all S1 such that Ŝ ùñ S1,

• S1 is not a deadlock.

• S1 is not an orphan message configuration.

• S1 is not an unspecified reception configuration.

• Either there is S2 such that S1 ÝÑ S2, or

@sr P C pSq : Srsrs “ ε and @n P P pSq : Spnq ” 0

Definition 3.4 (1-buffer execution). We say that S1 is reachable from S by a 1-buffer
execution if there exists tSi | 1ď iď nu such that S1 “ S, Sn “ S1, and

@1ď iă n : Si ÝÑ Si`1, and
Dsr P C pSiq : Sirsrs ‰ ε ùñ @s1r1 P C pSiqztsru : Sirs

1r1s “ ε

There is a 1-buffer execution from a system S to S1, if it is possible to reach S1 by a
series of intermediary configurations such that there is at most one non-empty buffer for
each of them.

Lemma 3.3 (1-buffer execution [40]). For all G such that $G and G is projectable. Let

S ”
ˇ

ˇ

nPP pGq nrGçns and Ŝ ” S | QpSq

For all S1 such that Ŝ ùñ S1, if S1 is stable, then there is a 1-buffer execution from Ŝ to S1.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 43

3.4 Synthesising Global Types
We now introduce a type system to synthesise a global type G from a system S, so that S
satisfies the same properties as the system consisting of the projections of a well-formed
and projectable global type (cf. Lemma 3.2). Also, the system obtained by projecting a
well-formed and projectable global type is always typable. One objective of the typing
system is to allow the diagram below to commute:

S G

G 1S1

§

ç

« ”

Essentially, if a global type G may be synthesised (§) from an initial system S, then
G may be projected (ç) so to obtain S1 bisimilar to the original system. Analogously,
the synthesis of the projections of a well-formed and projectable global type G 1 yields a
structurally congruent global type G .

To synthesise G from a system S, a careful analysis of what actions can occur at each
possible state of S is necessary. We define the ready set of a system as follows:

RpSq “

$

’

’

&

’

’

%

tsruYRpS1q, if S ” rr
ř

iPI s?ai ;Pis |S1

tsri | i P IuYRpS1q, if S ” sr
À

iPI ri!ai ;Pis |S1

H, if S ” 0

We define
SÙ ðñ Dsr P C : sr P RpSq^sr P RpSq

and write S{Ù if SÙ does not hold.

3.4.1 Validation Rules
We use judgements of the form:

Γ $ S § G

saying that the system S forms a choreography defined by a global type G , under the
environment Γ. The environment Γ is a map from participant names and local recursion
variables to global recursion variables. Formally, we define Γ as follows

Γ ::“ ˝ | pn,χq : χ
1
¨Γ
1

Environment ˝ is the empty context, and the environment pn,χq : χ1 states that the local
recursion variable χ of participant n is associated to the global recursion variable χ1. We
write ¨ for the disjoint union of environments, i.e., we write Γ ¨Γ1 if dompΓqXdompΓ1q “H.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 44

[;]
Γ $ srPs | rrQs | S § G S{Ù

Γ $ srr!a ;Ps | rrs?a ;Qs | S §sÑr :a; G

[ | ]
˝ $ S § G ˝ $ S1 § G 1

Γ $ S | S1 § G |G 1

[‘]
Γ $ srPs | S § G Γ $ srQs | S § G 1 S{Ù

Γ $ srP‘Qs | S § G`G 1

[`]
Γ $ rrPs | S § G

Γ $ rrP`Qs | S § G

[µ]

D1ď i,jď k : pnirPis |nj
“

Pj
‰

qÙ

Γ ¨ pn1,χ1q : χ, . . . ,pnk,χkq : χ $ n1rP1s | . . . |nkrPks § G
Γ $ n1rµχ1.P1s | . . . |nkrµχk.Pks § µχ.G

[χ]
@1ď iď k : Γpni,χiq “ χ

Γ $ n1rχ1s | . . . |nkrχks § χ

[”]
S ” S1 Γ $ S1 § G

Γ $ S § G
[0]
@n P P pSq : Spnq “ 0

Γ $ S § 0

Figure 3.3: Validation rules for programs

The domain and image of Γ are defined below.

dompΓq “

#

tpn,χquYdompΓ1q, if Γ“ pn,χq : χ1 ¨Γ1

H, if Γ“ ˝

imgpΓq “

#

tχ1uYimgpΓ1q, if Γ“ pn,χq : χ1 ¨Γ1

H, if Γ“ ˝

A global type G can be synthesised from the program S if the judgement

˝ $ S § G

is derivable from the rules in Figure 3.3. The rules are driven by the ready set of S and the
structure of its processes, we detail each of them below.

Sequential interactions are dealt with by rule [;]. The rule validates prefixes provided
that the continuation is typable and that no other interactions are possible in S. For in-
stance, rule [;] does not apply to

s1rr1!a ;P1s | r1rs1?a ;Q1s | s2rr2!b ;P2s | r2rs2?b ;Q2s 8



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 45

because there is no ordering relation between the actions of s1 and r1 on one hand, and
the actions of s2 and r2 on the other hand. In such cases, the rule [ | ] should be used.

Concurrent branches are introduced by rule [ | ]. The rule validates concurrent branches
when they can be validated using a partition of the system begin considered, recall that
P pSqXP pS1q “H.

Choice in a global type is dealt with by rules [‘] and [`]. Rule [‘] introduces the
global type choice operator, it requires that both branches are typable and that no other
interactions are possible in S – for the same reason as in rule [;]. Rule [`] allows to
discharge a branch of an external choice. This allows to type systems of the form:

srr!a‘ r!bs | rrs?a` s?b` s?cs 4

Recursion is handled by rules [µ] and [χ]. The former rule “guesses” the participants
involved in a recursive behaviour. If two of them interact, [µ] validates the recursion pro-
vided that the system can be typed when such participants are associated to the global
recursion variable χ – assuming that χ R imgpΓq. Rule [χ] checks that all the participants
in the recursion have reached a local recursion variable corresponding to the global recur-
sion.

The termination 0 is introduced by rule [0], which only applies when all the participants
in S are terminated.

Rule [”] validates a system up to structural congruence. This rule notably allows
recursive behaviours to be unfolded, see Example 3.7 below.

3.4.2 Applying the Rules
We give a few examples of derivations. We give the full derivation of the system SBS from
Section 3.1, show that we support an example borrowed from [41], and we illustrate the
use of rule [”] to unfold behaviours.

First, we show how to synthesise the global type corresponding to system SBS of
Section 3.1. Recall that this system is defined as follows:

SBS “ b1rP1s | s1rS1s | b2rP2s | s2rS2s

with

P1 “ b2!agreement ;b2?ack ;Q1

P2 “ b1?agreement ;b1!ack ;Q2

Qi “ si!request ;si?quote ;µχ.psi!ok ‘ si!no ;si?quote ;χq i P t1,2u

Si “ bi?request ;bi!quote ;µχ1.pbi?ok ` bi?no ;bi!quote ;χ1q i P t1,2u

We describe the derivation from the rule typing the overall system to the leaves of the type



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 46

derivation. The derivation of the overall system SBS is as follows.

[;]

[;]

[ | ]

∇l

˝ $ b1rQ1s | s1rS1s § G1
2

∇r

˝ $ b2rQ2s | s2rS2s § G2
2

˝ $ b1rQ1s | s1rS1s | b2rQ2s | s2rS2s § G1
2 | G2

2

˝ $ b1rb2?ack ;Q1s | s1rS1s | b2rb1!ack ;Q2s | s2rS2s §b2Ñb1 :ack; pG1
2 | G2

2 q

˝ $ b1rP1s | s1rS1s | b2rP2s | s2rS2s § GSBS

First, rule [;] is applied twice, recording the two interactions between b1 and b2. Then,
rule [ | ] is applied to separate the system in two concurrent sub-systems. The derivation
of the left (∇l) and right (∇r) branches are similar and we give a parametrised version of
them below. We pose

Ĝr “ biÑsi :ok ` biÑsi :no; siÑbi :quote; χ

Q̂r “ si!ok ‘ si!no ;si?quote ;χ

Ŝr “ bi?ok ` bi?no ;bi!quote ;χ1

in the following derivation:

[;]

[;]

[µ]

∇in-rec

pbi,χq : χ ¨ psi,χ
1
q : χ $ bi

“

Q̂r
‰

| si
“

Ŝr
‰

§ Ĝr

˝ $ bi
“

µχ.Q̂r
‰

| si
“

µχ
1.Ŝr

‰

§ µχ.Ĝr

˝ $ bi
“

si?quote ;µχ.Q̂r
‰

| si
“

bi!quote ;µχ
1.Ŝr

‰

§siÑbi :quote; µχ.Ĝr

˝ $ birQis | sirSis § Gi
2

In the sub-derivation above, rule [;] is applied twice again to record the interactions be-
tween bi and si, then rule [µ] is applied and the recursion environment is updated corre-
spondingly. The next step in the sub-derivation ∇in-rec is given below:

[‘]
∇end ∇rec

pbi,χq : χ ¨ psi,χ
1
q : χ $ bi

“

Q̂r
‰

| si
“

Ŝr
‰

§ Ĝr

where [‘] is used to split the derivation in two parts, one per branch of the internal choice
in bi, both sub-derivations are given below. First, we give ∇end:

[`]

[;]

[0]
pbi,χq : χ ¨ psi,χ

1
q : χ $ bir0s | sir0s §0

pbi,χq : χ ¨ psi,χ
1
q : χ $ birsi!oks | sirbi?oks §biÑsi :ok

pbi,χq : χ ¨ psi,χ
1
q : χ $ birsi!oks | si

“

Ŝr
‰

§biÑsi :ok

In the sub-derivation above, rule [`] is used to discard the right branch of si, then rule [;]

is used for the ok interaction. The last rule applied is rule [0] which terminates the global
type.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 47

We now give ∇rec, where we pose Ĝl “ biÑsi :no; siÑbi :quote; χ.

[`]

[;]

[;]

[χ]
pbi,χq : χ ¨ psi,χ

1
q : χ $ birχs | si

“

χ
1
‰

§ χ

pbi,χq : χ ¨ psi,χ
1
q : χ $ birsi?quote ;χs | si

“

bi!quote ;χ
1
‰

§siÑbi :quote; χ

pbi,χq : χ ¨ psi,χ
1
q : χ $ birsi!no ;si?quote ;χs | si

“

bi?no ;bi!quote ;χ
1
‰

§ Ĝl

pbi,χq : χ ¨ psi,χ
1
q : χ $ birsi!no ;si?quote ;χs | si

“

Ŝr
‰

§ Ĝl

In this, case we use rule [`] to discard the left branch of si, then use rule [;] twice, and
finally we apply rule [χ] to introduce the recursion variable. Note that this rule is applicable
since the recursion environment maps each local recursion variable to the same global
recursion variable.

We now give two additional examples of typing derivations. Example 3.6 shows the
typing of local types obtained from communicating machines given in Remark 4.1 of [41].
Example 3.7 illustrates the use of rule [”], whose main role is to unfold behaviours when
required.

Example 3.6. Consider the following communicating machines (borrowed from [41]):

s0 s1

s2

s3

B?a

B?b

C?c

C?d
s0

s1

s2

A!a

A!b
s0

s1

s2

A!c

A!d

A B C

These machines may be easily translated to our local types so to obtain the following
system:

Sex3.6 “ ArB?a ;pC?c`C?dq ` B?b ;pC?c`C?dqs | BrA!a‘A!bs | CrA!c‘A!ds

In fact, we have ˝ $ Sex3.6 § Gex3.6, with Gex3.6 defined as follows:

Gex3.6 “ BÑA :a; G 1 ` BÑA :b; G 1 G 1 “ CÑA :c ` CÑA :d

The complete typing derivation is given in Figure 3.4. ˛

Example 3.7. Consider the system below.

Sex3.7 “ srr!a ;r?b ;µχ.r!a ;r?b ;χs | rrµχ.s?a ;s!b ;χs

We have the following derivation

[”]

[;]

[;]

[µ]

[;]

...
ps,χq : χ ¨ pr,χq : χ $ srr!a ;r?b ;χs |rrs?a ;s!b ;χs § G2

˝ $ srµχ.r!a ;r?b ;χs |rrµχ.s?a ;s!b ;χs § µχ.G2

˝ $ srr?b ;µχ.r!a ;r?b ;χs |rrs!b ;µχ.s?a ;s!b ;χs § G 1

˝ $ srr!a ;r?b ;µχ.r!a ;r?b ;χs |rrs?a ;s!b ;µχ.s?a ;s!b ;χs § Gex3.7

˝ $ Sex3.7 § Gex3.7



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 48

[‘]

[`]

[;]

∇

˝ $ ArC?c`C?ds | Br0s | Cr. . .s § G 1

˝ $ ArB?a ;p. . .qs | BrA!as | Cr. . .s §BÑA :a; G 1

˝ $ Ar. . .s | BrA!as | Cr. . .s §BÑA :a; G 1
[`]

[;]

∇

˝ $ ArC?c`C?ds | Br0s | Cr. . .s § G 1

˝ $ ArB?b ;p. . .qs | BrA!bs | Cr. . .s §BÑA :b; G 1

˝ $ Ar. . .s | BrA!bs | Cr. . .s §BÑA :b; G 1

˝ $ ArB?a ;pC?c`C?dq ` B?b ;pC?c`C?dqs | BrA!a‘A!bs | CrA!c‘A!ds § G

∇ “
[‘]

[`]

[;]

[0]
˝ $ Ar0s | Br0s | Cr0s § 0

˝ $ ArC?cs | Br0s | CrA!cs §CÑA :c
˝ $ ArC?c`C?ds | Br0s | CrA!cs §CÑA :c

[`]

[;]

[0]
˝ $ Ar0s | Br0s | Cr0s § 0

˝ $ ArC?ds | Br0s | CrA!ds §CÑA :d
˝ $ ArC?c`C?ds | Br0s | CrA!ds §CÑA :d

˝ $ ArC?c`C?ds | Br0s | CrA!c‘A!ds § G 1

Figure 3.4: Typing derivation of Sex3.6

Where

Gex3.7 “ sÑr :a; G 1 G 1 “ rÑs :b; µχ.G2 G2 “ sÑr :a; rÑs :b; χ

It is clear that the only rule applicable to type Sex3.7 is rule [”], since neither there are two
behaviours with matching prefixes, nor all processes are recursive. ˛

3.5 Properties of the Synthesis
In this section, we show the properties of the type system, which, notably, allow us to
prove that the diagram of Section 3.4 commutes. We summarise our results below.

• Theorem 3.1 gives safety and progress properties for typable systems.

• Theorem 3.2 states that typability is decidable.

• Theorem 3.3 states that the global type assigned to a system is unique (up to struc-
tural congruence).

• Lemma 3.8 characterises the relationship between the behaviours in the initial sys-
tem and the projections of the synthesised global type. This lemma is crucial to
show that a synthesised global type is always well-formed (Theorem 3.4).

• Theorem 3.5 gives a subject reduction result.

• Theorem 3.6 shows that the system consisting of the projections of a synthesised
global type is bisimilar to the original system.

• Theorem 3.7 shows that any well-formed and projectable global type may be pro-
jected and synthesised again to an equivalent global type.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 49

The following intermediary result follows directly from the rules of Figure 3.3.

Lemma 3.4. If Γ $ S § G then @n P P pSq : Spnq ‰ 0 ðñ n P P pGq

Proof. Straightforward induction on the derivation.

Theorem 3.1 below follows from the results in the rest of this section. Namely, we
will show that a typable system and the system consisting of its projections are bisimilar,
and that a synthesised global type is well-formed. This allows us to reuse the results of
Lemma 3.2 to guarantee the same safety properties as with the usual top-down approach
of the multiparty session types.

Theorem 3.1 (Properties of typable systems). Let S be a stable runtime system, such that
˝ $ S § G . For all S1 such that S ùñ S1,

• S1 is not a deadlock.

• S1 is not an orphan message configuration.

• S1 is not an unspecified reception configuration.

• Either there is S2 such that S1 ÝÑ S2, or

@sr P C pS1q : S1rsrs “ ε and @n P P pS1q : S1pnq ” 0

• If S and S1 are stable, then there is a 1-buffer execution from S to S1.

Proof. The result follows directly from the fact that G is a well-formed global type (The-
orem 3.4), the projections of a well-formed global types guarantee such properties (Lem-
mas 3.2 and 3.3), and the projections of a synthesised global type are «-equivalent to the
original system (Theorem 3.6).

3.5.1 Decidability
A crucial result is that it is decidable whether or not a system may be assigned a global
type. We give a few examples of type derivations to show that the answer to this question
may not be straightforward.

Example 3.8. Consider the typable system:

srµχ.r!a ;χs | rrµχ.s?a ;χs

A possibly infinite derivation for this system would be of the form

[”]

[;]

[”]

...
˝ $ srµχ.r!a ;χs |rrµχ.s?a ;χs § G

˝ $ srr!a ;µχ.r!a ;χs |rrs?a ;µχ.s?a ;χs §sÑr :a; G
˝ $ srµχ.r!a ;χs |rrµχ.s?a ;χs §sÑr :a; G



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 50

where rules [”] and [;] are applied successively, possibly endlessly. Of course, if we apply
rule [µ] first we are done in a few steps:

[µ]

[;]

[χ]
ps,χq : χ ¨ pr,χq : χ $ srχs |rrχs § χ

ps,χq : χ ¨ pr,χq : χ $ srr!a ;χs |rrs?a ;χs §sÑr :a; χ

˝ $ srµχ.r!a ;χs |rrµχ.s?a ;χs § µχ.sÑr :a; χ

˛

Example 3.9. Consider the system

srr!b ;µχ.r!b ;r!a ;χs | rrµχ.s?b ;s?a ;χs

This system is not typable: consider the following partial derivation:

[”]

[;]

K

˝ $ srµχ.r!b ;r!a ;χs |rrs?a ;µχ.s?b ;s?a ;χs § . . .

˝ $ srr!b ;µχ.r!b ;r!a ;χs |rrs?b ;s?a ;µχ.s?b ;s?a ;χs § . . .

˝ $ srr!b ;µχ.r!b ;r!a ;χs |rrµχ.s?b ;s?a ;χs § . . .

Intuitively, this is due to the fact that participant s is ready to communicate with a par-
ticipant (r) which exhibits directly a recursive behaviour. However, the sub-term r!b ;0
(i.e., the part of the behaviour outside the recursion, appended by 0) is not the same as
behaviour within the recursion, i.e., r!b ;r!a ;0. Thus, there is a mismatch between the
behaviour of s outside the recursion and the one of r within the recursion. ˛

We now introduce a few definitions that we will use in the proof of Theorem 3.2
below.

Definition 3.5 (Unfolding). Let unfoldipPq be the i-time unfolding of P, defined as fol-
lows

unfoldipPq “ unfold1punfoldi´1pPqq ią 1

unfold1pPq “

$

’

’

’

&

’

’

’

%

À

iPI ri!ai;unfold1pPiq if P“
À

iPI ri!ai;Pi
ř

iPI s?ai;unfold1pPiq if P“
ř

iPI s?ai;Pi

χ if P“ χ

P1 tµχ.P1{χu if P“ µχ.P1

We illustrate this definition with the example below.

Example 3.10. Consider the following behaviours

P“ µχ.P1 P1 “ r!a ;µχ
1.pr!b ;χ ‘ r!c ;χ

1
q

The one-time unfolding of P is

unfold1pPq “ r!a ;µχ
1.pr!b ;P ‘ r!c ;χ

1
q



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 51

while the one-time unfolding of P1 is

unfold1pP1q “ r!a ;
`

r!b ;χ ‘ r!c ;µχ
1.
`

r!b ;χ ‘ r!c ;χ
1
˘˘

˛

Definition 3.6 (Behaviour context). Let a (non-recursive) behaviour context C x y be de-
fined as follows

C x y ::“
à

iPI
ri!ai;Ci x y |

ÿ

iPI

s?ai;Ci x y | x y

and a (possibly recursive) behaviour context C1 x y be defined as follows

C1 x y ::“
à

iPI
ri!ai;C1i x y |

ÿ

iPI

s?ai;C1i x y | x y | µχ.C1 x y | χ

A non-recursive context C x y is simply a context where no recursive definition may
appear, while a possibly recursive context C1 x ymay be any context defined by the syntax
of behaviours. We illustrate this definition in Example 3.11 below.

Using Definitions 3.6 and 3.5, we define a “distance” between the non-recursive con-
text of a behaviour and its unfolding.

Definition 3.7. Given a process of the form:

n
“

C
@

µχ.C1 xχy
D‰

let Pk “ unfoldkpµχ.C1 xχyq

We define |n| to be the smallest k such that C x0y is a sub-tree of Pk where all sub-terms of
the form µχ.P1 in Pk are replaced by 0; and |n|“ K if there is no such k.

Note that if |n| is defined, it must be smaller or equal than the length of C x0y (since
recursion is guarded).

Example 3.11. We illustrate Definition 3.7.

• Assume we have n such that Spnq “ P, and

P “ C
@

µχ.C1 xχy
D

“ r!a ;r!a ;µχ.r!a ;χ

We have |n|“ 2 since

unfold2pµχ.r!a ;χq “ r!a ;r!a ;µχ.r!a ;χ

• Assume we have n such that Spnq “ P, and

P “ C
@

µχ.C1 xχy
D

“ r!a ;µχ.pr!a ;χ‘r!b ;χq

We have |n|“ 1 since unfold1pµχ.pr!a ;χ‘r!b ;χqq is

r!a ;µχ.pr!a ;χ‘r!b ;χq ‘ r!b ;µχ.pr!a ;χ‘r!b ;χq

Note that in this case, only one branch of the choice appears in C x0y, i.e., r!a.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 52

• In Example 3.9, we had

P “ C
@

µχ.C1 xχy
D

“ r!b ;µχ.r!b ;r!a ;χ

We have |n|“ K since

unfold1pµχ.r!b ;r!a ;χq “ r!b ;r!a ;µχ.r!b ;r!a ;χ

‰ r!b ;µχ.r!b ;r!a ;χ

Note that r!b ;0 is not a sub-tree of r!b ;r!a ;0, and it is clear that unfolding the
behaviour again will not help.

˛

Theorem 3.2 (Decidability). Typability is decidable.

Proof. Decidability follows from the fact that the ready set of a system and the number of
participants are finite. We show that the number of behaviour unfoldings needed to type
a system is also finite.

The need for unfolding occurs whenever a recursive participant interact with another
participant, while not all the participants feature directly a recursive behaviour (cf. Ex-
amples 3.7 and 3.9). In this case, we need to unfold some participants (rule [”]), then
use rules [‘], [`], [;], and/or [0] until rule [µ] is applicable. Note that rule [ | ] empties the
recursion environment, thus it cannot be used after a recursion definition if the axiom [χ]

is to be used.
Consider the following system

S “ S0 |S1

where

S0 “ n1
“

C1
@

µχ.C11 xχy
D‰

| . . . |nj
“

C j
@

µχ.C1j xχy
D‰

S1 “ nj`1
“

µχ.C1j`1 xχy
‰

| . . . |nkrµχ.C1j`k xχys

such that @1ď iď j : Ci x y ‰ x y, SÙ, S0{Ù and S1{Ù. The system S0 consists of participants
that do not exhibit a recursive behaviour (yet), while S1 consists of participants exhibiting
directly a recursive behaviour. There must be exactly one n P P pSq such that

S ” nrSpnqs |S1 and S1{Ù

Since if more that one pair of participants may interact directly after the recursion, it
means that rule [ | ] will have to be used further in the derivation tree, and therefore the
recursion environment will be emptied.

Let Ci for j ă iď j` k be the empty context, we can rewrite S such that

S ”
ˇ

ˇ

iPI ni
“

Ci
@

µχ.C1i xχy
D‰

I “ ti | 1ď iď j` ku

Given S as above, we will use the function |ni| on each participant. Note that if one
|ni| is not defined, then S is not typable, cf. Example 3.9.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 53

We define M
def
“ maxt|ni| | i P Iu, and Kpiq

def
“ M´ |ni|, in order to be able to unfold

each behaviour so that all of them are unfolded to the same extent, let

S˚ ”
ˇ

ˇ

iPI ni
“

unfoldKpiqpCi
@

µχ.C1i xχy
D

q
‰

We show that

Γ $ S˚ § G 1 ðñ Γ $ S § G with G ” G 1

By definition of unfoldp q and since C x y does not contain recursive definitions, we
have

S˚ ”
ˇ

ˇ

iPI ni
“

Ci
@

unfoldKpiqpµχ.C1i xχyq
D‰

(3.4)

S˚ ”
ˇ

ˇ

iPI ni
“

Ci
@

C1i
@

C1i
@

. . .C1i
@

µχ.C1i xχy
DD

. . .
DD‰

(3.5)

Where C1i x y has been unfolded Kpiq times in (3.5). It is easy to see that S˚ is typable
if

ˇ

ˇ

iPI ni
“

Ci
@

C1i
@

C1i
@

. . .C1i x0y
D

. . .
DD‰

and
ˇ

ˇ

iPI ni
“

C1i x0y
‰

are typable themselves, note that rule [”] does not need to be used to unfold the left-hand
side system, since it is recursion free; and there is exactly one recursion less in the right
hand side.

In fact, if we would unfold (3.4) once more, we would not get more chances to type
S˚. Indeed, it would amount to add the right-hand sub-derivation to the left-hand sub-
derivation. Thus, we have a bound on the number of required unfoldings and the type
system is decidable.

3.5.2 Uniqueness
Theorem 3.3 below shows that, given a typable system S, the global type that is assigned
to it is unique up to the congruence rules from Section 3.3.

First, we give two lemmas that we will use in the proof of Theorem 3.3.

Lemma 3.5. Let S be a program such that S{Ù, if Γ $ S § G then

• G “ 0 and @n P P pSq : Spnq “ 0, or

• G “ χ and @n P P pSq : Spnq “ χ1 and Γpn,χ1q “ χ

Proof. Since S{Ù, we must have that either (i) for each pair of participants s and r they
do not have matching prefixes, or (ii) all the behaviours are of the form 0 or χ. In the
former case, it will not be possible to reach one of the axioms (i.e., rules [0] or [χ]). Thus,
it contradicts the fact that the system is typable. In the latter case, if we have some
participants with behaviour 0 and some with behaviours χ, then we would have to use rule
[ | ] to separate them in two subsystems, which implies that the environment Γ is emptied.
Thus, we will not be able to reach the axioms for the subsystems consisting of processes
with behaviour χ, and again we have a contradiction with the fact that S is typable.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 54

Lemma 3.6. Let nrP`Qs |S be a program, if

Γ $ rrP`Qs |S § G and Γ $ rrPs |S § G

are derivable, then Γ $ rrQs |S § G is not derivable.

Proof. We show this by contradiction. Assume we have

Γ $ rrP`Qs |S § G (3.6)

such that P ‰ 0 and Q ‰ 0, note that we cannot have P “ χ (or Q “ χ), by definition
of processes. Take S{Ù, if SÙ, we can “wait” before applying rule [`] until the condition
holds. Indeed, the process of r may only be affected by the derivation once one of the
branches is discarded (rule [`]), then each of the branches P and Q may only be reduced if
the rest of the system cannot “synchronise” without r (i.e., S{Ù holds). Finally, recall that,
by definition of processes, the process P`Q synchronises with exactly one participant.
Thus, we may “wait” until r’s partner is ready to synchronise with r.

Assume (by contradiction) that we have

Γ $ rrPs |S § G and Γ $ rrQs |S § G 1

We must have
rrPs |SÙ and rrQs |SÙ

otherwise the systems would not be typable by Lemma 3.5, since we have S{Ù.
Take P`Q ” s?a ;P1`s?b ;Q1. We reason by case analysis on the behaviour of s

(up-to commutativity of internal choice).

• If we have
S ” srr!a ;P2‘r!b ;Q2s |S1

From the judgement in (3.6) and rule [‘], the two judgements below must be deriv-
able

Γ $ rrP`Qs |srr!a ;P2s |S1 § G Γ $ rrP`Qs |srr!b ;Q2s |S1 § G

and we should also have

Γ $ rrs?a ;P1s |srr!a ;P2s |S1 § G Γ $ rrs?a ;P1s |srr!b ;Q2s |S1 § G

but the judgement on the right is not derivable since the prefix of the behaviours
of r and s do not match; and we have reached a contradiction. A dual reasoning
shows that the Q branch is also not derivable.

• If we have
S ” srr!b ;Q2s |S1

then it contradicts the fact that Γ $ rrPs |S §G is derivable since the prefix r!b will
never be eliminated. Recall that all the message sorts guarding an external choice
must distinct, thus no other branch than Q will permit to eliminate the prefix r!b.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 55

• If we have
S ” srr!a ;P2‘ . . .r!b ;Q2s |S1

where the ellipsis indicates a series of action that are not towards r, i.e., r!b is the
first action towards r in the right-hand branch of the internal choice.

This also contradicts the fact that Γ $ rrPs |S § G is derivable since after all the
prefixes in the right-hand branch of the internal choice have been eliminated, we
return to the previous case.

Theorem 3.3 (Unique typing). If Γ $ S § G and Γ $ S § G 1 then G ” G 1.

Proof. We show that each time a rule from Figure 3.3 is applicable, either no other rule
is applicable, or the typing produces an equivalent global type.

• Due to their syntactic restrictions and the condition S{Ù, the cases for rules [;], [µ], [χ]

and [0] are straightforward.

• The cases for rules [‘] and [ | ] follow naturally from the structural congruence rules
of both systems and global types.

• The case for rule [”] follows from the fact that associativity and commutativity in
S do not affect G . In addition, if one unfolds a behaviour once more than required,
we have the result since µχ.G ” G tµχ.G{χu.

• For the case of rule [`], we have to show that we cannot type a system with either
branch of an external choice, i.e., only one branch allows the system to be typable.
We show this case by contradiction, assume G1 ı G2,

[`]

...
Γ $ rrPs |S § G1

Γ $ rrP`Qs |S § G1 and
[`]

...
Γ $ rrQs |S § G2

Γ $ rrP`Qs |S § G2

By assumption, we have Γ $ rrP`Qs |S § G1 or Γ $ rrP`Qs |S § G2 and, by
Lemma 3.6, we have a contradiction.

3.5.3 Well-formedness and Projections
We characterise the relationships between the behaviours in a typable system and the pro-
jections of the global types that is assigned to it. In addition, we show that a synthesised
global type is well-formed and projectable.

The following lemma shows a relationship between the ready set of a system and the
ready set of its global type. We will use this lemma in several occasions.

Lemma 3.7. If ˝ $ S § G and G is well-formed and projectable, then

G ” psÑr :a; G1`G2q |G3 ðñ S ” s
“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S1



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 56

Proof. pñq Assume that

˝ $ S § G such that G ” psÑr :a; G1`G2q |G3

is derivable. We show that either a rule introducing the corresponding operator is appli-
cable or that an equivalent G can be inferred.

Assume G “ G 1 |G3, if ˝ $ S § G is derivable then we must have either S ” S1 |S2
such that

˝ $ S1 § G 1 and ˝ $ S2 § G3

are derivable (by rule [ | ]), or S3 ” 0 and G3 ” 0. Observe that we must have P pS1qX

P pS2q “H, by Lemma 3.4 and the fact that G is projectable.
Now, take G 1 “ G2`G2, we must have either

S1 “ s
“

P1‘P11
‰

|S11

such that
˝ $ srP1s |S11 § G2 and ˝ $ n

“

P11
‰

|S11 § G2

are derivable (by rules [‘] and S11{Ù), or P11 ” 0 and G2 ” 0.
If we have G2 “ sÑr :a; G1, we must have

P1 ” r!a ;P and S11 ” r
“

s?a ;Q`Q1
‰

|S21

and
˝ $ srr!a ;Ps |r

“

s?a ;Q`Q1
‰

|S21 §sÑr :a; G1

derivable.
Finally, considering the systems S1 and S2, and the processes of s and r, we have the

required result:
S ” s

“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S1

pðq Assume
˝ $ s

“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S1 § G

We show that either a rule introducing the corresponding operator is applicable or that an
equivalent G can be inferred. Either there is S1 and S2 such that S1 ” S1 |S2, and

˝ $ s
“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S1 § G 1 and ˝ $ S2 § G3

or G3 ” 0. Note that we can assume that S1{Ù since one could apply rule [ | ] as many times
as necessary until it holds.

Now, either there is G 1 ” G2`G2 such that

˝ $ srr!a ;Ps |r
“

s?a ;Q`Q1
‰

|S1 § G2

and
˝ $ s

“

P1
‰

|r
“

s?a ;Q`Q1
‰

|S1 § G2



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 57

or G2 “ 0.
Finally, for the judgement

˝ $ srr!a ;Ps |r
“

s?a ;Q`Q1
‰

|S1 § G2

to be derivable, we must have G2 ” sÑr : a ;G1. Considering G 1 and G2, we have the
required result.

We show that there is a correspondence between the behaviours of the original system
and the projections of its synthesised global type. The behaviour of a participant in S
is a simulation of the projection of a synthesised global type from S onto the participant.
Intuitively, the other direction is lost due to rule [`], indeed external choice branches which
are never chosen are not “recorded” in the synthesised global type.

Example 3.12. Consider the following system

S ” srr!as |rrµχ.ps?b ;χ`s?aqs

We show that S has global type sÑr :a, via the derivation below.

[”]

[`]

[;]

[0]
˝ $ sr0s |rr0s § 0

˝ $ srr!as |rrs?as §sÑr :a

˝ $ srr!as |rrs?b ;pµχ.ps?b ;χ`s?aqq`s?as §sÑr :a

˝ $ S §sÑr :a

˛

Note that, given a participant with an external choice, it must be the case that at least
one branch of the external choice is matched by a corresponding sending action. For
instance, in Example 3.12, we can only eliminate the prefix s?a via rule [;].

We now give our notion of simulation, which preserves sending actions in both direc-
tions; it requires all the receiving actions to be preserved in one direction and the existence
of a matching receiving action in the other direction.

Definition 3.8 (À ). P À Q if and only if

• P r!a
ÝÝÑ P1 implies that there is Q1 such that Q r!a

ÝÝÑ Q1 and P1 À Q1,

• Q r!a
ÝÝÑ Q1 implies that there is P1 such that P r!a

ÝÝÑ P1 and P1 À Q1,

• P s?a
ÝÝÑ P1 implies that there is Q1 such that Q s?a

ÝÝÑ Q1 and P1 À Q1, and

• Q s?a
ÝÝÑ Q1 implies that there is b, Q2, and P1 such that Q s?b

ÝÝÑ Q2 , P s?b
ÝÝÑ P1, and

P1 À Q2,

Definition 3.8 implies naturally the following proposition.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 58

Proposition 3.1. Let Q be a process. If 0 À Q then Q” 0.

Proof. By contradiction. If Q “
À

iPI ri!ai;Qi, then we reach a contradiction since 0
cannot match any of the sending actions. If Q “

ř

iPI s?ai;Qi, then there should exists at
least one action that is matched by 0, which leads to a contradiction.

Lemma 3.8. If ˝ $ nrPs |S § G then GçnÀ P.

Proof. The result follows directly from following intermediary statement (since we con-
sider only closed behaviours).

Let S1 ” nrPs |S, G , and Γ such that

• @n1 P P pS1q : @χ P fvpS1pn1qq : Dχ1 : Γpn1,χq “ χ1

• @χ P fvpGq : @n1 P P pS1q : Dχ1 : Γpn1,χ1q “ χ

if Γ $ nrPs |S § G then GçnÀ P.
The proof is by case analysis on the actions enabled for P and G çn (we treat the

recursive cases separately), then by induction on the structure of the derivation.
P sends. If P r!a

ÝÝÑ P1, then we must have P” r!a ;P1‘P2. Assume we have
S ” rrn?a ;Q`Q1s |S2 and S2{Ù, if it is not the case, we may apply other rules until we
obtain such a system. Indeed, the derivation may not affect the process of n until the
system cannot synchronise without n.2

[‘]

[`]

[;]

...

Γ $ n
“

P1
‰

|rrQs |S2 § G1

Γ $ n
“

r!a ;P1
‰

|rrn?a ;Qs |S2 §nÑr :a; G1

Γ $ n
“

r!a ;P1
‰

|r
“

n?a ;Q`Q1
‰

|S2 §nÑr :a; G1

...

Γ $ n
“

P2
‰

|r
“

n?a ;Q`Q1
‰

|S2 § G2

Γ $ n
“

r!a ;P1‘P2
‰

|r
“

n?a ;Q`Q1
‰

|S2 §nÑr :a; G1`G2

Thus, we have Gçn
r!a
ÝÝÑ G1çn, and, by induction hypothesis, we have

G1çnÀ P1 and G2çnÀ P2

as required.
P receives. If P s?a

ÝÝÑ P1, then we must have P” s?a ;P1`P2. There are two cases: either
P2 ” 0 or P2 ı 0.

• If P2 ” 0, then we must have a matching action for s?a (we cannot apply rule [`]).
Assume we have S” srn!a ;Qs |S2 and S2{Ù, if it is not the case, we may apply other
rules until we obtain such a system (as above). We have the following derivation:

[;]

...
Γ $ n

“

P1
‰

|srQs |S2 § G 1

Γ $ n
“

s?a ;P1
‰

|srn!a ;Qs |S2 §sÑn :a; G 1

Thus, we have Gçn
s?a
ÝÝÑ G 1çn, and, by induction hypothesis, we have G 1çnÀ P1 as

required.
2 Except for rule [”], but it may only fold or unfold the process.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 59

• If P2 ı 0 then there are two sub-cases:

– Either there is matching action for s?a, in which case we obtain the result by
discarding the P2 branch with rule [`], then applying the same reasoning as
above to apply rule [;]; or

– there is not matching action for s?a, in which case we can discard the s?a ;P1

branch with rule [`]. Since P2 ı 0 and the system is typable, there must be
one branch of n that will be recorded in G , i.e., one cannot discard the “last”
branch of an external choice (cf. the case where P2 ” 0). The result follows
from the fact that there exists one branch of the external choice that will be
“recorded” in G .

G çn sends. If G çn
r!a
ÝÝÑ G1çn, then we must have G çn” r!a ;G1çn ‘G2çn. We must

have the following sub-derivation of Γ $ nrPs |S § G such that P ” r!a ;P1‘P2 where
all the previous steps of the derivation did not affect nrPs (otherwise we would not have
Gçn” r!a ;G1çn ‘G2çn). Note that we apply rules [‘] and [`] in one step, for simplicity.

[‘][`]

[;]

...
Γ $ n

“

P1
‰

|rrQs |S2 § G1

Γ $ n
“

r!a ;P1
‰

|rrs?a ;Qs |S2 §nÑr :a; G1

...
Γ $ n

“

P2
‰

|r
“

Q1
‰

|S2 § G2

Γ $ n
“

r!a ;P1‘P2
‰

|r
“

s?a ;Q`Q1
‰

|S2 §nÑr :a; G1`G2

We have P r!a
ÝÝÑ P1, and, by induction hypothesis, we have

G1çnÀ P1 and G2çnÀ P2

as required.
G çn receives. If G çn

s?a
ÝÝÑ G1çn, then we must have G çn” s?a ;G1çn.3 We must have

the following sub-derivation of Γ $ nrPs |S § G such that P ” s?a ;P1`P2 where all
the previous steps of the derivation did not affect nrPs (otherwise we would not have
Gçn” s?a ;G1çn).

[`]

[;]

...
Γ $ n

“

P1
‰

|srQs |S2 § G1

Γ $ n
“

s?a ;P1
‰

|srn!a ;Qs |S2 §sÑn :a; G1

Γ $ n
“

s?a ;P1`P2
‰

|srn!a ;Qs |S2 §sÑn :a; G1

We have P s?a
ÝÝÑ P1, and, by induction hypothesis, we have G1çnÀ P1 as required.

Recursion in projection. If Gçn” µχ.G1çn, then we must have used rule [µ], thus we
must have P ” µχ.P1, and @m P P pSq : Spmq ” µχ.Q and the rest follows by induction
hypothesis and the fact that all participants must be added in Γ together with their local
recursion variable.

3 We abstract from possible external choice.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 60

Recursion in local type. If P ” µχ.P1, then there are two cases either rule [µ] is the last
rule applied, in which case, the result follows as above. Otherwise [”] is the last rule that
has been applied, and we must have the following sub-derivation:

[”]
Γ $ n

“

P1 tµχ.P1{χu
‰

|S § G
Γ $ n

“

µχ.P1
‰

|S § G

By induction hypothesis, we have GçnÀ P1 tµχ.P1{χu, and the result follows from the rule

P1 tµχ.P1{χu ” µχ.P1

Theorem 3.4 (Well-formedness). If Γ $ S § G then $G and G is projectable.

Proof. The proof is by induction on the derivation Γ $ S § G . We make a case analysis
on the last rule used.

Case [χ]. Trivial by Definition 3.1.
Cases [0]: Trivial by Definition 3.1.
Cases [”]: Trivial by induction hypothesis.
Case [;]. We have Γ $ srPs |rrQs |S1 § G 1,

G “ sÑr :a; G 1, S “ srr!a ;Ps |rrs?a ;Qs |S1, and S1{Ù

• WF. We show that we have

@ n1Ñn2 : P RpG 1q : ts,ruXtn1,n2u ‰H

by contradiction. By induction hypothesis, we know that

Γ $ srPs |rrQs |S1 § G 1

If we had G 1 ” pn1Ñn2 :b; G0`G1q |G2 with ni ‰ s and ni ‰ r and i P t1,2u, by
Lemma 3.7, we would have

S1 ” n1
“

n2!b ;P10‘P11
‰

|n2
“

n1?b ;Q10`Q11
‰

|S2

which is in contradiction with the premise S1{Ù.

• Projection. By induction hypothesis, we know that G 1çn is defined for all n PP pG 1q.
By Definition 3.1, we have that Gçs“ r!a ;G 1çs, Gçr“ s?a ;G 1çr, and Gçn“G 1çn,
for s‰ n‰ r.

Case [‘]. We have

G “ G0`G1, S “ srP‘Qs |S1 and S1{Ù

• WF. We have to show that

@sÑr :a P RpG0q : @s1Ñr1 :b P RpG1q : s“ s1 ^ pr,aq ‰ pr1,bq



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 61

pr,aq ‰ pr1,bq follows directly from the syntax of processes, i.e., we have

P”
à

iPI
ri!ai;Pi and Q”

à

jPJ
rj!aj;Pj and IX J “H

@ i, j P IY J : i‰ j ùñ pri,aiq ‰ prj,ajq

We have to show that for all prefixes in G0 and G1, s is the sender. In other words,
the participant who makes the internal choice at the global type level must be the
same in all the branches. By contradiction, assume we have

G0 “ sÑr :a`sÑr :b and G1 “ s1Ñr2 :b1 and s‰ s1

then we must have a system of the form

S ” s
“

r!a‘r1!b
‰

| s1
“

r2!b1
‰

| rrs?a`s?bs | r2
“

s1?b1
‰

| S2

which is in contradiction with the premise S1{Ù.

By the result above and $G0 and $G1 by induction hypothesis, we have $G .

• Projection. If n is the sender, we have the result directly by induction hypothesis,
i.e., both G0çn and G1çn are defined by induction hypothesis, thus so is G0çn‘G1çn.

For all n not the sender in G0 and G1, we have to show that, knowing by induction
hypothesis that both G0çn and G1çn are defined,

G0çn ZG1çn‰ K

We show this by contradiction, if Z is undefined, it may only originates from
the following cases, by Definition 3.2 (we consider only the prefixes of projections,
without loss of generality).

Send. If we have4

G0çn” r!a and G1çn” r!b

Take the system of the form below from which the projections above must originate,
by Lemma 3.8 and definition of projections.

S ” srr!a‘r!bs | rrs?a ;n?a`s?b ;n?bs | nrr!a‘r!bs

we must have the following derivation

[‘]

[`]

[;]

[‘]
∇l

Γ $ sr0s |rrn?as |nr. . .s § . . .

Γ $ srr!as |rrs?a ;n?as |nr. . .s § G0

Γ $ srr!as |rr. . .s |nr. . .s § G0
[`]

[;]

[‘]
∇r

Γ $ sr0s |rrn?bs |nr. . .s § . . .

Γ $ srr!bs |rrs?b ;n?bs |nr. . .s § G1

Γ $ srr!bs |rr. . .s |nr. . .s § G1

Γ $ S § G

4This case corresponds to the case where the behaviour of n is different in two branches, while being
unaware of which branch was chosen: n has to send either a or b depending on which branch was chosen
by s – without knowing which branch was selected.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 62

Where ∇l is as follows

[‘]

[;]

[0]
Γ $ sr0s |rr0s |nr0s § . . .

Γ $ sr0s |rrn?as |nrr!as § . . .

K

Γ $ sr0s |rrn?as |nrr!bs § . . .

Γ $ sr0s |rrn?as |nr. . .s § . . .

Clearly, we have a contradiction with the hypothesis that G is derivable. Note that
∇r is similar to ∇l .

Receive. If we have

G0çn” r?a`r?b and G1çn” r?b

Take the system of the form below from which the projections above must originate,
by Lemma 3.8 and definition of projections.

S ” srr!a‘r!bs | rrs?a ;n!a`s?b ;n!bs | nrr?a`r?bs

We must have the following derivation

[‘]

[`]

[;]

[`]

[;]

[0]
Γ $ sr0s |rr0s |nr0s § 0

Γ $ sr0s |rrn!as |nrr!as § G 10
Γ $ sr0s |rrn!as |nr. . .s § G 10

Γ $ srr!as |rrs?a ;n!as |nr. . .s § G0

Γ $ srr!as |rr. . .s |nr. . .s § G0
[`]

[;]

[`]

[;]

[0]
Γ $ sr0s |rr0s |nr0s § 0

Γ $ sr0s |rrn!bs |nrr!bs § G 11
Γ $ sr0s |rrn!bs |nr. . .s § G 11

Γ $ srr!bs |rrs?b ;n!bs |nr. . .s § G1

Γ $ srr!bs |rr. . .s |nr. . .s § G1

Γ $ S § G

where
G0 “ sÑr :a; G 10 and G 10 “ rÑn :a; 0

and
G1 “ sÑr :b; G 11 and G 11 “ rÑn :b; 0

Clearly, we have that G0çnı r?a`r?b, which is a contradiction.

Send-Receive. The case where one projection is an internal choice, while the other
is an external choice, is discarded by the syntax of processes.

Case [`].

• WF. By induction hypothesis, we have $G .

• Projection. By induction hypothesis.

Case [ | ]. We have
G “ G0 |G1



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 63

• WF. We have to show that
P pG0qXP pG1q “H

By definition of systems, we know that there cannot be two participants with the
same name in a system, since S |S1 is a system we have that

P pSqXP pS1q “H

and by Lemma 3.4, we have P pG0qXP pG1q “H.

• Projection. For all n P P pGq, Gçn is defined by induction hypothesis.

Case [µ]. We have G “ µχ.G 1,

S “ n1rµX1.P1s | . . . |nkrµXk.Pks and D1ď i, j ď k : pnirPis |nj
“

Pj
‰

qÙ

• WF. We have to show that

χ P fvpG 1q ñ |IndeppG 1q|“ 1

which follows from the fact that the context Γ is emptied each time the rule [ | ] is
used in the derivation (this rule is the only one introducing concurrent branches). In
addition, for the axiom [χ] to be used in the derivation one must have p , q : χ P Γ.
Therefore, the only way one could have |IndeppGq|ą 1 (i.e., at least two concurrent
branches in G) is if χ does not appear in G .

Observe that the recursion is prefix guarded since we have pnirPis |nj
“

Pj
‰

qÙ.

• Projection. By induction hypothesis.

3.5.4 Subject Reduction
In order to have a form of subject reduction for our type system, it is slightly extended to
support (stable) runtime systems. Recall that a stable runtime system is such that all its
queues are empty. First the rule

[ε]
Γ $ S § G

Γ $ sr : ε |S § G

is added so to allow empty queues to be discarded. Second, the premises of rule [0] are
updated to obtain

[0]
@n P P pSq : Spnq “ 0 C pSq “H

Γ $ S § 0

where C pSq “ H means that there is no queue left in S, i.e., S is a program where all the
participants have an empty behaviour.

The lemma below follows directly from the extension above.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 64

Lemma 3.9. Let S be a program,

˝ $ S § G ðñ ˝ $ S | QpSq § G

Proof. (ñ) If ˝ $ S § G , then we can apply rule [ε] on S | QpSq until all the queues have
been removed and we obtain ˝ $ S § G as a sub-derivation. (ð) If ˝ $ S | QpSq § G , then
˝ $ S § G is a sub-derivation of the runtime system.

Theorem 3.5 (Subject reduction). Let S be a stable runtime system, if ˝ $ S § G and
S sÑr:a
ÝÝÝÝÑ

rÐs:a
ÝÝÝÝÑ S1, then ˝ $ S1 § G 1.

In addition, if S ” srr!a ;P‘P1s |rrs?a ;Q`Q1s |S2, then

G ” psÑr :a; G1`G2q |G3 S1 ” srPs |rrQs |S2 G 1 ” G1 |G3

Proof. Assume S is a stable runtime system such that S sÑr:a
ÝÝÝÝÑ

rÐs:a
ÝÝÝÝÑ S1, from the seman-

tics of systems and processes, it is clear that we must have

S ” s
“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S1

Since ˝ $ S § G , we have

G ” psÑr :a; G1`G2q |G3

by Lemma 3.7 and the fact that by Theorem 3.4, G is well-formed and projectable.
By a similar reasoning to the one of the proof of Lemma 3.7, we have the following

derivation, with S1 ” S2 |S3 and S2{Ù.

[ | ]
∇

...
˝ $ S3 § G3

˝ $ s
“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S2 |S3 § G (3.7)

where ∇ is as follows

[‘]

[`]

[;]

...

˝ $ srPs |rrQs |S2 § G1

˝ $ srr!a ;Ps |rrs?a ;Qs |S2 §sÑr :a; G1

˝ $ srr!a ;Ps |r
“

s?a ;Q`Q1
‰

|S2 §sÑr :a; G1

...

˝ $ s
“

P1
‰

|r
“

s?a ;Q`Q1
‰

|S2 § G2

˝ $ s
“

r!a ;P‘P1
‰

|r
“

s?a ;Q`Q1
‰

|S2 §sÑr :a; G1`G2

From the semantics of systems, we must have

S1 ” srPs |rrQs |S1

and since S1 ” S2 |S3 is not changed by reduction, we have the derivation:

[ | ]

...
˝ $ srPs |rrQs |S2 § G1

...
˝ $ S3 § G3

˝ $ srPs |rrQs |S2 |S3 § G 1 (3.8)

and the result follows from the fact that each sub-derivation of (3.8) is a sub-derivation
of (3.7).



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 65

Corollary 3.1. Let S be a stable runtime system such that ˝ $ S § G . If S1 is a stable
runtime system such that S1 is reachable from S with a 1-buffer execution, then ˝ $ S1 §G 1.

Proof. Direct from Theorem 3.5 and the fact that closeness of behaviours is preserved by
reduction.

Lemma 3.10 below motivates the restriction of our subject reduction theorem to syn-
chronisation of output/input. Indeed, this result shows that, for typable systems, there is
always an execution for which each output is followed by its corresponding input.

Lemma 3.10. If S is a stable runtime system such that ˝ $ S §G and S1 is a stable runtime
system such that S ùñ S1, then S1 is reachable by a 1-buffer execution from S.

Proof. First we note that we have the following dependencies, by the semantics of sys-
tems. Let us define the following accessory function on labels:

subjpλq
def
“

#

s, if λ“ sÑ r : a

r, if λ“ rÐ s : a

A label λ1 depends on λ iff

• λ“ sÑ r : a and λ1 “ rÐ s : a, or

• subjpλq “ subjpλ1q

We write λăλ1 if λ1 depends on λ, and we call ă-causality chain a list λ1 . . .λn such that
for all 1ď iă n, λi ăλi`1.

Assume, by contradiction, that we have S and S1 such that S ùñ S1, and S1 is not
reachable by a 1-buffer execution from S. That is to say that at least two buffers are
needed for S to reduce to S1. We have the following situation

S sÑr:a
ÝÝÝÝÑ

φ

ùñ
rÐs:a
ÝÝÝÝÑ S1

where φ is a non-empty sequence of labels λ alternating between outputs and inputs (since
S and S1 are stable) and there is no 1-buffer execution (i.e., φ must include another label
s1Ñ r1 : b). There must be a ă-causality chain between the labels in φ and sÑ r : a (resp.
rÐ s : a), otherwise we could swap labels so that rÐ s : a follows directly sÑ r : a. The
smallest chain satisfying these requirements is φ“ rÑ s : b ¨sÐ r : b. Such a sequence
of transitions implies that we have the following system:

S ” srr!a ;r?bs |rrs!b ;s?as |S2

which is not typable, and thus leads to a contradiction.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 66

3.5.5 Equivalence with Original System
Since the branches of external choices that are discarded while typing are those that are
never chosen, we can show that there is a bisimulation between the original system and
the system consisting of the projections of the synthesised global type.

We first give our notion of bisimulation, then our main result (Theorem 3.6).

Definition 3.9 («). S « S1 if and only if

• S λ
ÝÑ S1 implies S1 λ

ÝÑ S2 for some S1 « S2, and

• S1 λ
ÝÑ S2 implies S λ

ÝÑ S1 for some S1 « S2

where λ P tsÑ r : a, rÐ s : au.

Theorem 3.6. Let S be a program, if ˝ $ S § G , then
ˇ

ˇ

nPP pSq nrGçns | QpSq « S | QpSq

Proof. Let Ŝ ”
ˇ

ˇ

nPP pSq nrGçns. From Lemmas 3.4 and 3.8, we have that

S ” n1rP1s | . . . |nkrPks

such that for all 1 ď i ď k : G çiÀ Pi. Thus, both directions of the bisimulation are
straightforward if λ “ sÑ r : a. We also know that each receive action done by the
projected system can be simulated by the original system from Lemma 3.8.

We show that each receiving action made by the original system can also be made by
the projected system, by contradiction. Let S1 be such that S | QpSq ùñ S1 and Ŝ1 be such
that Ŝ | QpŜq ùñ Ŝ1; and assume that Ŝ1 and S1 are the first configurations that diverge (i.e.,
the first reduced systems where S1 can do more actions that Ŝ1). Let S2 (resp. Ŝ2) be the
last stable system before S1 (resp. Ŝ1). We have

S | QpSq ùñ S2
φ

ùñ S1 and Ŝ | QpŜq ùñ Ŝ2
φ

ùñ Ŝ1

where φ consists only of sending actions. Note that φ must be the same in both systems
since sending actions are preserved by À . We must have systems of the form:

S1 ” r
“

s?a ;P`s?b ;P1
‰

|sr : b ¨ρ | . . . and Ŝ1 ” rrs?a ;Ps |sr : b ¨ρ | . . .

where clearly Ŝ1 cannot match the actions of S1. However, since S is typable and S2 is
stable, we must have

˝ $ S2 § G2

by Lemma 3.10 and Theorem 3.5. Since φ consists only of sending actions, we must have

S2 ” r
“

s?a ;P`s?b ;P1
‰

|srr!b . . .s | . . .

and
Ŝ2 ” rrs?a ;Ps |srr!b . . .s | . . .

it is clear that we must have G2çr” s?b ;Q`Q1, which is in contradiction with the be-
haviour of r in Ŝ2.



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 67

3.5.6 Completeness
Our completeness result shows that every well-formed and projectable global type is in-
habited by the system consisting of the parallel composition of all its projections.

We give two lemmas that are necessary for the proof of Theorem 3.7 below. Recall
that the simulation relation À is given in Definition 3.8 and the merge function Z is
given in Definition 3.2.

Lemma 3.11. Let P and Q be two processes, if PZQ‰ K then P À PZQ.

Proof. We show the result by induction on the structure of P and a case analysis following
Definition 3.2.

• If P” Q, the result follows trivially.

• If P“
À

iPI ri!ai;Pi, then, by Definition 3.2, we must have Q“
À

iPI ri!ai;Qi, and
PiZQi for all i P I. We have the result by definition of À (all sending actions are
preserved in both directions since P and Q have the same prefixes) and induction
hypothesis: Pi À PiZQi for all i P I.

• If P“
ř

iPI s?ai;Pi, then there are two cases, either

– Q “
ř

iPI s?ai;Qi, then the result follows by definition of À (the processes
share the same prefixes) and induction hypothesis; or

– Q“
ř

jPJ s?aj;Q j and @i P I : @ j P J : ai ‰ a j and I,J ‰H, then we have, by
Definition 3.2,

PZQ“
ÿ

iPI

s?ai;Pi`
ÿ

jPJ

s?aj;Q j

and by definition of À :
ÿ

iPI

s?ai;Pi À
ÿ

iPI

s?ai;Pi`
ÿ

jPJ

s?aj;Q j

Note that if P” 0, then we must have Q” 0, cf. the condition I,J ‰H above.

Lemma 3.12. Let S and S1be two programs such that P pSq“P pS1q and @n PP pSq : Spnq À
S1pnq. If Γ $ S § G then Γ $ S1 § G .

Proof. The proof is by straightforward induction on the derivation of Γ $ S §G . We only
give the main argument here.

First, observe that by Proposition 3.1, if Spnq ” 0, then we must have S1pnq ” 0.
By definition of À , we have that each process S1pnq may only differ from Spnq by

having some additional external choice branches, i.e., if Spnq “ P (with P an external
choice), we can have S1pnq “ P`P1. It is easy to see that we can always apply rule [`] to
discard the additional P1 branch and return to the original system.

Note that, by definition of À , if Spnq “ P‘P1, then S1pnq “ Q‘Q1, with P À Q and
P1 À Q; therefore the induction hypothesis may be applied easily for the case when the
last rule is [‘].



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 68

We show an intermediary result (Lemma 3.13) which allows us to take into account
the set of participants of a recursive global type during its projection. We illustrate the
utility of this lemma with Example 3.13 below.

Example 3.13. Consider the global type:

G “ µχ.sÑr :a; sÑr1 :b; χ

where we have P pGq “ ts,r,r1u. While projecting G , we obtain the sub-term G 1:

G 1 “ sÑr1 :b; χ

where we have P pGq “ ts,r1u, i.e., r does not appear in G 1 anymore. However, we need
to record the fact that r is part of the global type since r is involved in the recursion. ˛

Lemma 3.13. Let ProjpG ,Q q “
ˇ

ˇ

nPQ nrGçns with P pGq Ď Q .
If $G , G is projectable, and @χ P fvpGq : Dχ1 : @n P Q : Γpn,χ1q “ χ then

Γ $ ProjpG ,Q q § G 1 with G ” G 1

Proof. We show this by induction on the structure of G . Throughout the proof, we let

S “
ˇ

ˇ

nPQ nrGçns and SQ 1 “
ˇ

ˇ

nPQ zQ 1 nrGçns

Case G “ χ. Then, by Definition 3.1, we have

S ”
ˇ

ˇ

nPQ nrχs

By assumption, we have Dχ : @n P Q : Γpn,χq : χ, hence we can apply rule [χ], and we
obtain the required result.
Case G ” 0. We have S ”

ˇ

ˇ

nPQ nr0s and the results holds by rule [0].
Case G ” sÑr :a; G 1.

By definition of projection, we have

S ” s
“

r!a ;G 1çs
‰

|r
“

s?a ;G 1çr
‰

|Sts,ru

with Q “ P pSqY ts,ru. We can apply rule [;] and the induction hypothesis in order to
have the result, i.e.,

[;]

by IH
Γ $ s

“

G 1çs
‰

|r
“

G 1çr
‰

|Sts,ru § G 1

Γ $ s
“

r!a ;G 1çs
‰

|r
“

s?a ;G 1çr
‰

|Sts,ru §sÑr :a; G 1

Observe that Sts,ru{Ù otherwise it would mean that

Ds1Ñr1 :a P RpG 1q such that ts,ruXts1,r1u “H

which is in contradiction with $G .



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 69

Case G ” G0`G1.
Let us assume that for all n P P pGq (that is not the sender on the prefixes in RpGq) that

G0çn ZG1çn‰ K; otherwise we can re-arrange G such that this condition holds since G
is projectable.

By definition of projection, we have

S ” srG0çs ‘ G1çss |
ˇ

ˇ

nPQ ztsu nrG0çn ZG1çns

We can apply rule [‘]. Indeed, by well-formedness, rule [‘] is applicable (s is “preventing”
the other participants to interact, similarly to the case above) and we obtain:

[‘]

...
Γ $ srG0çss |

ˇ

ˇ

nPQ ztsu nrG0çn ZG1çns § G0

...
Γ $ srG1çss |

ˇ

ˇ

nPQ ztsu nrG0çn ZG1çns § G1

Γ $ S § G

By induction hypothesis, we have the result for

Γ $ srG0çss |
ˇ

ˇ

nPQ ztsu nrG0çns § G0 Γ $ srG1çss |
ˇ

ˇ

nPQ ztsu nrG1çns § G1

By Lemma 3.11 and the assumption that G is projectable, we have

@n P Q ztsu : GiçnÀ G0çn ZG1çn i P t0,1u

Thus, by Lemma 3.12, we have

Γ $ srGiçss |
ˇ

ˇ

nPQ ztsu nrGiçns § Gi ùñ Γ $ srGiçss |
ˇ

ˇ

nPQ ztsu nrG0çn ZG1çns § Gi

and we have the required result.

Case G ” G0 |G1.
We have S of the form below, by definition of projections (and well-formedness)

S ” ProjpG0,Q0q |ProjpG1,Q1q with Q0XQ1 “H

Note that since |IndeppGq| ą 1, we have fvpGq “ H, thus, by induction hypothesis, we
have

˝ $ ProjpGi,Q q § G 1i and Gi ” G 1i
for i P t0,1u and we have the result by applying rule [ | ]:

[ | ]

by IH
˝ $ ProjpG0,Q0q § G1

by IH
˝ $ ProjpG1,Q1q § G1

Γ $ S § G

Case G ” µχ.G 1.
By definition of projections, we have

S ”
ˇ

ˇ

nPQ1
n
“

µχ.G 1çn
‰

|
ˇ

ˇ

nPQ2
nr0s with Q “ Q1YQ2 and Q1XQ2 “H



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 70

Since G 1 is prefix-guarded, there must be s,r P Q1 such that

s
“

µχ.G 1çs
‰

|r
“

µχ.G 1çr
‰

Ù

Therefore, rule [µ] is applicable after having discarded the empty processes via rule [ | ]

(followed by the axiom [0]). We have the following derivation:

[ | ]

[µ]

by IH
Γ
1
$
ˇ

ˇ

nPQ1
n
“

G 1çn
‰

§ G 1

Γ $
ˇ

ˇ

nPQ1
n
“

µχ.G 1çn
‰

§ G
[0]

Γ $
ˇ

ˇ

nPQ2
nr0s § 0

Γ $
ˇ

ˇ

nPQ1
n
“

µχ.G 1çn
‰

|
ˇ

ˇ

nPQ2
nr0s § G |0

where Γ
1
“ Γ ¨ΓS and ΓS such that @n P Q1 : Γpn,χq “ χ

We have the required result by induction hypothesis.

Theorem 3.7. If $G and G is projectable, then there is G 1 ” G such that

˝ $
ˇ

ˇ

nPP pGq nrGçns § G 1

Proof. By Lemma 3.13, with Q “P pGq and Γ“˝ (since G is closed by assumption).

3.6 Perspectives
In this section, we discuss possible generalisations of our framework to extend the set of
typable systems and discuss a limitation of the synthesis as a type system.

Concurrent branches and recursion. In order to synthesise global types where con-
current branches appear under recursion (i.e., a construct which is not allowed in the
current setting), we propose to introduce an additional recursion variable environment
which is used linearly. We use judgements of the form

Γ̂ ; Γ $ S § G
which may be read as “the system S forms a choreography defined by a global type G ,
under the environments Γ̂ and Γ”. Environments Γ̂ and Γ are as in Section 3.4, except
from the fact that each of the “hypothesis” in Γ̂ must be used exactly once. The rules from
Section 3.4.1 remains essentially the same but for the rule introducing parallel branches
and the axioms for termination and recursion variable. We give the new rules below.

[ | ]
Γ̂ ¨Γ ; ˝ $ S § G Γ̂ ¨Γ

1 ; ˝ $ S1 § G 1

Γ̂ ; Γ ¨Γ
1
$ S |S1 § G |G 1

[χ]
@1ď iď k : Γpni,χiq “ χ

˝ ; Γ $ n1rχ1s | . . . |nkrχks § χ
[0]
@n P P pSq : Spnq “ 0

˝ ; Γ $ S § 0

[χL]
dompΓ̂q “ tpni,χiq | 1ď iď ku imgpΓ̂q “ tχu

Γ̂ ; Γ $ n1rχ1s | . . . |nkrχks § χ



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 71

Rule [ | ] allows to separate the system in two concurrent branches. In this case the normal
environment Γ is split in two disjoint parts and moved to the linear environments. Rules
[χ] and [0] are updated so that they are applicable only when the linear environment is
empty. The new rule [χL] allows to use the variables stored in Γ̂ only if each behaviour
in the system consists of recursion variables in Γ̂ and each element in Γ̂ is indeed used.
Intuitively, these rules allows some participants to agree on a “meeting point” (i.e., a
recursion definition), then they behave concurrently for a while, and return to the meeting
point eventually.

Another change in rules concerns rule [µ] where we add the constraint that there must
be exactly one pair of participants that interact after the recursion. This is to prevent rule
[µ] to be applicable on systems of the form

s1rµχ.r1!a ;χs | r1rµχ.s1?a ;χs | s2rµχ.r2!b ;χs |r2rµχ.s2?b ;χs

where it is clear that rule [ | ] should be used before rule [µ] so that we obtain a global type
of the form:

µχ.s1Ñr1 :a; χ | µχ
1.s2Ñr2 :b; χ

1 4

Instead of a global type of the form:

µχ.ps1Ñr1 :a; χ | s2Ñr2 :b; χq 8

We show an example of a system that would be rejected by the original rules but is ac-
cepted by this extension.

Example 3.14. Consider the system

S “ s
“

µχ.r!a ;r1!b ;χ
‰

| r
“

µχ.s?a ;s1?c ;χ
‰

| r1rµχ.s?b ;χs | s1rµχ.r!c ;χs

which has the following global type

G “ µχ.sÑr :a; psÑr1 :b; χ | s1Ñr :c; χq

We give the type derivation below, where we pose

Γ1 “ ps,χq : χ ¨ pr1,χq : χ and Γ2 “ pr,χq : χ ¨ ps1,χq : χ

and we abstract from the intermediary global types in the derivation.

[µ]

[;]

[ | ]

[;]

[χL]
Γ1 ; ˝ $ srχs |r1rχs § χ

Γ1 ; ˝ $ s
“

r1!b ;χ
‰

|r1rs?b ;χs § . . .
[;]

[χL]
Γ2 ; ˝ $ |rrχs |s1rχs § χ

Γ2 ; ˝ $ |r
“

s1?c ;χ
‰

|s1rr!c ;χs § . . .

˝ ; Γ1 ¨Γ2 $ s
“

r1!b ;χ
‰

|r
“

s1?c ;χ
‰

|r1rs?b ;χs |s1rr!c ;χs § . . .

˝ ; Γ1 ¨Γ2 $ s
“

r!a ;r1!b ;χ
‰

|r
“

s?a ;s1?c ;χ
‰

|r1rs?b ;χs |s1rr!c ;χs § . . .

˝ ; ˝ $ S § G

Notice that, when rule [ | ] is used, the environment Γ1 ¨Γ2 is split in two parts and moved
to the linear environment. ˛



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 72

Remarkably, if we relax the corresponding conditions on the well-formedness of
global types and their projections, the properties presented in Section 3.5 also holds for
this generalisation. In fact, the main change concerns knowledge of choice. This property
holds in this extension since each participant involved in a “concurrent recursion” must
always return to the recursion point.

Minimal local types. Some system of local types may fail to be assigned a global type
because the behaviours of two participants do not match within a recursion, even if they
do not deadlock – this is due to the syntactic nature of the type system. We may be given
more chances to type a system of local types if each local type has been minimised up to
bisimilarity beforehand. For instance, the system:

srµχ.r!a ;χs | rrµχ.s?a ;s?a ;χs (3.9)

is not typable because the typing derivation will eventually reach a term of the form

ps,χq : χ ¨ pr,χq : χ $ srχs | rrs?a ;χs § . . .

for which no rule from Figure 3.3 is applicable. In particular, observe that unfolding any
of the behaviours in (3.9) will not help.

However, the system in (3.9) is typable if we minimise each behaviour. Indeed, it is
possible to translate the behaviour of r into an automaton, which can be minimised and
translated back to the process: µχ.s?a ;χ. Note that, at the level of behavioural specifica-
tions, minimising a process (up to bisimilarity) is a sound transformation.

After minimisation, the system in (3.9) is assigned the global type µχ.sÑr : a ;χ. It
is easy to see that the system consisting of the projections of this global type is bisimilar
to the original one, i.e.,

srµχ.r!a ;χs | rrµχ.s?a ;s?a ;χs « srµχ.r!a ;χs | rrµχ.s?a ;χs

The result follows directly from the fact that minimisation is done up to bisimilarity and
the fact that a synthesised global type preserve the behaviour of the original system (cf.
Theorem 3.6).

A limitation. A disadvantage of presenting a synthesis as a type system is that both
checking that each input/output actions are matched and checking that there is a 1-buffer
execution of the system (between two stable configurations) must be done at the same
time. Instead, when working with communicating machines, one can first construct a
transition system corresponding to all the possible (bounded) executions of the systems,
so to check that, e.g., the system is deadlock free, there is no orphan message configura-
tion etc. Then, one may check that every stable configuration is reachable by a 1-buffer
execution and, therefore, can be captured by a global type.

This limitation is most noticeable if we were to allow a more liberal version of the
external choice in the behaviours, e.g., a behaviour of the form:

P“ s?a ;s1?b ` s1?b ;s?c with s‰ s1



CHAPTER 3. SYNTHESISING CHOREOGRAPHIES FROM LOCAL TYPES 73

Indeed, consider the following system

S “ s
“

r!a ;s1!d
‰

| rrPs | s1rs?d ;r!bs

In a 1-buffer execution, this system does not deadlock. Indeed, under such a restriction
r must read a from the queue sr first, then b from the queue s1r. However, the runtime
system S | QpSq may reduce to the following system:

S1 “ sr0s | sr : a | r
“

s?a ;s1?b ` s1?b ;s?c
‰

| s1r : b | s1r0s

in which case if r reads b first (i.e., the right branch of the external choice is chosen), it
will deadlock because it will not be able to read c from the queue sr.

With the current type system, it is not possible to discard such systems as we must
eventually discard one of the branches of participant r and thus the typing will not check
the “faulty” branch. Indeed, this branch is “invisible” to the type system which only
considers 1-buffer executions.

3.7 Concluding Remarks
We presented a type system to synthesise a choreography (i.e., a global type) from a set of
local specifications (i.e., local types). Such a global type is unique, well-formed, and its
projections are equivalent to the original local types. We have shown safety and progress
properties for (typable) local session types and given a subject reduction theorem for our
type system.

Observe that our type system ensures that a synthesised global type meets the con-
nectedness conditions of [50]. This follows from the fact that a synthesised global type is
well-formed: local choice and sequentiality hold.

In addition, considering a set of typable local types as an implementation of its syn-
thesised global type, the properties identified in [29], i.e., sequentiality, alternativeness,
shuffling, fitness and exhaustivity, are guaranteed to hold.5 This follows from the fact
that a global type is well-formed and its projections are equivalent to the original system,
i.e., its “implementation”. In particular, exhaustivity – requiring that if a sequence of in-
teractions is specified by a global type, then there must exist at least an execution of its
implementation that exhibits these interactions – is guaranteed by construction.

In the rest of this thesis, we will present some applications of the synthesis. In Chap-
ter 4, we show that once a choreography is available, it may be decorated with logic predi-
cates so to constrain interactions declaring senders obligations and receivers requirements
on the values of the exchanged data and on the choice of the branches to follow. In par-
ticular, we focus on algorithms and a methodology to correct these choreographies if they
do not satisfy some requirements. In Chapter 5, we present a formal framework for dis-
tributed systems where the synthesis of choreographies is used as basis for finding sets of
compliant contracts.

5See Section 2.2.1 for a description of these properties.



CHAPTER 4

Amending Contracts for Choreographies

We show a few techniques that help software architects to amend global asser-
tions during the design of distributed choreographies. Our results include: two
algorithms to solve history sensitivity problems, one algorithm to solve temporal
satisfiability problems, and a methodology for applying the algorithms to proto-
col design.

4.1 Introduction
Once a global type has been designed, or synthesised as in Chapter 3, it may be refined
into a global assertion [12]. That is, a global type decorated with predicates that constrain
interactions, declaring senders obligations and receivers requirements on exchanged data
and on the choice of the branches to follow.

Once designed, a global assertion G may be projected on endpoint assertions that are
local types – modelling the behaviour of a specific participant – constrained according
to the predicates of G . However, a global assertion may be projected into “safe” local
types only if it is well-asserted [12], namely when it obeys two precise design principles:
history-sensitivity (HS for short) and temporal satisfiability (TS for short). Informally, HS
demands that a participant having an obligation on a predicate has enough information for
choosing a set of values that guarantees it. Instead, TS requires that the values sent in each
interaction do not make predicates of future interactions unsatisfiable.

The main motivation of our interest in HS and TS is that, in global assertions, they
are the technical counterparts of the fundamental coordination issue that could be summa-
rized in the slogan “who do what and when do they do it?”. In fact, HS pertains to when
variables are constrained and who constrain them, while TS pertains to which values vari-
ables take. The contracts specified in global assertions are, on the one hand, “global” as
they pertain to the whole choreography while, on the other hand, they are also “local” in

74



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 75

biÑsi : request

siÑbi :quote

biÑsi :ok biÑsi :no

siÑbi :quote

Figure 4.1: Seller-Buyer global type (extract)

(at least) two aspects. The first is that they assign responsibilities to participants (who)
at definite moments of the computation (when). The second aspect is that the values as-
signed to variables are critical because one could either over-constrain variables fixed in
the past or over-restrict the range of those assigned in the future (which). These conditions
– especially TS – are rather crucial as global assertions that violate them may be infeasible
or fallacious. Remarkably, a global assertion not satisfying TS may lead to conversations
in which progress is not guaranteed unless one of the participants deliberately violates the
contract.

Guaranteeing HS and TS is often non-trivial, and this burden is on the software ar-
chitect; using tools like the ones described in [52], one only highlights the problems but
does not help to fix them. HS and TS are global semantic properties that may be hard
to achieve. Namely, TS requires to trace back for “under-constrained” interactions (i.e.,
which allow values causing future predicates to be unsatisfiable) and re-distribute there
the unsatisfiable constraints.

A motivating example. Using the running example of Chapter 3, we illustrate how TS
problems may easily occur at design time. In the global type depicted in Figure 4.1,
a buyer bi requests a quote from a seller si, then depending on whether the client is
satisfied with the quote, bi chooses either the ok branch and the interactions terminate, or
bi chooses the no branch and the seller has to offer a new quote.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 76

A natural refinement of this global type is the following global assertion:1

Ĝ “ biÑsi : trequest
ˇ

ˇ trueu; (1)

siÑbi : tquote f
ˇ

ˇ trueu; (2)

µχxquote f quote f ytquotec quotep
ˇ

ˇ quotec ď quotepu. (3)

biÑsi :
 

ttrueu ok : 0 , (4)

ttrueu no : siÑbi : tquoten
ˇ

ˇ quoten ă quotecu; (5)

χxquoten quotecy (6)
(

where request, quote f , quotec, quotep and quoten are interaction variables; we assume
that the sort of request is string and the sort of the other variables is int – for simplicity.

In lines (1-2), the buyer and the seller exchange variables request and quote f . The
variables are unconstrained (the predicates are set to true).

Line (3) defines a recursion over the recursion parameters quotec and quotep – which
are both initialised to the value of quote f . The invariant of the recursion, i.e., quotec ď

quotep requires that the current quote (quotec) is less than the previous one (quotep). This
invariant trivially holds in the first iteration.

At line (4), bi selects either the ok or no branch (the choice of a branch may be
constrained by a predicate, but in this case they are both set to true, so to model a non-
deterministic choice).

In the recursive branch, at lines (5-6), the seller has to send a new quote (quoten) to the
buyer and this quote must be (strictly) less than the previous quote, i.e., quoten ă quotec.
The recursive call χxquoten quotecy says that the recursion arguments are now quoten and
quotec (i.e., the current quote and the previous quote).

We will see that Ĝ is well-asserted. However, the designer may soon realise that Ĝ
is under-constrained as it may imply that the seller has to make offers that are arbitrarily
low. Assume that the designer tackles this flaw by updating the recursion invariant (line
(3)) to the predicate

MIN ă quotec ď quotep (4.1)

where MIN is a constant representing the minimum price that a seller is willing to sell an
item. In fact, this change makes the global assertion violate temporal satisfiability since,
e.g., if si sends a quote (at line (2) or (5)) that is less than MIN, then the invariant (4.1)
does not hold.

In the rest of this chapter, we will see that solving this kind of problems is not trivial,
but may be solved automatically by our algorithms and methodology.

4.2 Preliminaries
We now define global assertions formally. Let V (ranged over by u,v,x,y, . . .) be a count-
ably infinite set of interaction variables, such that PXV “H. Recall that P is the set of

1 Observe that the structure of Ĝ is the same as the global type of Figure 4.1.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 77

participants of a choreography (cf. Chapter 3).
Hereafter,~ represents a list of some elements (for instance, ~v is a list of interaction

variables). The concatenation of ~x and ~y is denoted by the juxtaposition ~x ~y; abusing
notation, we identify a one-element list with its (unique) element and identify lists with
the underlying sets of their elements (e.g., a P~x indicates that a occurs in the list~x).

As in [12], we parametrise our constructions by abstracting away from the logical
language Ψ adopted. Here, it suffices to assume that Ψ is a decidable fragment of a
first-order logic obtained by adding first-order quantification to a language of boolean
expressions. In fact, we allow expressions (ranged over by e) that include constructors
and operators/relations of common data types (e.g., strings, integers, booleans, etc.) and
include variables drawn from V . (For simplicity, our examples use basic numeric types or
strings.) We write varpeq to denote the set of variables occurring in e and use the symbol
ùñ to denote logic implication. Then a predicate ψ P Ψ is either a boolean expression
e (understood to be a boolean expression in our language of expressions), or a quantified
predicate @~v : e or D~v : e. Given a predicate ψ in Ψ, varpψq is the set of free interaction
variables of ψ (we write ψp~vq to emphasise that varpψq Ď~v).

The main ingredients of global assertions are interactions, abbreviated ι, like

sÑr : t~v
ˇ

ˇ ψu (4.2)

where s,r PP are the sender and the receiver,~vĎV is a pairwise distinct list of variables,
and ψ PΨ. We say that the variables~v in (4.2) are introduced by s. The interaction (4.2)
reads as “s has to send to r some values for ~v that satisfy ψ” or as “r relies on the fact
that the values fixed by s for~v satisfy ψ”. For instance,2

sÑr : tv w
ˇ

ˇ Du : v“ uˆwu

states that s has the obligation to send r two values such that the first is a multiple of the
second. Given ι as in (4.2), we define

sndpιq
def
“ s, rcvpιq

def
“ r, varpιq

def
“ ~v, and cstpιq

def
“ ψ

Remark 4.1. In [12], interactions specify a channel over which participants communi-
cate. For consistency with the rest of this thesis, we omit channels since they are inconse-
quential to our results. In fact, the algorithms we present do not use identities of channels
but only those of participants and variables.

Global assertions are ranged over by G and have the following syntax:

G ::“ ι; G [PREFIX]

| sÑr :
 

tψ julj : G j
(

jPJ [BRANCHING]

| µχx~eyt~v
ˇ

ˇ ψu.G [RECURSIVE DEFINITION]

| χx~ey [RECURSIVE CALL]

| 0 [END SESSION]

2For simplicity, we assume the typing of variables understood.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 78

where ψ,ψ j PΨ and lj ranges over a set of labels.
The syntax above is essentially borrowed from [12] but for a slightly simplified nota-

tion. In [12], the semantics of global assertions is given in terms of endpoint assertions
(by projecting global assertions to endpoint assertions and exploiting the operational se-
mantics of the latter). In this chapter, only the syntactic aspects of global assertions given
below are relevant; therefore, we give an informal account of the semantics of global
assertions.

The prefix production ι; G defines a global assertion where the interaction ι must pre-
cede the interactions in G . The branching production allows the selector s to choose one
of the labels lj and send it to r, then the interactions in G j occur. Recursion is dealt with
as usual but for the presence of an initialisation vector ~e (of the same length as ~v) which
specifies the initial values of each formal parameter in ~v and onto which a recursion in-
variant ψ is specified. Finally, the last production represents a completed global assertion;
trailing occurrences of 0 are often omitted.

In a recursive definition µχx~eyt~v
ˇ

ˇ ψu.G , occurrences of χ (i.e., recursive calls) in G
must be prefix-guarded and the length of~e is the same as~v. Also, we assume that variables
χ are always in the scope of a recursive definition µχx yt

ˇ

ˇ u, and that, in a recursive
call χx~ey,~e match the sorts of its corresponding recursive definition µχx~e1yt~v

ˇ

ˇ ψu.G and
the length of~e is the same as~v.

We denote with varpGq the set of interaction variables and recursion parameters in
G . The interaction variables varpιq of global assertion ι; G are bound in G and in cstpιq;
similarly, the formal parameters ~v in a recursive definition µχx yt~v

ˇ

ˇ ψu.G are bound
in ψ and in the recursion body G . We consider closed global assertions (i.e., for any
occurrence of v P V in G either the occurrence is in a recursive definition having v as
formal parameter or there is an interaction ι in G such that v P varpιq which precedes that
occurrence of v).

Remark 4.2. For simplicity, we assume that bound interaction variables are pairwise
distinct.

Remark 4.3. For consistency with [12], we use a restricted form of branching, where
a choice must be made between exactly two participants (one sender and one receiver).
However, we conjecture that our results are applicable to global assertions that features
constructs of the form

ÿ

jPJ

sÑrj : tlj
ˇ

ˇ ψ ju; G j

where we may have rj ‰ ri for i‰ j P J.

Definition 4.1 (Knows). Under the syntactic restrictions listed above, we say that a par-
ticipant p knows a variable v P varpGq if one of the following conditions holds:

• there is ι in G such that v P varpιq and p P tsndpιq,rcvpιqu or

• there is a recursive definition µχx~e1 e ~e2yt~v1 v ~v2
ˇ

ˇ ψu.G 1 in G such that p knows
all the variables in varpeq and, for each recursive invocation χx~e11 e1 ~e12y in G 1, p
knows all the variables in varpe1q.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 79

We denote with knowsppGq the set of variables in varpGq that p knows.

Example 4.1. Consider the following global assertion

Gex4.1 “ IÑServer : tx
ˇ

ˇ xě 3u;
µχx3ytr

ˇ

ˇ trueu.ServerÑPlayer :
 

tr ą xu less : PlayerÑServer : ty
ˇ

ˇ trueu; χxyy,
tr ă xu greater : PlayerÑServer : tz

ˇ

ˇ trueu; χxzy,
tr “ xu win : 0

(

where I initialises a value x ě 3 for Server. Then, repeatedly, Server sends a label
chosen in the set tless,greater,winu to Player depending on r being greater, smaller, or
equal to the value of x; and Player replies with an integer in the first two cases while the
interaction ends if win was sent by Server. In Gex4.1, both I and Server know x while
Player does not know it; instead the recursion parameter r is known only to Server and
Player. ˛

It is convenient to treat global assertions as trees whose nodes are drawn from a set
N (ranged over by n,n1, . . .) and labelled with information on the syntactic categories of
the syntax of global assertions. Hereafter, we write n P T if n is a node of a tree T , n to
denote the label of n, and T ‚ for the root of T .

Definition 4.2 (Assertion Tree). The assertion tree TpGq of a global assertion G is defined
as follows:

• If G “ ι; G 1 then TpGq‚ has label ι and its unique child is TpG 1q.

• If G “ sÑ r :
 

tψ julj : G j
(

jPJ then TpGq‚ has label sÑ r : and its children are
tn ju jPJ ĎN such that, for each j P J, n j “ tψ julj and TpG jq is the unique child of
n j.

• If G “ µχx~eyt~v
ˇ

ˇ ψu.G 1 then TpGq‚ has label µχx~eyt~v
ˇ

ˇ ψu and its unique child is
TpG 1q.

• If G “ χx~ey then TpGq consists of one node with label χx~ey.

• If G “ 0 then TpGq consists of one node with label 0.

We denote the set of assertion trees as T and let T,T 1, . . . range over T .



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 80

Example 4.2. The assertion tree of Gex4.1 in Example 4.1 can be depicted as:

IÑServer : tx
ˇ

ˇ xě 3u

µχx3ytr
ˇ

ˇ trueu

ServerÑPlayer :

tr ą xu less

PlayerÑServer : ty
ˇ

ˇ trueu

χxyy

tr ă xu greater

PlayerÑServer : tz
ˇ

ˇ trueu

χxzy

tr “ xu win

0

where identities of nodes are not shown and only their labels appear. ˛

For convenience, given T P T , we will use the partial functions

varT : N Ñ 2V , cstT : N ÑΨ, and sndT ,rcvT : N Ñ P

that are undefined on N ztn
ˇ

ˇ n P Tu and defined as follows otherwise:

varT pnq “

#

varpιq, if n“ ι

H, otherwise
cstT pnq “

$

’

&

’

%

ψ, if n“ ι and cstpιq “ ψ

ψ, if n“ tψul
true, otherwise

sndT pnq “

#

sndpιq, if n“ ι

s, if n“ sÑr :
rcvT pnq “

#

rcvpιq, if n“ ι

r, if n“ sÑr :

Moreover, we shall use the following functions:

• parentT pnq returning ε if n“ T ‚, the parent of n in T if n P T , and K otherwise.

• nÒT returning the path from T ‚ to n (including n) if n P T , and K otherwise.

Given T P T , let ApT q be the global assertion obtained by appending the labels of the
nodes in (depth-first) preorder traversal visit of T .

Proposition 4.1. ApTpGqq “ G

Proposition 4.1 allows us to extend knowspp q to T by knowsppT q
def
“ knowsppApT qq.

Proposition 4.2. If T P T then TpApT qq “ T

Propositions 4.1 and 4.2 – whose proofs are trivial – basically induce an isomorphism
between global assertions and their parsing trees.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 81

4.3 On Recovering History Sensitivity
In a choreography, participants have to make local choices on the communicated values;
such choices have an impact on the graceful coordination of the distributed parties. It
is therefore crucial that the responsible party has “enough information” to commit to an
“appropriate” local choice, at each point of the choreography. For global assertions, this
distills into history sensitivity (HS), a property defined in [12] as follows:

A predicate guaranteed by a participant s can only contain those interaction
variables that s knows.

HS demands the sender/selector of each interaction in a given assertion to know all the
variables involved in the predicate associated to that interaction. We illustrate HS with
the following example.

Example 4.3. The global assertion Gex4.3 below violates HS.

Gex4.3 “ AliceÑBob : tv1
ˇ

ˇ v1 ą 0u;
BobÑCarol : tv2

ˇ

ˇ v2 ą 0u;
CarolÑAlice : tv3

ˇ

ˇ v3 ą v1u

Carol’s obligation v3 ą v1 cannot be fulfilled because v1 R knowsCarolpGex4.3q. ˛

Given a global assertion G , the function HSpGq below returns the nodes of TpGqwhere
HS is violated

HSpGq def
“

!

n P TpGq | varpcstT pnqq Ę knowsspnÒT q and s“ respTpGqpnq
)

where respT p q : N Ñ P yields the responsible party of a node and is defined as

respT pnq
def
“

$

’

&

’

%

sndT pnq, if n“ ι

sndT pparentT pnqq, if n“ tψul
K, otherwise

Intuitively, to determine whether a node n P TpGq violates HS, one checks if the responsi-
ble party of n knows all the variables involved in cstTpGqpnq.

Given T P T , varHST p q is a function from the nodes of T to sets of variables and is
defined as follows.

varHST pnq
def
“ varpcstT pnqqzknowsspnÒT q where s“ respT pnq

Namely, varHST pnq yields the variables of n not known to the responsible party of n. It
is a simple observation that if HS is violated at a node n, then there exists a variable in
the predicate of n which is not known to the responsible party of n (in fact, n P HSpGq iff
varHST pnq ‰H).



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 82

Example 4.4. Consider the following global assertion:

Gex4.4 “ µχx10ytv
ˇ

ˇ vą 0u.
AliceÑBob : tv1

ˇ

ˇ vě v1u;
BobÑCarol : tv2

ˇ

ˇ v2 ą v1u;
CarolÑAlice : tv3

ˇ

ˇ v3 ą v1u;
CarolÑBob : tv4

ˇ

ˇ v4 ą vu;
χxv1y

HSpGex4.4q “ tn3,n4u where n3 and n4 are the nodes in TpGex4.4q corresponding to the
third and fourth interactions of Gex4.4 , i.e., n3 “ CarolÑ Alice : tv3

ˇ

ˇ v3 ą v1u and
n4 “ CarolÑBob : tv4

ˇ

ˇ v4 ą vu.
Carol is responsible for both violations (i.e., respTpGex4.4q

pn3q “ respTpGex4.4q
pn4q “

Carol). The violation in n3 is on varHSTpGex4.4q
pn3q “ tv1u (i.e., Carol has to choose v3

so that v3 ą v1 without knowing v1) and the violation in n4 is on varHSTpGex4.4q
pn4q “ tvu

(i.e., Carol has to choose v4 so that v4 ą v without knowing v). Note that the violation of
HS above does not imply that Carol will actually violate the condition v3 ą v1. In fact,
Carol could unknowingly choose either a violating or a non violating value for v3. ˛

In Section 4.3.1 and Section 4.3.2, we present two algorithms that fix, when possible,
HS violations in a global assertion. We discuss and compare their applicability, as well as
the relationship between the amended global assertion and the original one. We shall use
Example 4.4 as the running example of Section 4.3.1 and Section 4.3.2.

4.3.1 Strengthening
Throughout this section we fix a global assertion G and its assertion tree T “ TpGq and
assume HS is violated at n P T with cstT pnq “ ψ and respT pnq “ s.

Violations occur when the responsible party s of n ignores at least one variable v P
varpψq. The strengthening algorithm (cf. Definition 4.4) replaces ψ in G with a predicate
ψtv1{vu (if any) such that:

(i) v1 is a variable that s knows,

(ii) if ψtv1{vu and the predicates occurring from T ‚ to parentT pnq are satisfied, then ψ

is also satisfied.

Intuitively, the method above strengthens ψ by replacing it with ψtv1{vu so that: due
to (i) the presence of variable v, which is unknown to the sender/selector, is removed,
and due to (ii) ψ can still be guaranteed. In fact, relying on the information provided
by all the predicates occurring before n, if the sender/selector guarantees ψtv1{vu then
they also guarantee ψ. If there is no variable v1 that ensures (i) and (ii) then we say that
strengthening is not applicable.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 83

Let PREDT : N ÑΨ yield the conjunction of the predicates on the path from T ‚ to the
parent of a node:

PREDT pnq
def
“

$

’

&

’

%

K, if parentT pnq “ K
true, if parentT pnq “ ε

cstT pparentT pnqq ^ PREDT pparentT pnqq, otherwise

The function strengthenpGq uses PREDT to compute a global assertion G 1 by replac-
ing in G , if possible, the predicate violating HS by a stronger one.

Definition 4.3 (strengthen). The function strengthen is defined as follows.

• If HSpGq “H then strengthenpGq returns G .

• If n P HSpGq, v P varHST pnq and there exists v1 P knowsspnÒT q such that

PREDT pnq^ψtv1{vu ùñ ψ with ψ“ cstT pnq (4.3)

then strengthenpGq returns ApT 1q where T 1 is obtained from T by replacing ψ

with ψtv1{vu in n.

• When condition (4.3) does not hold for any v P knowsspnÒT q, strengthenpGq re-
turns GKn, indicating that G violates HS at n P HSpGq.

Remark 4.4. We assume that variables that are not under the scope of a quantifier are
implicitly universally quantified.

The algorithm Σ in Definition 4.4 below recursively applies strengthenp q until ei-
ther the global assertion satisfies HS or Σ is not applicable anymore.

Definition 4.4 (Σ). The algorithm Σ is defined as follows

ΣpGq def
“

#

strengthenpGq, if strengthenpGq P tG ,GKnu

ΣpstrengthenpGqq, otherwise

Example 4.5. Consider Gex4.4 from Example 4.4 and recall that HSpGex4.4q “ tn3,n4u.
Strengthening is applicable to n3 since by substituting v1 with v2 in v3 ą v1 (with v2 P

knowsCarolpn3ÒTpGex4.4q
q) we have that condition (4.3) in Definition 4.3 holds:

pvą 0^ vě v1^ v2 ą v1q^pv3 ą v2q ùñ pv3 ą v1q

The invocation of strengthenpGex4.4q returns (by substituting v1 with v2 in n3):

Gex4.5 “ µχx10ytv
ˇ

ˇ vą 0u.
AliceÑBob : tv1

ˇ

ˇ vě v1u;
BobÑCarol : tv2

ˇ

ˇ v2 ą v1u;
CarolÑAlice : tv3

ˇ

ˇ v3 ą v2u;
CarolÑBob : tv4

ˇ

ˇ v4 ą vu;
χxv1y



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 84

The invocation of strengthenpGex4.5q returns GKn4
ex4.5 since Gex4.5 has still one violating

node n4 for which strengthening is not applicable. In fact, knowsCarolpn4ÒTpGex4.5qq “

tv2,v3u and:

• by substituting v with v2, condition (4.3) in Definition 4.3 does not hold since:

pvą 0^ vě v1^ v2 ą v1^ v3 ą v2q^pv4 ą v2q ùñ pv4 ą vq

• by substituting v with v3, condition (4.3) in Definition 4.3 does not hold since:

pvą 0^ vě v1^ v2 ą v1^ v3 ą v2q^pv4 ą v3q ùñ pv4 ą vq
˛

4.3.2 Variable Propagation
An alternative approach to solve HS problems is based on the modification of global asser-
tions by letting responsible parties of the violating nodes know the variables causing the
violation. The idea is that such variables are propagated within a “chain of interactions”.

Definition 4.5 (ăT -chain and propagation). Let T P T and n,n1 P T , we write n ăT n1 iff
n appears in n1ÒT and rcvT pnq “ sndT pn1q. A vector of nodes n1, . . . ,nt is a ăT -chain iff
ni ăT ni`1 for all 1ď iă t.

Given a ăT -chain~n“ n1 ¨ ¨ ¨nt in T and v0 P varT pntq, let the propagation of v0 in~n –
written PT pv0,~nq – be the tree T 1 obtained by updating the nodes in T as follows:

• for 1ď iă t, varT 1pniq “ varT pniq vi and cstT 1pniq “ cstT pniq^pvi “ vi´1q, with
v1, . . . ,vt´1 P V fresh and pairwise distinct,

• cstT 1pntq “ cstT pntqtvt´1{v0u,3

• all the other nodes of T remain unchanged.

Example 4.6. In the global assertion Gex4.6 below assume Alice knows v from previous
interactions (the ellipsis in Gex4.6).

Gex4.6 “ . . . AliceÑBob : tu1
ˇ

ˇ ψ1u; (1)
BobÑCarol : tu2

ˇ

ˇ ψ2u; (2)
BobÑDave : tu3

ˇ

ˇ ψ3u; (3)
DaveÑAlice : tu4

ˇ

ˇ u4 ą vu (4)

For the ăT -chain ~n “ n1 n3 n4 in TpGex4.6q – where ni corresponds to line (i) in Gex4.6 –
PTpGex4.6q

pv,~nq returns T 1 such that ApT 1q is

G 1
ex4.6

“ . . . AliceÑBob : tu1 v1
ˇ

ˇ ψ1^ v“ v1u; (1)
BobÑCarol : tu2

ˇ

ˇ ψ2u; (2)
BobÑDave : tu3 v2

ˇ

ˇ ψ3^ v1 “ v2u; (3)
DaveÑAlice : tu4

ˇ

ˇ u4 ą v2u (4)

˛

3Note that t ą 1.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 85

Hereafter, we fix a global assertion G . Let T “ TpGq, n P HSpGq, v P varHST pnq, and
s “ respT pnq. The propagation algorithm (cf. Definition 4.7) is applicable only if there
exists a ăT -chain in nÒT through which v can be propagated from a node whose sender
knows v to a node where s is a receiver.

We define a function propagate which takes a global assertion G and returns G itself
if HS is satisfied, GKn if HS is violated at n P TpGq and propagation is not applicable, and
G 1 otherwise, where G 1 is obtained by propagating a violating variable v of node n. In
the latter case, observe that v has necessarily been introduced in a node n1 P nÒTpGq from
which v can be propagated, since we assume G closed.

Definition 4.6 (propagate). The function propagatepGq returns

• G , if HSpGq “H,

• PT pv,~nq, if T “ TpGq and there exists n P HSpGq, v P varHST pnq, and ~n “ n0 ~n1 n
ăT -chain in T such that sndT pn0q knows v,

• GKn with n P HSpGq, otherwise.

Example 4.7. Consider again the global assertion Gex4.5 obtained after the invocation
strengthenpGex4.4q in Example 4.5. In this case HSpGex4.5q “ tn4u with n4 “ CarolÑ

Bob : tv4
ˇ

ˇ v4 ą vu. Propagation is applicable to n4 and propagatepGex4.5q returns

Gex4.7 “ µχx10ytv
ˇ

ˇ vą 0u.
AliceÑBob : tv1

ˇ

ˇ vě v1u;
BobÑCarol : tv2 u1

ˇ

ˇ v2 ą v1^u1 “ vu;
CarolÑAlice : tv3

ˇ

ˇ v3 ą v2u;
CarolÑBob : tv4

ˇ

ˇ v4 ą u1u;
χxv1y

by propagating v from the second interaction – where the sender Bob knows v – to Carol,
Gex4.7 satisfies HS. The predicate of the last interaction originates from the substitution
pv4 ą vqtu1{vu. ˛

The propagation algorithm is defined below and is based on a repeated application of
propagatep q.

Definition 4.7 (Π). Given a global assertion G , the function Π is defined as follows:

ΠpGq “
"

propagatepGq, if propagatepGq P tG ,GKnu

ΠppropagatepGqq, otherwise

Remark 4.5. In distributed applications it is often necessary to guarantee that exchanged
information is accessible only to intended participants. It is worth observing that Π

discloses information about the propagated variable to the participants involved in the
propagation chain. The architect should therefore evaluate whether it is appropriate to
use Π.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 86

One could think of an extension of propagatepGq which propagates variables only to
participants entitled to know them. The existence of a propagation chain~n for a variable
v may be parametrised by two sets of participants chosen by the architect: a set A con-
taining the participants who are allowed to know the value of v and a set N of participants
not allowed to know it. Let T “ TpGq, and v0 a variable causing an HS problem in G , an
acceptable chain~n is defined as in Section 4.3.2 and such that

• for all n P~n, rcvT pnq R N, and

• there is no other ăT -chain ~n1 for which propagatep q is applicable such that
|Pp~n1q|ă |Pp~nq|, where

Pp~nq “ tr | there exist n P~n such that r“ rcvT pnq and r R Au

Note that even though this additional condition provides a more fine-grained control
on the way problems are solved, it also decreases the range of applicability of the algo-
rithm since the existence of such a chain is not guaranteed.

4.3.3 Properties of Σ and Π

We now discuss the properties of the global assertions amended by each algorithm and
we compare them. Hereafter, we say Σ (resp. Π) returns G if it returns either G or GKn

for some n.
The applicability of Σ depends on whether it is possible to find a variable known to

the responsible party of the violating node such that condition (4.3) in Definition 4.3 is
satisfied. The applicability of Π depends on whether there exists a chain through which
the problematic variable can be propagated. Observe also that there are cases in which Σ

is applicable and Π is not, and vice versa, e.g., Example 4.5. Moreover, ΣpGq ‰ΠpGq in
general, hence it may not always be clear which one should be preferred.

We first show that our algorithms preserve the structure of the initial global assertion.

Lemma 4.1. Let G be a global assertion; strengthenpGq (resp. propagatepGq) always
returns G 1 such that TpG 1q is isomorphic to TpGq up-to labels, namely it has the same tree
structure (but possibly different node labels).

Proof. By Definition 4.3 strengthenpGq always returns either G (which includes the
case for GKn) or G 1. TpG 1q is isomorphic to TpGq as the two trees either are the same or
only differ in the label of one node.

By Definition 4.6, propagatepGq always returns either G (which includes the case
for GKn) or G 1 “ PTpGqpv0,~nq for some ăT -chain ~n and variable v0. By definition of
PTpGqpv0,~nq, TpG 1q only differs from TpGq in the labels of the nodes in~n, hence PTpGqpv0,~nq
is isomorphic to TpGq.

Proposition 4.3. Let G be a global assertion. If it terminates, ΣpGq (resp. ΠpGq) returns
G 1 such that TpG 1q is isomorphic to TpGq.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 87

Proof. By straightforward induction on the number of invocations of strengthenpGq
(resp. propagatepGq) in Σ (resp. Π), see [14] for more details.

Lemma 4.2 below shows that the number of HS problems in a global assertion de-
creases after an invocation of either of our algorithm (if applicable).

Lemma 4.2. Let G be a global assertion, T “ TpGq, and k be the number of HS violations
in T .4 Let k1, k2 be the number of HS violations in T1 “ TpstrengthenpGqq and T2 “

TppropagatepGqq, respectively; then either Ti “ T or ki “ k´1 with i P t1,2u.

Proof. By Proposition 4.3, T and T1 are isomorphic. Let n1 P T1 be the node correspond-
ing to n P T . By definition of HS the violation in a node n1 P T1 is defined only in terms of
the nodes in n1ÒT1 . By definition of strengthenp q the only node from which T differs
from T1 is n1. Hence, if a violation is added in T1 with respect to T it must be in the
subtree of T1 rooted at n1. However, a violation is not added in n1 itself since the variable
chosen to replace the problematic one is selected so that the responsible party knows it.
No violation can be added in the subtree rooted at n1 since strengthenp q does not mod-
ify the variables known by the participants (but only the predicates). Thus, either T1 “ T
or k1 “ k´1.

In the case T2 “ TppropagatepGqq, assume n̂ P HSpT q with n̂ “ sÑ r : t~x
ˇ

ˇ φu, v P
varHST pn̂q, and there exists an ăT -chain n0~n n̂ with n0 “ s0Ñr0 : t~y0

ˇ

ˇ ψ0u such that s0
knows v. We proceed by case analysis showing that, in any node n P T , no violation is
introduced, and exactly one violation is removed from n̂.

• if n “ n0 no violation is introduced since n0 becomes s0Ñr0 : t~y v0
ˇ

ˇ ψ0^ v0 “ vu
in T2 where, by Definition 4.6, s0 knows v.

• if ni P ~n by definition of propagation ni “ siÑ ri : t~yi
ˇ

ˇ ψiu becomes siÑ ri :
t~yi vi

ˇ

ˇ ψi^ vi´1 “ viu in T2 where, by Definition 4.5, ri´1 “ si. It follows that si
has previously received vi´1 hence si knows it.

• if n“ n̂, following Definition 4.5, cstT2pn̂q “ φtv0{vu and the problem on v at n̂ has
been solved since s knows v0, and v does not appear in φ anymore, hence k2“ k´1.

• if n does not belong to the ăT -chain n0~n n̂ then n remains unchanged and no viola-
tion is introduced. Note that if n is in the subtree rooted at n̂, no violation is intro-
duced since propagation does not decrease the knowledge of any participant.

Lemma 4.2 implies directly that both algorithms terminate.

Corollary 4.1. Let G be a global assertion; ΣpGq and ΠpGq terminate.

Whereas Σ does not change the global type underlying the global assertion, Π does.
Indeed, in the resulting global assertion, more variables are exchanged in each interaction
involved in the propagation. However, the structure of the tree remains the same.

Let erasepGq be the function that returns the underlying global type [44] correspond-
ing to G (i.e., a global assertion without predicates).

4Note that more than one violation may occur in one node if the sender does not know several variables.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 88

Definition 4.8. Given a global assertion G , erasepGq is defined inductively as:

erasepGq “

$

’

’

’

’

&

’

’

’

’

%

sÑr :~a; erasepG 1q if G “ sÑr : t~v
ˇ

ˇ ψu; G 1

sÑr :
 

lj : erasepG jq
(

jPJ if G “ sÑr :
 

tψ julj : G j
(

jPJ

µχ.erasepG 1q if G “ µχx~eyt~v
ˇ

ˇ ψu.G 1

G if G “ 0 or G “ χ

where ~a is a list of sorts, so that the length of ~v is the same as ~a. If ~a “ a1 . . .an and
~v“ v1 . . .vn, then for 1ď iď n, ai is the sort of variable vi.

Lemma 4.3. Let G and G 1 be two assertions that differ only in the predicates annotating
interactions and branching constructs. Then erasepGq “ erasepG 1q.

Proof. The proof is by straightforward structural induction on G (cf. [14]).

Lemma 4.4. Let G be a global assertion and T “ TpGq. Given a ăT -chain~n“ n1, . . . ,nt
in T , if PT pv0,~nq “ G 1 for an interaction variable v0, then for all n P TpGq and its corre-
sponding node n1 P TpG 1q,

varTpGqpnq Ď varTpG 1qpn
1
q

Proof. Observe that, by Proposition 4.3, T is isomorphic to T 1. For each n P T , let n1

denote the node in T 1 that corresponds to n; and let ~n “ n1, . . . ,nt . We proceed by case
analysis on the (labels of the) nodes of T , which we divide in three groups according to
the definition of PT pv0,~nq:

• for i P t1, . . . , t´1u, varT pniq “ varT 1pn1iq vi.

• varT pntq “ varT 1pn1tq.

• if n P T and n R~n, then n1 has the same label as n since by definition of PT pv0,~nq all
the nodes that are not in~n are unchanged.

Proposition 4.4 (Underlying type structure). Let G be a global assertion,

• if ΣpGq returns G 1 then erasepGq “ erasepG 1q

• if ΠpGq returns G 1 then for all n P TpGq and its corresponding node n1 P TpG 1q,

varTpGqpnq Ď varTpG 1qpn
1
q

Proof. Consider Σ; we observe that strengthenpGq either returns G or a G 1 that differs
from G only in the predicate of one (interaction or branching) node. By Lemma 4.3:

erasepGq “ erasepstrengthenpGqq

The rest follows by straightforward induction on the number of applications of Σ, see [14]
for more details.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 89

Consider Π; we observe that, by Lemma 4.4, if propagatepGq “ G 1 then for all
n P TpGq and its corresponding node n1 P TpG 1q,

varTpGqpnq Ď varTpG 1qpn
1
q (4.4)

In fact, propagatepGq either returns G 1 “ G or G 1 “ PTpGqpv0,~nq. In the former case
(4.4) holds trivially, in the latter case it holds by Lemma 4.4. The rest follows by straight-
forward induction on the number of applications of Π (cf. [14]).

The application of Σ and Π affects the predicates of the original global assertion. In Σ,
strengthening allows less values for the interaction variables of the amended interaction.
Conversely, the predicates computed by Π are equivalent to the original ones (i.e., they
allow sender and receiver to choose/expect the same set of values). Nevertheless, such
predicates are syntactically different as Π adds the equality predicates on the propagated
variables.

Proposition 4.5 (Assertion predicates). Let G be a global assertion,

1. if ΣpGq returns G 1 then for all n P TpGq whose label is modified by Σ, and its
corresponding node n1 P TpG 1q (cf. Proposition 4.4), it holds that

PREDTpG 1qpn
1
q^cstTpG 1qpn

1
q ùñ cstTpGqpnq

2. if ΠpGq returns G 1 then for all n P TpGq whose label is modified by Π, and its
corresponding node n1 P TpG 1q

(a) cstTpG 1qpn1q is the predicate cstTpGqpnqσ^ψ

(b) PREDTpGqpnq^cstTpGqpnq^ψ ðñ PREDTpG 1qpn1q^cstTpG 1qpn1q

For some satisfiable ψ PΨ and variable substitution σ.

Proof. Item 1. The proof relies on the fact that Σ either does not change G or replaces a
problematic variable by a variable for which (4.3) holds. We show the result by showing
that it holds for each invocation of strengthenp q by Σ. Indeed, for each invocation
we have that, by Definition 4.3, if n is modified by Σ, then we have that n P HSpTpGqq.
In addition, there must be v P varHSTpGqpnq such that there exists v1 P knowsspnÒTpGqq
and (4.3) is satisfied. This gives us

PREDTpGqpnq ^ ψtv1{vu ùñ ψ

PREDTpG 1qpn1q cstTpG 1qpn1q cstTpGqpnq

Since only the predicate of node n is updated by substituting v by v1, by Definition 4.3.
Item 2. The proof relies on the definition of PTpGqp , q, i.e., a predicate of the form

v1 “ v0 or vi “ vi´1 is added to each predicate of the nodes in the chain, and problem-
atic variables are replaced by fresh ones. The additional predicates are satisfiable since
they constrain only fresh variables (i.e., vi). We have these results by showing that each
invocation of propagatep q by Π validates the result.

Item 2a. If n is modified by propagatep q, then n P~n, by Definition 4.6. Assume v0
is the variable to be propagated.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 90

• If n is not the last node of~n, by definition of PTpGqpv0,~nq, we have that cstTpG 1qpn1q“
cstTpGqpnq^pvi “ vi´1q, which gives us the expected result if ψ is vi “ vi´1 and σ

is the empty substitution.

• If n is the last node of ~n, by definition of PTpGqpv0,~nq, we have that cstTpGqpn1q “
cstTpGqpnqtvt´1{v0u, which gives the expected result with σ “ tvt´1{v0u and ψ “

true.

Item 2b. If n is modified by propagatep q, then n P~n, by Definition 4.6. Assume v0
is the variable to be propagated and the length of~n is k.

• If n is the first node of~n, then

cstTpG 1qpn
1
q “ cstTpGqpnq^pv1 “ v0q and PREDTpG 1qpn

1
q “ PREDTpGqpnq

since n1ÒTpG 1q is unchanged. We have the expected result if ψ is v1 “ v0. Note that
by definition of PTpGqpv0,~nq, v1 is a fresh variable therefore v1 “ v0 is satisfiable.

• If n is the ith node in~n (1ă iă k) then cstTpG 1qpn1q “ cstTpGqpnq^pvi “ vi´1q, and

PREDTpG 1qpn
1
q “ PREDTpGqpnq^

ľ

1ă jăi

v j “ v j´1

where each v j “ v j´1 is satisfiable since each variable is freshly introduced. We
have the expected result with ψ as vi “ vi´1.

• If n is the last node in~n, then cstTpG 1qpn1q “ cstTpGqpnqtvk{v0u, and

PREDTpG 1qpn
1
q “ PREDTpGqpnq^

ľ

1ă jăk

v j “ v j´1

with each v j “ v j´1 satisfiable, as before. We have the required result with ψ set to
true.

The statement 2 (b) in Proposition 4.5 amounts to saying that cstTpGqpnq^ψ is equiv-
alent to the predicate cstTpG 1qpn1q when considered in its respective context.

Remarkably, Σ and Π do not add violations (of either HS or TS) to the amended global
assertions. We postpone the discussion of this property to Section 4.4.3 (Proposition 4.7)
after the formal introduction of TS.

Finally, we prove that if the value returned by Σ or Π is not of the type GKn then the
amended global assertion satisfies HS.

Theorem 4.1 (Correctness). If there is G 1 such that ΣpGq “ G 1 or ΠpGq “ G 1 then
HSpG 1q “H.

Proof. Case Σ. By Definitions 4.3 and 4.4, Σ terminates successfully when HSpGq “ H.
We show that at each iteration of Σ, the number of HS violations decreases. Assume that
there is k violations in G , by Definition 4.4, we have either



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 91

• ΣpGq “ strengthenpGq “ G in which case, by Definition 4.3, HSpGq “ H, i.e.,
k “ 0, and the function terminates, or

• ΣpGq “ ΣpstrengthenpGqq “ G 1 with G ‰ G 1, and by Lemma 4.2 the number of
HS violation in strengthenpGq is strictly less than k.

Case Π. The case for Π is similar to the previous case, using Definition 4.6 (resp. 4.7)
instead of Definition 4.3 (resp. 4.4).

4.4 On Recovering Temporal Satisfiability
In a choreography, the local choices made by some parties may restrict later choices of
other parties to the point that no suitable value is available. This would lead to an ab-
normal termination since the choreography cannot continue. For global assertions, this
distills into temporal satisfiability (TS) which requires that the values sent in each inter-
action do not compromise the satisfiability of future interactions. The formal definition
of temporal satisfiability is adapted from [12].

Definition 4.9 (TS [12]). A global assertion G satisfies TS, written TSpGq, if and only if
GSatpG , trueq holds where

GSatpG ,ψq iff

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

GSatpG 1,ψ^cstpιqq, if G “ ι; G 1 and ψ ùñ Dvarpιq : cstpιq

ľ

jPJ

GSatpG j,ψ^ψ jq, if G “ sÑr :
 

tψ julj : G j
(

jPJ and ψ ùñ
ł

jPJ

`

ψ j
˘

GSatpG 1,ψ^ψ1q, if G “ µχx~eyt~v
ˇ

ˇ ψ1u.G 1 and ψ ùñ ψ1 t~e{~vu

GSatpG 1,ψ^ψ1q, if G “ χψ1p~vqx~ey and ψ ùñ ψ1 t~e{~vu

G “ 0, otherwise

For an assertion tree T P T , TSpT q holds iff GSatpApT q, trueq.

Intuitively, the predicate ψ in Definition 4.9 is the conjunction of all the predicates that
precede an interaction in G . In the first case, all the values satisfying ψ allow to instantiate
the interaction variables varpιq so to satisfy the constraint cstpιq of ι. For branching,
GSat requires that at least one branch can be chosen and that each possible path satisfies
GSat. For recursive definition, we require that the initial parameters satisfy the invariant
ψ1. We assume that each recursive call is annotated with the invariant of its corresponding
recursive definition, i.e., in Definition 4.9, ψ1p~vq is the predicate corresponding to the
invariant of the definition of χ.

Often, TS problems appear when one tries to restrict the domain of a variable after its
introduction. To illustrate this, we introduce the following running example.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 92

Example 4.8. Consider Gex4.8 below, where s constrains x and y:

Gex4.8 “ sÑr : tx
ˇ

ˇ xă 10u;
sÑr : ty

ˇ

ˇ yą 8u;
rÑs : tz

ˇ

ˇ xą z^ zą 6 ^ y‰ zu

When r introduces z, both x and y are further restricted. Gex4.8 violates TS because it does
not hold that (cf. Definition 4.9)

@xy : pxă 10q^pyą 8q ùñ Dz : pxą z^ zą 6 ^ y‰ zq

ψ Dvarpιq : cstpιq

Noticeably, if s chooses, e.g., x“ 6 then r cannot choose a value for z. ˛

Possibly, TS can be regained by rearranging some predicates. In particular, we can
“lift” a predicate to a previous interaction node. For instance, in Example 4.8, one could
lift the predicate Dz : xą zą 6 (adapted from the last interaction) to the first interaction’s
predicate.

We first consider TS violations occurring in interactions and recursive definitions.
Amending violations arising in branching and recursive calls is similar but complicates
the presentation; for the sake of clarity, such violations are considered in Section 4.4.2.

4.4.1 Lifting Algorithm
We formalise the lifting algorithm. First, we give a function telling us whether a node n
violates TS.

Definition 4.10 (TSnode). Given T P T , TSnodeT pnq holds iff n P T and TSpnÒT q holds.
In addition, we assume that TSnode holds for nodes with label of the form sÑr : (since
there is no predicate in these nodes, no TS problem can arise).

We now define a function that returns a set of nodes violating TS such that all the
previous nodes in the tree do not violate TS.

Definition 4.11 (TS). The function TS : T ÑN is defined as follows:

TSpT q
def
“

"

n P T
TSnodeT pnq is false and TSnodeT pn1q

is true for all n1 P parentT pnqÒT

*

For instance, in Example 4.8, we have that TSpTex4.8q is the singleton tnex4.8u where
Tex4.8 “ TpGex4.8q and nex4.8 is the node corresponding to the last interaction of Gex4.8 .

Once an interaction node n P TSpT q is chosen, the next step is to identify which part
of its predicate is the source of the problem. To this purpose, we define a relation among
predicates ψ and φ in a context ψ1.

Definition 4.12 (Conflict). The predicate ψ PΨ is in conflict on~vĎ V with φ in ψ1 iff

ψ
1
ùñ D~v : φ and ψ

1
ùñ D~v : pφ^ψq



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 93

The notion of conflict is based on the definition of TS for interaction nodes (Defini-
tion 4.9). On the one hand, the part φ of the predicate does not spoil TS and, on the other
hand, the part ψ, in conjunction with φ, invalidates TS.

Example 4.9. In Example 4.8, we have

@xy : xă 10^ yą 8 ùñ Dz : y‰ z
and

@xy : xă 10^ yą 8 ùñ Dz : y‰ z ^ xą z^ zą 6

That is to say that xą z^ zą 6 is the “problematic” part of the predicate. ˛

Using Definition 4.12 and PREDT pnq (cf. Section 4.3.1), we define

splitT pn,ψq
def
“

"

ψ
1 ψ ðñ ψ1^φ and ψ1 is in conflict on varpnq with φ

in PREDT pnq

*

which returns a set of problematic predicates. Note that ðñ denotes a logical equiva-
lence between ψ and ψ1^φ; we assume that ψ1 and φ are sub-formulae of ψ.

Example 4.10. Considering Examples 4.8 and 4.9, the application of split yields

splitTex4.8
pnex4.8 ,zą 6^ xą z^ y‰ zq “ tzą 6^ xą zu

since y‰ z allows to choose a suitable value for z. ˛

Remark 4.6. For a tree T P T and n P TSpT q such that ψ1 P splitT pn,ψq, we may
have PREDT pnq ùñ D~v : ψ1. For instance, if the predicate ψ1 is not satisfiable, e.g.,
ψ1 “ vă 7^ vą 7. In this case the lifting algorithm is not applicable.

Remark 4.7. Note that at this level, it is not necessary to require ψ1 to be minimal in the
definition of split (in terms of, e.g., the size of the formula or the number of variables
in ψ1). Indeed, as stated later in Definition 4.14, only the predicates which can be lifted
successfully are used by the algorithm. However, an implementation of the algorithm
could minimise the predicate in order to maximise the efficiency of the lifting algorithm.

The next definition formalises the construction of a new assertion tree which possibly
regains TS, given a node and an assertion to be “lifted” (i.e., a “problematic” predicate).

Definition 4.13 (build). The function buildT pn,ψq returns:

• T̂ P T , if ψ is satisfiable and we can construct T̂ isomorphic to T except that, each
node

n1 P pparentT pnqqÒT such that n1 “ sÑr : t~u
ˇ

ˇ θu with~uXvarpψq ‰H

is replaced by a node n̂ with label

sÑr : t~u
ˇ

ˇ θ ^ @~x : D~y : ψu such that θ^@~x : D~y : ψ is satisfiable

where



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 94

– ~xĎ varpψqzknowsspT q are introduced in a node in n1ÒT

– ~yĎ varpψq are introduced in a node in the subtree rooted at n1

and there is no n2 P pparentT pnqqÒT such that n2“ µχx~eyt~v
ˇ

ˇ ψ1u with~vXvarpψq‰

H.

• K otherwise.

Essentially, Definition 4.13 duplicates a quantified version of the predicate ψ in the
nodes which introduce variables in varpψq. For each updated node n1, the quantifica-
tion of the variables in varpψq operates in the following way. The variables which are
introduced before n1 in the tree and which are not known to s are quantified universally
(since s has no control over them). The variables that are introduced later in the tree are
quantified existentially, so that s may choose values for the variables in ~u which do not
compromise the satisfiability of predicates down in the tree.

Remark 4.8. In the definition of build, we assume that if either~x or~y is empty, the corre-
sponding unnecessary quantifier is removed. Recall that global assertions are closed (cf.
Section 4.2). Therefore all the variables in varpψq are either quantified in the predicate
of n̂, or have been introduced before n1.

Continuing from Example 4.8, we would invoke buildTex4.8
pnex4.8 ,zą 6^ xą zqwhich

returns a new assertion tree. The new tree can be transformed into a global assertion iso-
morphic to Gex4.8 with the first line updated to: sÑr : tx

ˇ

ˇ xă 10^Dz : xą zą 6u.
The function TSres : T ˆN Ñ T YK brings the above definitions together in order

to either fix a TS problem at n, or return K.

Definition 4.14 (TSres). Given T P T and n P TSpT q, we define

TSresT pnq “

$

’

’

’

’

’

&

’

’

’

’

’

%

buildT pn,ψq , if n“ ι and there is ψ P splitT pn,cstT pnqq
s.t. buildT pn,ψq ‰ K

buildT pn,ψt~e{~vuq , if n“ µχx~eyt~v
ˇ

ˇ ψu

K, otherwise

The first case of Definition 4.14 handles TS problems in interaction nodes. If there
is a predicate ψ in conflict such that it can be “lifted” by build successfully, then the
function returns the result of build. The second case handles TS violations in recursive
definitions. The problem is similar to the interaction case, but in this case, the values
assigned to the recursion parameters are known (i.e., ~e). It may be possible to lift the
recursion invariant, where we replace the recursion parameters by the corresponding ini-
tialisation vector. Example 4.11 illustrates this case.

Example 4.11. For the global assertion Gex4.11 given below, TSpGex4.11q does not hold be-
cause @xy : true ùñ pxą yą 6q.

Gex4.11 “ sÑr : tx
ˇ

ˇ trueu;
µχx8yty

ˇ

ˇ xą yą 6u.G 1



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 95

However, using the initialisation parameters, we can lift xą 8ą 6, i.e., the original pred-
icate where we replaced y by 8, to the interaction preceding the recursion. TS now holds
in the new global assertion (assuming that TSpG 1q holds as well). ˛

Remark 4.9. In Example 4.11, if we had only lifted xą yą 6, as in the interaction case, it
would not have solved the TS problem. Indeed, the predicate of the first interaction would
have become Dy : x ą y ą 6 which does not exclude values for x which are incompatible
with the invariant (e.g., x“ 8).

The overall lifting procedure relies on a repeated application of TSres until either the
assertion tree validates TS or the function fails to solve the problem. In the latter case, the
function returns the most improved version of the tree and the node at which it failed.

Definition 4.15 (Λ). Λ is defined as follows, given a global assertion G .

ΛpGq “

$

’

&

’

%

G , if TSpGq
ΛpTSresTpGqpnqq, if there is n P TSpTpGqq s.t. TSresTpGqpnq ‰ K
GKn, otherwise

4.4.2 Applying Λ to Branching and Recursion
Branching. The underlying idea of branching is to enable the architect to design a
choreography where a branch cannot be taken when some variables have a particular
value. The architect should be involved in the resolution of the problem, because two
options are possible; either the disjunction of all the predicates found in the branches is
lifted, or one of the branches predicate is lifted. Arguably, the latter may also prohibit
other branches to be chosen, as shown in Example 4.12 below.

Observe that according to Definition 4.9, TS fails on branching nodes only when there
are values for which none of the predicates decorating the branches are satisfiable.

Example 4.12. As an illustration, we consider the following global assertion:

Gex4.12 “ rÑs : tv
ˇ

ˇ trueu;
sÑr :

 

tvą 5u l1 : G1,
tvă 5u l2 : G2

(

Assuming that TSpG1q and TSpG2q hold, we have that TSpGex4.12q does not hold because
true ùñ pvą 5_ vă 5q. Clearly, if v“ 5 then no branch may be selected.

Let us call n̂ the node corresponding to the branching in the second line of Gex4.12 .
Depending on the intention of the architect the problem could be fixed by one of these
invocations to build (where, in both cases, superfluous quantifiers are removed).

• buildTpGex4.12q
pn̂,vą 5_ vă 5q replaces the predicate in the first line by true^

pvą 5_ vă 5q

• buildTpGex4.12q
pn̂,vă 5q replaces the predicate in the first line by true^pvă 5q.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 96

Both solutions solve the TS problem, however the second one prevents the first branch to
be ever taken. ˛

Given an assertion tree T and a branching node5 n P T such that TS does not hold. One
can invoke buildT pn,ψq where ψ is either the disjunction of all the branching predicates
or one of the branches predicate. If the function does not return K, then the TS problem
is solved.

Recursion. The lifting algorithm can easily be extended to solve TS problems which
occur in a recursive call, if we assume an annotation giving the invariant of its corre-
sponding recursive definition (as in Definition 4.9). In fact, let a TS problem be located at
a node n P T such that n“ χx~ey and let the invariant of the definition of χ be ψp~vq, then if
the invocation of buildT pn,ψt~e{~vuq succeeds, the problem is solved.

In Example 4.13, below we give a more complex example of the application of Λ,
with TS problems in recursive calls.

Example 4.13. Consider the global assertion below.

Gex4.13 “ GeneratorÑServer : tn
ˇ

ˇ ną 0u;
PlayerÑServer : tx

ˇ

ˇ trueu;
µχxxytr

ˇ

ˇ r ą 0u.
ServerÑPlayer :

 

tr ą nu less : PlayerÑServer : ty
ˇ

ˇ trueu; χxyy,
tr ă nu greater : PlayerÑServer : tz

ˇ

ˇ trueu; χxzy,
tr “ nu win : 0

(

modelling a small game where a Player has to guess an integer n, following the hints
given by a Server. The number is fixed by a Generator. Each time Player sends
Server a number, Server says whether n is less or greater than that number. Let Tex4.13

be the tree generated from TpGex4.13q. There is a TS problem at the node corresponding to
the recursive definition (let us call it n3), indeed if x ď 0, the invariant is not respected.
After the first loop of ΛpTex4.13q, the predicate xą 0 is added in the second interaction, i.e.,
TSresTex4.13

pn3q is invoked and returns a new tree, say T 1
ex4.13

, where the second interaction
is updated to

PlayerÑServer : tx
ˇ

ˇ xą 0u

Then, the algorithm loops two more times to solve the problems appearing before the
recursive calls. Assuming n4 (resp. n5) is the node corresponding to the recursive call in
the less (resp. greater) branch. TSresT 1

ex4.13
pn4q is invoked, adding yą 0 in the interaction

of the less branch, let us call this new tree T 2
ex4.13

. The updated interaction is now

PlayerÑServer : ty
ˇ

ˇ yą 0u

Then, the algorithm invokes TSresT2
ex4.13

pn5q, which adds z ą 0 in the interaction of the
greater branch, updating the interaction to

PlayerÑServer : tz
ˇ

ˇ zą 0u

The global assertion now satisfies temporal satisfiability. ˛

5We also assume that TS is not violated in parentT pnqÒT as in Definition 4.11.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 97

Recursion parameters. Even though lifting may be applied when a TS violation is
detected in a recursion definition, lifting a predicate involving a recursion parameter v
would require to strengthen the invariant where v is introduced. This is quite dangerous,
therefore the lifting algorithm does not apply in this case (cf. the last line of the first
part of Definition 4.13). In fact, for recursive definition and calls, Definition 4.9 requires
ψ ùñ ψ1 t~e{~vu, where ψ1 is the recursion invariant and ψ is the conjunction of the previous
predicates. Hence, lifting a predicate involving a recursion parameter may strengthen the
invariant and possibly create a new problem in a corresponding recursive call. Moreover,
notice that, in recursive calls, GSat (Definition 4.9) requires that ψ^ψ1 ùñ ψ1 t~e{~vu;
namely, strengthening ψ1 would automatically strengthen ψ1 t~e{~vu and therefore leave the
TS problem unsolved.

We illustrate such a case with Example 4.14 below.

Example 4.14. Continuing with the example of Section 4.1, consider the following global
assertion which is supposed to have been “badly” modified by a designer.

Gex4.14 “ biÑsi : trequest
ˇ

ˇ trueu; (1)

siÑbi : tquote f
ˇ

ˇ trueu; (2)

µχxquote f quote f ytquotec quotep
ˇ

ˇ MINă quotec ď quotepu. (3)

biÑsi :
 

ttrueu ok : 0 , (4)

ttrueu no : siÑbi : tquoten
ˇ

ˇ quoten ă quotecu; (5)

χxquoten quotecy
(

(6)

There are two TS problems in Gex4.14. The first problem is at the node corresponding
to line (3) and is due to the fact that quote f is not required to be strictly greater than
MIN – thus violate the invariant. The second problem is at the node corresponding to the
recursive call (line (6)) and is due to the fact that quoten may not be strictly greater than
MIN, and thus violate the invariant as well.

The first problem may be solved by lifting the predicate MIN ă quote f ď quote f to
line (2), however our algorithm fails to solve the second problem as it would amount to
lifting the predicate

MINă quoten ď quotec

which contains a recursion parameter (quotec).
We illustrate why lifting such a predicate is not supported by our algorithm. Assume

that both problems were tackled by lifting, we would obtain the following global asser-
tion:

G 1ex4.14 “ biÑsi : trequest
ˇ

ˇ trueu; (1)

siÑbi : tquote f
ˇ

ˇ MINă quote f u; (2)

µχxquote f quote f ytquotec quotep
ˇ

ˇ MINă quotec ď quotepu. (3)

biÑsi :
 

ttrueu ok : 0 , (4)

ttrueu no : siÑbi : tquoten
ˇ

ˇ MINă quoten ă quotecu; (5)

χxquoten quotecy
(

(6)



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 98

Observe that lifting MINă quoten ď quotec to line (3) yields the predicate:

MINă quotec ď quotep ^ Dquoten : MINă quoten ď quotec

which is equivalent to the initial invariant.
In fact, there is also a TS problem in G 1ex4.14. At line (5), if, e.g., quote f “ MIN` 1,

then si cannot choose a correct value for quoten. Assuming again we may lift predicates
that contain recursion parameters, we would lift the predicate MIN ă quoten ă quotec to
solve this issue. This would strengthen the invariant to6

MINă quotec ď quotep ^ Dquoten : MINă quoten ă quotec

which is equivalent to MIN`1 ă quotec ď quotep. At this point, we are essentially back
to the global assertion Gex4.14, modulo the fact that MIN has increased by one. It is easy to
see that, without the condition on recursion parameters in Definition 4.13, the algorithm
would not terminate in such a case. ˛

4.4.3 Properties of Λ

Similarly to the algorithms Σ and Π of Section 4.3, Λ does not modify the structure of the
tree and preserves the properties of the initial assertion.

Proposition 4.6 (Underlying type structure - Λ). Let G be a global assertion. If ΛpGq
returns G 1 then erasepGq “ erasepG 1q (cf. Definition 4.8).

Proof. The proof is by induction on the structure of G , similarly to the one of Proposi-
tion 4.4.

Proposition 4.7 below guarantees that Λ does not introduce new HS or TS problems.
Likewise, it gives a formal account of the remark in Section 4.3.3, showing that Σ and Π

do not add violations (of either HS or TS) to the amended global assertions.

Proposition 4.7 (Properties Preservation). Assume FpGq returns G 1 with F P tΣ,Π,Λu.
If HSpGq “H then HSpG 1q “H and if TSpGq “H then TSpG 1q “H.

Proof. We first consider HS preservation and then TS preservation for FpGq with F P
tΣ,Π,Λu.
HS preservation. The proof of HS preservation by Σ and Π follows by the fact that Σ

and Π return G if HSpGq “ H. For Λ, the preservation of HS follows from the fact that
all the variables which are not known to a participant are quantified (either universally
or existentially) in the modified predicates. We show that all the variables not known to
the sender of an updated node are quantified. Let T be an assertion tree and ψ be the
predicate lifted at a node n P T such that sndT pnq “ s. The predicate is quantified as in
Definition 4.14 so to obtain @~x : D~y : ψ such that

• ~xĎ varpψqzknowsspT q are introduced in a node in nÒT

6 Observe the strict inequality between quoten and quotec in this case.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 99

• ~yĎ varpψq are introduced in a node in the subtree rooted at n

Let z P varpψq, (i) if z R~x, by definition, either z is known to s (therefore z should not
be quantified) or z is introduced after n (hence it would have been quantified in~y). (ii) If
z R~y, by definition, either z is introduced at n (therefore known to s) or z is introduced
before n. In that case, if it is known to s then it should not be quantified, and if it is not
known to n, then z P~x.
TS preservation. TS preservation in Σ follows from the fact that predicates may only be
changed by a variable substitution. For T “ TpGq, such that TSpGq “ H, we have that,
for any n P T

PREDT pnq ùñ DvarT pnq : φ

by definition of TS (Definition 4.9), with φ being the predicate at node n. And, by (4.3)
(cf. page 83), we have that

PREDT pnq ùñ DvarT pnq : φtv1{vu

thus, TS is preserved by Σ.
TS preservation in Π follows from the fact that the predicates of a global assertion

are only modified by adding equalities between problematic variables and fresh variables
(see statement 2b in Proposition 4.5). For T “ TpGq, such that TSpGq “H, we have that,
for any n P T

PREDT pnq ùñ DvarT pnq : φ (4.5)

by definition of TS, with φ being the predicate at node n. And, by construction of a
ăT -chain, after each modification by Π, we obtain

PREDT pnq^ v“ v0^ . . .^ vt “ vt´1 ùñ DvarT pnq : φtvt{vu

with v0 . . .vt fresh. This is equivalent to (4.5), i.e., TS is preserved by Π. The proof of TS
preservation for Λ follows trivially from the first case of Definition 4.15.

Proposition 4.8 establishes an intermediate result for the correctness of Λ. It says that
a successful invocation of TSres (cf. Definition 4.14) on a node removes the problem at
that node.

Proposition 4.8 (Correctness - TSres). Let T be an assertion tree. For each n P TSpT q, if
TSresT pnq ‰ K, then n R TSpTSresT pnqq.

Proof. We start by giving the proof of the correctness for interaction nodes. Let T be an
assertion tree with a node n such that n P TSpT q, and

n“ sÑr : t~v
ˇ

ˇ ψu

with ψ ðñ β^ γ such that β is in conflict on varpnq with γ in PREDT pnq. Then β is the
predicate to be lifted. Assume T̂ “ buildT pn,βq.

By Definition 4.13, we have that, for suitable~x1,~y1 . . .~xk,~yk,

PREDT̂ pnq “ PREDT pnq^@~x1 : D~y1 : β^ . . .^@~xk : D~yk : β



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 100

We have that a quantified version of β is added k times in the assertion tree, above n. We
show that

ľ

1ďiďk

@~xi : D~yi : β ùñ D~v : β (4.6)

Assume that each @~xi : D~yi : β corresponds to the predicate added to the ith node (ni)
modified by TSres (from the root to n). Then ~yk “~vX varpβq since by Definition 4.13
~yk is the set of variables introduced after nk, and we assumed that the global assertion
is closed (i.e., all the variables varpβq have been introduced before they are used, in n).
Since every @~xi : D~yi : β is satisfiable by Definition 4.13, we have that the following holds

D~z : @~xk : D~yk : β with~z“ varp@~xk : D~yk : βq

this gives us (4.6) (note that ~z, ~xk and ~yk are pairwise disjoint by definition). Since
@~xk : D~yk : β is one of the conjunct of PREDT̂ pnq we also have

PREDT̂ pnq ùñ D~v : β (4.7)

By the definition of conflict (Definition 4.12), we have

PREDT pnq ùñ D~v : γ and PREDT pnq ùñ D~v : β^ γ

hence, PREDT pnq is satisfiable. Therefore, by weakening, we have that:

PREDT̂ pnq ùñ D~v : γ (4.8)

TS must hold for n, which implies that n R TSpT̂ q and TSnodeT̂ pnq holds, i.e.,

PREDT̂ pnq ùñ D~v : ψ pwith ψ ðñ β^ γq

Otherwise, that would imply that

PREDT̂ pnq^@~v : p β_ γq

which is in contradiction with (4.7) (β) and (4.8) (γ).

Let us now show the result for recursive nodes, which is somewhat similar to the
previous case. Assume we haveg

n“ µχx~eyt~v
ˇ

ˇ βu

with n P TSpT q, thus we have that (by Definition 4.9)

PREDT pnq ùñ βt~e{~vu (4.9)

Assuming T̂ “ buildT pn,βt~e{~vuq (i.e., build succeeds), we have that a quantified ver-
sion of βt~e{~vu is added k times in the assertion tree, above n. Following a similar argument
as before, this gives us

PREDT̂ pnq “ PREDT pnq^βt~e{~vu



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 101

By Definition 4.13, we also know that βt~e{~vu is satisfiable. Moreover, PREDT pnq is satis-
fiable, by Definition 4.11 and (4.9).

Since

PREDT̂ pnq ùñ βt~e{~vu ðñ PREDT pnq^βt~e{~vu ùñ βt~e{~vu

we have that n R TSpT̂ q.

Finally, we can say that, if a repeated application of lifting succeeds, the global asser-
tion which is returned satisfies temporal satisfiability.

Theorem 4.2 (Correctness - Λ). If ΛpGq “ G 1 then TSpG 1q “H.

Proof. The proof is by induction on the number of problematic nodes and the minimum
depth of these nodes in the tree. It relies on Proposition 4.8, i.e., the fact that TSresT pnq
either solves the problem at n or fails.

Let T “ TpGq and N be the set of nodes in T which violates TS. We write |n| for the
depth of n in T (with |T ‚| “ 0), and we denote by N1 the number of problematic node
after an invocation to TSres.

1. If N “H, then T is TS.

2. If N ‰H, let n P TSpT q Ď N, after an invocation to TSresT pnq, we have

(a) If |n| ą 1 then either

i. N1 :“ Nztnu, i.e., the node is simply removed from the set of problematic
nodes,

ii. N1 :“ N YN˚ztnu, where N˚ is the set of problematic nodes added by
TSres. We have that @n1i P N˚ : |n1i| ă |n|, i.e., the problem at n is solved
but other problematic nodes, above n in T , are added, or,

iii. the algorithm fails on n

(b) If |n| ď 1 then either N1 :“ Nztnu, or the algorithm fails. In fact, once the
algorithm reaches a problem located at a child of the root, then it either fails
or solves the problem. Indeed, there cannot be a TS problem at the root node
unless the predicate is unsatisfiable (see Definition 4.9), in which case, the
algorithm fails.

Note that selecting n P TSpT q implies that the depth of n is smaller or equal to the
depth of the nodes in N.

Regarding step 2(a)ii, note that the algorithm cannot loop on a problematic node indefi-
nitely. Indeed, the number of (sub)predicates available for lifting is finite and Λ invokes
TSres only when a problematic node is found.

It is easily shown by induction that the algorithm terminates either with TSpT q “ H,
or a failure.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 102

In addition, we have that Λ preserves the domain of possible values for each variable
from the initial assertion.

Proposition 4.9 (Assertion predicates). If ΛpGq “ G 1 then for all n P TpGq such that n is
a leaf, and its corresponding node n1 P TpG 1q

PREDTpGqpnq^cstTpGqpnq ðñ PREDTpG 1qpn
1
q^cstTpG 1qpn

1
q

Proof. The proof follows from the observation that predicates are only duplicated in the
tree, i.e., the lifting algorithm does not add any new constraints in the conjunction of the
predicates found on the path from the root to a leaf. In addition, the algorithm modifies
only predicates which appear above a problematic node in the tree (i.e., a predicate in a
leaf will never be modified, by Definition 4.13).

We show the result for interaction nodes, the case for recursive nodes is similar. After
each successful iteration of Λ on an assertion tree T “ TpGq, where

PREDT pnq “ ψ1^ . . .^ψi^ . . .^ψk

and ψi is the predicate where the TS problem is located, and β is the lifted predicate (cf.
proof of Proposition 4.8), such that we have, by Definition 4.12

ψi ðñ β^ γ

We can rewrite PREDT pnq as

PREDT pnq “ ψ1^ . . .^ γ^β^ . . .^ψk

build returns a new tree T 1 such that the conjunction of predicates in the new tree is of
the form

PREDT 1pn
1
q “ PREDT pnq^

ľ

jPJ

@~x j D~y j : β

By Definition 4.13, we have~x j ~y j Ď varpβq, for all j P J. Therefore, we have

β ùñ @~x j D~y j : β for all j P J

This means that the additional predicates do not constrain further the conjunction of pred-
icates, and we have

PREDT pnq ðñ PREDT 1pn
1
q

4.5 A Methodology for Amending Choreographies
The algorithms Σ, Π, and Λ of Section 4.3 and Section 4.4 can be used to support a
methodology for amending contracts in choreographies. The methodology consists of the
following steps:

piq the architect designs a global assertion pG (possibly based on a synthesised global
type synthesised as in Chapter 3)



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 103

piiq the architect is notified if there are any HS or TS problems in pG

piiiq using Σ and Π solutions may be offered for HS problems, while Λ can be used to
offer solutions and/or hints on how to solve TS problems

pivq the architect selects one of the solutions offered in piiiq

pvq steps piiq to pvq are repeated until all problems are addressed.

We illustrate our methodology using the following global assertion:

pG “ µχx10ytv
ˇ

ˇ vą 0u. (1)
AliceÑBob : tv1

ˇ

ˇ vě v1u; (2)
BobÑCarol : tv2

ˇ

ˇ v2 ą v1u; (3)
CarolÑAlice : tv3

ˇ

ˇ v3 ą v1u; (4)
CarolÑBob : tv4

ˇ

ˇ v4 ą vu; (5)
AliceÑBob :

 

ttrueu cont : χxv1y, (6)
ttrueu finish : AliceÑBob : tv5

ˇ

ˇ v1 ă v5 ă v3´2u
(

(7)

which extends the global assertion in Example 4.4 and is assumed to have been designed
by the architect (step piq of the methodology).

Firstly, pG is inspected by history sensitivity and temporal satisfiability checkers, such
as the ones described in [52]. If any HS problems are reported (step piiq of the method-
ology), algorithms Σ and Π are used, while Λ is used for TS problems. This allows the
architect to detect all the problems and to consider the ones for which (at least) one of
the algorithms is applicable. In general, the architect can decide which problem to tackle
first (step piiiq of our methodology). For pG , we focus on HS problems first. There are two
HS problems in pG , both of which can be solved automatically, and the methodology will
return the following suggestions.

1. At line (4), v1 is not known by Carol; the problem is solvable by either

• replacing v3 ą v1 by v3 ą v2 (algorithm Σ) at line (4), or

• by revealing v1 to Carol (algorithm Π); in this case, line (3) becomes

BobÑCarol : tv2 u1
ˇ

ˇ v2 ą v1^u1 “ v1u

and the predicate at line (4) becomes v3 ą u1.

2. At line (5), v is not known by Carol; the problem is solvable by revealing the value
of v to Carol (algorithm Π) in which case line (3) becomes

BobÑCarol : tv2 u2
ˇ

ˇ v2 ą v1^u2 “ vu

and the assertion at line (5) becomes v4 ą u2.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 104

In the propagation case (i.e., Π), the methodology gives the architect information on
which participants the value of a variable may be disclosed to. Indeed, as discussed in
Remark 4.5, it may not be appropriate to use the suggested solution. Therefore, the actual
adoption of the proposed solutions should be left to the architect. In addition, the order
in which problems are tackled is also left to the architect (e.g., the same variable may be
involved in several problems and solving one of them may automatically fix the others).
Assuming that Σ is used to solve the first problem and Π to solve the second, HS is fixed,
and the amended global assertion is as follows:

pG “ µχx10ytv
ˇ

ˇ vą 0u. (1)
AliceÑBob : tv1

ˇ

ˇ vě v1u; (2)
BobÑCarol : tv2 u1

ˇ

ˇ v2 ą v1^u1 “ vu; (3)
CarolÑAlice : tv3

ˇ

ˇ v3 ą v2u; (4)
CarolÑBob : tv4

ˇ

ˇ v4 ą u1u; (5)
AliceÑBob :

 

ttrueu cont : χxv1y, (6)
ttrueu finish : AliceÑBob : tv5

ˇ

ˇ v1 ă v5 ă v3´2u
(

(7)

Now HS is satisfied in pG , but TS problems are still present.
In case a TS problem cannot be solved automatically, additional information can be

returned: paq at which node the problem occurred, pbq which variables or recursion pa-
rameters are posing problems (i.e., using split and build), and pcq where liftings are
not possible (i.e., when build fails to add a satisfiable predicate to a node). For pG there
are two TS problems which are dealt with sequentially. The methodology would report
that

1. At line (6), v1 does not satisfy the invariant v ą 0. This can be solved by lifting
v1 ą 0 (i.e., the invariant where v is replaced by the actual parameter v1) to the
interaction at line (2), which would yield the new predicate vě v1^ v1 ą 0.

2. At line (7), there might be no value for v5 such that v1 ă v5 ă v3´2. The assertion
is in conflict (cf. Definition 4.12) with the previous predicates; this problem can-
not be solved since lifting would add the following predicates in lines (2) and (4),
respectively.

• Dv3 v5 : v1 ă v5 ă v3´2 which is indeed satisfiable, but remarkably does not
constraint v1 more than the initial predicate. Indeed, the updated predicate
(i.e., v ě v1^Dv3 v5 : v1 ă v5 ă v3´ 2) does not constrain v1 more than the
original predicate, vě v1.

• @v1 : Dv5 : v1 ă v5 ă v3´ 2 which is not satisfiable, therefore the algorithm
fails.

The failure of Λ is due to the fact that v5 is constrained by v1 and v3 which are fixed by
two different participants. They would have to somehow interact in order to guarantee
that there exists a value for v5, this cannot be done using the proposed algorithms. Notice
that in this case the methodology tells the architect that v5, fixed by Alice, is constrained



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 105

by v1 and v3 which are fixed by Alice and Carol, respectively. Our approach can also
suggest that the node introducing v3, or (the part of) the assertion over v3 may be the
source of the problem since v3 is the only variable not known by Alice.

4.5.1 Amendment Strategies
The methodology above does not specify any particular order for tackling HS and TS
problems. In fact, it is for the architect to assess the importance of each problem; further-
more, the architect should also proof-read the proposed solutions (e.g., in the case of prop-
agation). One of our future work plans is to help the architect making choice regarding
the order in which problems should be tackled by designing amendment strategies, which
maximise the chances of having all problems solved using the proposed algorithms.

In fact, the application of an algorithm could be spoilt by the application of another
one. For instance, the application of the strengthening algorithm (Σ) might compromise
the applicability of the lifting algorithm (Λ), and vice versa. This happens when a variable
v introduced by Σ in a node (say n) to solve an HS problem is also involved in a TS
problem, in a descendant node (say n1) of n; indeed, both Σ and Λ will independently
strengthen the predicate of n. This may compromise the application of the algorithm
invoked last, as illustrated below.

Let T be an assertion tree, where there are n,n1 P T such that varHST pnq ‰ H, n1 is a
descendant of n,

n“ sÑr : t~v1 v~v2
ˇ

ˇ ψu and n1 “ s1Ñr1 : t~u
ˇ

ˇ γ^βu

where v P varpβq, and β is in conflict on~u with γ in PREDT pn1q.

• if Σ is used to solve the problem at n, ψ might be strengthened (by a variable sub-
stitution)

• if Λ is used to solve the problem at n1, β will be lifted to the node n since v P varpβq.

Call ψ1 the new predicate produced by Σ and ψ2 the one produced by Λ. The application
of Σ would give

n“ sÑr : t~v1 v~v2
ˇ

ˇ ψ1u

which might prevent the application of Λ because, e.g., ψ1^@~x : D~y : β is not satisfiable,
for suitable~x and~y. Likewise, the application of Λ first would give

n“ sÑr : t~v1 v~v2
ˇ

ˇ ψ2u

for which Σ might not be applicable because, e.g., no substitution with a variable known
to s yields a satisfiable predicate for n.

We conjecture that this is the only source of issues arising from the absence of pre-
scribed order for addressing HS and TS problems in the methodology. Intuitively, the
only way one algorithm could spoil the applicability of another is by modifying the sat-
isfiability of a predicate of (at least) one common node. Propagation (Π) preserves the
semantics of all the nodes it updates (by Proposition 4.5); instead, Σ and Λ may strengthen



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 106

CÑA : tnum req
ˇ

ˇ reqą 0u

AÑB : tnum1 req1
ˇ

ˇ num“ num1^ req“ req1u

BÑA :

ttrueu ok

AÑC :

ttrueu ok

AÑC : ta
ˇ

ˇ a“ requ

ttrueu ko

AÑC :

ttrueu ko

AÑC : tmsg
ˇ

ˇ trueu

Figure 4.2: ATM protocol

predicates. Note that Σ modifies only the node in which there is an HS problem, while Λ

updates only the nodes above the TS-problematic one. Therefore, the only possible issue
occurs when there is a node with an HS problem “above” another, with a TS problem.
Since Λ modifies only the nodes that introduce variables which appear in a problematic
predicate, we conjecture that this happens only in the case explained above.

Note that even though an occurrence of two inter-dependent TS and HS problems as
above may compromise the applicability of an algorithm, thus preventing the amendment
of existing problems, it will not introduce new violations, as stated in Proposition 4.7.

4.6 Applying the Methodology
To illustrate our methodology, we consider the design of a couple of services offered
by an ATM to the customers of the bank where it is located. The first service offers
cash withdrawal. The second service allows customers to request a small line of credit,
provided that they are considered trusted by the bank. We propose two global assertions
for each of the two functionalities and discuss problems which may be encountered during
their design.

4.6.1 Cash Withdrawal
Consider the following global assertion, also illustrated in Figure 4.2, where C is the
customer, A is the ATM, and B is the bank.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 107

CÑA : tnum req
ˇ

ˇ reqą 0u; (1)
AÑB : tnum1 req1

ˇ

ˇ num“ num1^ req“ req1u; (2)
BÑA :

 

ttrueu ok : AÑC : ttrueu ok : AÑC : ta
ˇ

ˇ a“ requ, (3)
ttrueu ko : AÑC : ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)

This global assertion models a simple cash withdrawal service under the assumption
that the credentials of the customer have already been verified. The customer sends the
ATM an account number num and the amount of money to withdraw req. The ATM
forwards the request to the bank. If the withdrawal is accepted, the bank selects branch
ok; in this case the ATM gives the corresponding amount to the customer. Otherwise, the
bank selects branch ko and ATM sends an error message to the customer.

This global assertion is well-asserted, but soon the architect realises that it contains a
major flaw: the ATM is expected to give money to the customer even when there is not
enough cash available in the machine. The architect corrects the problem by adding a
predicate a ď CASH at line (3), where CASH is the money available at the beginning of the
session:

CÑA : tnum req
ˇ

ˇ reqą 0u; (1)
AÑB : tnum1 req1

ˇ

ˇ num“ num1^ req“ req1u; (2)
BÑA :

 

ttrueu ok : AÑC : ttrueu ok : AÑC : ta
ˇ

ˇ a“ req^ aď CASHu, (3)
ttrueu ko : AÑC : ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)

Although this solves the flaw, a temporal satisfiability issue is introduced at line (3). In
fact, A cannot guarantee its obligation if the amount requested req in the first interaction
is greater than the cash available.

Fortunately, Λ is applicable and it can amend the global assertion automatically by
returning the choreography below

CÑA : tnum req
ˇ

ˇ reqą 0^Da : a“ req^ aď CASHu; (1)
AÑB : tnum1 req1

ˇ

ˇ num“ num1^ req“ req1u; (2)
BÑA :

 

ttrueu ok : AÑC : ttrueu ok : AÑC : ta
ˇ

ˇ a“ req^ aď CASHu, (3)
ttrueu ko : AÑC : ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)

which is well-asserted.

4.6.2 Credit Request
We now want to model a service through which a customer can request a small line of
credit. The intuition of the protocol is illustrated in Figure 4.3. The customer C sends
their account number num and the requested credit a to the ATM. The ATM forwards the
request to the bank and, depending on whether or not C is eligible for the credit according
to the bank’s records (i.e., eligiblepnum,aq), the bank selects either branch ok or ko.
Finally, the ATM sends a message to the customer notifying them of the decision.



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 108

CÑA : tnum a
ˇ

ˇ trueu;

AÑB : tnum1 a1
ˇ

ˇ num“ num1^a“ a1u

BÑA :

telegiblepnum,aqu ok

AÑC : tmsg
ˇ

ˇ trueu

ttrueu ko

AÑC : tmsg
ˇ

ˇ trueu

Figure 4.3: Credit request protocol

Remark 4.10. For simplicity, we use branch mergeability [73], a slight extension of mul-
tiparty session types. Otherwise, it would be necessary to add an extra branch in the inner
branching between A and C to have the same behaviour of C in both branches of the outer
branching. Note that this does not affect the applicability of our methodology.

A naive global assertion modelling this service is as follows:

CÑA : tnum a
ˇ

ˇ trueu; (1)
AÑB : tnum1 a1

ˇ

ˇ num“ num1^a“ a1u; (2)
BÑA :

 

teligiblepnum,aqu ok : AÑC : tmsg
ˇ

ˇ trueu, (3)
ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)

The attentive reader will notice that there is an HS problem at line (3) of this global
assertion. Indeed, B does not know num nor a and therefore could not guarantee that the
customer is in fact eligible. Both Σ and Π algorithms are applicable here. The second
algorithm would return the following global assertion:

CÑA : tnum a
ˇ

ˇ trueu; (1)
AÑB : tnum1 a1 v1 v2

ˇ

ˇ num“ num1^a“ a1^ v1 “ num^ v2 “ au; (2)
BÑA :

 

teligiblepv1,v2qu ok : AÑC : tmsg
ˇ

ˇ trueu, (3)
ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)

Although this solves the problem, we notice that this solution is not ideal. Indeed v1
and v2 are somewhat redundant with num1 and a1, respectively.

Strengthening gives us a better solution in this case:

CÑA : tnum a
ˇ

ˇ trueu; (1)
AÑB : tnum1 a1

ˇ

ˇ num“ num1^a“ a1u; (2)
BÑA :

 

teligiblepnum1,a1qu ok : AÑC : tmsg
ˇ

ˇ trueu, (3)
ttrueu ko : AÑC : tmsg

ˇ

ˇ trueu
(

(4)



CHAPTER 4. AMENDING CONTRACTS FOR CHOREOGRAPHIES 109

Which is what one would expect. Note that the algorithm is applicable because

num“ num1^a“ a1^eligiblepnum1,a1q ùñ eligiblepnum,aq

holds and B knows num1 and a1.

4.7 Concluding Remarks
In this chapter, we investigated the problem of designing consistent assertions. We fo-
cused on two consistency criteria from [12]: history sensitivity and temporal satisfiability.
We proposed and compared three algorithms (Σ, Π, and Λ) to amend global assertions.
Since each algorithm is applicable only in certain circumstances, we proposed a method-
ology that supports the architect when violations are not automatically amendable.

On the theoretical side, the algorithms Σ, Π, and Λ address the general problem of
guaranteeing the satisfiability of predicates when: (1) the parts of the system have a differ-
ent perspective/knowledge of the available information (in the case of history sensitivity),
and (2) the constraints are introduced progressively (in the case of temporal satisfiability).
The proposed solutions can be adapted and used, for instance, to amend processes (rather
than types), orchestrations (rather than choreographies, when we want to check for local
constraints) expressed in formalisms such as CC-Pi [18], a language for distributed pro-
cesses with constraints. Interestingly, temporal satisfiability is similar to the feasibility
property in [2] requiring that any initial segment of a computation must be possibly ex-
tended to a full computation to prevent “a scheduler from ‘painting itself into a corner’
with no possible continuation”.

An interesting future development is to investigate more general accounts of satisfia-
bility which is applicable to different scenarios. In scope of future work, we will design
amendment strategies to so to refine our methodology and maximise the applicability of
the proposed algorithms (cf. Section 4.5.1).



CHAPTER 5

Choreography Synthesis as Contract Agreement

We introduce a formal model for distributed systems where each participant ad-
vertises its requirements and obligations as behavioural contracts (in the form
of local types), and where multiparty sessions are started when a set of con-
tracts allows to synthesise a choreography (i.e., a global type). The framework
is based on the CO2 calculus and preserves its main features, while allowing to
establish sessions where the number of participants is not determined before-
hand. We give progress and session fidelity results for CO2 systems which are
“honest”.

5.1 Introduction
Distributed applications are nowadays omnipresent but even for seemingly simple cases,
there is still a pressing need to make sure they do work as their designers intended. In-
deed, developing and maintaining such systems is rather difficult. This is not only due
to intrinsic issues originating from concurrency and distribution; but also because such
applications have to be designed within a strange paradox: they are made of components
that, on the one hand, must collaborate with each other and, on the other hand, may com-
pete for resources, or for achieving conflicting goals.

We propose a formal model for distributed systems based on contracts-driven interac-
tions: components advertise contracts (in the form of local types); such contracts are used
at runtime to establish (multiparty) agreements, and such agreements steer the behaviour
of components. Therefore, contracts are not just a specification or a design mechanism
anymore, rather they become a pivotal element of the execution model.

We combine two approaches: session types [44] and contract-oriented computing [8].
From the former, we adopt concepts, syntax, and semantics – and in particular, the inter-
play between local behaviours and choreographies (i.e., between local types and global

110



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 111

types) as a method for specifying and analysing the interactions of participants in a dis-
tributed system. However, in our framework we do not assume that a participant will
necessarily always adhere to its specification, nor that a global description is available
beforehand to validate the system. From the contract-oriented computing approach, we
adopt CO2 [7] (for COntract-Oriented computing), a generic contract-oriented calculus
where participants advertise their requirements and obligations through contracts, and in-
teract with each other once compliant contracts have been found. In this work, we tailor
CO2 to a multiparty model where contracts have the syntax of local types. We say that
contracts P1, . . . ,Pn are compliant when they can be used to synthesise a global type (cf.
Chapter 3). Once a set of compliant contracts has been found, a CO2 session may be
established, wherein the participants who advertised the contracts can interact. However,
in line with what may happen in real life cases, the runtime behaviour of these partici-
pants may then depart from the contracts: the calculus allows to model and identify these
situations.

Our framework models multiparty contractual agreements as “tangible” objects, i.e.,
choreographies. This allows us to rely on results from Chapter 3; in particular, the fact that
well-formed choreographies ensure that contractual agreements enjoy safety and liveness
properties. Furthermore, it allows us to easily check that some meta-level properties
are satisfied at runtime, e.g., on the number of involved participants, whether or not the
session may terminate, etc.

Our adaptation of CO2 to a choreography-based contract model preserves the proper-
ties of the original calculus. In particular, if a system gets stuck, it is possible to identify
which participants violated their contracts.

We also introduce global progress and session fidelity in CO2, inspired by analogous
concepts in theories based on session types (cf. Section 2.1.2). We show that they hold in
systems where all participants are honest (i.e., they always respect their contracts in any
context) – even when a participant takes part in multiple sessions.

5.2 A Motivating Example
We introduce a running example to illustrate our framework. We denote participant vari-
ables in bold font, i.e., s, b1, b2, . . . are participant variables; while s, b1, b2, . . . are
participant identifiers, as in previous chapters.

Consider the following distributed scenario: an online store s allows any two buyers
b1 and b2 to make a joint purchase through a simplified protocol: once they both have
requested the same item, a quote is sent to b1, who is then expected to either place an
order (order) or end the session (bye); the store also promises to let b2 know whether the
order was placed (ok) or cancelled (bye). The behaviour of the store s is described by the
following contract:

Ps “ b1?req ;b2?req ;b1!quote ;pb1?order ;b2!ok ` b1?bye ;b2!byeq

We would like to know which contracts would be compliant with Ps. A possible pair of



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 112

compliant contracts, advertised by buyers b1 and b2, is as follows:

Pb1 “ s!req ;s?quote ;
`

b12!ok ;s!order ‘ b12!bye ;s!bye
˘

Pb2 “ s1!req ;
`

b11?ok ;s1?ok ` b11?bye ;s1?bye
˘

where b1 promises to send the request to the store (s), wait for the quote, and then no-
tify the other buyer (b12) before accepting or rejecting the store offer. Symmetrically,
b2 promises to sends the request to the store (s1), and then expects to receive the same
notification (either ok or bye) from both the other buyer (b11) and the store s1.

An agreement among s, b1 and b2 may be found by replacing the participant variables
in each contract with actual identifiers, and composing them in a system such as:

Ssb1b2 “ srPs tb1{b1,b2{b2us | b1rPb1 ts{s,b2{b12us | b2rPb2 ts{s1,b1{b11us

from which we may obtain the following global type, as per the construction of Chapter 3,

Gsb1b2 “ b1Ñs : req; b2Ñs : req; sÑb1 :quote;
¨

˝

b1Ñb2 :ok; b1Ñs :order; sÑb2 :ok
`

b1Ñb2 :bye; b1Ñs :bye; sÑb2 :bye

˛

‚

Recall that the synthesis of Gsb1b2 guarantees that the global type is well-formed and
projectable, and that the system consisting of its projections is equivalent to the original
system of contracts.

In realistic scenarios, the existence of a contractual agreement among participants
does not guarantee that progress and safety will also hold at runtime: in fact, a participant
may advertise a contract promising some behaviour, and then fail to respect it – either
maliciously or accidentally. Such failures may then cascade on other participants, e.g., if
they remain stuck waiting for a promised message that is never sent.

This sort of situations can be modelled in the CO2 calculus, formally defined in Sec-
tion 5.4. A CO2 system (or network) for the store-and-two-buyer example may be imple-
mented as follows:

Tsb1b2 “ px,y,zq
`

sJtells Óx Ps . fuse .RsK | b1Jtells Óy Pb1 .Rb1K | b2Jtells Óz Pb2 .Rb2K
˘

Here, participant s advertises its contract Ps to itself via the primitive tells Óx Ps, where x
is used as a session handle for interacting with other participants. Participants b1 and b2
advertise their respective contracts to s with a similar invocation.

In this example, s also plays the role of contract broker: once all the contracts have
been advertised, the fuse primitive can establish a new session, based on the fact that the
global agreement Gsb1b2 can be synthesised from Ps, Pb1 and Pb2 . This new session is
shared among participants s, b1 and b2.

At this point, the execution of the network (i.e., the continuation of processes Rs,
Rb1 , and Rb2) is not required to respect the contracts. In fact, we will see that when the
contracts are violated, the calculus allows for culpable participants to be always identified.
Furthermore, we will discuss honesty, i.e., the guarantee that a participant will always
fulfil its advertised contracts – even in contexts where other participants fail to fulfil theirs.
When such a guarantee holds, the contractual progress and safety are also reflected in the
runtime behaviour of the network.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 113

Other compliant contracts. Our contract model allows for other scenarios. For in-
stance, a participant b12 may impersonate both buyers, and promise to always accept the
store offer, by advertising the following contract:

Pb12 “ s2!req ;s2!req ;s2?quote ;s2!order ;s2?ok

where the request to the store (s2) is sent twice (i.e., once for each impersonated buyer).
In this case, if we combine Ps and Pb12 with substitutions ts{s2u and tb12{b1,b2u, we can
find an agreement by synthesising the following global type:

Gsb12 “ b12Ñs : req; b12Ñs : req;
sÑb12 :quote; b12Ñs :order;
sÑb12 :ok

This scenario may be modelled with the following network:

Tsb12 “ px,wq
`

sJtells Óx Ps . fuse .RsK | b12Jtells Ów Pb12 .Rb12K
˘

where the fuse prefix can now create a session involving s and b12.
The participants in the networks Tsb1b2 and Tsb12 may also be combined, so to obtain:

Tsb1b2b12 “ px,y,z,wq
`

sJtells Óx Ps . fuse .RsK
| b1Jtells Óy Pb1 .Rb1K | b2Jtells Óz Pb2 .Rb2K
| b12Jtells Ów Pb12 .Rb12K

˘

In this case, after all contracts have been advertised to s, either a session corresponding
to Gsb1b2 , or to Gsb12 , may take place, thus involving a different number of participants
depending on which contracts are fused.

5.3 A Choreography-Based Contract Model
We introduce a contract model based on the results of Chapter 3. Individual contracts are
expressed using the syntax of local types; while contractual compliance is based on the
synthesis of global types: a set of contracts is compliant if it is possible to synthesise a
choreography from it.

Local types as contracts. Let P be a set of participant variables ranged over by s,
r, n, etc. and let s, r, n, etc. range over PYP (recall that P is the set of participant
names). The syntax of systems and contracts below is the same as in Section 3.2 but for
the introduction of participant variables.

S,S1 ::“ S |S1 | nrPs | sr : ρ | 0

P,Q ::“
À

iPI ri!ai;Pi |
ř

iPI s?ai;Pi | µχ.P | χ

As before, we assume that there is at most one queue per pair of participants, (i.e., one
channel per direction), that participant names are pairwise distinct in a system S, and that
local types are closed.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 114

We write S sèr:a
ÝÝÝÝÑ S1 when either S sÑr:a

ÝÝÝÝÑ S1 or S sÐr:a
ÝÝÝÝÑ S1, where sÑ r : a indicates

that s puts a datum on a queue sr, and label sÐ r : a indicates that s retrieves a datum
from the queue rs (cf. Section 3.2).

Choreography synthesis as compliance. Essentially, in the rest of this chapter, we say
that a set of contracts is compliant, if it can be assigned a global type, possibly after
applying a set of substitutions on the contracts.

Below, we give an example to illustrate the use of local types as contracts and chore-
ography synthesis as a compliance relation between contracts.

Example 5.1. Building up on the example from the previous section, we combine the
contract of store s with those of customers b1 and b2, and we obtain the system:

Ssb1b2 “ srPs tb1{b1utb2{b2us | b1rPb1 ts{sutb2{b12us | b2rPb2 ts{s1utb1{b11us

“ srb1?req ;b2?req ;b1!quote ;pb1?order ;b2!ok ` b1?bye ;b2!byeqs

| b1rs!req ;s?quote ;pb2!ok ;s!order ‘ b2!bye ;s!byeqs

| b2rs!req ;pb1?ok ;s?ok ` b1?bye ;s?byeqs

which is assigned the following global type:

Gsb1b2 “ b1Ñs : req; b2Ñs : req; sÑb1 :quote;
¨

˝

b1Ñb2 :ok; b1Ñs :order; sÑb2 :ok
`

b1Ñb2 :bye; b1Ñs :bye; sÑb2 :bye

˛

‚

that is to say that ˝ $ Ssb1b2 § Gsb1b2 holds.
If we combine the store s with b12 we have

Ssb12 “ srPs tb12{b1,b2us | b12rPb12 t
s{s2us

“ srb12?req ;b12?req ;b12!quote ;pb12?order ;b12!ok ` b12?bye ;b12!byeqs

| b12rs!req ;s!req ;s?quote ;s!order ;s?oks

Gsb12 “ b12Ñs : req; b12Ñs : req;
sÑb12 :quote; b12Ñs :order;
sÑb12 :ok

and, again, the judgement ˝ $ Ssb12 § Gsb12 holds. ˛

5.4 Contract-Oriented Computing and Choreographies
We first introduce a version of the CO2 calculus [7] adapted to multiparty contracts and
sessions. Secondly, we discuss several options for fine-grained control of session estab-
lishment, which are made possible thanks to the fact that we base contract agreements on
the existence of a choreography.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 115

5.4.1 A Choreography-Based CO2

Let K and K be disjoint sets of, respectively, session names (ranged over by k,k1, . . .) and
session variables (ranged over by x,y,z . . .). Let u,v, . . . range over KYK .

The syntax of CO2 is as follows:

R ::“
ř

iPI pi .Ri
ˇ

ˇ R | R
ˇ

ˇ p~u,~nqR
ˇ

ˇ Xp~u,~nq
ˇ

ˇ 0 [PROCESSES]

p ::“ τ
ˇ

ˇ telln Óu P
ˇ

ˇ fuse
ˇ

ˇ dou
n a [PREFIXES]

K ::“ Óu nsaysP
ˇ

ˇ K | K [LATENT CONTRACTS]

T ::“ nJRK
ˇ

ˇ nJKK
ˇ

ˇ kJSK
ˇ

ˇ T | T
ˇ

ˇ p~u,~nqT
ˇ

ˇ 0 [NETWORKS]

CO2 features CCS-style processes, equipped with branching
ř

(not to be confused with
the choice operator used in contracts), parallel composition |, restrictions of session and
participant variables, and named process invocation. We often write R`R1 for the binary
version of

ř

, and we consider ` to be an associative and commutative operator. The
prefixes are for internal action (τ), contract advertisement (tellÓ), session creation upon
contractual agreement (fuse), and execution of contractual actions (do). A latent contract
of the form Óu nsaysP represents the promise of participant n to fulfil P by executing do-
actions on a session variable u. A network T may be the parallel composition of processes
of the form nJRK (where n is the participant executing R), latent contracts nJKK (where
n is the participant to whom the contracts in K have been advertised), and established
sessions kJSK (where k is a session name, and S is a system of stipulated contracts as
in Section 5.3). Note that CO2 process and network productions allow to delimit both
session names/variables (~u) and participant variables (~n), but not participant names, which
are considered public. Hereafter, we assume that bound participant variables are pairwise
distinct.

Remark 5.1. Syntactically, the only difference between our version of CO2 and the calcu-
lus in [4] is that, in our adaptation, dou

n a-prefixes mention the participant towards which
the action a is directed.

The semantics of CO2 is given by the rules in Figure 5.1. Rule [TELL] allows a partici-
pant s to advertise a contract P to r; as a result, a new latent contract is created, recording
the fact that it was promised by s. Rule [FUSE] establishes a new session: the latent con-
tracts held in sJKK are combined, and their participant variables substituted, in order to
find an agreement, i.e., a system of local types S that satisfies the relation K Źσ

π S (see
Definition 5.1 below). Recall that QpSq stands for the system of empty queues connecting
all pairs of participants in S. Provided that an agreement is found, fresh session name k
and participants names are shared among the parties, via substitutions σ and π; within
the session, the involved contracts become stipulated (as opposed to “latent”, before the
agreement). Rule [DO] allows s to perform an input/output action a towards r on session
k, provided that S permits it. Rule [TAU] allows a participant to make an internal move.
Rule [DEF] deals with named process invocation. Observe that a process invocation may
contain session variables/names and participant varibales/names. Rules [PAR] and [RES] are
standard.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 116

[TELL] sJtellr Óx P.R`R1 | R2K ÝÑ sJR | R2K | rJÓx ssaysPK

[FUSE]
K Źσ

π S ~s“ dompπq ~u“ dompσq imgpσq “ tku k fresh
p~u,~sq

`

s
q

fuse .R`R1 | R2
y
| sJKK | T

˘

ÝÑ pkq
`

s
q

R | R2
y

σπ | kJS | QpSqK | Tσπ
˘

[DO]
S sèr:a
ÝÝÝÝÑ S1

kJSK | s
r

dok
r a .R`R1 | R2

z
ÝÑ k

q
S1

y
| s

q
R | R2

y

[TAU] sJτ .R`R1 | R2K ÝÑ sJR | R2K

[DEF]
Xp~u,~nq def

“ R p~z,~n1q
`

s
q

Rt~v{~u, ~r{~nu | R1
y
| T

˘

ÝÑ T 1

p~z,~n1q
`

s
q

Xp~v,~rq | R1
y
| T

˘

ÝÑ T 1

[PAR]
T ÝÑ T 1

T | T 2 ÝÑ T 1 | T 2
[RES]

T ÝÑ T 1

p~u,~sqT ÝÑ p~u,~sqT 1

Figure 5.1: Semantics rules for CO2

When needed, we label network transitions: T
s : p
ÝÝÑ T 1 means that T reduces to T 1

through a prefix p fired by participant s.

Remark 5.2. In the following, we assume that sessions, i.e., sub-networks of the form
kJSK, are only created at the runtime by rule [FUSE].

Example 5.2. Consider the network:

Tex5.2 “ s
r

dok
r int`dok

r bool
z
| kJsrr!ints |rrs?ints |sr : ε |rs : εK | r

r
dok

s int
z

Here, the CO2 process of participant s can perform an action towards r on session k, with
either a message of sort int or bool. However, s’s contract in k only specifies that s should
send a message of sort int to r: therefore, according to rule [DO], only the first branch of s
may be chosen, and the network reduces as follows:

Tex5.2
s : dok

r int
ÝÝÝÝÝÑ sJ0K | kJsr0s |rrs?ints |sr : int |rs : εK | r

r
dok

s int
z

r : dok
s int

ÝÝÝÝÝÑ sJ0K | kJsr0s |rr0s |sr : ε |rs : εK | rJ0K

˛

A main difference between our adaptation of CO2 and the original presentation comes
from the way we specify session establishment. We adopt the session agreement relation
defined below.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 117

Definition 5.1 (Agreement relation K Źσ
π S). Let

K ”
ˇ

ˇ

iPI Óxi si saysPi such that @ i‰ j P I : si ‰ sj

and let π :
Ť

iPI fvpPiq Ñ P and σ :
Ť

iPI txiu Ñ K be two substitutions mapping partici-
pant variables to participant names, and session variables to session names, respectively.
Also, let S be the system of local types

ˇ

ˇ

iPI sirPisπ.
We define:

K Źσ
π S ðñ @ i P I : @n P fvpPiq : πpnq ‰ si ^ DG : ˝ $ S § G

Intuitively, a system of stipulated contracts S is constructed from a set of latent con-
tracts K, using a substitution π that maps all the participant variables in K to the participant
names in K. The definition requires that, within a contract Pi, belonging to si, no par-
ticipant variable is substituted by si itself. If it is possible to synthesise a global type
G out of S, then the relation holds, and a contractual agreement exists. Note that due to
the condition imposed on K, each participant may have at most one contract in a given
session. Example 5.3 below illustrates Definition 5.1.

Example 5.3. Consider the following network, with s, b1, b2 from Section 5.2, and Ssb1b2

from Example 5.1:

Tsb1b2 “ px,y,zq
`

sJtells Óx Ps . fuse .RsK | b1Jtells Óy Pb1 .Rb1K | b2Jtells Óz Pb2 .Rb2K
˘

ÝÑÝÑÝÑ

px,y,zq
`

sJfuse .RsK | sJÓx ssaysPs |Óy b1 saysPb1 |Óz b2 saysPb2K | b1JRb1K | b2JRb2K
˘

s : fuse
ÝÝÝÝÑ

pkqT 1sb1b2 “ pkq
`

sJRsKσπ | kJSsb1b2 | QpSsb1b2qK | b1JRb1Kσπ | b2JRb2Kσπ
˘

where σ“ tk{x,y,zu and π“ ts{s,s1, b1{b1,b11, b2{b2,b12u (5.1)

The initial network Tsb1b2 is the one considered in Section 5.2, where all the participants
are ready to advertise their respective contracts to the store s, by using a tellsÓ-primitive.
This has the effect of creating corresponding latent contracts within s. Once all the latent
contracts are in a same location, they may be fused.

In this case, given σ and π as in (5.1), Definition 5.1 is indeed applicable; we already
saw that the system

srPsπs | b1rPb1πs | b2rPb2πs (5.2)

may be assigned a global type. Hence, a new session k is created, based on the system of
contracts in (5.2) and the queues connecting all pairs of participants.

The session variables of the latent contracts being fused (i.e., x for participant s, y for
b1, and z for b2) are all substituted with the fresh session name k in the processes Rs, Rb1

and Rb2 , via σ. Similarly for participant variables which are substituted with participant
names, via π. ˛



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 118

p~u,~rqsJp~v,~nqPK” p~u,~rqp~v,~nqsJPK sJ0K” 0 sJKK | sJK1K” sJK | K1K

Z | 0” Z Z | Z1 ” Z1 | Z pZ | Z1q | Z2 ” Z | pZ1 | Z2q

Z | p~u,~nqZ1 ” p~u,~nqpZ | Z1q if~uXfnvpZq “~nXfnvpZq “H

p~u,~nqp~v,~nqZ ” p~v,~nqp~u,~nqZ p~u,~nqp~v,~nqZ ” p~u~v,~n~nqZ

p~u,~nqZ ” Z if~uXfnvpZq “~nXfnvpZq “H

Figure 5.2: Congruence rules for CO2

The semantics of CO2 is to be considered up-to a standard structural congruence re-
lation ”, given in Figure 5.2, where Z,Z1,Z2 range over processes, networks, and latent
contracts. We write fnvpZq for the free session and participant variables in Z. Remark-
ably, the rule

sJKK | s
q

K1
y
” s

q
K | K1

y

allows to select subsets of latent contracts before invoking a fuse primitive. This allows
to (momentarily) disregard some contracts when searching for a global type to be synthe-
sised. We illustrate this in Example 5.4 below.

Example 5.4. Consider the network:

. . .r
q

fuse .R | R1
y
| rJÓx s1 saysn1!int | Óy s2 saysn2?int | Óz s3 saysn3?boolK | . . .

The fuse prefix cannot be fired: no contract matches s3’s, and thus, together, the three
latent contracts cannot be assigned a global type. However, by rearranging the network
with congruence ”, we have:

. . .r
q

fuse .R | R1
y
| rJÓx s1 saysn1!int | Óy s2 saysn2?intK | rJÓz s3 saysn3?boolK | . . .

It is now possible to synthesise a global type s1Ñs2 : int, and a session may be created
for s1 and s2. The latent contract of s3 may be fused later on. ˛

In Example 5.5 below, we return to the running example of Chapter 3 and show that
introducing participant variables adds flexibility to the synthesis of choreographies.

Example 5.5. We reuse the local types from the running example of Chapter 3 (cf. Sec-
tion 3.1), and consider them as contracts advertised by their respective participants, these
contracts may now feature participant variables.

Recall that the system consists of two buyers (b1 and b2) and two sellers (s1 and
s2). The expected overall behaviour is that the two buyers should agree on purchasing
concurrently two items from two sellers, and then try to obtain the best price for these



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 119

items. The contracts are as follows:

Pb1 “ b2!agreement ;b2?ack ;Q1

Pb2 “ b1?agreement ;b1!ack ;Q2

Qi “ si!request ;si?quote ;µχ.psi!ok ‘ si!no ;si?quote ;χq i P t1,2u

Ssi “ bi?request ;bi!quote ;µχ1.pbi?ok ` bi?no ;bi!quote ;χ1q i P t1,2u

(5.3)

Observe that the contracts now features four participant variables: bi and si (i P t1,2u).
A network for these four participants may be implemented as follows:

Tex5.5 “ px,y,z,wq
`

b1Jtellb1 Óx Pb1 . fuse .Rb1K | b2Jtellb1 Óy Pb2 .Rb2K
| s1Jtellb1 Óz Ps1 .Rs1K | s2Jtellb1 Ów Ps2 .Rs2K

˘

where each participant advertises its contract to b1. Interestingly, the pairs buyer/seller
are not determined in advance, i.e., we may have that b1 buys an item from s2, because
two sets of substitutions are possible:

π1 “ ts1{s1, s2{s2, b1{b1, b2{b2u or π2 “ ts1{s2, s2{s1, b1{b2, b2{b1u

Now, assume that the contracts of b1 and s1 are slightly modified so that b1 wants to
buy a book, while the seller s1 sells only books (i.e., it only accepts book requests). We
have the following two new contracts:

Pb1 “ b2!agreement ;b2?ack ;Q1

Q1 “ s1!book ;s1?quote ;µχ.ps1!ok ‘ s1!no ;s1?quote ;χq

Ss1 “ b1?book ;b1!quote ;µχ1.pb1?ok ` b1?no ;b1!quote ;χ1q

If the contracts of b2 and s2 are the same as in (5.3), the fusion of these contracts is
deterministic: bi will be instantiated to bi and si will be instantiated to si (for i P t1,2u).
Indeed, this is the only substitution that will allow a global type to be synthesised from
the contracts. ˛

5.4.2 On the Flexibility of Session Establishment
We highlight the flexibility of our definition of contract agreement, together with the
semantics of CO2, by discussing three features: (i) contracts may use a mix of participant
names and variables, (ii) different contracts may use common participant variables, and
(iii) the definition of agreement may be easily accommodated to different requirements.

Mixing participant variables and names

Mixing participant variables and names in contracts allows us to design fine-grained con-
tracts and specify relationships between them.

• Contracts with both participant names and variables. A seller s may want to
sell an item to a specific buyer b, via any shipping company that provides a package
tracking system. The contract of s may be:

b!price ;b?ack ;n!request ;n?tracking ;b!tracking



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 120

saying that the seller s must send a price to the buyer b; once b has acknowledged, s
must send a shipping request to a shipper n; who must send back a tracking number,
which is then forwarded to b. This contract may be fused only if b takes part in the
session, while the role of shipper n may be played by any participant (offering a
compliant contract).

• Contracts sharing participant variables. Consider the network:

sJtellsÓxpn!request ;n?ackq . . .Xp~z,nqK | . . .
where Xp~z,nq def

“ py,bqtellsÓypb!quote ; . . .n!addressq . . .Xp~z,nq

Here, s advertises two contracts: the first one (n!request ;n?ack) is used by s to find
a shipping company, and the second (b!quote ; . . .n!address) to sell items. The two
contracts are linked by the common variable n: whenever the first one is fused, vari-
able n is instantiated to a participant name, say shipper, which is also substituted
in the second. This means that whenever a new selling session starts, shipper will
also be involved as the receiver of the address message.

• Injective substitution. Definition 5.1 is quite liberal with respect to the substi-
tution mapping participant variables to participant names (π). The definition may
be refined easily to, e.g., force π to be an injective substitution and therefore not
allowing two participant variables to be mapped to the same participant identifier.

In the example of Section 5.2, such a variation would allow the seller to disregard
the second set of contracts (where one participant impersonates both buyers).

Parametrised session establishment

The participants firing fuse primitives are playing the role of brokers in our framework.
Depending on their implementation, brokers may also have some obligations in the con-
tracts they fuse, or they may want to enforce some general policy – therefore they may
have additional requirements before agreeing to start a session. For instance, a broker may
not want to start a session with too many participants as it may be too resource demanding
(too many connections etc.). Another broker may want to start sessions that terminates
within a limited number of interactions, because it has a short life expectancy, e.g., due
to an approaching scheduled maintenance. Another kind of broker may precisely want to
start sessions which do not terminate, e.g., if the broker is interested in resilient services.
Several variations of the fuse primitive are possible thanks to the fact that we base contract
agreements on objects representing the overall choreography.

In this section, we discuss some of these variations, starting from simple ones to more
complex ones. The overall idea of these variation is to parametrise the fuse primitive with
a function, say Ffuse, that takes as input a global type G and returns a boolean value.1

Definition 5.1 stays essentially the same but for the slightly refined condition:

DG : ˝ $ S § G ^ FfusepGq
1 We consider Ffuse to be a computable function.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 121

Remark 5.3. This sort of variations does not affect the results that follow, since the orig-
inal fuse primitive is also blocking. The variations only restrict the sets of compliant
contracts.

Some variations. We introduce fuserns, a version of fuse that only fuses sessions where
there are at least n participants; fuseT , which has the additional constraint that no recursive
behaviour is allowed in the synthesised choreography (therefore ensuring that the session
will eventually terminate), and fuseR, which only creates sessions when the synthesised
choreography never terminates (i.e., it only consists of recursive behaviours).

Such extensions may be defined directly via simple definitions of function Ffuse:

• for fuserns, we define FfusepGq def
“ |P pGq|ě n, recall that P pGq is the set of partici-

pants in G ;

• for fuseT , we define FfusepGq def
“ bvpGq “ H, i.e., the condition holds only if there

is no recursion variable χ in G (recall that synthesised global types are closed since
we assumed the contracts to be closed);

• for fuseR, we define FfusepGq so that it holds only if 0 is not a sub-term of G , i.e.,
we add the condition that 0 does not appear in G .

Observe that this kind of properties must be checked for at the global level because it can-
not always be decided by looking at the individual contracts. For instance, a participant
might exhibit a recursive behaviour in one of the branches of an external choice, while the
participant it interacts with may always choose a branch that is not recursive. Consider
for instance, the following system of contracts:

srr!as | rrµχ.ps?a `s?b ;χqs

Looking only at the contract of r, it appears to be recursive. However, when composed
with the contract of s, their global type is sÑr :a, i.e., a non-recursive choreography.

Sharing knowledge. In order to illustrate the expressive power of our agreement rela-
tion – thanks to the fact that we base it on an object representing the choreography of the
session – we give a more advanced version of Ffuse that checks semantic properties of the
synthesised global type.

Consider a broker whose sole purpose is to fuse contracts only if their composition
corresponds to a choreography such that all the participants share the same knowledge
once the session has terminated (i.e, when all the participants have fulfilled their contracts
in the session). Assume that k is a sort representing the knowledge of a participant; and
that a sending operation r!k made by a participant s means that s sends all its current
knowledge to r, and that a receiving operation s?k made by a participant r means that
r acquires all the knowledge that s has (when s sent the message). We need to check
that, given a set of contracts, all participants share the same knowledge at the end of the



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 122

session. For instance, the contracts Ps and Pr below comply with the condition, but Ps
and Pr do not.

Ps “ r!k ;r?k and Pr “ s?k ;s!k 4 Ps “ r!k and Pr “ s?k 8

Indeed, on the right-hand side, s does not acquire r’s knowledge. Note that both pairs of
contract may be assigned a global type.

We introduce a map K : PÑ 2P that, given a participant name n, returns the set of
names representing the participants from whom n acquired knowledge. Initially, we have
that Kpnq “ tnu for each participant n, i.e., a participant has only access to its own knowl-
edge. Given a global type G , we would like that

@n P P pGq : Kpnq “ P pGq

holds at the end of the session embodied by G .
We define the boolean function K̂pG ,N,Kq which returns true if all the participants in

N Ě P pGq share the same knowledge (with respect to K) at the end of the session. We
write t { u for the update operation on maps, and ¨ for the disjoint union of maps.

Definition 5.2. Let K̂pGq def
“ K̂pG ,P pGq,K0q, where K0 is the initial knowledge map, i.e.

@n P P pGq : K0pnq “ tnu, and

K̂pG ,N,Kq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

K̂pG 1,N,K1q, if G “ sÑr :k; G 1 and K1 “ KtKprqYKpsq{ru

K̂pG1,N,Kq^ K̂pG2,N,Kq, if G “ G1`G2

K̂pG1,N,K1q^ K̂pG2,N,K2q, if G “ G1 |G2 and K“ K1 ¨K2

@n P dompKq : Kpnq “ N, if G “ 0
false, otherwise

The first case of Definition 5.2 handles interactions: r acquires all the current knowl-
edge of s. The case of choice simply requires that the condition is satisfied in both
branches. In the case of concurrent branches, we need to partition the knowledge map
in two – since the sets of participants in the concurrent branches of G are disjoint. In the
case of G “ 0, we check that all participants share the same knowledge. For the sake of
simplicity, the function is undefined for recursive global type.

We may use K̂p q in session establishment with FfusepGq ðñ K̂pGq. We illustrate
Definition 5.2 in Example 5.6 below.

Example 5.6. Consider the following contracts

Ps “ r1?k ; r2?k ; r3?k ; r1!k ; r2!k ; r3!k
Pri “ s!k ;s?k i P t1,2,3u

The composition of these contracts, i.e.

srPss | r1rPr1s | r2rPr2s | r3rPr3s



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 123

gives us the following global type

Gex5.6 “ r1Ñs :k ;r2Ñs :k ;r3Ñs :k ;
sÑr1 :k ;sÑr2 :k ;sÑr3 :k ;0

K̂pGex5.6q holds since at the end of the first line of Gex5.6, we have Kpsq “ ts,r1,r2,r3u
and, in the second line, s shares its knowledge with all the other participants. ˛

Interestingly, it is possible to refine session establishments so that only “efficient”
contracts are fused. For instance, in Example 5.6, the sharing of knowledge is done in a
very centralised way: s acquires the knowledge of all the other participants, then share
back all s knows.

One may compute a bound on the number of consecutive interactions that are required
for n participants to share their knowledge [48]. If the depth of the parsing tree of the
synthesised global type is greater than this bound, then the contracts are not “efficient”.
We give a more efficient set of contracts in Example 5.7 below.

Example 5.7. Consider the following contracts

Ps “ r1?k ; r2?k ; r3?k ; r1!k ; r3!k
Pr1 “ s!k ; s?k ; r2!k

Pr2 “ s!k ; r1?k
Pr3 “ s!k ; s?k

where the difference between these contracts and those in Example 5.6, is that r1 is now
the one who shares the overall knowledge to participant r2. The composition of these
contracts gives us the following global type:

Gex5.7 “ r1Ñs :k ;r2Ñs :k ;r3Ñs :k ;
sÑr1 :k ;pr1Ñr2 :k ;0 | sÑr3 :k ;0q

We have again that s has all the knowledge at the end of the first line of Gex5.7, but in this
case s and r1 share back their knowledge concurrently to r3 and r2, respectively. Thus,
Gex5.7 is (slightly) more efficient than Gex5.6. ˛

5.5 The Problem of Honesty
In this section, we discuss and define the notion of honesty [7], i.e., the ability of a partici-
pant to always fulfil its contracts, in any context. In our contract-oriented setting, honesty
is essentially the counterpart of well-typedness in a session type setting: the static proof
that a participant always honours its contracts provides guarantees about its runtime be-
haviour.

As seen in Example 5.2, each do prefix within the process of a participant, say sJPK, is
driven by the contract that s promised to abide by. In a sense, CO2 is culpability-driven,
according to Definition 5.3 below: when a participant is “culpable”, it has the duty of
making the session progress according to its contract.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 124

Definition 5.3 (Culpability). Let T be a network with a session k, i.e.,

T ” p~u,~nqpsJRK | kJSK | T1q | T2

We say that s is culpable in T when there exist r and a such that S sèr:a
ÝÝÝÝÑ.

A culpable participant can overcome its status by firing its do prefixes, according to
rule [DO], until another participant becomes culpable or session k terminates. Hence, as
long as a culpable participant s does not enable a do-prefix matching a contractual action,
s will remain culpable. Note that when a participant is involved in multiple sessions, it
may end up being culpable in more than one of them.

When a participant s is always able to fulfil its contractual actions (i.e., overcome its
culpability), no matter what other participants do, then it is said to be honest (cf. Defini-
tion 5.8). This is a desirable property in contract-oriented scenarios: a participant may be
stuck in a culpable condition either due to “simple” bugs (cf. Example 5.9), or due to the
unexpected (or malicious) behaviour of other participants (cf. Example 5.12). Therefore,
before deploying a service, its developers may want to ensure that it will always be able
to exculpate itself.

Formally, as in [4], we base the definition of honesty on the relationship between the
ready set of a contract and the ready set of a CO2 process. We call the former contract
ready set and the latter process ready set. The concept of contract ready set is similar
to [4, 7, 30], where only bilateral contracts are considered. Here, we adapt it to suit our
multiparty contract model, the main difference being that we take into account towards
which participant an action is directed.

Definition 5.4 (Contract ready set). The ready set of a contract P, written CrspPq, is:

CrspPq “

$

’

&

’

%

CrspP1q if P“ µχ.P1

ttpri,aiqu | i P Iu if P“
À

iPI ri!ai;Pi and I ‰H
ttps,aiq | i P Iuu if P“

ř

iPI s?ai;Pi

Intuitively, when a participant n is bound to a contract P, the ready set of P tells which
interactions n must be able to perform towards other participants. Each interaction has
the form of a pair, consisting of a participant name and a message sort. The interactions
offered by an external choice are all available at once, while those offered by an internal
choice are mutually exclusive.2

Example 5.8. Consider the system of contracts Ssb1b2 from Example 5.1 and, in partic-
ular, its stipulated contracts, with substitution π “ ts{s,s1, b1{b1,b11, b2{b2,b12u from Exam-
ple 5.3:

P̂s “ Psπ “ b1?req ;b2?req ;b1!quote ;pb1?order ;b2!ok ` b1?bye ;b2!byeq

P̂b1 “ Pb1π “ s!req ;s?quote ;pb2!ok ;s!order ‘ b2!bye ;s!byeq

P̂b2 “ Pb2π “ s!req ;pb1?ok ;s?ok ` b1?bye ;s?byeq

2 Recall that for local types, 0 is defined as an external/internal choice where I “H (cf. Section 3.2).



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 125

We have Crs
`

P̂s
˘

“ ttpb1, reqquu: in other words, at this point of the contract, an inter-
action is expected between s and b1 (since s is waiting for req), while no interaction is
expected between s and b2.

When P̂s reaches its external choice, we have:

P̂1s “ b1?order ;b2!ok ` b1?bye ;b2!bye

Now, the ready set becomes Crs
`

P̂1s
˘

“ ttpb1,orderq,pb1,byequu, i.e., s must handle both
answers from b1. Instead, when P̂b1 reduces to its internal choice, we have:

P̂1b1 “ b2!ok ;s!order ‘ b2!bye ;s!bye

Thus, its ready set becomes Crs
`

P̂1b1
˘

“ ttpb2,okqu ,tpb2,byequu: b1 is free to choose
either branch. ˛

Example 5.8 shows that when a contract P of a participant evolves within a system
S its ready set changes. Now we define the counterpart of contract ready set for CO2
processes, i.e., the process ready set. Again, we adapt the definition from [4] to our
multiparty contract model.

Definition 5.5 (Process ready set). For all networks T , all participants s,r and sessions
u, we define the set of pairs:

Prsu
spT q “

"

pr,aq
D~v,~n,R,R1,R2,T 1 :

T ” p~v,~nqpsJdou
r a .R`R1 | R2K | T0q | T1 ^ u R~v

*

Intuitively, Definition 5.5 says that the process ready set of s over a session u in
a network T contains the interactions that s is immediately able to perform with other
participants through its do -actions on u. As in a contract ready set, the interactions are
represented by participant/sort pairs.

Next, we want to characterise a weaker notion of the process ready set, so it only takes
into account the first actions on a specific session that a participant is ready to make.

Definition 5.6 (Weak Process ready set). We write T
‰ps : douq
ÝÝÝÝÝÝÑ T 1 iff:

Ds1, p : T
s1 : p
ÝÝÝÑ T 1 ùñ

`

s‰ s1 _ @a : @r : p“ dov
r a ùñ u‰ v

˘

We define the set of pairs WPrsu
spT q as:

WPrsu
spT q “

"

pr,aq | DT 1 : T
‰ps : douq
ÝÝÝÝÝÝÑ

˚ T 1 ^ pr,aq P Prsu
s

`

T 1
˘

*

In Definition 5.6, we are not interested in the actions that do not relate to the session
u. Thus, we allow the network to evolve either by (i) letting any other participant other
than s do an action, or (ii) letting s act on a different session than u, or (iii) do internal
actions.

We now introduce the final ingredient for honesty, that is the notion of readiness of a
participant.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 126

Definition 5.7 (Readiness). We say that s is ready in T iff, whenever T ” p~u,~nqT1 | T2 for
some~u,~n and T1 “ kJsrPs | . . .K | T0, the following holds:

DX P CrspPq :
´

pr,aq P X ùñ pr,aq P WPrsk
spT1q

¯

Definition 5.7 says that a participant s is ready in a network T whenever its process
ready set for a session k will eventually contain all the participant/sort pairs of a set in the
contract ready set of s’s contract in k. When a participant s is “ready”, then, for any of its
contracts P, the CO2 process of s is (eventually) able to fulfil at least the interactions in
P’s prefix.

Remark 5.4. The side condition “u R~v” of Definition 5.5 deals with cases like

T0 “ pkq
´

s
r

dok
r int

z¯
and T “ T0 | kJsrr!ints | . . .K | . . .

without the side condition, Prsu
kpT0q “ ttpr, intquu; thus, by Definition 5.7, s would result

to be ready in T .

Example 5.9. We have seen that, after fusion of the latent contracts of Tsb1b2(in Exam-
ple 5.3) we obtain:

pkqT 1sb1b2 “ pkq
`

sJRsσπK | kJSsb1b2 | QpSsb1b2qK | b1JRb1σπK | b2JRb2σπK
˘

Let us define the processes (after substitutions):

Rsσπ “ dok
b1

req .dok
b2

req .dok
b1

quote .
`

dok
b1

order .dok
b2

ok ` dok
b1

bye .dok
b2

bye
˘

Rb1σπ “ τ .dok
s req .dok

s quote .dok
s order

Rb2σπ “ dok
s req .

`

dok
b1

ok .dok
s ok ` dok

b1
bye .dok

s bye
˘

Thus, we have:

Prsk
s

`

T 1sb1b2
˘

“ tpb1, reqqu “ WPrsk
s

`

T 1sb1b2
˘

Prsk
b1

`

T 1sb1b2
˘

“ H ‰ tps, reqqu “ WPrsk
b1

`

T 1sb1b2
˘

Prsk
b2

`

T 1sb1b2
˘

“ tps, reqqu “ WPrsk
b2

`

T 1sb1b2
˘

Note that the τ prefix in Pb1 prevents b1 from interacting immediately with s on session
k, although it is “weakly ready” to do so. Hence, considering that each weak process
ready set of each participant in T 1sb1b2 matches their respective contract ready set in Ssb1b2
(Example 5.8) according to Definition 5.7 we have that participants s, b1 and b2 are all
ready in pkqT 1sb1b2 . ˛

Definition 5.8 (Honesty). We say that sJRK is honest iff, for all T such that neither la-
tent/stipulated contracts of s nor sJ. . .K occur in T , and for all T 1 such that sJRK | T Ñ˚ T 1,
s is ready in T 1.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 127

A process sJRK is said to be honest when, for all contexts and reductions that sJRK
may be engaged in, s is persistently ready. In other words, there is a continuous corre-
spondence between the interactions exposed in the contract ready sets and the process
ready sets of the possible reductions of any network involving sJRK. The definition rules
out contexts with latent/stipulated contracts of s, otherwise s could be made trivially dis-
honest, e.g., by inserting a latent contract Óu ssaysP that s cannot fulfil.

Similarly to [4], the definition of honesty assumes a fair scheduler, eventually allow-
ing participants to fire persistently (weakly) enabled do actions.

Example 5.10. Consider the process b1Jtells Óy Pb1 .Rb1K of network Tsb1b2 , as defined in
Examples 5.3 and 5.9. We show that this process is not honest. In fact, Tsb1b2 reduces as
follows:

Tsb1b2 ÝÑ
˚
pkqT 1sb1b2 ÝÑ

˚
pkqT 2sb1b2

where:

pkqT 2sb1b2 “ pkq
´

s
r

dok
b1

order .dok
b2

ok ` dok
b1

bye .dok
b2

bye
z

| k
q
srb1?order ;b2!ok ` b1?bye ;b2!byes

| b1rb2!ok ;s!order ‘ b2!bye ;s!byes

| b2rb1?ok ;s?ok ` b1?bye ;s?byes

|sb1 : ε |b1s : ε |sb2 : ε |b2s : ε |b1b2 : ε |b2b1 : ε
y

| b1

r
dok

s order
z
| b2

r
dok

b1
ok .dok

s ok ` dok
b1

bye .dok
s bye

z¯

At this point, we notice a problem in the implementation of b1: it does not notify the other
buyer before making an order.

In fact, b1’s process is trying to perform dok
s order, but its contract requires that dok

b2
ok

is performed first (or dok
b2

bye, if the quote is rejected). This is reflected by the mismatch
between b1’s process ready set in T 2sb1b2 and its contract ready sets, in session k:

Prsk
b1

`

T 2sb1b2
˘

“ ttps,orderquu

Crspb2!ok ;s!order ‘ b2!bye ;s!byeq “ ttpb2,okqu ,tpb2,byequu

Using the vocabulary of Definitions 5.3, 5.7, and 5.8, we have:

• There exists a network Tsb1b2 which contains b1Jtells Óy Pb1 .Rb1K

• and reduces to a network pkqT 2sb1b2 , where b1 is not ready.

• Thus, we have that b1Jtells Óy Pb1 .Rb1K is not honest, and

• b1 is culpable in pkqT 2sb1b2 .
˛

Remark 5.5. In this section, we consider only fully instantiated contracts, i.e., contracts
that do not use participant variables. This is due to two reasons. (i) Honesty is defined on
all the possible executions of any networks, thus it encompasses any possible instantiation



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 128

of participant variables. (ii) The results of Section 5.6 apply only whenever sessions
have been started, which implies that participant variables have substituted by participant
names.

Remark 5.6. Honesty is not decidable in general [7], but for a bilateral contract model
it has been approximated via an abstract semantics [7] and a type discipline [4] for CO2.
We conjecture that these approximations may be adapted to our setting.

5.6 Properties of Honest Networks
We give the properties that our framework guarantees. We ensure that two basic features
of CO2 hold in our multiparty adaptation: the state of a session always permits to establish
who is responsible for making the network progress (Theorem 5.1) and honest participants
can always exculpate themselves (Lemma 5.1). We then formalise a link between the
honesty of participants and two key properties borrowed from the session types world:
Theorem 5.2 introduces session fidelity in CO2; and Theorem 5.3 introduces a notion of
progress in CO2, based on the progress of the contractual agreement.

First, we define the kind of networks on which our results apply, i.e., honest networks.
These networks consists only of honest participants and do not feature any runtime con-
structs (such as sessions or stipulated contracts).

Definition 5.9 (Initial & honest networks). A network T is initial if

• for each participant s in T , there is at most one sub-network sJZK in T ,

• for each sub-network sJZK in T , there is no (latent or stipulated) contract in Z that
does not belong to s, i.e., Z has no sub-term of the form telln Óu P or Óu nsaysP,
with n‰ s, and

• no session has been started in T , i.e., there is no sub-network of the form kJSK in T .

An honest network T is an initial network such that each process sJRK in T is honest.

Theorem 5.1 below says that, in an active session, there is always at least one par-
ticipant sJRK who is responsible for the next interaction. Thus, if a corresponding dok

r a
prefix is not in R, T may get stuck, and s is culpable.

Theorem 5.1 (Culpability). Given a network T , if T contains a session kJSK such that
Dn P P pSq : Spnq ‰ 0, then there exists at least one culpable participant.

Proof. Since session k is not terminated, we must have:

S ” nrr!a ;P‘Ps |S1 or S ” nrs?a ;P`Ps |sn : a ¨ρ |S1

Note that, by Theorem 3.1, S cannot be a deadlock or reduce to an orphan message con-
figuration.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 129

Since k has been started (cf. Remark 5.2) and n is part of the session, we must have T
of the form

T ” p~u,~nqpnJRK | kJSK | T1q | T2

with k P ~u, ~n possibly empty, and possibly R ” 0, note that we have nJ0K ” 0 from the
congruence rules of CO2. Thus, we have S nÑr:a

ÝÝÝÝÑ or S nÐs:a
ÝÝÝÝÑ as required by Defini-

tion 5.3.

Example 5.11. Consider network T 2sb1b2 of Example 5.10 and the system of contracts in
its session k:

Sk “ srb1?order ;b2!ok ` b1?bye ;b2!byes

| b1rb2!ok ;s!order ‘ b2!bye ;s!byes | b2rb1?ok ;s?ok ` b1?bye ;s?byes

| sb1 : ε |b1s : ε |sb2 : ε |b2s : ε |b1b2 : ε |b2b1 : ε

We have Sk
b1èb2:ok
ÝÝÝÝÝÝÑ and Sk

b1èb2:bye
ÝÝÝÝÝÝÑ. Hence, b1 is responsible for the next interaction,

and culpable for T 2sb1b2 being stuck. ˛

Lemma 5.1 follows from the definition of honesty. It states that honest participants
can always overcome their culpability, by firing their contractual do actions (possibly after
some internal actions).

Lemma 5.1 (Exculpation). Given an initial network T0 with an honest participant sJRK,
whenever T0 ÝÑ

˚ T ” p~u,~nqpkJSK | T1q | T2 and s is culpable in T , there exist r and a such
that:

T s : τ
ÝÝÑ

˚ s : dok
r a

ÝÝÝÝÑ

Proof. By Definition 5.8, we have that for any reduction of T0, s is ready. By assumption,
s is culpable in T , so we must have S sèr:a

ÝÝÝÝÑ, and, by Definition 5.7, we must have
pr,aq P WPrsk

spT1q. By Definition 5.6, we have

DT 1 : T1
‰ps : dokq
ÝÝÝÝÝÝÑ

˚ T 1 ^ pr,aq P Prsk
s

`

T 1
˘

By Definition 5.5, we must have that s
r

dok
r a .R

z
is a sub-network of T 1.3 Thus, we just

have to show that s may reduce to such a prefixed process via internal actions (τ) only. By
contradiction, if it was the case that, in the process belonging to s, there was a blocking
action (before dok

r a), then one could easily find a network in which s is not ready (i.e., s
would be waiting for this action to be dealt with by another participant); thus contradicting
the assumption that s is honest.

Theorem 5.2 below says that each (honest) participant will strictly adhere to its con-
tracts, once they have been fused in a session. It follows directly from the semantics
of CO2 (that forbid non-contractual do prefixes to be fired) and from the definition of
honesty.

3We abstract from possible choice or variable restrictions, without loss of generality.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 130

Theorem 5.2 (Fidelity). Let T be an honest network, if

T ÝÑ˚ T 1 ” p~u,~nqpsJRK | kJSK | T0q | T1

then

T 1 ´k
ÝÝÑ

˚ s : dok
r a

ÝÝÝÝÑ ðñ S sèr:a
ÝÝÝÝÑ

(where ´k
ÝÝÑ˚ is any reduction not involving session k).

Proof. The direction (ñ) follows directly from the semantics of CO2 (i.e., rule [DO]). The
direction (ð) follows from Lemma 5.1. Indeed, S sèr:a

ÝÝÝÝÑ implies that s is culpable in
session k, and by Lemma 5.1, s is able to exculpate itself after some internal actions (i.e.,
no actions on session k).

Theorem 5.3 below introduces a notion of global progress in CO2 networks. Observe
that progress in CO2 is only meaningful after a session has been established and thus a
culpable participant exists. A network without sessions may not progress because a set
of compliant contracts cannot be found, or a fuse prefix is not enabled. In both cases, no
participant may be deemed culpable, and thus responsible for the next move. However,
the network may progress again if other (honest) participants join it, allowing a session to
be established. This is analogous to the notion of progress of [35], cf. Section 2.2.3.

Theorem 5.3 (Global progress). Given an honest network T0, whenever

T0 ÝÑ
˚ T ” p~u,~nqpkJSK | T1q | T2

and Dn P P pSq : Spnq ‰ 0, then T ÝÑ.

Proof. By contradiction. By Theorem 3.1, we know that S is deadlock free, thus if the
network cannot make further reductions, it must be because one of the participant n cannot
meet its obligations. This is a contradiction with Lemma 5.1 since all participants are
honest in T0.

Note that Theorem 5.3 holds for networks where a process takes part in multiple
sessions: the honesty of all participants guarantees that all sessions will be completed.
We illustrate such a situation in Example 5.12 below.

Example 5.12. We show how a seemingly honest process (r) could be deemed culpable
due to the unexpected behaviour of other participants. Consider the following network:

Tex5.12 “ px,y,z,wq
`

sJtells Óx pr!intq . fuse . fuseK
| rJtells Óy ps?intq . tells Óz pn!boolq .doy

s int .doz
n boolK

| nJtells Ów pr?boolq .dow
r boolK

˘

where participant s advertises a contract to itself (promising to sent a message int to r);
participant r advertises two contracts to s, the first contract specifies an interaction with
s, while the second specifies an interaction with n; and participant n advertises a contract
(to s) specifying an interaction with r.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 131

After all four contracts have been advertised to s and fused, the network reduces to:

T 1ex5.12 “ pk1,k2q
`

sJ0K | r
r

dok1
s int .dok2

n bool
z

| n
r

dok2
r bool

z

| k1Jsrr?ints |rrs!ints |sr : ε |rs : εK
| k2Jrrn!bools |nrr?bools |rn : ε |nr : εK

˘

Even if the systems of contracts in both sessions k1 and k2 are able to reduce further,
T 1ex5.12 is stuck. Indeed, s does not perform the promised action, it is culpable in k1; and
r is stuck waiting in k1, thus remaining culpable4 in k2. Indeed, neither s nor r are ready
in T 1ex5.12, and thus they are not honest in Tex5.12. Hence, the network cannot progress
further. ˛

Example 5.13. Let us now consider a variant of Tex5.12 from Example 5.12, where all
participants are honest:

px,y,z,wq
`

sJptells Óx pr!intq .dox
r intq | fuse | fuseK

| nJtells Ów pr?boolq .dow
r boolK

| r
q

tells Óy ps?intq . tells Óz pn!boolq .
`

doy
s int .doz

n bool` τ . pdoy
s int | doz

n boolq
˘y ˘

In this case, s will respect its contractual duties, while r will be ready to fulfil its contracts
on both sessions – even if one is not activated, or remains stuck (here, τ represents an
internal action, e.g., a timeout: if the first doy

s int cannot reduce, r falls back to running
the sessions in parallel). The honesty of all participants in the network above guarantees
that, once a session is active, it will reach its completion. ˛

5.7 Concluding Remarks
In this chapter, we investigated the combination of the contract-oriented calculus CO2
with a contract model that fulfils two basic design requirements: piq it supports multiparty
agreements, and piiq it provides an explicit description of the choreography that embodies
each agreement. To the best of our knowledge, no other contract model provides an
explicit choreography synthesis.

We built our framework upon a simple version of session types and yet it turns out to
be quite flexible, e.g., allowing for sessions where the number of participants is not known
beforehand and permitting fine-grained characterisation of the contractual agreement.

We are considering two main directions of future research based on this work. The
first direction concerns an extension of the fuse primitive so to allow that, whenever sev-
eral sets of contracts are compliant, the “best” set of contracts is fused (according to
different criteria such as, e.g., the number of participants or a semantic characterisation
of the choreography). The extensions we discussed in Section 5.4.2 relied on a non-
deterministic selection of the set of contacts to be fused (via the ” congruence relation).
One may integrate the selection of contracts within the agreement relation so that the best

4In this case, r is deemed culpable in k2 because its implementation did not expect s to misbehave.



CHAPTER 5. CHOREOGRAPHY SYNTHESIS AS CONTRACT AGREEMENT 132

contracts are chosen and the ones which are unused stay in the network, to be fused later
on.

Another research direction concerns the possibility of allowing a participant to be
involved in a same session with multiple contracts – e.g., a bank advertising two services,
and a customer publishing a contract which uses both contracts of the bank in a same
session. This is quite challenging as it may require to somehow merge these contracts
into one, before attempting to synthesise a global type. Indeed, one may not be able to
consider that the contracts are simply two different participants in the choreography, e.g.,
a process advertising several contracts may not fulfil them in an independent manner.



CHAPTER 6

Conclusions and Future Directions

6.1 Summary of the Contributions
We review the main contributions presented in Chapters 3, 4, and 5.

On synthesising choreographies. In Chapter 3, we introduced a theory whereby it is
possible to infer a choreography from a set of local behavioural specifications. The main
construction in this chapter is a type system which assigns a global type to a set of local
types. We showed that, if it exists, such a global type is unique and well-formed; also,
its projections are equivalent to the original local types. The type system enjoys a sub-
ject reduction property. Finally, we showed that for every well-formed global type, an
equivalent global type can be assigned to its projections.

A major advantage of our bottom-up approach is that it allows the result of the top-
down approach of [44] to be applicable even if no global view of the system is available.
This allowed us to reuse well-established results to show that, if a system is typable,
then it has progress and safety properties. As a consequence, our theory allows to lift
the assumption that a global view of the system is available to type-check programs with
session types.

On amending global assertions. In Chapter 4, we gave a few techniques to help dis-
tributed software architects design global assertions. These techniques include two algo-
rithms to solve history sensitivity problems, one algorithm to solve temporal satisfiability
problems, and a methodology for applying the algorithms to protocol design.

We showed that our algorithms satisfy the following properties: (i) structure preser-
vation, i.e., they do not modify the structure of the underlying global type, (ii) properties
preservation, i.e., they do not introduce new violations, and (iii) correctness, i.e., if appli-
cable they correct all the problems.

133



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 134

As the theory in Chapter 3 allows to lift the burden of (re-) designing global types, the
methodology presented in Chapter 4 permits, to some extent, to lift the burden of making
a global assertion well-asserted.

Runtime choreography synthesis. In Chapter 5, we introduced a formal model for dis-
tributed systems where participants advertise contracts and multiparty sessions are started
when a set of contracts allows to synthesise a choreography.

Our model is based on an adaptation of the CO2 calculus [6] and preserves its main
properties. In particular, it is always possible to identify which participant is responsible
for the session being stuck. Inspired by other results from session type theory, we also
showed that progress and session fidelity properties hold for honest systems, i.e., systems
consisting of honest participants only. In addition, we gave a few examples illustrating
the utility of having a choreography as a tangible representation of an agreement between
participants.

A remarkable feature of our model is that it adds flexibility to the synthesis of chore-
ographies of Chapter 3 by allowing participant variables to appear in contracts.

6.2 Future Directions
We identify a few directions of future research based on the results established in this
thesis. We focus on the synthesis of choreographies as the other topics where covered in
the concluding remarks of their respective chapters.

From communicating machines to choreographies. A main direction of future work,
which has been confirmed in preliminary results by the author and colleagues (and to
some extent in [41]), is to study the synthesis of choreographies from communicating
machines. Remarkably, such a synthesis allows to extend substantially the set of systems
to which it is possible to assign a choreography. Indeed, contrarily to the type system of
Chapter 3, there are fewer syntactic restrictions: this is most noticeable for recursive types.
In fact, using the theory of regions [3, 37], it is possible to synthesise a choreography –
or a generalised global types [40] (cf. Section 2.1.4) – from the synchronous transition
system of a system of communicating machines. The synchronous transition system of
a system of communicating machines amounts to, essentially, letting the machines run
with the additional constraint that at most one buffer is non-empty, that the non-empty
buffer contains at most one symbol, and that an output action is directly followed by its
corresponding input action.

Since communicating machines are undecidable in general [16], one needs to restrict
the set of “typable” systems. In fact, an important step is to check whether all the execu-
tions of the machines are “captured” by the synchronous transition system.

In addition, we conjecture that the results of Chapters 4 and 5 may be quite easily
extended to generalised global types. On the one hand, the framework of Chapter 5 is in
fact rather independent of the way choreographies are actually synthesised. It uses the
type system of Chapter 3 as a “black box”. On the other hand, in order to adapt the results



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 135

of Chapter 4, one would need to re-visit the notion of well-assertedness for general graphs
and similarly for the three algorithms. In fact, the main difference is that there might be
several paths to a same node. Thus, our algorithms would have to update all the paths
leading to a problematic node.

Beyond 1-buffer executions. One of the main restriction of our type system and, to
the best of our knowledge, all the current works on the synthesis of choreographies [41],
is that they do not capture systems that have executions which are not captured by a
synchronous execution. Analogously, the conditions for the realisability of choreography
(cf. Section 2.2.1 and [9, 10]) also requires a system to be synchronisable. See Section 3.6
for a discussion on the 1-buffer restriction in our type system.

Example 6.1 below shows that some systems cannot be assigned a choreography in
any of the works we discussed in Chapter 2.

Example 6.1. Consider the following system of two local types:

srr!a ;r?bs | rrs!b ;s?as (6.1)

it is easy to see that this system does not deadlock, however it is not typable by the type
system of Chapter 3.1 Essentially, this is due to the fact that the system “deadlocks” when
each intermediary configuration may contain at most one non-empty buffer. Indeed, with
such a constraint the system reduces, e.g, to

srr?bs | rrs!b ;s?as | sr : a | rs : ε

where r cannot send b since one buffer is already non empty and a cannot be received
since r must send b first.

In fact, the system (6.1) cannot be captured by any of the formalism we have seen so
far. For instance, neither of these global types capture it:

sÑr :a; rÑs :b 8 rÑs :b; sÑr :a 8

Even if we allow a same participant to appear in different concurrent branches and intro-
duce parallel constructs at the local type level, projecting the global type

sÑr :a | rÑs :b

would yield the system:
srr!a | r?bs | rrs!b | s?as (6.2)

which is not bisimilar to system (6.1). Observe that the system (6.2) is not directly rep-
resentable in terms of communicating machines since CFSMs do not feature (explicit)
concurrent activities. ˛

1 This system is also not multiparty-compatible in the sense of [41].



CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 136

Example 6.1 shows that taking asynchrony to its full potential when synthesising a
choreography is not easy. In fact, choreography languages consider interactions of the
form sÑ r : a to be atomic; and they generally offer three main constructs: sequence,
parallel, and choice. None of these constructs allow to model system (6.1) from a global
perspective. In fact, before attempting to tackle the problem of synthesising a choreogra-
phy from systems that do not have a synchronous execution, one would need to consider a
choreography language and a notion of projection that do cater for (explicit) asynchrony.
For instance, one may consider a notion of projection that gives precedence to sending
actions in concurrent branches so that the projection of

sÑr :a | rÑs :b

yields
srr!a ;r?bs | rrs!b ;s?as

Other directions. Other directions of research concerns a more precise comparison be-
tween our type system and other related approaches, such as the conversation types [23]
and the work of Castagna et al. [31], so to characterise the systems that are supported by
each theory.

Another interesting direction is to work on a methodology that combines our bottom-
up approach with top-down approaches such as “global programming” [26]. The objective
being that both directions, from global to local specifications, and vice versa, should
be available to practitioners. Combining both approaches would not only help to keep
specifications and implementations as close as possible to each other, but also facilitate
the adoption of session type theory in more ad-hoc development cycles. Similarly to what
is done in [1], our bottom-up approach may also be valuable to infer “bad scenarios” so
that practitioners may more easily understand why an implementation does not match a
given choreography.

Finally, we are currently working on a tool that constructs a choreography (in a syntax
similar to the one of generalised global types) from a set of communicating machines,
based on the preliminary results mentioned above. We are also considering implementing
both the type system of Chapter 3 and the algorithms of Chapter 4, so to integrate them in
tool described in [52].



Bibliography

[1] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message se-
quence charts. IEEE Trans. Software Eng., 29(7):623–633, 2003.

[2] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming. Distributed Computing, 2(4):226–241, 1988.

[3] Eric Badouel and Philippe Darondeau. Theory of regions. In Wolfgang Reisig and
Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes in Computer
Science, pages 529–586. Springer, 1996.

[4] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto Zunino. Honesty
by typing. In Dirk Beyer and Michele Boreale, editors, FMOODS/FORTE, volume
7892 of Lecture Notes in Computer Science, pages 305–320. Springer, 2013.

[5] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contracts in distributed
systems. In Silva et al. [66], pages 130–147.

[6] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-oriented comput-
ing in CO2. Scientific Annals in Comp. Sci., 22(1):5–60, 2012.

[7] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. On the realizability of
contracts in dishonest systems. In Marjan Sirjani, editor, COORDINATION, volume
7274 of Lecture Notes in Computer Science. Springer, 2012.

[8] Massimo Bartoletti and Roberto Zunino. A calculus of contracting processes. In
LICS. IEEE Computer Society, 2010.

[9] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography real-
izability. In John Field and Michael Hicks, editors, POPL, pages 191–202. ACM,
2012.

137



BIBLIOGRAPHY 138

[10] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verifi-
cation of asynchronously communicating systems. In Viktor Kuncak and Andrey
Rybalchenko, editors, VMCAI, volume 7148 of LNCS. Springer, 2012.

[11] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically inter-
leaved multiparty sessions. In Franck van Breugel and Marsha Chechik, editors,
CONCUR, volume 5201 of Lecture Notes in Computer Science, pages 418–433.
Springer, 2008.

[12] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of
design-by-contract for distributed multiparty interactions. In Gastin and Laroussinie
[42], pages 162–176.

[13] Laura Bocchi, Julien Lange, and Emilio Tuosto. Amending contracts for choreogra-
phies. In Silva et al. [66], pages 111–129.

[14] Laura Bocchi, Julien Lange, and Emilio Tuosto. Three algorithms and a method-
ology for amending contracts for choreographies. Scientific Annals of Computer
Science, 22(1):61–104, 2012.

[15] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes.
Inf. Comput., 120(2):279–303, 1995.

[16] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. JACM,
30(2):323–342, 1983.

[17] Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-driven implemen-
tation of choreographies. In Christos Kaklamanis and Flemming Nielson, editors,
TGC, volume 5474 of Lecture Notes in Computer Science, pages 1–18. Springer,
2008.

[18] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language for
specifying service level agreements. In Rocco De Nicola, editor, ESOP, volume
4421 of Lecture Notes in Computer Science, pages 18–32. Springer, 2007.

[19] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In Gastin and Laroussinie [42], pages 222–236.

[20] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Towards concurrent type the-
ory. In Benjamin C. Pierce, editor, TLDI, pages 1–12. ACM, 2012.

[21] Luı́s Caires and Hugo Torres Vieira. Conversation types. In Castagna [27], pages
285–300.

[22] Luı́s Caires and Hugo Torres Vieira. Analysis of service oriented software systems
with the conversation calculus. In Luı́s Soares Barbosa and Markus Lumpe, editors,
FACS, volume 6921 of Lecture Notes in Computer Science, pages 6–33. Springer,
2010.



BIBLIOGRAPHY 139

[23] Luı́s Caires and Hugo Torres Vieira. Conversation types. Theor. Comput. Sci.,
411(51-52):4399–4440, 2010.

[24] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Rocco De Nicola, editor, ESOP, volume
4421 of Lecture Notes in Computer Science, pages 2–17. Springer, 2007.

[25] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centered programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8,
2012.

[26] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In Roberto Giacobazzi and Radhia Cousot, ed-
itors, POPL, pages 263–274. ACM, 2013.

[27] Giuseppe Castagna, editor. Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009, volume 5502 of Lecture Notes in Com-
puter Science. Springer, 2009.

[28] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global
types and multi-party sessions. In Roberto Bruni and Jürgen Dingel, editors,
FMOODS/FORTE, volume 6722 of Lecture Notes in Computer Science, pages 1–
28. Springer, 2011.

[29] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global
types and multi-party session. Logical Methods in Computer Science, 8(1), 2012.

[30] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. ACM Trans. on Prog. Lang. and Sys., 31(5), 2009.

[31] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In Mario
Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710 of Lecture Notes
in Computer Science, pages 211–228. Springer, 2009.

[32] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko
Yoshida. Asynchronous distributed monitoring for multiparty session enforcement.
In Roberto Bruni and Vladimiro Sassone, editors, TGC, volume 7173 of Lecture
Notes in Computer Science, pages 25–45. Springer, 2011.

[33] Tzu-Chun Chen and Kohei Honda. Specifying stateful asynchronous properties for
distributed programs. In Koutny and Ulidowski [49], pages 209–224.

[34] World Wide Web Consortium. Web services choreography description language
version 1.0. http://www.w3.org/TR/ws-cdl-10/, 11 2005.

[35] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko
Yoshida. Inference of global progress properties for dynamically interleaved multi-
party sessions. In Rocco De Nicola and Christine Julien, editors, COORDINATION,
volume 7890 of Lecture Notes in Computer Science, pages 45–59. Springer, 2013.

http://www.w3.org/TR/ws-cdl-10/


BIBLIOGRAPHY 140

[36] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca
Padovani. Global progress for dynamically interleaved multiparty ses-
sions. Technical report, Dipartimento di Informatica, Università di Torino,
2013. Available at http://www.di.unito.it/˜padovani/Papers/
CoppoDezaniYoshidaPadovani13.pdf.

[37] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev.
Deriving Petri Nets for Finite Transition Systems. IEEE Trans. Computers,
47(8):859–882, 1998.

[38] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. Bpel4chor: Ex-
tending bpel for modeling choreographies. In ICWS, pages 296–303. IEEE Com-
puter Society, 2007.

[39] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In
Thomas Ball and Mooly Sagiv, editors, POPL, pages 435–446. ACM, 2011.

[40] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet commu-
nicating automata. In Helmut Seidl, editor, ESOP, volume 7211 of Lecture Notes in
Computer Science, pages 194–213. Springer, 2012.

[41] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communi-
cating automata: Characterisation and synthesis of global session types. In Fedor V.
Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP
(2), volume 7966 of Lecture Notes in Computer Science, pages 174–186. Springer,
2013.

[42] Paul Gastin and François Laroussinie, editors. CONCUR 2010 - Concurrency The-
ory, 21th International Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer Sci-
ence. Springer, 2010.

[43] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primi-
tives and type discipline for structured communication-based programming. In Chris
Hankin, editor, ESOP, volume 1381 of Lecture Notes in Computer Science, pages
122–138. Springer, 1998.

[44] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. In George C. Necula and Philip Wadler, editors, POPL, pages 273–284.
ACM, 2008.

[45] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed pro-
gramming in java. In Jan Vitek, editor, ECOOP, volume 5142 of Lecture Notes in
Computer Science, pages 516–541. Springer, 2008.

[46] ITU-T. Message sequence chart (MSC). Technical Report ITU-T Recommendation
Z.120, International Telecommunication Union, 2011.

http://www.di.unito.it/~padovani/Papers/CoppoDezaniYoshidaPadovani13.pdf
http://www.di.unito.it/~padovani/Papers/CoppoDezaniYoshidaPadovani13.pdf


BIBLIOGRAPHY 141

[47] Fabrizio Montesi Ivan Lanese and Gianluigi Zavattaro. Amending choreographies.
In Editors Antonio Ravara, Josep Silva, editor, Proceedings of WWV 2013, 9th In-
ternational Workshop on Automated Specification and Verification of Web Systems,
EPTCS, page 15 pages, 2013. to appear.

[48] Walter Knodel. New gossips and telephones. Discrete Mathematics, 13(1):95 –,
1975.

[49] Maciej Koutny and Irek Ulidowski, editors. CONCUR 2012 - Concurrency Theory -
23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, Septem-
ber 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science.
Springer, 2012.

[50] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the
gap between interaction- and process-oriented choreographies. In Antonio Cerone
and Stefan Gruner, editors, SEFM, pages 323–332. IEEE Computer Society, 2008.

[51] Julien Lange and Alceste Scalas. Choreography synthesis as contract agree-
ment. http://www.cs.le.ac.uk/people/jlange/papers/agreement.pdf,
March 2013. To appear in ICE’13.

[52] Julien Lange and Emilio Tuosto. A modular toolkit for distributed interactions. In
Kohei Honda and Alan Mycroft, editors, PLACES, volume 69 of EPTCS, pages 92–
110, 2010.

[53] Julien Lange and Emilio Tuosto. Synthesising Choreographies from Local Session
Types. In Koutny and Ulidowski [49], pages 225–239.

[54] Sjouke Mauw. The formalization of message sequence charts. Computer Networks
and ISDN Systems, 28(12):1643–1657, 1996.

[55] Bertrand Meyer. Applying ”design by contract”. IEEE Computer, 25(10):40–51,
1992.

[56] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

[57] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in
partially commutative asynchronous sessions. In Castagna [27], pages 316–332.

[58] Matthias Neubauer and Peter Thiemann. An implementation of session types. In
Bharat Jayaraman, editor, PADL, volume 3057 of Lecture Notes in Computer Sci-
ence, pages 56–70. Springer, 2004.

[59] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session c: Safe parallel
programming with message optimisation. In Carlo A. Furia and Sebastian Nanz,
editors, TOOLS (50), volume 7304 of Lecture Notes in Computer Science, pages
202–218. Springer, 2012.

http://www.cs.le.ac.uk/people/jlange/papers/agreement.pdf


BIBLIOGRAPHY 142

[60] Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos Kryftis.
Safe parallel programming with session java. In Wolfgang De Meuter and Gruia-
Catalin Roman, editors, COORDINATION, volume 6721 of Lecture Notes in Com-
puter Science, pages 110–126. Springer, 2011.

[61] OASIS. Web services business process execution language (WS-BPEL) version 2.0.
https://www.oasis-open.org/committees/wsbpel, April 2007.

[62] OMG. Unified modeling language (UML). http://www.omg.org/spec/UML/,
August 2011.

[63] Luca Padovani. On projecting processes into session types. Mathematical Structures
in Computer Science, 22(2):237–289, 2012.

[64] SAVARA and testable architecture. http://www.jboss.org/savara.

[65] Scribble. http://www.jboss.org/scribble.

[66] Alexandra Silva, Simon Bliudze, Roberto Bruni, and Marco Carbone, editors. Pro-
ceedings Fourth Interaction and Concurrency Experience, volume 59 of EPTCS,
2011.

[67] Singularity. http://research.microsoft.com/projects/singularity/.

[68] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In Constantine Halatsis, Dimitris G. Maritsas, George
Philokyprou, and Sergios Theodoridis, editors, PARLE, volume 817 of Lecture Notes
in Computer Science, pages 398–413. Springer, 1994.

[69] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation calculus:
A model of service-oriented computation. In Sophia Drossopoulou, editor, ESOP,
volume 4960 of Lecture Notes in Computer Science, pages 269–283. Springer, 2008.

[70] Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Find-
ler, editors, ICFP, pages 273–286. ACM, 2012.

[71] Yin Wang, Ahmed Nazeem, and Ram Swaminathan. Finding the optimal repre-
sentation for service composition using the theory of regions. Technical Report
HPL-2010-191, HP Laboratories, 2011.

[72] Yin Wang, Ahmed Nazeem, and Ram Swaminathan. On the optimal petri net repre-
sentation for service composition. In ICWS, pages 235–242. IEEE Computer Soci-
ety, 2011.

[73] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parame-
terised multiparty session types. In C.-H. Luke Ong, editor, FOSSACS, volume 6014
of Lecture Notes in Computer Science, pages 128–145. Springer, 2010.

https://www.oasis-open.org/committees/wsbpel
http://www.omg.org/spec/UML/
http://www.jboss.org/savara
http://www.jboss.org/scribble
http://research.microsoft.com/projects/singularity/

	Introduction
	Motivations and Objectives
	Synopsis and Contributions
	Publications

	Background
	Foundations
	Dyadic Session Types
	Multiparty Session Types
	Design-by-Contract for Distributed Multiparty Interactions
	Session Types and Communicating Machines

	Related Work
	Global versus Local Specifications
	On Synthesising Choreographies
	Beyond Multiparty Session Types
	Other Approaches to Multiparty Sessions


	Synthesising Choreographies from Local Types
	Introduction
	Local Types
	Global Types
	Well-formed Global Types
	Properties of Well-formed Global Types

	Synthesising Global Types
	Validation Rules
	Applying the Rules

	Properties of the Synthesis
	Decidability
	Uniqueness
	Well-formedness and Projections
	Subject Reduction
	Equivalence with Original System
	Completeness

	Perspectives
	Concluding Remarks

	Amending Contracts for Choreographies
	Introduction
	Preliminaries
	On Recovering History Sensitivity
	Strengthening
	Variable Propagation
	Properties of Strengthening and Propagation 

	On Recovering Temporal Satisfiability
	Lifting Algorithm
	Applying lifting to Branching and Recursion
	Properties of lifting

	A Methodology for Amending Choreographies
	Amendment Strategies

	Applying the Methodology
	Cash Withdrawal
	Credit Request

	Concluding Remarks

	Choreography Synthesis as Contract Agreement
	Introduction
	A Motivating Example
	A Choreography-Based Contract Model
	Contract-Oriented Computing and Choreographies
	A Choreography-Based CO2
	On the Flexibility of Session Establishment

	The Problem of Honesty
	Properties of Honest Networks
	Concluding Remarks

	Conclusions and Future Directions
	Summary of the Contributions
	Future Directions

	Bibliography

