
Choreographies in the WildI

Massimo Bartolettia, Julien Langeb,∗, Alceste Scalasa, Roberto Zuninoc

aDipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
bDepartment of Computing, Imperial College London, UK

cDipartimento di Matematica, Università degli Studi di Trento, Italy

Abstract

We investigate the use of choreographies in distributed scenarios where, as in the real world, mutually
distrusting (and possibly dishonest) participants may be unfaithful to their expected behaviour. In our
model, each participant advertises its promised behaviour as a contract. Participants may interact through
multiparty sessions, created when their contracts allow to synthesise a choreography. We show that systems
of honest participants (which always adhere to their contracts) enjoy progress and session fidelity.

Keywords: contracts, choreographies, session types

1. Introduction

Designing reliable large-scale distributed systems is a difficult challenge. Several intrinsic issues (e.g.
concurrency, physical distribution, non-reproducibility of bugs, etc.) make it extremely unlikely that any
non-trivial distributed application actually works as its designers intended. To cope with this grand chal-
lenge, a lot of foundational and applied research has been carried over in the last 15 years.

One of the most notable approaches is that which studies session types [1, 2, 3] as an abstraction of
the communication behaviour of distributed applications. In the top-down approach to session types, the
designer of a distributed application specifies its overall communication behaviour through a choreography,
which validates some global properties of the application (e.g. safety and deadlock-freedom). However, a
distributed application is nothing more than the composition of a number services, running on different nodes
in the network. In order to globally enjoy the properties validated by the choreography, all the components
forming the application have to be verified; this can be done e.g. by projecting the choreography to end-point
types, against which these services are actually type-checked.

The above-mentioned top-down approach is quite suitable in case the designers have complete control
over the application, e.g., when they develop all the needed services. However, in many realistic situations
this is not the case: for instance, one might need to integrate with already-existing third-party services, e.g.,
e-commerce facilities, maps, etc. In this case, the top-down approach might not work as expected, because
it could be impossible to adapt the end-point type projected from the choreography to the actual interface
of the third-party service. In the last few years, approaches mixing top-down and bottom-up composition
have been studied to cope with this kind of situation [4, 5, 6].

Dropping the (unrealistic) hypothesis that a distributed application is built of services coming from a
single provider has a further consequence. We can no longer suppose that services live in a “civil society”
where they smoothly collaborate with each other; rather, they live in a “wild” environment (like Hobbes’

IWork partially supported by Aut. Region of Sardinia under grants L.R.7/2007 CRP-17285 (TRICS) and P.I.A. 2010
project “Social Glue”, MIUR PRIN 2010-11 project “Security Horizons”, EU COST Action IC1201 (BETTY), and EPSRC
EP/K034413/1.
∗Corresponding author. Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, London e-mail:

j.lange@imperial.ac.uk

Preprint submitted to Elsevier November 19, 2014

condition of mere nature [7]) where they must compete for resources, and possibly diverge from the intended
behaviour in case they find it convenient to do so. Indeed, this situation is quite reasonable in inter-
organisational scenarios, where mistrusted providers compete to achieve conflicting goals. Although some
proposals like OASIS [8] try do deal with this issue by prescribing runtime monitoring and logging, no
general techniques exist for checking that services actually adhere to their specifications, unless one controls
the “bottom layer” of the software stack [9].

To overcome the state of nature, and move towards the “social contract” (as in Hobbes’ Leviathan),
some recent works have proposed to discipline the interaction of services through contracts [10, 11]. The
idea is a contract-oriented, bottom-up composition, where only those services with compliant contracts can
establish sessions through which they interact. To give some intuition about the underlying dynamics, let
us assume three participants A, B and K, where the latter plays the role of a contract broker. A possible
interaction among these participants could be the following:

1. A advertises its contract cA to K;

2. B advertises its contract cB to K;

3. K checks if cA and cB are compliant; if so, it creates a fresh session s between A and B;

4. at this point, A and B can start interacting through s, by performing the communications prescribed
by their contracts. While doing that, they can advertise other contracts, so establishing other sessions
(possibly, with different participants).

One key aspect of this contract-oriented approach is that the runtime behaviour of a service may diverge
from the advertised one. For instance, participant B above may fail to perform some of the actions in cB
(either maliciously or accidentally); if A assumes that B respects its contract, then A may get stuck on session
s, and consequently it may fail to fulfil its contracts in some other sessions (so possibly damaging itself or
other participants). A notable question then arises: how can designers guarantee that their services are
honest, in that they always respect the advertised contracts, despite the possible dishonesty of the services
they may interact with?

In this paper we address the issue of reconciling the top-down and the bottom-up approaches to service
composition in wild environments. To this purpose, we propose a combination of two approaches. Like in
the contract-oriented approach [10], we assume that applications are built bottom-up, by composing services
whose advertised contracts admit agreements. However, unlike in previous contract-oriented calculi, service
contracts are local session types, in a form similar to those used in [12, 13]. A set of contracts admits an
agreement whenever it is possible to synthesise from them a choreography — i.e. a global type — whose
projections are the contracts themselves [6]. The existence of such a choreography ensures that, if all services
behave honestly, the overall application enjoys progress and session fidelity. However, by the wilderness
assumption, the actual behaviour of services may deviate from the promised one. In this case, progress no
longer holds, but at least we can single out the services which are responsible for contract violations.

Contributions. We have combined notions and techniques from the session types literature to devise a
model of distributed systems where services may be composed bottom-up according to their contracts,
and they may deviate from the expected behaviour at runtime. Contracts are expressed as local session
types, and multiparty agreements are constructed by adapting the synthesis technique for choreographies
of [6]. This allows us to import some results from the session types literature — in particular, the existence
of a choreography ensures that contractual agreements enjoy safety and progress (Theorem 3.9). Using
choreographies as the basis for agreements is quite flexible: indeed, it allows us to impose further constraints
before establishing sessions, e.g. on the number of involved participants, whether or not the session may
terminate, etc.

We model services in the CO2 calculus [14], which is adapted here to use (multiparty) local session types
as contracts. We define when a service is culpable (i.e., responsible for the next move) in a session, and
we show that at least one culpable participant exists in each non-terminated session (Theorem 4.10). If

2

a, b, . . . Participant identifiers, union of:
A, B, . . . ∈ P Participant names
a, b, . . . ∈ P Participant variables

e, e′, . . . Sorts
c, c′, . . . Contracts
T , T ′, . . . Systems of contracts
G,G′, . . . Global types

u, v, . . . Session identifiers, union of:
s, s′, t, . . . ∈ S Session names
x, y, . . . ∈ S Session variables

γ, γ′, . . . ∈ Γ Unsigned contracts
K,K′, . . . Latent contracts
P, P ′, . . . Processes
S, S′, . . . Systems

Table 1: Summary of notation.

a system gets stuck, it is always possible to identify which participants violated their contracts. We then
adapt the notion of honesty of [11]. We show that an honest service is always able to satisfy its contracts
by firing some of its actions, even when the other services do not cooperate (Theorem 6.1). Furthermore,
we show that systems of honest services preserve the properties enjoyed by choreographies: in particular,
session fidelity (Theorem 6.2) ensures that no extra-contractual interactions are possible in a session, and
that honest participants will eventually perform the actions required by their contracts.

We present a case study where the key features of our framework are put into practice. Multiparty
sessions, honest participants, and choreography-based contractual agreements are used to model distributed
systems where brokers let participants start a new session only if they are advertising contracts such that,
as a whole, they implement a class of gossip protocols [15].

Synopsis. The rest of the paper is structured as follows. In Section 2, we sketch an example that we will
use through the paper to illustrate our framework. In Section 3, we introduce a contract model based on
multiparty session types, and we define contractual agreement as choreography synthesis. In Section 4 we
present CO2, suitably adapted to deal with the contracts of Section 3, and we highlight some of its main
features. In Section 5, we formalise the notion of honesty. Our main technical results are presented in Sec-
tion 6, where we show how global properties of choreographies are projected to (honest) CO2 systems [14].
In Section 7 we test the suitability of our framework through a large case study. Finally, in Section 8 we
discuss some related work, and in Section 9 draw some conclusions.

2. A Motivating Example

We introduce a running example which we will use through the paper to illustrate our framework. To
make symbols lookup easier, we have summarised the syntactic categories and some notation in Table 1;
some of the symbols defined therein will only be used in later sections.

An online store A allows two (still unknown) buyers b1 and b2 to make a joint purchase through a simple
protocol: after they both request the same item, a quote is sent to b1, who is then expected to either place
an order (order) or end the session (bye); the store also promises to notify b2 about whether the order was
placed (ok) or cancelled (bye). The behaviour promised by A is described by the following contract:

cA = b1?req; b2?req; b1!quote; (b1?order; b2!ok + b1?bye; b2!bye)

What kind of contracts would be compliant with cA? One answer consists in the following contracts, adver-
tised by buyers B1 and B2:

cB1 = a!req;a?quote; (b′2!ok;a!order⊕ b′2!bye;a!bye)

cB2 = a′!req; (b′1?ok;a′?ok + b′1?bye;a′?bye)

Here, B1 promises to send the request to a (still unknown) store a, wait for the quote, and then notify the
other buyer b′2 before accepting or rejecting the store offer; symmetrically, B2 promises to send the request
to the store a′, and then expects to receive the same notification (either ok or bye) from both the other
buyer b′1 and the store itself. Each contract represents the local viewpoint of the participant who advertises

3

it: in particular, cA represents the local viewpoint of the store, and thus it does not (and indeed, it cannot)
capture the communications between B1 and B2.

An agreement among cA, cB1 and cB2 may be found after instantiating the participant variables (in each
contract) to actual names, through the substitutions {A/a,a′}, {B1/b1,b′1} and {B2/b2,b′2}. The contracts admit
an agreement because a choreography exists which can be projected back to cA, cB1 and cB2 . The existence
of such a choreography guarantees progress and safety of the contractual agreement (Theorem 3.9). We can
exploit the technique in [6] to synthesise a choreography from a set of contracts. In our example, we obtain:

GAB1B2 = B1→A : req ; B2→A : req ; A→B1 :quote ;
(B1→B2 :ok ; B1→A :order ; A→B2 :ok + B1→B2 :bye ; B1→A :bye ; A→B2 :bye)

Global type GAB1B2 says that B1 and B2 send a request to A, consecutively; then A replies to B1 with a
quote. Subsequently, B1 chooses whether to accept or reject the quote. In the former case, B1 notifies B2 (ok
message) then A (order message), who sends a confirmation to B2 (ok message). In the latter case, B1 sends
bye to both B2 and A, and A confirms the cancellation to B2 by sending bye as well.

However, in realistic distributed scenarios, the existence of a contractual agreement among participants
does not guarantee that progress and safety will also hold at runtime: in fact, a participant may advertise
a contract promising some behaviour, and then fail to respect it — either maliciously or accidentally. Such
failures may then cascade on other participants, e.g., if they remain stuck waiting for a promised message
that is never sent.

This sort of situations can be modelled using the CO2 calculus [14]. For instance, a CO2 system for the
above scenario will have the following form:

A[(x)(b1, b2) tellA ↓x cA . fuse . PA] | B1[(y)(a, b′2) tellA ↓y cB1 . PB1] | B2[(z)(a, b′1) tellA ↓z cB2 . PB2]

Here, participant A advertises the contract cA to itself via the primitive tellA↓x cA, where x is used as a session
handle for interacting with other participants. B1 and B2 advertise their respective contracts to A with a
similar invocation.

In this example, A also plays the role of contract broker, which collects the advertised contracts, while
looking for an agreement. Once an agreement is found, the fuse prefix is fired, and a new session is established
among all the involved participants. At this point, the participants may realise the agreed contracts — or
they may even choose not to. In fact, we will see that when the contracts are violated, the calculus allows
for responsible participants to be always ruled out (Theorem 4.10). In systems where participants are honest
(i.e. they always fulfil their contracts) the progress and safety of the contractual agreement are also reflected
in the runtime behaviour of the CO2 system (Theorem 6.1 and Theorem 6.2).

Other possible agreements. Our framework allows for modelling a wide variety of scenarios. For instance, a
participant B12 may impersonate both buyers, and promise to always accept the store offer, by advertising
the following contract:

cB12 = a′′!req;a′′!req;a′′?quote;a′′!order;a′′?ok

where the request to the store a′′ is sent twice (i.e., once for each impersonated customer). In this case, if
we instantiate the participant variables in cA and cB12 with substitutions {A/a′′}, {B12/b1,b2}, we can find an
agreement by synthesising the following choreography:

GAB12 = B12→A : req ; B12→A : req ; A→B12 :quote ; B12→A :order ; A→B12 :ok

This scenario may be modelled by a CO2 system of the form:

S2 = A[(x)(b1, b2) tellA ↓x cA . fuse . PA] | B12[(w)(a′′) tellA ↓w cB12 . PB12]

where the fuse prefix can now create a session involving A and B12.
The participants in the CO2 systems S1 and S2 may also be combined, so to obtain:

S12 = A[(x)(b1, b2) tellA ↓x cA . fuse . PA] | B1[(y)(a, b′2) tellA ↓y cB1 . PB1]
| B2[(z)(a, b′1) tellA ↓z cB2 . PB2] | B12[(w)(a′′) tellA ↓w cB12 . PB12]

4

In this case, after all contracts have been advertised to A, either a session corresponding to GAB1B2 , or to
GAB12 may take place, thus involving a different number of participants depending on which contracts are
fused. As mentioned above, the honesty of A can not depend on which of the two agreements is chosen: to
be honest, A must respect its contracts whatever agreement is found with the other participants.

3. A Choreography-Based Contract Model

In this section we exploit concepts and results from the session types literature to devise a multiparty
contract model. In Sections 3.1 and 3.2, we present the syntax and semantics of contracts. In Section 3.3, we
define the crucial notion of agreement. Intuitively, a set of contracts admits an agreement when there exists
a choreography which can be projected back to such contracts. This choreography can be inferred through
a type system, adapted from [16], which guarantees safety properties (Theorem 3.9). In Section 3.4, we
introduce a notion of culpability. Theorem 3.12 ensures that, if a system of contracts admits an agreement,
then at each step of its execution some participants will be “culpable”, i.e. responsible for making the next
step in a non-terminated system of contract.

3.1. Local session types as Contracts

We express contracts using the syntax of local session types, in the style of [12, 13]. Let P and P be disjoint
sets of, respectively, participant names (ranged over by A, B, . . .) and participant variables (ranged over by
a, b, . . .), and let a, b range over P ∪ P. We abstract from the actual data exchanged between participants
by using sorts e, e′, We denote (individual) contracts with c, c′, . . ., and systems of contracts with T ,
T ′, We write P(T) for the set of participant names in T .

Definition 3.1 (Contracts). The syntax of contracts is given below (we use the colour blue for contracts
and green for systems of contracts).

c ::=
⊕

i∈I ai !ei ; ci where ∀i 6= j ∈ I : (ai, ei) 6= (aj , ej) (Internal choice)∣∣ ∑
i∈I a?ei ; ci where ∀i 6= j ∈ I : ei 6= ej (External choice)∣∣ µx.c (Recursion)∣∣ x (Recursion variable)∣∣ 0 (End)

T ::= T | T ′ where P(T) ∩ P(T ′) = ∅ (System composition)∣∣ A〈c〉 (Participant’s contract)∣∣ (AB) : ρ where A 6= B and ρ is a sequence of sorts (Queue)∣∣ 0 (End)

Intuitively, in an internal choice, after sending the message ei to participant ai, behaviour ci takes place;
whereas in an external choice if a message of sort ei is received from a, then behaviour ci takes place.
We write fv(c) for the (free) participant variables in c. We identify empty internal and external sums, i.e.
0 =

⊕
i∈∅ ai !ei ; ci =

∑
i∈∅ a?ei ; ci.

A system of contracts T may be either: (i) a parallel composition of systems T | T ′; or (ii) a named
contract A〈c〉, saying that participant A promises to behave according to c; (iii) a queue (AB) : ρ of messages
from A to B; we write [] for the empty sequence of message. In a system T , we assume that there are exactly
two uni-directional queues per pair of participants; that is, two participants A and B can only communicate
via queues named AB (from A to B) and BA (from B to A). Whenever we refer to a system T , we assume that
it respects the conditions in Definition 3.1 as well as those above.

5

A〈B!e;c0 ⊕ c1〉 | (AB) :ρ
A→B:e−−−−→→ A〈c0〉 | (AB) :ρ · e

A〈B?e;c0 + c1〉 | (BA) :e · ρ A←B:e−−−−→→ A〈c0〉 | (BA) :ρ

µx.c ≡ c {µx.c/x} A〈0〉 ≡ 0

commutative monoidal laws for | , ⊕ and +

T1
λ−→→ T ′1

T1 | T2
λ−→→ T ′1 | T2

Figure 1: Semantics of systems of contracts.

3.2. Semantics

The semantics of systems of contracts is given in Figure 1, where labels λ have either the form A→ B : e
or A ← B : e. The label A → B : e means that a message of sort e is sent by participant A to B; instead, the
label A← B : e means that a message of sort e is received by A from B. The first rule in Figure 1 says that,
after an internal choice, A puts a message e on its queue for participant B. The second rule says that, in an
external choice, A can receive a message (of the expected sort) from an input queue BA. The semantics is
assumed up-to the congruence relation ≡ defined in Figure 1.

Notation 3.2. Hereafter, we will use the following notation. We write:

� T
A�B:e−−−−→→ T ′ when either T

A→B:e−−−−→→ T ′ or T
A←B:e−−−−→→ T ′.

� T −→→ T ′ when T
A�B:e−−−−→→ T ′, and the label is unimportant.

� P(T) (resp. C(T)) for the set of participant (resp. queue) names in T .

� q(T) for the parallel composition of the empty queues connecting all distinct pairs of participants
appearing in T .

� T (A) for the contract of A in T , and T [AB] for the content of the queue AB, i.e.:

T (A) =

{
c if T ≡ A〈c〉 | T ′

⊥ otherwise
T [AB] =

{
ρ if T ≡ (AB) :ρ | T ′

⊥ otherwise

Example 3.3. From the example in Section 2, consider the instantiated contracts of the store A and its
customer B12. We illustrate the system, and how it progresses (hereafter, for the sake of readability, we often
omit empty queues).

T AB12Q = A〈cA {A/a′′} {B12/b1,b2}〉 | B12〈cB12 {A/a′′} {B12/b1,b2}〉 | (B12A) : []

= A〈B12?req;B12?req; . . .〉 | B12〈A!req;A!req; . . .〉 | (B12A) : []
B12→A:req−−−−−−→→ A〈B12?req;B12?req; . . .〉 | B12〈A!req; . . .〉 | (B12A) : req
A←B12:req−−−−−−→→ A〈B12?req; . . .〉 | B12〈A!req; . . .〉 | (B12A) : []

3.3. Choreography Synthesis as Agreement

We introduce in Definition 3.6 below the agreement relation, that tells whether some contracts can be
combined to describe a correct interaction. Roughly, a set of contracts admits an agreement if it can be
assigned a choreography. To do that, we borrow some results from [6, 16]: in particular, we exploit a typing
system which assigns a (unique) choreography to a set of contracts.

Definition 3.4. The syntax of choreographies G is defined as follows:

G ::= A→B :e ;G
∣∣ G+G′

∣∣ G | G′
∣∣ µx.G

∣∣ x
∣∣ 0

6

The first production means that A sends a message of sort e to B, then interactions in G take place;
G+G′ means that either interactions in G or in G′ take place; G | G′ means that interactions in G and G′ are
executed concurrently; the rest of the productions are for recursive interactions, and termination (0).

To synthesise a choreography G from a system of contracts T , we analyse what actions can occur at each
possible state of T . These actions are contained in the set TRS(T) defined below. The auxiliary predicate
T l holds whenever two participants are able to synchronise (i.e., B may receive the message sent by A as
soon as it appears on the queue).

Definition 3.5 (System of contracts Ready Set). We define the ready set of a system as follows:

TRS(T) =

{A←B} ∪ TRS(T ′) if T ≡ A

〈∑
i∈I B?ei;ci

〉
| T ′

{A→Bi | i ∈ I} ∪ TRS(T ′) if T ≡ A
〈⊕

i∈I Bi!ei;ci
〉
| T ′

∅ if T ≡ 0

We write T l when ∃ A, B : A→B ∈ TRS(T) ∧ B←A ∈ TRS(T). We write T 6l if T l does not hold.

In Figure 2 we present the synthesis of choreographies from systems of contracts (this is a slight adaptation
of the synthesis in [16]). Typing judgements have the form Γ ` T I G, where Γ is an environment which
keeps track of recursion variables. Roughly, Γ maps pairs (A,x) to x′, where x is the local recursion variable
of participant A and x′ is a global recursion variable. A typing judgement Γ ` T I G says that, under
hypothesis Γ, the system T is assigned to global type G.

We write P(G) (resp. C(G)) for the set of participant (resp. queue) names in G.

Definition 3.6 (Agreement). We say that a system of contracts T admits an agreement when ` T I G

can be inferred from the rules in Figure 2.

Essentially, the synthesis rules allow to execute a set of contracts step-by-step, while keeping track of the
structure of the interactions in a global type. The rules are driven by the ready set of T and the structure
of its processes. We briefly describe them below.

Sequential interactions are dealt with by rule [;]. The rule validates prefixes provided that the continuation
is typable and that no other interactions are possible in T . For instance, rule [;] does not apply to

A1〈B1!e;c1〉 | B1〈A1?e;c′1〉 | A2〈B2!e1;c2〉 | B2〈A2?e1;c
′
2〉 8

because there is no ordering relation between the actions of A1 and B1 on one hand, and the actions of A2
and B2 on the other hand. In such cases, the rule [|] must be used. In fact, the premise T 6l guarantees that
a synthesised global type is unique (up-to structural congruence), cf. [16, Theorem 3.3].

Concurrent branches are introduced by rule [|]. The rule validates concurrent branches when they can
be validated using a partition of the system being considered (recall that P(T)∩P(T ′) = ∅ by assumption).

Choice in a global type is dealt with by rules [⊕] and [+]. Rule [⊕] introduces the global type choice
operator, it requires both branches to be typable and that no other interactions are possible in T — for the
same reason as in rule [;]. Rule [+] discharges a branch of an external choice. This allows, e.g., to assign a
type to systems of the form:

A〈B!e ⊕ B!e1〉 | B〈A?e + A?e1 + A?e2〉 4

Recursion is handled by rules [µ] and [x]. The former rule “guesses” the participants involved in a recursive
behaviour. If two of them interact, [µ] validates the recursion provided that the system can be typed when
such participants are associated to the global recursion variable x – assuming x is fresh. Rule [x] checks
that all the participants in the recursion have reached a local recursion variable corresponding to the global
recursion. The termination 0 is introduced by rule [0], which only applies when all the participants in T are
terminated. Rule [≡] validates a system up-to structural congruence, so allowing recursive behaviour to be
unfolded.

7

[;]
Γ ` A〈c〉 | B

〈
c′
〉
| T I G T 6l

Γ ` A〈B!e;c〉 | B
〈
A?e;c′

〉
| T I A→B :e ;G

[|]
` T I G ` T ′ I G

′

Γ ` T | T ′ I G | G′

[⊕]
Γ ` A〈c〉 | T I G Γ ` A

〈
c′
〉
| T I G

′ T 6l
Γ ` A

〈
c⊕ c′

〉
| T I G+G

′ [+]
Γ ` B〈c〉 | T I G

Γ ` B
〈
c+ c′

〉
| T I G

[µ]
∃ 1 ≤ i, j ≤ k : (Ai〈ci〉 | Aj〈cj〉)l Γ · (A1,x1) : x, . . . , (Ak,xk) : x ` A1〈c1〉 | · · · | Ak〈ck〉 I G

Γ ` A1〈µx1.c1〉 | · · · | Ak〈µxk.ck〉 I µx.G

[x]
∀1 ≤ i ≤ k : Γ(Ai,xi) = x

Γ ` A1〈x1〉 | · · · | Ak〈xk〉 I x
[≡]

T ≡ T ′ Γ ` T ′ I G

Γ ` T I G
[0]
∀A ∈ P(T) : T (A) = 0

Γ ` T I 0

Figure 2: Inference of global types.

The main properties that we are interested in — and that are guaranteed by the synthesis — are (i) that
the inferred global type is projectable back to the original contracts and (ii) that if a system of contract
T is typable, then T is “safe”, cf. Theorem 3.9 below. The synthesised global types also satisfy other
well-formedness properties which we discuss briefly in Section 8.2.

Example 3.7. Recall the buyer-seller scenario from Section 2. By combining the contract of store A with
those of customers B1 and B2, we obtain the system:

T AB1B2 = A〈cA {B1/b1} {B2/b2}〉 | B1〈cB1 {A/a} {B2/b′2}〉 | B2〈cB2 {A/a′} {B1/b′1}〉

The system T AB1B2 admits an agreement: indeed, we have that ` T AB1B2 I GAB1B2 (where the choreography
GAB1B2 is that defined at page 4). Similarly, if we combine the store A with B12, we have that T AB12 admits
an agreement, since ` T AB12 I GAB12 (where GAB12 is the choreography at page 4).

Theorem 3.9 below establishes some properties of systems of contracts which do admit an agreement. We
first define some undesirable properties of systems. A system is a deadlock if all its queues are empty, there
is one participant expecting a message, and all participants are either terminated or waiting for an input.
An unspecified reception configuration is a system for which there is a participant B who is permanently
unable to read any messages from its queues, i.e., there are unexpected messages in B’s buffers. A system
has a self-interaction if some participant is expected to send a message to himself (or to receive a message
from himself). Definition 3.8 formalises these concepts.

Definition 3.8 (Deadlock/unspecified reception). For a system of contracts T , we say that:

� T is a deadlock if the following conditions hold:

∀ AB ∈ C(T) : T [AB] = []

∃ C ∈ P(T) : T (C) ≡ A?e;c+ c′

∀ C ∈ P(T) : T (C) ≡ A?e;c+ c′ ∨ T (C) ≡ 0

� T is an unspecified reception configuration if ∃ B ∈ P(T) :

T (B) ≡ A′?e′;c1 + c2 ∧ (∀e, A ∈ P(T) : T (B) ≡ A?e;c+ c′ =⇒ T [AB] 6= [] ∧ T [AB] 6= e · ρ)

� T has a self-interaction if there exists A ∈ P(T) such that T ′(A) ≡ A!e;c⊕ c′ or T ′(A) ≡ A?e;c+ c′.

8

Theorem 3.9 (Agreement). If T admits an agreement, then for all T ′ such that T | q(T) −→→∗ T ′:

1. T ′ is not a deadlock.

2. T ′ is not an unspecified reception configuration.

3. T ′ has no self-interactions.

4. Either there is T ′′ such that T ′ −→→ T ′′, or

∀ AB ∈ C(T ′) : T ′[AB] = [] and ∀ C ∈ P(T ′) : T ′(C) ≡ 0

Proof. Items (1),(2) and (4) follow from Theorem 3.1 in [16]. Item (3) is a direct consequence of Theorem 3.9
and of the assumption that for all AB ∈ C(T) : A 6= B. 2

3.4. Culpability

We introduce a notion of culpability in systems of contracts. Intuitively, a participant is culpable in a
system if it is able to send or receive some message. This condition is not necessarily permanent: a culpable
participant may exculpate itself by sending/receiving the required messages.

Definition 3.10 (Contract culpability). A is culpable in T when T
A�B:e−−−−→→, for some B and e.

As expected, a participant A is not culpable in a system of contracts not including any contracts of A.

Lemma 3.11. For all system T , if A /∈ P(T), then A is not culpable in T .

The following theorem ensures that, if a system of contracts admits an agreement, then at each step of
its execution (until reaching the final state 0) some participant is culpable. This guarantees that, unless
some participants want to stay culpable forever, the system of contracts enjoys progress.

Theorem 3.12 (Presence of culpability in contracts). If T admits an agreement and T | q(T) −→→∗
T ′ 6≡ 0, then there exists at least one culpable participant in T ′.

Proof. Since T ′ 6≡ 0 then, for some A, B, e, c, c′, either (a) T ′ ≡ A〈B!e;c⊕ c′〉 | T ′′, or (b) T ′ ≡ A〈B?e;c+ c′〉.
Case (a) follows directly, since a send action can always be fired. Case (b) follows from Theorem 3.9, i.e.,
there must be a message for A in a queue BA, otherwise we would have a deadlock or an unspecified reception
configuration. 2

4. Introducing Choreographies to the Wild

We present a variant of the CO2 calculus (for COntract-Oriented computing) [14] which we adapt to deal
with the multiparty contracts and sessions introduced in Section 3. In Sections 4.1 and 4.2 we give its syntax
and semantics, while in Section 4.3 we explain in detail how new sessions are established, providing several
examples. In Section 4.4 we formalise when participants in CO2 systems are “culpable”, and show that a non-
terminated session always implies the (possibly transient) culpability of some participant (Theorem 4.10).
Finally, in Section 4.5 we discuss how the session creation mechanics can be adjusted in order to enforce
some desired properties on the resulting interactions.

9

commutative monoidal laws for + and |, with 0 as identity element

A[(u)P] ≡ (u)A[P] (u)Z ≡ Z if u 6∈ fnv(Z)

(u)(v)Z ≡ (v)(u)Z Z | (u)Z′ ≡ (u)(Z | Z′) if u 6∈ fnv(Z)

A[K] | A[K′] ≡ A[K | K′]

Figure 3: Structural congruence rules for CO2.

4.1. Syntax

Let S and S be disjoint sets of, respectively, session names (ranged over by s, s′, t, . . .) and session
variables (ranged over by x, y, z . . .). Let u, v, . . . range over S ∪ S. The syntax of CO2 is given as follows:

(Processes) P,Q ::=
∑
i∈I pi . Pi

∣∣ P | Q ∣∣ (~u)P
∣∣ (~a)P

∣∣ X(~u,~a)

(Prefixes) p ::= τ
∣∣ tell a↓u c

∣∣ fuse
∣∣ doua e

(Latent contracts) K ::= ↓u A says c
∣∣ K | K

(Systems) S ::= A[P]
∣∣ A[K]

∣∣ s[T]
∣∣ S | S ∣∣ (~u,~a)S

∣∣ 0

CO2 features CCS-style processes, equipped with branching
∑

(not to be confused with the choice operator
used in contracts), parallel composition |, restrictions of session and participant variables, and named process
invocation. As usual, we denote the empty sum with 0, and omit its trailing occurrences. We assume
that each process identifier X has a unique defining equation X(y1, . . . , yn, a1, . . . , am) := P such that
fv(P) ⊆ {y1, . . . , yn, a1, . . . , am} and each occurrence of process identifiers in P is prefix-guarded. We shall
take the liberty of omitting the arguments of X(~y,~a) when they are clear from the context. The prefixes
are for internal action (τ), contract advertisement (tell), session creation upon contractual agreement (fuse),
and execution of contractual actions (do).

A latent contract of the form ↓x A says c represents the promise of participant A to fulfil c by executing
do-actions, once x has been instantiated with a session name.

CO2 systems may be parallel compositions of participants A[P] (where P is the process being executed
by A), collections of latent contracts A[K] (where A is the participant to which the contracts in K have been
advertised), and sessions s[T] (where s is a session name, and T is a system of contracts as in Section 3).
We assume well-formed systems where each participant name A can appear with at most one process — i.e.,
we rule out systems like A[P] | A[Q].

Note that CO2 process and system productions allow to delimit both session names/variables (~u) and
participant variables (~a), but not participant names: this is because participant names are used to uniquely
(and statically) identify participants in a network, and therefore we do not want these names to be α-
converted.

4.2. Semantics

The semantics of CO2 (Figure 4) is defined up-to a congruence relation between CO2 systems (Figure 3).
The rules defining ≡ are mostly standard. In Figure 3, Z,Z ′, Z ′′ range over processes, systems, or latent con-
tracts; all rules involving delimited session names/variables u, v also hold for delimited participant variables
a, b (e.g., A[(a)P] ≡ (a)A[P]). Rule A[(u)P] ≡ (u)A[P] allows to move delimitations between CO2 systems
and processes; the last rule (A[K] | A[K ′] ≡ A[K | K ′]) will be discussed in Section 4.3 and in Example 4.4.

Definition 4.1 (Semantics of CO2).
`−→ is the smallest relation between CO2 systems closed under the

rules of Figure 4, which are to be considered up-to the structural congruence relation ≡ in Figure 3. The
labels ` have the form A : p, where A is the name of the participant firing prefix p.

We briefly discuss the rules in Figure 4. [CO2-Tau] allows a participant A to fire an internal action. [CO2-Tell]

allows A to advertise a contract c to B; as a result, a new latent contract is created, recording the fact that

10

[CO2-Tau] A[τ . P + P ′ | Q]
A: τ−−→ A[P | Q]

[CO2-Tell] A[tellB ↓x c . P + P ′ | Q]
A: tellB↓xc−−−−−→ A[P | Q] | B[↓x A says c]

[CO2-Fuse]
K Bσπ T ~a = dom(π) ~u = dom(σ) img(σ) = {s} s fresh

(~u)(~a)
(
A
[
fuse . P+P ′ | Q

]
| A[K] |S

) A: fuse−−−→ (s)(A[P |Q]σπ | s[T |q(T)] | Sσπ)

[CO2-Do]
T

A�B:e−−−→→ T ′

s[T] | A
[
dosB e . P + P ′ | Q

] A: dosB e
−−−−→ s

[
T ′
]
| A[P | Q]

[CO2-Def]
X(~y,~a) := P (~z)(~c)

(
A
[
P {~v/~y}

{
~b/~a
}
| Q
]
| S
) `−→ S′

(~z)(~c)
(
A
[
X(~v,~b) | Q

]
| S
) `−→ S′

[CO2-Par]
S

`−→ S′

S | S′′ `−→ S′ | S′′

[CO2-Del]
S

A: p−−→ S′

(~u)(~a)S
A: del(p)−−−−−→ (~u)(~a)S′

where del(p) =

{
p if fnv(p) ∩ (~u ∪ ~a) = ∅
τ otherwise

Figure 4: Reduction semantics of CO2.

it was promised by A. [CO2-Fuse] establishes a new session, when an agreement is found among the latent
contracts held in A[K]. Such an agreement is reached only if the relation K Bσπ T holds (cf. Definition 4.3).
Intuitively, the relation holds if the contracts in K can be synthesised into a well-formed choreography.
When an agreement exists, a fresh session name s and the names of the involved participants are shared (via
substitutions σ and π, respectively); the initial state of the new session consists in the system of contracts
T (constructed from K) with the communication queues connecting its participants. Rule [CO2-Do] allows
A to perform an input/output action e towards B on session s, provided that T (i.e., the current state of
the contracts at s) allows for it. The other CO2 rules are standard. In rule [CO2-Del], the prefix p fired
in the premise becomes τ in the conclusions, when p contains a delimited name/variable. For instance,

consider the following reduction: (x)A[tellB ↓x c . P]
A: τ−−→ (x) (A[P] | B[↓x A says c]); one would not use the

label A : tellB ↓x c instead of A : τ , since the variable x is not visible outside the process of A.

Example 4.2. Consider the CO2 system:

S = A[dosB int + dosB bool] | s[A〈B!int〉 | B〈A?int〉 | (AB) : []] | B[dosA int]

Participant A is willing to perform an action towards B on session s, with either a message of sort int or
bool. However, A’s contract in s only specifies that A should send a message of sort int to B: therefore,
according to rule [CO2-Do], only the first branch of A may be chosen, and the system reduces as follows.

S
A: dosB int−−−−−→ A[0] | s[A〈0〉 | B〈A?int〉 | (AB) : int] | B[dosA int]
B: dosA int−−−−−→ A[0] | s[A〈0〉 | B〈0〉 | (AB) : []] | B[0]

4.3. Reaching Agreements

We now discuss the mechanics underlying the [CO2-Fuse] rule, with a focus on the agreement relation
which regulates session establishment.

11

Definition 4.3 (Agreement relation K Bσπ T). Let K ≡
∣∣
i∈I ↓xi Ai says ci, and let π : P → P and

σ : S → S be two substitutions mapping participant variables to participant names, and session variables
to session names, respectively. Also, let T ≡

∣∣
i∈IAi〈ci〉π. Then, K Bσπ T holds iff:

1. dom(σ) =
⋃
i∈I {xi};

2. dom(π) =
⋃
i∈I fv(ci);

3. T admits an agreement — i.e., ∃G : ` T I G.

Conditions 1 and 2, on σ and π, guarantee that all the session and participant variables are indeed in-
stantiated. Condition 3 holds whenever a judgment ` T I G can be inferred, for some G (see Definition 3.6).

We discuss two safety issues that Definition 4.3 rules out:

1. our assumptions on a system T imply that each participant may have at most one contract in K, cf.
Section 3.2. This restriction allows us to avoid problematic scenarios arising during session establish-
ment. For instance, consider a process A[P] advertising two contracts c and c′ using session variables
x and y, respectively. Were we not preventing both contracts to appear in a same session s, c and
c′ could be fused together in s. Therefore, by rule [CO2-Fuse], both x and y would be replaced by s.
Hence, each prefixes of the form dox and doy in P would be turned into dos, possibly mixing the
actions originally intended for one contract with those intended for the other. In such situations, one
cannot enforce safety properties such as deadlock freedom, since contracts c and c′ are independent in
T , while there might be causal dependencies in P ;

2. by item (3) of Theorem 3.9, it cannot be the case that, within a contract ci belonging to Ai, a free
participant variable is substituted by Ai itself.

When searching for possible agreements, the congruence rule A[K] | A[K ′] ≡ A[K | K ′] in Figure 3 allows
for rearranging collections of latent contracts, in order to select the compliant ones that satisfy the premises
of [CO2-Fuse] rule, cf. Example 4.4 below.

Example 4.4 (Agreements and structural congruence). Consider the system:

S = (x, y, z)
(
B[fuse . P | Q] | B[K] | A1[. . .] | A2[. . .] | A3[. . .]

)
where K = ↓x A1 says A2!int | ↓y A2 says A1?int | ↓z A3 says B?bool.

The fuse prefix of participant B cannot be immediately fired: no contract matches A3’s, and thus the three
latent contracts cannot be assigned a global type. Therefore, there is no T , σ, π such that K Bσπ T , as required
by rule [CO2-Fuse]. However, we can rearrange the latent contracts via structural congruence:

S ≡ S′ = (z)(x, y)
(
B[fuse . P | Q] | B[K ′] | B[↓z A3 says B?bool] | A1[. . .] | A2[. . .] | A3[. . .]

)
where K ′ = ↓x A1 says A2!int | ↓y A2 says A1?int.

If we take σ = {s/x,y} (with s fresh) and T = A1〈A2!int〉 | A2〈A1?int〉, we now have K ′ Bσ∅ T . Indeed, T
is composed by A1’s and A2’s contracts, and ` T I A1→ A2 : int; furthermore, the domains of σ and π = ∅
comply with the conditions in Definition 4.3.

Since all the premises of [CO2-Fuse] are now satisfied, it is possible to create a new session s, involving A1
and A2, whose initial state is T | q(T), and we obtain the system:

S′
B: fuse−−−→ (z)(s)

(
B[P | Q]σ | s[T | q(T)] | B[↓z A3 says B?bool]σ | A1[. . .]σ | A2[. . .]σ | A3[. . .]σ

)
Note that A3’s contract remains latent, and thus it may be fused later on.

12

Example 4.5. Going back to our running example, take cA, cB1 , cB2 from Section 2, and T AB1B2 ,GAB1B2 from
Example 3.7. Consider the following CO2 system, where PA, PB1 , PB2 are given in Example 5.6,

S = A[(x)(b1, b2) tellA ↓x cA . fuse . PA] | B1[(y)(a, b′2) tellA ↓y cB1 . PB1] | B2[(z)(a, b′1) tellA ↓z cB2 . PB2]

−→−→−→
(x, y, z)(a, a′, b1, b

′
1, b2, b

′
2)
(
A[fuse . PA] | B1[PB1] | B2[PB2]A[↓x A says cA |↓y B1 says cB1 |↓z B2 says cB2]

)
A: fuse−−−→

(s)S′ = (s)
(
A[PAσπ] | s[T AB1B2 | q(T AB1B2)] | B1[PB1σπ] | B2[PB2σπ]

)
where σ = {s/x,y,z} (s fresh) and π = {A/a,a′, B1/b1,b′1, B2/b2,b′2}

System S is the one already considered in Section 2, where all the participants are willing to advertise
their respective contracts to the store A, by using a tell primitive. Firing those prefixes (first 3 steps of the
computation above) has the effect of creating corresponding latent contracts, collected by A. At the 4th step,
these contracts are fused. Given σ and π as above, Definition 4.3 is indeed applicable: the domains of σ and
π comply with the definition premises, and as shown in Example 3.7, a system T AB1B2 consisting of contracts
cAπ, cB1π and cB2π may be assigned a global type GAB1B2 . Hence, a new session s is created, based on T AB1B2 ,
plus the queues connecting all pairs of participants. The session variables of the latent contracts being fused
(i.e., x for participant A, y for B1, and z for B2) are replaced by the fresh session name s in the processes
PA, PB1 and PB2 , via σ. Similarly for participant variables which are replaced by participant names, via π.

The next example illustrates a case where advertising a contract with both participant names and vari-
ables allows for enforcing specific properties on new sessions — in particular, making sure that a certain
participant will be involved.

Example 4.6. A seller S wants to sell an item to a specific buyer B, via any shipping company that provides
a package tracking system. The contract of S is:

B!price; (B?pay;c!request;c?tracking;B!tracking + B?cancel;c!cancel)

saying that the seller S promises to send a price to the buyer B. Then, B can either pay, or cancel the
transaction: in the first case, S must send a shipping request to a (still unknown) shipping company c, who
in turn must send back a tracking number, which is then forwarded to B; otherwise, if B cancels, then S will
also cancel the transaction with c. This contract admits an agreement only if the role of the buyer is played
by B; the role of shipping company c, instead, may be played by any participant offering a compliant contract
(such as A?request;A!tracking + A?cancel).

Example 4.7 shows how a participant can use participant variables to enforce some property along
different sessions — in particular, to ensure the presence of some participant that was involved in a previous
agreement.

Example 4.7. A seller S wants to find a shipping company; then, S wants to use that very same shipping
company for every new transaction with some buyer.

The shipping company can be found with a “service discovery” contract such as cD = c!find ship: when a
session is established on such a contract, c will be replaced with the name of the participant playing the role
of the shipper. For each selling transaction, S advertises a contract of the form cS = b!price; . . . c!address,
where the seller sends a price to a (still unknown) buyer b, and after some interaction (here omitted) it sends
a shipping address to the shipping company c.

The seller can be implemented with the following CO2 process, where K is a contract broker:

P = (x)(c) tellK ↓x cD . doxc find ship . X(c)

where X(c) := (y)(b) (tellK ↓y cS . . . X(c)) (cS-related actions omitted)

Note that cS may be advertised multiple times, using different session variables, inside the recursive pro-
cess X.
An extended version of this example is available in the appendix [17].

13

4.4. On Culpability

In this section we formalise the notion of culpability in CO2 systems. Intuitively, a CO2 participant is
“culpable” when it is expected to send or receive some message in a session — and may exculpate itself by
performing the required interaction.

We begin by noticing that, according to the CO2 semantics, each do prefix exposed by a participant,
say A[P], is driven by the contract that A promised to abide by. In a sense, CO2 is “culpability-driven”,
according to Definition 4.8 below: when a participant is culpable, it has the duty of making the session
progress according to its contract. The notion of culpability in CO2 systems is an extension of the one on
contracts (Definition 3.10), covering established sessions.

Definition 4.8 (Process culpability). We say that A is culpable at s in S iff S ≡ s[T] | S′ and A is
culpable in T .
We say that A is culpable in S iff, for some s and u, S ≡ (u)S0 and A is culpable at s in S0.

According to Definition 4.8, when e.g. A is culpable at s in S, then necessarily s ∈ fv(S); furthermore,
A is also culpable in (s)S (i.e., culpability is preserved when s is closed and the corresponding session is
hidden).

Example 4.9. Consider the system S′ from Example 4.5, having the form S′ ≡ s[T] | · · · where T =

T AB1B2 | q(T AB1B2). We have that, by Definition 3.10, both B1 and B2 are culpable in T : in fact, T
B1�A:req−−−−−→→

and T
B2�A:req−−−−−→→. Therefore, by Definition 4.8, we also have that B1 and B2 are culpable at s in S′; also, we

have that B1 and B2 are culpable both in S′ and in (s)S′.

A culpable participant can overcome its culpability status by firing its do prefixes, according to [CO2-Do],
until another participant becomes culpable or session s terminates. Hence, as long as a culpable participant
A does not enable a do-prefix matching a contractual obligation, A will remain culpable. Note that when a
participant is involved in multiple sessions, it may result culpable in more than one of them.

Theorem 4.10 (Presence of culpability in CO2 systems). Given a CO2 system S, whenever S →∗
(s)S′ such that S′ ≡ s[T] | · · · with T 6≡ 0, then there exists at least one culpable participant at s in S′.

Proof. By Theorem 3.12, we have that there exists at least one culpable participant in T — and by
Definition 4.8, such a participant is also culpable at s in S′. 2

Theorem 4.10 says that in an active session established through a fuse reduction, there is always at least
one participant A[P] who leads the next interaction. Thus, if a corresponding dosBe prefix is not in P , S may
get stuck, and A is culpable.

4.5. Finer-grained Forms of Agreement

In our framework, the participants firing fuse prefixes are playing the role of contract brokers. In some
situations, they may want to guarantee some additional requirements before establishing a new session, in
order to obtain finer levels of agreement.

In this section, we discuss some scenarios which can be addressed with simple fuse variations. The first
one addresses the (possible) issue of participants playing multiple roles in a contract. The other examples
add constraints to the synthesised choreography, in order to enforce global properties on sessions.

Example 4.11 (Single-role enforcement). Consider the last example of Section 2: it shows a participant
B12 that, by advertising the contract cB12 , plays the roles of two buyers in the contract advertised by the seller
A. This is allowed since Definition 4.3 is quite liberal with respect to the substitution π mapping participant
variables to participant names. However, A may want to ensure that the two buyers are actually distinct
participants: i.e., π must not map two participant variables to the same participant name. Since A is also
a contract broker, it could enforce this requirement through its fuse prefixes, e.g., by adding the following
condition to Definition 4.3:

∀i ∈ I : ∀a, b ∈ fv(ci) : a 6= b =⇒ π(a) 6= π(b)

With this restriction in place, A disregards the possible agreement involving cB12 .

14

Using the same approach as in Example 4.11 (i.e., extending the requirements of Definition 4.3) we can
parameterise fuse with a predicate φ on global types. Such a predicate is checked on the global type G (syn-
thesised from of the set of latent contracts): when φ(G) holds for all G, we have the standard fuse behaviour
decribed in Section 4.3; in general, fuseφ can enforce global properties emerging from the composition of
individual contracts, as illustrated in Examples 4.12 and 4.13 below.

Example 4.12 (Avoiding infinite sessions). A contract broker wants to start new sessions only if they
are guaranteed to terminate within a finite number of interactions. This is useful e.g. when a system has
a short life expectancy due to an approaching scheduled maintenance, and the brokers are instructed to put
limitations on new sessions.

We obtain such a behaviour by letting φ(G) ⇐⇒ bv(G) = ∅, where bv(G) is the set of bound variables
in G. When φ(G) holds, we have that new sessions will be created only if there are no recursion variables in
G — and therefore, the choreography does not admit recursive behaviours.

Note that this property cannot be decided by looking at the individual contracts, only. For instance,
consider:

A〈B!e〉 | B〈µx. (A?e + A?e′;x)〉

Here, B’s contract is recursive; however, A’s contract always chooses its non-recursive branch. Indeed, when
such contracts are composed, their global type is A→B :e, i.e., a non-recursive choreography.

Example 4.13 (Requiring infinite sessions). A contract broker wants to start only non-terminating
sessions, where the participants can perpetually interact. To do that, we define φ(G) so that it holds only if 0
is not a sub-term of G. This ensures that the choreography underlying the session does not admit terminating
behaviours.

As in Example 4.12, this property needs to be checked at the global (choreography) level; otherwise,
contracts with a terminating branch would always be discarded, even when composed with other contracts
that always select recursive branches.

In Section 7 we present a case study which takes advantage of the parameterised fuse primitive.

5. Domesticating Wild Choreographies via Honesty

In this section we discuss the notion of honesty [11], providing several examples.
Intuitively, a participant is honest when it is always able to fulfil its contractual obligations, in any

context, no matter what other participants do. This is a desirable property in a distributed contract-oriented
scenario: in the simplest case, honesty ensures that a participant will never violate its own contracts due to
“trivial” bugs, e.g. missing do prefixes (see Example 5.6). In more complex cases, i.e., when a participant
A handles multiple sessions simultaneously, honesty ensures that the erratic behaviour of some participants
in a session will not cause A to remain stuck, and unable to fulfil its obligations in other sessions (see
Example 6.4).

Honesty is especially important when contract-based interactions have some economic relevance: a non-
honest (but not necessarily malicious) participant may be unable to reach its goals (i.e., make its contract
progress), or may damage other participants if its session obligations remain unfulfilled. Since the state
of CO2 sessions allows to single out which participants are responsible for session advancement (by Defini-
tion 3.10 and Theorem 4.10), such a state could be used as “proof” for sanctioning contractual violations,
possibly in an automatic way. In this scenario, a non-honest participant A may be vulnerable to attacks:
other participants may induce a situation in which A cannot fulfil its contract, causing it to be punished. For
all these reasons, before deploying a service, its developers might want to ensure that its implementation is
honest.

Formally, the definition of honesty relies on that of contract ready sets (Definition 5.1) and process ready
sets (Definition 5.3).

15

Definition 5.1 (Contract Ready Sets). For a contract c, we define the set CRS(c) as follows:

CRS(c) =

CRS(c′) if c = µx.c′

{{(A, ei) | i ∈ I}} if c =
∑
i∈I A?ei;ci

{{(Ai, ei)} | i ∈ I} if c =
⊕

i∈I Ai!ei;ci and I 6= ∅

and we call each element of CRS(c) a contract ready set of c.

Intuitively, contract ready sets represent the immediate obligations in a contract: if A advertises c, then A’s
process should also offer the interaction capabilities of one of the ready sets in CRS(c). Each interaction is a
pair (A, e), where A is the other party involved in the interaction, and e is the sort of the exchanged message.
An external choice results in a single ready set, meaning that A is expected to offer all the interactions therein;
instead, an internal choice results in one singleton ready set for each branch, meaning that A should pick one
of its choice and offer the corresponding interaction (cf. Example 5.2 below). Note that Definition 5.1 above
extends the notion of ready set in [11] (where only bilateral sessions are considered) to suit our multiparty
contract model.

Example 5.2. Consider the system of contracts T AB1B2 from Example 3.7, and in particular, the stipulated
contracts therein, using the substitution π = {A/a,a′, B1/b1,b′1, B2/b2,b′2} from Example 4.5:

c̃A = cAπ = B1?req;B2?req;B1!quote; (B1?order;B2!ok + B1?bye;B2!bye)

˜cB1 = cB1π = A!req;A?quote; (B2!ok;A!order⊕ B2!bye;A!bye)

˜cB2 = cB2π = A!req; (B1?ok;A?ok + B1?bye;A?bye)

We have CRS(c̃A) = {{(B1, req)}}: in other words, at this point of the contract, an interaction is expected
between A and B1 (since A is waiting for req), while no interaction is expected between A and B2. Furthermore,
since we just have a single ready set, A does not have other interactions to choose from.

Let us now equip T AB1B2 with one queue between each pair of participants, and let it perform the request
exchange between B1 and A, with the transitions:

T AB1B2 | q(T AB1B2)
B1→A:req−−−−−→→ A←B1:req−−−−−→→ T ′AB1B2 | q(T AB1B2)

We have that c̃A in T ′AB1B2 is now reduced to:

c̃A
′ = B2?req;B1!quote; (B1?order;B2!ok + B1?bye;B2!bye)

and thus we have CRS
(
c̃A
′) = {{(B2, req)}}, i.e., A is now waiting for a request from B2.

If we let the system reduce further, c̃A
′ reaches its external choice:

c̃A
′′ = B1?order;B2!ok + B1?bye;B2!bye

We now have a single ready set with two elements: CRS
(
c̃A
′′) = {{(B1, order), (B1, bye)}}, i.e., A must handle

both answers from B1. Instead, when ˜cB1 reduces to its internal choice, we have:

˜cB1
′′ = B2!ok;A!order⊕ B2!bye;A!bye

We now have two ready sets, each one containing one interaction: CRS
(

˜cB1
′′) = {{(B2, ok)} , {(B2, bye)}}.

B1 is expected to fulfil either of them, and is free to choose which one.

Example 5.2 shows that, when a contract c of a participant A evolves within a system T , its ready sets
change accordingly. Now we need to define the counterpart of contract ready sets for CO2 processes, i.e.,
the process ready sets.

16

Definition 5.3 (Process Ready Set). For all CO2 systems S, all participants A and sessions s, we define
the set of pairs:1

PRSsA(S) = {(B, e) | ∃~v,~a : S ≡ (~v,~a) (A[dosB e . ···+ ··· | ···] | ···) ∧ s 6∈ ~v}

Intuitively, Definition 5.3 says that the process ready set of A over a session s in a system S contains the
interactions that A is immediately willing to perform with other participants through its dos prefixes. Just
like contract ready sets, the interactions are represented by participant/sort pairs. Definition 5.3 is adapted
from [18] to suit our multiparty contract model.

Next, we want to characterise a weaker notion of the process ready set, so that it only takes into account
the first actions on a specific session that a participant is willing to make.

Definition 5.4 (Weak Process Ready Set). We write S
6=(A : dos)−−−−−−→ S′ iff:

∃ B, p : S
B: p−−→ S′ ∧

(
A 6= B ∨

(
∀ e : ∀ C : p = dotC e =⇒ s 6= t

))
We then define the set of pairs WPRSsA(S) as:

WPRSsA(S) =

{
(B, e) | ∃S′ : S 6=(A : dos)−−−−−−→∗ S′ ∧ (B, e) ∈ PRSsA(S

′)

}

In Definition 5.4, the transition relation
6=(A : dos)−−−−−−→ abstracts from the reductions of S which are not due

to A’s actions on session s. In other words, such a relation allows a system S with a participant A[P] to
reduce freely, until a reduct S′ containing A[P ′] is reached, such that a dos prefix is at top-level in P ′. Note
that, since Definition 5.4 builds upon Definition 5.3, if s 6∈ fv(S), then necessarily WPRSsA(S) = ∅: i.e.,
observing the weak process ready set of a session s is only meaningful after s has been established, and it is
not delimited (and thus it cannot be α-converted).

We now introduce the final ingredient required to define honesty, that is the readiness of a participant.

Definition 5.5 (Readiness). We say that A is ready in S iff, whenever S ≡ (~u)(~b)S0 for some ~u,~b and
S0 ≡ s[A〈c〉 | · · ·] | · · · , the following holds:

∃X ∈ CRS(c) : X ⊆WPRSsA(S0)

Definition 5.5 says that a participant A is ready in a system S when, for all its established sessions s, S
can reduce in such a way that A’s process will provide at s all the interactions expected by one of the ready
sets of A’s contract at s. In other words, when A is “ready”, then, for all its contracts c already involved in
a session, A has a way to fulfil at least its immediate obligations in c.

Example 5.6. Consider the system S in Example 4.5. We have seen that, after its latent contracts have
been fused, we obtain:

(s)S′ ≡ (s)
(
A[PAσπ] | s[T AB1B2 | q(T AB1B2)] | B1[PB1σπ] | B2[PB2σπ]

)
where the substitutions σ and π are also from Example 4.5. Let us define the processes (after substitutions):

PAσπ = dosB1 req . dosB2 req . dosB1 quote .
(
dosB1 order . dosB2 ok + dosB1 bye . dosB2 bye

)
PB1σπ = τ . dosA req . dosA quote . dosA order
PB2σπ = dosA req .

(
dosB1 ok . dosA ok + dosB1 bye . dosA bye

)
1The side condition “s 6∈ ~v” of Definition 5.3 deals with cases like S0 = (s) (A[dosB int]) and S = S0 | s[A〈B!int〉 | . . .] | . . .:

without the side condition, PRSsA(S0) = {{(B, int)}} — hence, by Definition 5.5, A would result to be ready in S.

17

We have:
PRSsA(S

′) = {(B1, req)} = WPRSsA(S
′)

PRSsB1(S
′) = ∅ 6= {(A, req)} = WPRSsB1(S

′)
PRSsB2(S

′) = {(A, req)} = WPRSsB2(S
′)

Note that the τ prefix in PB1 prevents B1 from interacting immediately with A on session s, although it
is “weakly ready” to do so. Hence, considering that the weak process ready sets of each participant in S′1
match their respective contract ready sets in T AB1B2 (Example 5.2) according to Definition 5.5 we have that
participants A, B1 and B2 are all ready in (s)S′1.

Before defining honesty formally, we need to characterise the class of systems for which this concept is
meaningful, — i.e., those systems where a participant is not (yet) involved in latent contracts nor active
sessions, and whose process has no free variables.

Definition 5.7 (Initial System). A CO2 system S is A-initial if S has no sub-term of the form ↓ A says c
or A〈c〉 with c 6≡ 0, and whenever S has a subterm of the form A[P], then P is closed. A CO2 system S is
initial when it is A-initial for all participants A in S.

Definition 5.8 (Honesty). We say that A[P] is honest iff, for all A-initial S ≡ A[P] | S0 s.t. S →∗ S′, A

is ready in S′.

A process A[P] is said to be honest when, for all contexts and reductions that A[P] may be engaged in,
A is persistently ready. In other words, for all context S0 with which A[P] may be composed, and for all
systems S′ resulting from the continuation of such a composition, there must be a correspondence between
the interactions required by A’s stipulated contracts and A’s (weak) process ready set. The definition requires
an A-initial system to rule out contexts with latent/stipulated contracts of A — otherwise, A could be made
trivially dishonest, e.g. by inserting a latent contract ↓x A says c that A cannot fulfil. Notice that A[P] is
trivially honest when P advertises no contracts.

Example 5.9. Consider the process B1[tellA ↓y cB1 . PB1] of system S, as defined in Examples 4.5 and 5.6.
We show that this process is not honest. In fact, S can reduce as S −→∗ (s)S′ −→∗ (s)S′′, where:

(s)S′′ = (s)
(
A
[
dosB1 order . dosB2 ok + dosB1 bye . dosB2 bye

]
| s
[
A〈B1?order;B2!ok + B1?bye;B2!bye〉
| B1〈B2!ok;A!order⊕ B2!bye;A!bye〉
| B2〈B1?ok;A?ok + B1?bye;A?bye〉

]
| B1[dosA order] | B2

[
dosB1 ok . dosA ok + dosB1 bye . dosA bye

])
At this point, we see that there is a problem in the implementation of B1: it does not notify the other buyer
before making an order. In fact, B1’s process is trying to perform dosA order, but its contract requires that
dosB2 ok is performed first (or dosB2 bye, if the quote is rejected). This is reflected by the mismatch between
B1’s process ready set in S′′, and its contract ready sets, in session s:

PRSsB1(S
′′) = {{(A, order)}}

CRS(B2!ok;A!order⊕ B2!bye;A!bye) = {{(B2, ok)} , {(B2, bye)}}

In terms of the definitions above, we can say that there exists a system S — containing B1[tellA ↓y cB1 . PB1] —
that reduces to a (s)S′′ where B1 is not ready (Definition 5.5). Therefore, B1[tellA ↓y cB1 . PB1] is not honest.
In fact, B1 is culpable in (s)S′′, according to Definition 4.8.

As in [18], the definition of honesty subsumes a fair scheduler, eventually allowing participants to fire
persistently (weakly) enabled do actions.

18

6. Properties of CO2 Systems

We now give the main properties of our framework. We start by proving that honest participants
can always perform their contractual obligations without relying on the context (Theorem 6.1). Then, we
formalise a link between the honesty of participants, and two key properties borrowed from the session types
literature: Theorem 6.2 introduces session fidelity in CO2, while Corollary 6.3 (descending from Theorem 6.1)
introduces a notion of progress of CO2 systems.

Theorem 6.1 below descends from the definition of honesty, formalising the fact that honest participants
can always fulfil their contractual obligations, at all sessions s they are involved in, by eventually firing
their dos prefixes. Most importantly, these dos prefixes can be fired even if the context does not always
cooperate — in particular, when other participants fail to respect their own contracts. In this situation,
honest participants will never be stuck in a culpable condition: there always exists a way for them to reduce
by only relying on their own prefixes.

Theorem 6.1 (Session progress). Let S0 be an A-initial CO2 system with A[P0] honest. If S0 −→∗ (s)S,
where S ≡ s[T] | A[P] | · · · and A is culpable at s in S, then:

S
A: p1−−−→ · · · A: pn−−−→ A: doBs e−−−−→

for some B, e, and p1, . . . , pn such that n ≥ 0, and pi 6= fuse for all i ∈ 1..n.

Proof. By assumption, A is culpable at s in S. By Definition 5.8, A is ready in any reduction of S0 —
in particular in (s)S. Therefore, by Definition 5.5, there exists X ∈ CRS(c) such that X ⊆ WPRSsA(S).

From these premises, we have that there must exist some B, e such that T
A�B:e−−−−→→ (due to culpability) and

(B, e) ∈WPRSsA(S) (due to readiness). By Definition 5.4, it means:

∃S′ : S 6=(A : dos)−−−−−−→∗ S′ ∧ (B, e) ∈ PRSsA(S
′) (6.1)

and therefore, by Definition 5.3, we must have that A[dosB e . P ′ + P ′′ | Q] is a participant of S′. Thus, we
have to show that A[P] in S may reduce to such a process, with dosB e enabled, by firing its own prefixes
p1, . . . , pn only — except fuse.

By contradiction, assume that none of the traces from S to S′ (following (6.1)) satisfies the thesis. We
show that, in this case, A[P0] would not be honest: in fact, there would exist a system S̃0 ≡ A[P0] | · · · with
a reduct (s)S̃ such that S̃ ≡ s[T] | A[P] | · · · , where A would not be ready. Our goal is to create such a
system S̃0.

Before proceeding, we define some auxiliary functions.

Given two CO2 systems SA, SB such that there exists a transition SA
`−→ SB , inLab(SA, SB) gives the

“innermost” label in the derivation inducing such a transition. Intuitively, it pierces through delimitations,
and returns the underlying CO2 prefix before it is turned into τ by an application of rule [CO2-Del]:

inLab(SA, SB) =

`0 if

[R]

...

SA
`0−→ SB and [R] 6∈ {[CO2-Del], [CO2-Par]}

inLab(S′A, S
′
B) if

[R]
S′A

`1−→ S′B

SA
`0−→ SB and [R] ∈ {[CO2-Del], [CO2-Par]}

Given a sequence of CO2 systems ~S0 such that each element is a reduct of the preceding one, inTr
(
~S0

)
gives the trace composed by the “innermost” labels of each reduction:

inTr(SA · ε) = ε (where ε is the empty sequence)

inTr
(
SA · SB · ~S0

)
= inLab(SA, SB) · inTr

(
SB · ~S0

)
19

Let us now consider an execution going from the A-initial S0 to (s)S in the hypotheses, and let ~S be the
sequence of CO2 system configurations composing such an execution; furthermore, let us define the “inner”

trace ~T = inTr
(
~S
)

.

With this information at hand, we can build S̃0 so that:

1. S̃0 ≡ A[P0] | S̃′0;

2. S̃′0 contains:

(a) all the sessions appearing in S;

(b) all the latent contracts appearing in S0, except those that are not fused along ~S and thus appear
in (s)S;

(c) participants B1[P1] , . . . , Bn[Pn], where B1, . . . , Bn 6= A also appear in S, and P1, . . . , Pn are written
so that:

i. all the “innermost” prefixes in ~T fired by B1, . . . , Bn can still be fired in the same order —
with the exception of the tell prefixes corresponding to latent contracts in (s)S, which are
neglected;

ii. after the prefixes in ~T are fired, all B1[P1] . . . , Bn[Pn] reduce to B1[0] , . . . , Bn[0].

As a result, we have that S̃0 defined above can reduce to a system (s)S̃ such that S̃ ≡ s[T] | A[P] | · · ·
through a “inner” trace ~T′ whose prefixes match those in ~T, except for the lack of tell prefixes fired by any
B 6= A (by item 2(c)i above). Furthermore, we have that:

1. no latent contracts appear in S̃ (unless they have been advertised by A);

2. all established sessions in S also appear in S̃, and vice versa;

3. except for A[P], all participants in S̃ have the form B[0].

Hence, no participant in S̃ can fire a fuse prefix, and no participant B 6= A in S̃ has any prefix enabled.
Now, recall that we assumed (by contradiction) that Equation (6.1) cannot be satisfied with a trace consisting
only of A[P]’s prefixes (except fuse). Therefore:

6 ∃S̃′ : S̃ 6=(A : dos)−−−−−−→∗ S̃′ ∧ (B, e) ∈ PRSsA

(
S̃′
)

But then, there exists an A-initial system S̃0 ≡ A[P] | · · · such that S̃0 −→∗ (s)S̃, and A is not ready in
(s)S̃. Therefore, we must conclude that A[P] is not honest — thus violating the theorem hypothesis. 2

Theorem 6.2 below says that each (honest) participant will strictly adhere to its contracts, once they
have been fused in a session s: no extra-contractual interactions are possible on s, and honest participants
will eventually perform dos actions, as long as it is required by their contracts.

Theorem 6.2 (Session fidelity). Given a CO2 system S0 containing A[P0], whenever S −→∗ (s)S with
S ≡ s[T] | · · ·, then:

1. S
6=(A : dos)−−−−−−→∗ A: dosB e−−−−→ =⇒ ∃n ≥ 0: T

λ1−→→ · · · λn−−→→ A�B:e−−−−→→ where ∀C, e′, i = 1..n : λi 6= A� C : e′;

2. If S is A-initial, A[P0] honest, and Y =
{

(B, e) |T A�B:e−−−−→→
}
6= ∅, then

∃(B, e) ∈ Y such that S
6=(A : dos)−−−−−−→∗ A: dosB e−−−−→

Recall that, as in Definition 5.4,
6=(A : dos)−−−−−−→∗ intuitively stands for any reduction not involving A on session s.

20

Proof. Item 1 follows directly from the semantics of CO2 (in particular, rule [CO2-do]): if A is able to fire a
dosB e prefix, then its contract must necessarily allow for sending/receiving e to/from B.

Item 2 follows from the honesty hypothesis for A[P0], and from Definition 5.5 (readiness). Let us fix
n ≥ 1 enumerating all enabled interactions in T driven by A — i.e., let n be the cardinality of Y in the
theorem statement. Let us consider c = T (A), i.e., A’s contract in T . Due to A’s readiness, c is such that,
either:

1. CRS(c) =
{
{(Bj , ej)}j=1..n

}
; or,

2. CRS(c) = {{(Bj , ej)}}j=1..n.

where {(Bj , ej)}j=1..n = Y — i.e., Y contains exactly the (B, e) pairs appearing in CRS(c). Recall that, since
S0 is A-initial and A is honest, then A must be ready in all possible reducts of S0 — and in particular, it
must be ready in (s)(S). Therefore, we have that ∃X ∈ CRS(c) such that X ⊆WPRSsA(S

′), i.e.:

∃X = {(B, e), · · ·} ∈ CRS(c) such that S′
6=(A : dos)−−−−−−→∗ A: dosB e−−−−→ (6.2)

Since the (B, e) pair satisfying Equation 6.2 also belongs to Y, the thesis holds. 2
Note that, by Theorem 6.1, the conclusion of Item 2 of Theorem 6.2 above may be stricter: i.e., the dosB e

transition may be reached by firing A’s prefixes only (excluding fuse).
Corollary 6.3 below introduces a notion of “global progress” in CO2. This notion is only meaningful after

a session has been established, and thus a culpable participant exists. In fact, a system without sessions
may not progress — either because a set of compliant contracts cannot be found, or because a fuse prefix
is not enabled. In both cases, no participant may be deemed culpable, and thus responsible for the next
move. However, the system could progress again if it is composed with another system consisting of (honest)
participants, allowing for a new session to be established.

Corollary 6.3. Given an initial CO2 system S0 with only honest participants, if S0 −→∗ S ≡ (s) (s[T] | · · ·)
with T 6≡ 0, then S −→.

Proof. By contradiction. From [6], we know that T is deadlock free, thus if the CO2 system cannot make
further reductions, it must be because one of the participant A cannot meet its obligations. This is in
contradiction with Theorem 6.1, since all participants are honest in S0. 2

This result also holds for systems where a process takes part in multiple sessions: the honesty of all
participants guarantees that all sessions will (eventually) progress.

Example 6.4. We now give a simple example of a system with multiple sessions. We show how a seemingly
honest process B could be deemed culpable due to the unexpected behaviour of other participants, and how
honest participants guarantee progress of the whole system. Consider:

S = (x, y, z, w)
(
A[tellA ↓x (B!int) . fuse . fuse]

| B[tellA ↓y (A?int) . tellA ↓z (C!bool) . doyA int . dozC bool]

| C[tellA ↓w (B?bool) . dowB bool]
)

After all four contracts have been advertised to A and fused, the system reduces to:

S′ = (s1, s2)
(
A[0] | B[dos1A int . dos2C bool] | C[dos2B bool]

| s1[A〈B?int〉 | B〈A!int〉]
| s2[B〈C!bool〉 | C〈B?bool〉]

)
Even if both sessions s1 and s2 enjoy contractual progress, S′ is stuck: A does not perform the promised
action, thus remaining culpable in s1; B is stuck waiting in s1, thus remaining culpable in s2.2 Indeed,

2In this case, B is deemed culpable in s2 because its implementation did not expect A to misbehave.

21

neither A nor B are ready in S′, and thus they are not honest in S. Hence, global progress is not guaranteed.
Let us now consider the following variant of S, where all participants are honest:

Ŝ = (x, y, z, w)
(
A[(tellA ↓x (B!int) . doxB int) | fuse | fuse]

| C[tellA ↓w (B?bool) . dowB′ bool]

| B[tellA ↓y (A?int) . tellA ↓z (C!bool) .(doyA int . dozC bool

+ τ . (doyA int | dozC bool))]
)

In this case, A will respect its contractual duties, while B will be ready to fulfil its contracts on both sessions
— even if one is not activated, or remains stuck (here, τ represents an internal action, e.g., a timeout:
if the first doyA int cannot reduce, B falls back to running the two sessions in parallel). The honesty of all
participants in Ŝ guarantees that, once a session is active, it will reach its completion.

7. Case Study: Sharing Knowledge

We illustrate the suitability of our framework to reason about distributed systems where contract brokers
are willing to offer specific guarantees to their clients. In particular, we illustrate how three key components of
our framework, i.e.,(i) multiparty sessions, (ii) the notion of honesty, and (iii) contractual agreements based
on choreographies, address complex challenges encountered in the design and specification of distributed
systems.

We present a case study where a contract broker wants to provide a specific service to its clients:
guaranteeing that participants will interact according to a class of gossip protocols [15]. Gossip protocols
are used to spread a piece of information among a group of participants, ensuring that each one of them will
eventually acquire such information. In particular, we focus on “knowledge sharing” protocols, where each
participant owns some initial knowledge, which must be shared across all participants before the participants
terminate, i.e., everyone must eventually receive each other’s initial knowledge.

For instance, assuming that k is a message sort representing the current knowledge of a participant, the
system of contracts on the left below implements a sharing knowledge protocol, while the one on the right
does not. Indeed, on the right-hand side, A does not acquire B’s knowledge.

A〈B!k;B?k〉 | B〈A?k;A!k〉 4 A〈B!k〉 | B〈A?k〉 8

We distinguish three challenges that one needs to address to ensure that a broker provides effectively a
knowledge sharing service. (a) Intuitively, for a set of participants to share knowledge, they may interact
either via a single (multiparty) session or via several binary sessions. However, guaranteeing safety and
liveness properties across several, possibly interleaved, sessions is a notoriously difficult problem (see [19] for
instance) and it is even harder to check for semantic properties such as knowledge sharing. Instead, intra-
sessions properties are much easier to attain [3]; and in our case a broker is able to take a well-informed
decision before starting a session by analysing its choreography. (b) In real world applications, e.g., in cloud
computing [20], one cannot assume that each component will behave as expected. In our framework, it is
always possible to discover which participants are not fulfilling their contract (culpability); and the honesty
of a participant guarantees that it will always fulfil its contract. Therefore, if an honest participant joins a
knowledge sharing session, it will always share all its knowledge. (c) Properties of any contract model that
offers a good level of expressiveness (e.g., one based on FIFO queues like ours) take the risk of being hard
to analyse (or even undecidable [21]). In such a case, one needs to find sound and efficient ways to decide
whether a given set of contracts satisfy certain properties. Below, we give an effective decision procedure
that guarantees knowledge sharing of a set of contracts by parsing only a global type.

We begin this case study by introducing a formal model for transmission and acquisition of knowledge
(Section 7.1); then we show how knowledge is transmitted/acquired in systems of contracts and CO2 sys-
tems (Section 7.2). Finally, in Section 7.3 we introduce a variant of the parameterised fuseφ primitive (cf.
Section 4.5) which guarantees that new sessions satisfy the knowledge sharing property. For the sake of
readability, some auxiliary technical details are relegated to in the appendix [17].

22

7.1. Semantic knowledge sharing

We introduce a formalization of knowledge transmission and acquisition among a set of participants
through labelled transition systems (LTS), which may be induced by both system of contracts and CO2

systems.

Definition 7.1 (Knowledge of a participant). The knowledge of a participant is a pair (A,Q), where
A (acquired knowledge) is a set of participant names, and Q (pending knowledge) is a map from participant
names to queues of the form A′ · A′′ · . . ., where A′,A′′ are sets of participant names. We write ∅ when Q

maps each participant to the empty queue.

If the knowledge of B is ({B} ,∅), then B has only its own initial knowledge. The knowledge of
B may increase as it interacts with other participant. For instance, if the knowledge of B is ({B, E} ,
{A :{A} , C :{C} · {C, D}}); then B has acquired E’s initial knowledge, while some knowledge is pending, i.e.,
the initial knowledge of A (transmitted by A itself) and the initial knowledge of C, followed by C’s initial
knowledge and D’s initial knowledge.

We introduce an LTS for knowledge transmission/acquisition in Definition 7.2 below. We use two opera-
tors: pushB((A,Q), (A′,Q′)) which augments the knowledge of a participant with the knowledge transmitted
by B, i.e., the knowledge A′ sent by B is appended to Q; and popB(A,Q) moves the first pending knowledge
sent by B to the acquired knowledge A. For instance, we have:

pushB(({A} , {C :{C} , B :{B}}) , ({A, B} , {D :{D}})) = ({A} , {C :{C} , B :{B} · {A, B}})
popB({A} , {B :{B} , C :{C}}) = ({A, B} , {C :{C}})

Observe that push ignores the pending knowledge Q′ of the second parameter. The formal definition of these
operators is given in the appendix [17].

Definition 7.2 (Knowledge LTS). An LTS L = (Σ × ∆,Λ,−→, kδ0) is a knowledge LTS (abbreviated
KLTS) iff:

1. Σ is a set of total mappings from participants names to their respective knowledge (i.e., (A,Q pairs by
Definition 7.1);

2. ∆ is any set, called decorating set, with elements ranged over by δ, δ′, etc. For brevity, we write kδ

instead of (k, δ) ∈ Σ×∆;

3. kδ0 is the initial state, such that for all A ∈ P : k0(A) = ({A} ,∅);

4. Λ contains labels of the form B!A, A?B, τ ;

5. the labelled transition relation −→ ⊆ (Σ × ∆) × Λ × (Σ × ∆) has the following properties, for all
kδ1, k

δ′

2 ∈ Σ×∆:

(a) kδ1
B!A−−→ kδ

′

2 =⇒ k2 = k1{pushB(k1(A),k1(B))/A};

(b) kδ1
A?B−−→ kδ

′

2 =⇒ k2 = k1{popB(k1(A))/A};
(c) kδ1

τ−→ kδ
′

2 =⇒ k1 = k2.

Item 1 says that each state of a KLTS maps a participant to its current knowledge, e.g., kδ(A) = ({A, B} ,
{D :{C, D}}). The decorations in item 2 allows to distinguish states with a same knowledge mapping. By
item 3, each participant has only its own knowledge in the initial state. The transition labels in 4 represent
either knowledge transmission (B!A), knowledge acquisition (A?B), or and silent moves (τ). Transitions and
knowledge mapping are related as follows

� by (5a), when B sends its knowledge to A, A’s knowledge is updated by pushing B’s knowledge to the
corresponding (pending) knowledge queue.

23

� by (5b), when A acquires the knowledge from B, A’s knowledge is updated by dequeueing the first
element of the knowledge transmitted by B;

� by (5c), silent moves have no effects on k().

Hereafter, we often write k, k1, . . . for KLTS states (omitting decorations δ when unimportant).

Definition 7.3 (Knowledge sharing). Let L = (Σ,Λ,−→, k0) be a KLTS. We say that a state kδ ∈ Σ×∆
shares knowledge among participants A ⊆ P iff, for all B ∈ A, ∃A′ s.t. k(B) = (A′,Q) and A ⊆ A′.
We say that L shares knowledge among A iff, whenever kδ0 −→∗ kδ

′

1 , then there exists kδ
′′

2 such that kδ
′

1 →∗ kδ
′′

2

and kδ
′′

2 shares knowledge among A.

A KLTS state kδ shares knowledge among a set of participants A when, in this state, each participant
has acquired the knowledge of everybody else in A. L shares knowledge among A iff all traces in a KLTS
L eventually reach a state that shares knowledge among A.

Example 7.4. Let L1 be a KLTS with a unique trace k0
A!B−−→ k1

B?A−−→ k2: L1 does not share knowledge among

A and B. Let L2 be a KLTS with a unique trace k0
A!B−−→ k1

B?A−−→ k2
B!A−−→ k3

A?B−−→ k4: L2 shares knowledge
among A and B.

7.2. Knowledge sharing in contracts and CO2

A KLTS LT can be easily induced from the semantics of a systems of contracts T . Given a system of
contracts T , whenever A ∈ P(T) receives the special “knowledge message” k from B ∈ P(T), the knowledge
of A is augmented with that of B. Subsequently, if A sends k to C ∈ P(T), then C will receive the knowledge
of both A and B. Technically, each time k is sent (resp. received) by a participant in T , a corresponding
transition is induced in LT , so that knowledge is transmitted (resp. acquired). Instead, if T reduces by
exchanging a message sort e 6= k, then a τ transition is induced in LT . Each configuration of the system of
contracts is used as decoration in LT , so that the LTS of T and LT are isomorphic.

Example 7.5. Let T 1 = A〈B!k〉 | B〈A?k〉. LT 1 does not share knowledge among A and B, and thus T 1 does
not share knowledge among A and B. Instead, T 2 = A〈B!k;B?k〉 | B〈A?k;A!k〉 shares knowledge among A and B.

Analogously, a KLTS LS can be induced from the semantics of a CO2 system S. Intuitively, a participant
A in S transmits (resp. acquires) its knowledge to (resp. from) B only when A fires a dosB k prefix on some
session s[T], where A’s contract in T sends (resp. receives) k accordingly. In this case, each state of LS

is decorated with its corresponding CO2 system so to keep both the KLTS and the semantic LTS of S
isomorphic.

In the example below, we show how two participants A and B share knowledge by interacting via two
sessions — even though none of systems of contracts in these sessions share knowledge among {A, B}.

Example 7.6 (Sharing knowledge via two sessions). Consider the CO2 system:

S1 = A[(x, y)tellK ↓x cA1 | tellK ↓y cA2 | doxB k . doyB k] | B[(w, z)tellK ↓w cB1 | tellK ↓z cB2 | dowA k . dozA k]
| K[fuse . fuse]

with contracts cA1 = B!k, cA2 = B?k, cB1 = A?k, cB2 = A!k. The system S1 reduces as follows:

S1 →∗ (x, y, w, z)
(
A[doxB k . doyB k] | B[dowA k . dozA k]
| K[↓x A says cA1 |↓w B says cB1] | K[↓y A says cA2 |↓z B says cB2] | K[fuse . fuse]

)
K: fuse−−−→ K: fuse−−−→ S′ = (s, t)A

[
dosB k . dotB k

]
| B
[
dosA k . dotA k

]
| K[0] | s[A〈B!k〉 | B〈A?k〉] | t[A〈B?k〉 | B〈A!k〉]

Participants A and B share knowledge in S′ since they both exchange two k messages: in session s, A

sends its knowledge to B, while in session t, B sends its knowledge to A.

24

Note however that neither A nor B is honest: they both perform consecutive do actions on different
sessions, and the second prefix may become unreachable if the first one does not succeed. For instance, B

will become persistently culpable if the process of A in S is replaced by:

A[(y)tellK ↓y cA2 | doyB k] or A[(x, y)tellK ↓x cA1 | tellK ↓y cA2 | doyB k]

i.e., A does not advertise cA1, or it lacks the expected doxB k prefix. In our terminology, there are CO2 systems
(those in (7.6) above) such that B is not ready once it is composed with them.

The lack of honesty can be addressed by changing A and B’s processes so that they execute their do actions
in parallel, e.g., A and B become

A[(x, y)tellK ↓x cA1 | tellK ↓y cA2 | doxB k | doyB k] B[(w, z)tellK ↓w cB1 | tellK ↓z cB2 | dowA k | dozA k]

Example 7.6 shows that it is possible to achieve knowledge sharing through multiple sessions. If a broker
were to guarantee knowledge sharing via, e.g., two sessions as above, it would have to wait for both sessions
to be ready before starting them, thus ensuring that both session, as a whole, will implement a sharing
knowledge protocol. In fact, this implies that these two sessions are not independent since they can only be
started together, and, as discussed above, guaranteeing safety and liveness properties for inter-dependent
sessions is not trivial.

Additionally, for a set of n honest participants to implement a sharing knowledge protocol via binary
sessions, n× (n− 1) sessions would be necessary. Multiparty sessions offer a more elegant solution here, as
we show in Example 7.7 below.

Example 7.7. Consider the CO2 system:

S3 = A[(x, y)tellK ↓x cA | doxB k . doyB k] | B[(w, z)tellK ↓w cB | dowA k . dozA k] | K[fuse]

with contracts cA = B?k;B!k and cB = A!k;A?k. In this case, both A and B are honest and share knowledge in
a single session.

7.3. Knowledge sharing choreographies
Our contract model allows for system of contracts that have infinite traces (due to the use of FIFO

queues, notably). It is therefore crucial to have an effective and sound procedure to decide whether a given
system T shares knowledge among P(T). Definition 7.8 below gives such a procedure, by analysing a global
type G.

We first introduce a map K : P → 2P that, given a participant name C, returns the set of names
representing the participants from whom C acquired knowledge. Initially, we have that K(C) = {C} for each
participant C, i.e., a participant has only access to its own knowledge. Given a global type G, we want that

∀ C ∈ P(G) : K(C) = P(G)

holds at the end of the session embodied by G.
We define the boolean function K̂(G,N,K) which returns true if all the participants in N ⊇ P(G) share

the same knowledge (with respect to K) at the end of the session.

Definition 7.8. Let K̂(G)
def
= K̂(G,P(G),K0), where K0 is the initial knowledge map, i.e. ∀ C ∈ P(G) : K0(C) =

{C} and

K̂(G,N,K)
def
=

K̂(G′,N,K′) if G = A→B :k ;G′ ∧ K′=K{K(B)∪K(A)/B}
K̂(G′,N,K) if G = A→B :e ;G′ ∧ e 6= k

K̂(G1,N,K) ∧ K̂(G2,N,K) if G = G1 +G2

K̂(G1,N,K1) ∧ K̂(G2,N,K2) if G = G1 | G2 ∧ K = K1 t K2
and P(Gi) ⊆ dom(Ki)with i ∈ {1, 2}

∀C ∈ dom(K) : K(C) = N if G = 0

false otherwise

We write t for the disjoint union of maps.

25

The first case of Definition 7.8 handles knowledge sharing interactions: B acquires all the current knowledge
of A, while the second case deals with interactions that do not represent a transmission of knowledge. The
case of choice simply requires that the condition is satisfied in both branches. In the case of concurrent
branches, we need to partition the knowledge map in two – since the sets of participants in the concurrent
branches of G are disjoint. In the case of G = 0, we check that all participants share the same knowledge.
For the sake of simplicity, the function returns false if the global type is recursive.

We write fuseK for the variant of fuseφ (as introduced in Section 4.5) where φ(G) ⇐⇒ K̂(G). We
illustrate Definition 7.8 in Example 7.10 below.

The proposition below (whose proof is in the appendix [17]) formalises the relationship between local
and global knowledge sharing.

Proposition 7.9. Let T by a system of contracts such that ` T I G. If K̂(G), then T shares knowledge
among P(T).

We conclude this case study with an example that combine: (i) multiparty sessions, (ii) honest partici-
pants, and (iii) contractual agreements based on fuseK .

Example 7.10. Consider the following contracts

cA = B1?k; B2?k; B3?k; B1!k; B2!k; B3!k
cBi = A!k;A?k i ∈ {1, 2, 3}

Let T = A〈cA〉 | B1〈cB1〉 | B2〈cB2〉 | B3〈cB3〉, we have T ` G I, with

G = B1→A :k ; B2→A :k ; B3→A :k ;
A→B1 :k ; A→B2 :k ; A→B3 :k ; 0

K̂(G) holds since at the end of the first line of G, we have K(A) = {A, B1, B2, B3} and, in the second line, A

shares its acquired knowledge with all the other participants.
Consider the CO2 system below which uses the contracts above, where K is a “knowledge sharing” broker

using primitive fuseK :
S = A[PA] | B1[PB1] | B2[PB2] | B3[PB3] | K[fuseK]

with
PA = (w)

(
tellK ↓w cA . dowB1 k . dowB2 k . dowB3 k . dowB1 k . dowB2 k . dowB3 k

)
PBi = (x) (tellK ↓x cBi . doxa k . doxa k) i ∈ {1, 2, 3}

Each of the participants above is honest and K will only start knowledge sharing sessions.

vi

8. Related Work

8.1. CO2 and Verification of Honesty

The origin of CO2 goes back to [10], where a first calculus of contracting processes was introduced. The
calculus was then generalised in [22, 14] to suit different contract models (e.g., contracts as processes or
logic formulæ). In [11], it has been instantiated to a theory of bilateral contracts inspired by [23]. The main
differences between our adaptation of CO2 and the original presentation in [22] lie in the specification of
session establishment and the introduction of participant variables.

The notion of honesty has been introduced in [11], where a participant is considered honest when, in all
possible contexts, it can always exculpate itself by a sequence of its own moves. Here, instead, we require
that the participant is ready (Definition 5.5) in all possible contexts, similarly to [18]. The two notions are
equivalent in the contract model based on binary session types considered in [18]. In the present paper,
a similar correspondence is highlighted by Theorem 6.1, which states that an honest participant A who is

26

culpable at some session s can always fire some dos after a sequence of its own moves. Note however that A
may still be culpable after such dos, e.g. when its contract requires to perform more outputs.

A negative result of [11] is that honesty is not decidable: hence, verification techniques can only aim at
safely approximating it. Two different approaches have been proposed in [18, 24], where CO2 is instantiated
with binary session types. In [18], a type system for CO2 processes is presented, associating behavioural
types to all session variables used in a processe; honesty is then verified by model checking these behavioural
types. The technique introduced in [24] is rather different, and more closely based on the semantic definition
of honesty: it first devises an abstraction of the contexts wherein A[P] may run, and then safely approximates
the honesty of A by model checking such an abstraction. Basically, the abstraction only maintains the process
of A and its contracts; the rest of the system is discarded, by over-approximating its moves; then, model
checking is used to search the abstracted state space of A[P] for states where A is not ready. If the search
fails, then A is honest. Such a search for non-ready states is decidable for finite state processes, i.e. those
without delimitation/parallel under process definitions.

We expect that both techniques above can be adapted to cope with the contracts and the calculus studied
in this paper. In particular, we now sketch one way to adapt the model checking technique of [24] to the
present work.

� First, we develop a safe approximation of honesty, called 1-bounded honesty. We begin by observing
that for all synthesizable T , the culpability states of participants along the reductions of T can be
faithfully captured by only considering “1-bounded” configurations (i.e., where each queue contains
at most one message). Furthermore, the local and global types in the present work are a subset of
those in [4]. Therefore, they enjoy a key property from [4]: for all synthesizable T , each reachable
1-bounded configurations is reachable via a “1-bounded” computation (i.e., an execution such that
each step has 1-bounded queues). We can then define “1-bounded” honesty as in Definition 5.8, but
using the 1-bounded contract semantics, instead of the unbounded one; the observations above can be
used to prove that 1-bounded honesty implies honesty. Note that the 1-bounded contract semantics
is finite-state.

� Second, we devise an abstraction of 1-bounded systems of contracts wrt. a participant A, whose honesty
we want to verify. This abstraction must preserve all the moves of A, while over-approximating the
moves of other possible participants. This is done similarly to [24]. Such an abstraction also has a
finite-state semantics.

� Finally, we design an abstraction for CO2 systems which preserves the moves of a participant A while
over-approximating those of the context (similarly to the abstraction for contracts). Again, this
abstraction can be obtained by slightly adapting the one in [24], using the abstract contracts from
the previous item. Given any A[P] with no delimitation/parallel under process definitions, such an
abstraction has a finite-state semantics.

Summing up, we have a finite-state abstraction of A[P] that, as in [24], can be searched for states where A
is not ready. If the search fails, we say that A[P] is abstractly honest. From the observations above, abstract
honesty implies 1-bounded honesty, which in turn implies honesty.

8.2. Choreographies and Compliance among Contracts

Several papers have addressed the problem of defining notions of compliance (also called agreement, or
compatibility) among contracts, both in the biparty and in the multiparty case. Very roughly, compliance
relates contracts that, when composed, give rise to “correct” interactions.

Our notion of compliance (Definition 3.6) exploits the approach introduced in [6, 16], which gives a
typing system allowing to synthesise a choreography (i.e., a global type) from a set of local types, and gives
a characterisation of the global types that can be synthesised. To the best of our knowledge, our approach
is the first formal model of distributed systems where contractual agreement is based on the existence
of a choreography. Deniélou and Yoshida [4] have given a characterisation of finite-state communicating
machines from which it is possible to synthesise a global type, as well as an algorithm to build global types

27

from such machines. Their results could also be used as a foundation for an agreement relation similar the
one presented here. However, we remark that the global type obtained from the algorithm in [4] is not
unique in general, notably due to the lack of special treatment of independent interactions (i.e., G | G′, in
our notation). Practically, this means that specific fuse relations (such as the ones discussed in Section 4.3)
based on this algorithm may become non-deterministic.

In [25] contracts are considered compliant when their composition may always reach success (so guaran-
teeing progress until success). In our work, progress is provided by the synthesis of a global type. In [26],
compliance requires that the composition of contracts adheres to a predetermined choreography; in our
framework, however, no choreography is assumed beforehand. In [27], a contract language has been pro-
posed for processes, where, as in the π-calculus, communications are synchronous and channel names can be
passed around. The notion of compliance in [27] is based on a testing approach: contracts are compliant if,
essentially, their composition has progress. In the same line of work, [28] proposes to “project” processes
into session types (akin to the contracts of [27] but without name passing capabilities). The author gives an
adapted notion of compliance, called completeness, which permits to characterise when a set of session types
is able to reduce further. The semantic correspondence between global specifications (choreographies) and
local specification (local types) has been investigated in [29, 12]. In the context of binary session types, sev-
eral notions of duality (i.e., compliance between two complementary session types) are studied and compared
in [30], including the higher-order case. A syntax-independent notion of compliance, defined over generic
LTSs with input/output actions, and encompassing first-order binary session types with either synchronous
or asynchronous semantics, is introduced in [31].

Choreographies have been studied with different types of syntax and several well-formedness conditions
(ensuring properties of their projections). The syntax of our choreographies is close to the ones used
in [12, 3, 32] and satisfy similar properties such as knowledge of choice (or local choice); other formalisms
include automata-based syntax (e.g., [33]), Petri nets [34] and graphical representation such as BPMN [35].
Each formalism generally comes with a set of conditions ensuring good properties on the system specified by
the choreography — such as realisability [36] or connectedness [29] which ensure a correspondence between
the order of messages exchanged by the projections and the order specified by the choreography. In the
present work, we only require that a choreography specifies a safe system of contracts (which is guaranteed
by the synthesis).

8.3. Conformance between Processes and Contracts

The seminal top-down approach of multiparty session types was first presented in [3]. The methodology
it advocates is as follows: a team of programmers designs a global view of the interactions to be implemented
(i.e., a choreography or global type), then the choreography is projected onto each role, or participant, so to
obtain local types; finally each program implementing one or more roles in the choreography is type-checked
against its corresponding projection(s). The approach permits, if the choreography is “well-formed”, to
guarantee safety properties such as deadlock freedom, and to ensure that an implementation abides by the
specified protocol (session fidelity).

As in most works on session types (e.g., [3, 32, 12]), our contract model does not feature concurrency
at the local level, i.e., it does not allow for a multi-threaded single contract. However, our results could be
easily extended to support local concurrency, by using a choreography synthesis framework which does cater
for it: for instance, the one in [37], which offers the same safety guarantees as the one in this work.

Honesty ensures that a CO2 process will interact in a session according to some specific contract. A
similar problem is tackled in the session types literature. However, session type based systems do not
cater for a notion of “culpability”, and are generally unable to guarantee progress for processes interacting
on multiple interleaved sessions without strong assumptions on their execution context. The problem of
guaranteeing progress in a composition of processes interacting through several interleaved sessions is tackled
in [19, 32] via a complex typing system. Their results include that a well-typed compositions of processes can
interact on multiple interleaved sessions without deadlocking — and thus, in our setting, without remaining
persistently culpable. In the present paper, a similar progress result is provided for systems of honest
participants (Corollary 6.3): a main difference wrt. [19, 32] is that the honesty of each participant is checked
“in isolation”, without assumptions on the runtime context.

28

Another related approach in the context of multiparty session types is that of run-time monitoring [38,
39]. Basically, each monitor is constructed from a local type, and mediates the inputs/outputs of a process
in a multiparty session; run-time safety and session fidelity properties are enforced by forbidding interactions
not specified in the originating local type. This approach is similar to that of CO2 in the sense that local
types are used to “guard” the processes implementing the protocols, as required by the [CO2-Do] rule premises
(Figure 4). The framework in [38], however, requires a global type to be available beforehand in order to
project process monitors — while in our case, global types are synthesised dynamically from the local types
advertised by each participant.

9. Concluding Remarks

In this work, we investigated the combination of the contract-oriented calculus CO2 with a contract
model that fulfils two basic design requirements: (i) it supports multiparty agreements, and (ii) it provides
an explicit description of the choreography that embodies each agreement. These requirements prompted us
towards the well-established results from the session types setting — in particular, regarding the interplay
between a well-formed global type and its corresponding local behaviours. We introduced the concepts of
global progress and session fidelity in CO2, also inspired from the analogous concepts in theories based on
session types. We built our framework upon a simple version of session types, and yet it turns out to be
quite flexible, allowing for sessions where the number of participants is not known beforehand.

This article is the full version of the extended abstract published in [40]. Here we streamlined several
aspects of the theory, introduced additional results, and extended definitions, explanations and proofs. In
addition, we present a large case study whereby our approach is put into practice.

Future work. We plan to extend our work so to offer even more flexibility — for example, by analysing
further parameterised fuseφ variants implementing different session establishment criteria. We also plan to
study the possibility for a participant to be involved in a session under multiple contracts, e.g., a bank
advertising two services, and a customer publishing a contract which uses both of them in a well-formed
choreography.

Another research direction is the concept of “group honesty”. In fact, the current definition of honesty is
quite strict: it basically verifies each participant in isolation, thus providing a sufficient (but not necessary)
condition for progress. Consider, for example, a CO2 system like:

S = (x, y)
(
A[tellA ↓x (B!int⊕ B!bool) . fuse . doxB int] | B[tellA ↓y (A?int + A?bool) . doyA int]

)
B is not honest, since it is not ready for the bool branch of its contract. However, the system S has progress:
when B establishes a session with A, the latter will never take the bool branch; hence, B will not remain
culpable. This kind of “group honesty” may be used to validate (sub-)systems of participants developed by
the same organization: it would ensure that they never “cheat each other”, and are collectively honest when
deployed in any context. Furthermore, the group honesty of all participants in a system S may turn out to
be a necessary condition for the global progress of S.

Acknowledgements. We would like to thank Emilio Tuosto for his (in)valuable advice, and the anonymous
reviewers of ICE 2013 for their comments and suggestions.

References

[1] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based
programming, in: Proc. ESOP, 1998.

[2] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and its typing system, in: Proc. PARLE’94 Parallel
Architectures and Languages Europe, Vol. 817 of LNCS, Springer, 1994, pp. 398–413. doi:10.1007/3-540-58184-7_118.

[3] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: Proc. POPL, 2008.
[4] P.-M. Deniélou, N. Yoshida, Multiparty compatibility in communicating automata: Characterisation and synthesis of

global session types, in: Proc. ICALP, 2013, pp. 174–186.

29

http://dx.doi.org/10.1007/3-540-58184-7_118

[5] F. Montesi, N. Yoshida, Compositional choreographies, in: Proc. CONCUR, 2013, pp. 425–439.
[6] J. Lange, E. Tuosto, Synthesising choreographies from local session types, in: Proc. CONCUR, 2012.
[7] T. Hobbes, The Leviathan, 1651, chapter XIV.
[8] OASIS, Reference architecture foundation for service oriented architecture, comm. Spec. 01, v.1.0. Available at http:

//docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html (December 2012).
[9] M. Armbrust, et al., A view of cloud computing, Comm. ACM 53 (4) (2010) 50–58. doi:10.1145/1721654.1721672.

[10] M. Bartoletti, R. Zunino, A calculus of contracting processes, in: Proc. LICS, 2010.
[11] M. Bartoletti, E. Tuosto, R. Zunino, On the realizability of contracts in dishonest systems, in: Proc. COORDINATION,

2012.
[12] G. Castagna, M. Dezani-Ciancaglini, L. Padovani, On global types and multi-party session, Logical Methods in Comp.

Sci. 8 (1).
[13] P.-M. Deniélou, N. Yoshida, Multiparty session types meet communicating automata, in: Proc. ESOP, 2012.
[14] M. Bartoletti, E. Tuosto, R. Zunino, Contract-oriented computing in CO2, Scientific Annals in Comp. Sci. 22 (1) (2012)

5–60.
[15] S. M. Hedetniemi, S. T. Hedetniemi, A. L. Liestman, A survey of gossiping and broadcasting in communication networks,

Networks 18 (4) (1988) 319–349.
[16] J. Lange, On the synthesis of choreographies, Ph.D. thesis, University of Leicester (2013).
[17] Appendix to this paper, http://tcs.unica.it/publications.
[18] M. Bartoletti, A. Scalas, E. Tuosto, R. Zunino, Honesty by typing, in: Proc. FMOODS/FORTE, 2013, pp. 305–320.
[19] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, N. Yoshida, Inference of global progress properties for dynamically in-

terleaved multiparty sessions, in: R. De Nicola, C. Julien (Eds.), Proc. COORDINATION, Vol. 7890 of Lecture Notes in
Computer Science, Springer, 2013, pp. 45–59.

[20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
M. Zaharia, A view of cloud computing, Commun. ACM 53 (4) (2010) 50–58.

[21] D. Brand, P. Zafiropulo, On communicating finite-state machines, JACM 30 (2) (1983) 323–342.
[22] M. Bartoletti, E. Tuosto, R. Zunino, Contracts in distributed systems, in: Proc. ICE, 2011, pp. 130–147.
[23] G. Castagna, N. Gesbert, L. Padovani, A theory of contracts for web services, ACM Trans. on Prog. Lang. and Sys. 31 (5).
[24] M. Bartoletti, M. Murgia, A. Scalas, R. Zunino, Modelling and verifying contract-oriented systems in Maude, in: Proc.

WRLA, 2014, to appear. Available at http://tcs.unica.it/publications.
[25] M. Bravetti, G. Zavattaro, A foundational theory of contracts for multi-party service composition, Fundam. Inform. 89 (4)

(2008) 451–478.
[26] M. Bravetti, I. Lanese, G. Zavattaro, Contract-driven implementation of choreographies, in: TGC, Vol. 5474 of LNCS,

2009.
[27] G. Castagna, L. Padovani, Contracts for mobile processes, in: Proc. CONCUR, 2009.
[28] L. Padovani, On projecting processes into session types, MSCS 22 (2012) 237–289.
[29] I. Lanese, C. Guidi, F. Montesi, G. Zavattaro, Bridging the gap between interaction- and process-oriented choreographies,

in: Proc. SEFM, 2008.
[30] G. Bernardi, O. Dardha, S. J. Gay, D. Kouzapas, On duality relations for session types, in: TGC, 2014, to appear.
[31] M. Bartoletti, A. Scalas, R. Zunino, A semantic deconstruction of session types, in: CONCUR, 2014. doi:10.1007/

978-3-662-44584-6_28.
[32] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, N. Yoshida, Global progress in dynamically

interleaved multiparty sessions, in: F. van Breugel, M. Chechik (Eds.), CONCUR 2008 - Concurrency Theory, 19th
International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings, Vol. 5201 of Lecture Notes
in Computer Science, Springer, 2008, pp. 418–433. doi:10.1007/978-3-540-85361-9_33.
URL http://dx.doi.org/10.1007/978-3-540-85361-9_33

[33] X. Fu, T. Bultan, J. Su, Conversation protocols: a formalism for specification and verification of reactive electronic services,
Theor. Comput. Sci. 328 (1-2) (2004) 19–37. doi:10.1016/j.tcs.2004.07.004.
URL http://dx.doi.org/10.1016/j.tcs.2004.07.004

[34] L. Fossati, R. Hu, N. Yoshida, Multiparty session nets, in: TGC, 2014, to appear.
[35] Business Process Model and Notation 2.0 Choreography, http://en.bpmn-community.org/tutorials/34/ (2012).
[36] S. Basu, T. Bultan, M. Ouederni, Deciding choreography realizability, in: J. Field, M. Hicks (Eds.), Proceedings of the 39th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012, ACM, 2012, pp. 191–202. doi:10.1145/2103656.2103680.
URL http://doi.acm.org/10.1145/2103656.2103680

[37] J. Lange, E. Tuosto, N. Yoshida, From communicating machines to graphical choreographies, in: POPL, 2015, to appear,
available at http://www.doc.ic.ac.uk/research/technicalreports/2014/DTR14-4.pdf.

[38] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, N. Yoshida, Monitoring networks through multiparty session types, in:
Proc. FMOODS/FORTE, Vol. 7892 of Lecture Notes in Computer Science, Springer, 2013, pp. 50–65.

[39] T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, N. Yoshida, Asynchronous distributed monitoring for multiparty session
enforcement, in: Proc. TGC, Vol. 7173 of Lecture Notes in Computer Science, Springer, 2011, pp. 25–45.

[40] J. Lange, A. Scalas, Choreography synthesis as contract agreement, in: M. Carbone, I. Lanese, A. Lluch-Lafuente,
A. Sokolova (Eds.), ICE, Vol. 131 of EPTCS, 2013, pp. 52–67.

30

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://dx.doi.org/10.1145/1721654.1721672
http://tcs.unica.it/publications
http://tcs.unica.it/publications
http://dx.doi.org/10.1007/978-3-662-44584-6_28
http://dx.doi.org/10.1007/978-3-662-44584-6_28
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1016/j.tcs.2004.07.004
http://dx.doi.org/10.1016/j.tcs.2004.07.004
http://dx.doi.org/10.1016/j.tcs.2004.07.004
http://en.bpmn-community.org/tutorials/34/
http://doi.acm.org/10.1145/2103656.2103680
http://dx.doi.org/10.1145/2103656.2103680
http://doi.acm.org/10.1145/2103656.2103680
http://www.doc.ic.ac.uk/research/technicalreports/2014/DTR14-4.pdf

	Introduction
	A Motivating Example
	A Choreography-Based Contract Model
	Local session types as Contracts
	Semantics
	Choreography Synthesis as Agreement
	Culpability

	Introducing Choreographies to the Wild
	Syntax
	Semantics
	Reaching Agreements
	On Culpability
	Finer-grained Forms of Agreement

	Domesticating Wild Choreographies via Honesty
	Properties of CO2 Systems
	Case Study: Sharing Knowledge
	Semantic knowledge sharing
	Knowledge sharing in contracts and CO2
	Knowledge sharing choreographies

	Related Work
	CO2 and Verification of Honesty
	Choreographies and Compliance among Contracts
	Conformance between Processes and Contracts

	Concluding Remarks

