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Abstract. Subtyping is a crucial ingredient of session type theory and
its applications, notably to programming language implementations. In
this paper, we study effective ways to check whether a session type is
a subtype of another by applying a characteristic formulae approach to
the problem. Our core contribution is an algorithm to generate a modal
µ-calculus formula that characterises all the supertypes (or subtypes) of
a given type. Subtyping checks can then be off-loaded to model checkers,
thus incidentally yielding an efficient algorithm to check safety of session
types, soundly and completely. We have implemented our theory and
compared its cost with other classical subtyping algorithms.

1 Introduction

Motivations Session types [24, 25, 40] have emerged as a fundamental the-
ory to reason about concurrent programs, whereby not only the data aspects
of programs are typed, but also their behaviours wrt. communication. Recent
applications of session types to the reverse-engineering of large and complex dis-
tributed systems [12, 29] have led to the need of handling potentially large and
complex session types. Analogously to the current trend of modern compilers to
rely on external tools such as SMT-solvers to solve complex constraints and offer
strong guarantees [16, 23, 31, 32], state-of-the-art model checkers can be used to
off-load expensive tasks from session type tools such as [29,37,42].

A typical use case for session types in software (reverse-) engineering is to
compare the type of an existing program with a candidate replacement, so to
ensure that both are “compatible”. In this context, a crucial ingredient of ses-
sion type theory is the notion of subtyping [9, 14, 19] which plays a key role to
guarantee safety of concurrent programs while allowing for the refinement of
specifications and implementations. Subtyping for session types relates to many
classical theories such as simulations and pre-orders in automata and process
algebra theories; but also to subtyping for recursive types in the λ-calculus [5].
The characteristic formulae approach [1–3, 11, 21, 38, 39], which has been stud-
ied since the late eighties as a method to compute simulation-like relations in
process algebra and automata, appears then as an evident link between subtyp-
ing in session type theory and model checking theories. In this paper, we make
the first formal connection between session type and model checking theories,
to the best of our knowledge. We introduce a novel approach to session types
subtyping based on characteristic formulae; and thus establish that subtyping
for session types can be decided in quadratic time wrt. the size of the types.



This improves significantly on the classical algorithm [20]. Subtyping can then
be reduced to a model checking problem and thus be discharged to powerful
model checkers. Consequently, any advance in model checking technology has an
impact on subtyping.

Example Let us illustrate what session types are and what subtyping covers.
Consider a simple protocol between a server and a client, from the point of view
of the server. The client sends a message of type request to the server who decides
whether or not the request can be processed by replying ok or ko, respectively.
If the request is rejected, the client is offered another chance to send another
request, and so on. This may be described by the session type below

U1 “ recx. ?request .t!ok .end ‘ !ko.x u (1)

where recx binds variable x in the rest of the type, ?msg (resp. !msg) specifies
the reception (resp. emission) of a message msg , ‘ indicates an internal choice
between two behaviours, and end signifies the termination of the conversation.
An implementation of a server can then be type-checked against U1.

The client’s perspective of the protocol may be specified by the dual of U1:

U1 “ U2 “ recx. !request .t?ok .end & ?ko.x u (2)

where & indicates an external choice, i.e., the client expects two possible be-
haviours from the server. A classical result in session type theory essentially
says that if the types of two programs are dual of each other, then their parallel
composition is free of errors (e.g., deadlock).

Generally, when we say that integer is a subtype of float, we mean that
one can safely use an integer when a float is required. Similarly, in session
type theory, if T is a subtype of a type U (written T ďU), then T can be used
whenever U is required. Intuitively, a type T is a subtype of a type U if T is
ready to receive no fewer messages than U , and T may not send more messages
than U [9, 14]. For instance, we have

T1 “ ?request . !ok .end ď U1

T2 “ recx. !request .t?ok .end & ?ko.x & ?error .end u ď U2
(3)

A server of type T1 can be used whenever a server of type U1 (1) is required (T1
is a more refined version of U1, which always accepts the request). A client of
type T2 can be used whenever a client of type U2 (2) is required since T2 is a
type that can deal with (strictly) more messages than U2.

In Section 3.2, we will see that a session type can be naturally transformed
into a µ-calculus formula that characterises all its subtypes. The transformation
notably relies on the diamond modality to make some branches mandatory, and
the box modality to allow some branches to be made optional; see Example 2.

Contribution & synopsis In § 2 we recall session types and give a new abstract
presentation of subtyping. In § 3 we present a fragment of the modal µ-calculus
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and, following [38], we give a simple algorithm to generate a µ-calculus formula
from a session type that characterises either all its subtypes or all its supertypes.
In § 4, building on results from [9], we give a sound and complete model-checking
characterisation of safety for session types. In § 5, we present two other subtyp-
ing algorithms for session types: Gay and Hole’s classical algorithm [20] based on
inference rules that unfold types explicitly; and an adaptation of Kozen et al.’s
automata-theoretic algorithm [27]. In § 6, we evaluate the cost of our approach
by comparing its performances against the two algorithms from § 5. Our perfor-
mance analysis is notably based on a tool that generates arbitrary well-formed
session types. We conclude and discuss related works in § 7. Due to lack of space,
full proofs are relegated to Appendix A (also available online [30]). Our tool and
detailed benchmark results are available online [28].

2 Session types and subtyping

Session types are abstractions of the behaviour of a program wrt. the commu-
nication of this program on a given session (or conversation), through which it
interacts with another program (or component).

2.1 Session types

We use a two-party version of the multiparty session types in [15]. For the sake
of simplicity, we focus on first order session types (that is, types that carry only
simple types (sorts) or values and not other session types). We discuss how to
lift this restriction in Section 7. Let V be a countable set of variables (ranged
over by x,y, etc.); let A be a (finite) alphabet, ranged over by a, b, etc.; and A
be the set defined as t!a | a P Au Y t?a | a P Au. We let : range over elements
of t!, ?u, so that :a ranges over A. The syntax of session types is given by

T :“ end |
à

iPI

!ai. Ti |
¯
iPI

?ai. Ti | recx.T | x

where I ‰ H is finite, ai P A for all i P I, ai ‰ aj for i ‰ j, and x P V.
Type end indicates the end of a session. Type

À

iPI !ai. Ti specifies an internal
choice, indicating that the program chooses to send one of the ai messages, then
behaves as Ti. Type

˘
iPI ?ai. Ti specifies an external choice, saying that the

program waits to receive one of the ai messages, then behaves as Ti. Types
recx.T and x are used to specify recursive behaviours. We often write, e.g.,
t!a1.T1 ‘ . . .‘ !ak.Tku for

À

1ďiďk !ai.Ti, write !a1 .T1 when k “ 1, similarly for˘
iPI ?ai. Ti, and omit trailing occurrences of end.
The sets of free and bound variables of a type T are defined as usual (the

unique binder is the recursion operator recx.T ). For each type T , we assume that
two distinct occurrences of a recursion operator bind different variables, and that
no variable has both free and bound occurrences. In coinductive definitions, we
take an equi-recursive view of types, not distinguishing between a type recx.T
and its unfolding T rrecx.T{xs. We assume that each type T is contractive [34],
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j P I
À

iPI !ai. Ti
!aj

ÝÝÑ Tj

[T-out]
j P I

˘
iPI ?ai. Ti

?aj
ÝÝÑ Tj

[T-in]
T rrecx.T{xs

:a
ÝÑ T 1

recx.T
:a

ÝÑ T 1

[T-rec]

Fig. 1. LTS for session types in Tc

e.g., recx.x is not a type. Let T be the set of all (contractive) session types
and Tc Ď T the set of all closed session types (i.e., which do not contain free
variables).

A session type T P Tc induces a (finite) labelled transition system (LTS)

according to the rules in Figure 1. We write T
:a
ÝÑ if there is T 1 P T such that

T
:a
ÝÑ T 1 and write TÛ if @:a P A :  pT

:a
ÝÑq.

2.2 Subtyping for session types

Subtyping for session types was first studied in [19] and further studied in [9,14].
It is a crucial notion for practical applications of session types, as it allows for
programs to be refined while preserving safety.

We give a definition of subtyping which is parameterised wrt. operators ‘
and &, so to allow us to give a common characteristic formula construction for
both the subtype and the supertype relations, cf. Section 3.2. Below, we let z
range over t‘,&u. When writing ziPI :ai. Ti, we take the convention that : refers
to ! iff z refers to ‘ (and vice-versa for ? and &). We define the (idempotent)

duality operator as follows: ‘
def
“ &, &

def
“ ‘, !

def
“?, and ?

def
“ !.

Definition 1 (Subtyping). Fix z P t‘,&u, Ez Ď Tc ˆ Tc is the largest rela-
tion that contains the rules:

I Ď J @i P I : TiEz Ui

ziPI :ai. TiE
z zjPJ :aj . Uj

[S-z]
endEz end

[S-end]

J Ď I @j P J : Tj Ez Uj

ziPI :ai. TiE
z zjPJ :aj . Uj

[S-z]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. Recall that we are assuming an equi-recursive view of types. ˛

We comment Definition 1 assuming that z is set to ‘. Rule [S-z] says that a
type

À

jPJ !aj . Uj can be replaced by a type that offers no more messages, e.g.,

!a E‘ !a ‘ !b. Rule [S-z] says that a type
˘
jPJ ?aj . Uj can be replaced by a type

that is ready to receive at least the same messages, e.g., ?a & ?b E‘ ?a. Rule
[S-end] is trivial. It is easy to see that E‘ “ pE&q´1. In fact, we can recover the
subtyping of [9, 14] (resp. [19,20]) from Ez, by instantiating z to ‘ (resp. &).

Example 1. Consider the session types from (3), we have T1 E‘ U1, U1 E& T1,
T2 E‘ U2, and U2 E& T2.

Hereafter, we will write ď (resp. ě) for the pre-order E‘ (resp. E&).
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3 Characteristic formulae for subtyping

We give the core construction of this paper: a function that given a (closed)
session type T returns a modal µ-calculus formula [26] that characterises either
all the supertypes of T or all its subtypes. Technically, we “translate” a session
type T into a modal µ-calculus formula φ, so that φ characterises all the super-
types of T (resp. all its subtypes). Doing so, checking whether T is a subtype
(resp. supertype) of U can be reduced to checking whether U is a model of φ,
i.e., whether U |ù φ holds.

The constructions presented here follow the theory first established in [38];
which gives a characteristic formulae approach for (bi-)simulation-like relations
over finite-state processes, notably for CCS processes.

3.1 Modal µ-calculus

In order to encode subtyping for session types as a model checking problem it is
enough to consider the fragment of the modal µ calculus below:

φ :“ J | K | φ^ φ | φ_ φ | r:asφ | x:ayφ | νx. φ | x

Modal operators r:as and x:ay have precedence over Boolean binary operators ^
and _; the greatest fixpoint point operator νx has the lowest precedence (and its
scope extends as far to the right as possible). Let F be the set of all (contractive)
modal µ-calculus formulae and Fc Ď F be the set of all closed formulae. Given
a set of actions A Ď A, we write  A for AzA, and rAsφ for

Ź

:aPAr:asφ.

The nth approximation of a fixpoint formula is defined as follows:

pνx. φq0
def
“ J pνx. φqn

def
“ φrpνx. φq

n´1
{xs if n ą 0

A closed formula φ is interpreted on the labelled transition system induced by a
session type T . The satisfaction relation |ù between session types and formulae
is inductively defined as follows:

T |ù J
T |ù φ1^φ2 iff T |ù φ1 and T |ù φ2

T |ù φ1_φ2 iff T |ù φ1 or T |ù φ2

T |ù r:asφ iff @T 1 P Tc : if T
:a
ÝÑ T 1 then T 1 |ù φ

T |ù x:ayφ iff DT 1 P Tc : T
:a
ÝÑ T 1 and T 1 |ù φ

T |ù νx. φ iff @n ě 0 : T |ù pνx. φqn

Intuitively, J holds for every T (while K never holds). Formula φ1 ^ φ2 (resp.
φ1_φ2) holds if both components (resp. at least one component) of the formula
hold in T . The construct r:asφ is a modal operator that is satisfied if for each :a-
derivative T 1 of T , the formula φ holds in T 1. The dual modality is x:ayφ which
holds if there is an :a-derivative T 1 of T such that φ holds in T 1. Construct νx. φ
is the greatest fixpoint operator (binding x in φ).
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3.2 Characteristic formulae

We now construct a µ-calculus formula from a (closed) session types, parame-
terised wrt. a constructor z. This construction is somewhat reminiscent of the
characteristic functional of [38].

Definition 2 (Characteristic formulae). The characteristic formulae of T P
Tc on z is given by function F : Tc ˆ t‘,&u Ñ Fc , defined as:

F pT,zq def
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Ź

iPI x: aiyF pTi,zq if T “ ziPI :ai. Ti
Ź

iPI r: aisF pTi,zq if T “ ziPI :ai. Ti

^
Ž

iPI x: aiyJ ^ r t: ai | i P IusK

rAsK if T “ end

νx. F pT 1,zq if T “ recx.T 1

x if T “ x ˛

Given T P Tc , F pT,‘q is a µ-calculus formula that characterises all the
supertypes of T ; while F pT,&q characterises all its subtypes. For the sake of
clarity, we comment on Definition 2 assuming that z is set to ‘. The first case
of the definition makes every branch mandatory. If T “

À

iPI !ai. Ti, then every
internal choice branch that T can select must also be offered by a supertype, and
the relation must hold after each selection. The second case makes every branch
optional but requires at least one branch to be implemented. If T “

˘
iPI ?ai. Ti,

then (i) for each of the ?ai -branch offered by a supertype, the relation must hold
in its ?ai -derivative, (ii) a supertype must offer at least one of the ?ai branches,
and (iii) a supertype cannot offer anything else but the ?ai branches. If T “ end,
then a supertype cannot offer any behaviour (recall that K does not hold for any
type). Recursive types are mapped to greatest fixpoint constructions.

Lemma 1 below states the compositionality of the construction, while Theo-
rem 1, our main result, reduces subtyping checking to a model checking problem.
A consequence of Theorem 1 is that the characteristic formula of a session type
precisely specifies the set of its subtypes or supertypes.

Lemma 1. F pT rU{xs,zq “ F pT,zqrF pU,zq{xs

Proof. By structural induction, see Appendix A.1. ˝

Theorem 1. @T,U P Tc : T Ez U ðñ U |ù F pT,zq

Proof. The proof essentially follows the techniques of [38], see Appendix A.3. ˝

Corollary 1. The following holds:

paq T ďU ðñ U |ù F pT,‘q
pbq U ěT ðñ T |ù F pU,&q

pcq U |ù F pT,‘q ðñ T |ù F pU,&q

Proof. By Theorem 1 and ď “ E‘, ě “ E&, ď “ ě´1, and E‘ “ pE&q´1 ˝
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Proposition 1. For all T,U P Tc, deciding whether or not U |ù F pT,zq holds
can be done in time complexity of Op|T | ˆ |U |q, in the worst case; where |T |
stands for the number of states in the LTS induced by T .

Proof. Follows from [11], since the size of F pT,zq increases linearly with |T |. ˝

Example 2. Consider session types T1 and U1 from (1) and (3) and fix A “

t?request , !ok , !kou. Following Definition 2, we obtain:

F pT1,‘q “ r?requestsx!okyrAsK ^ x?requestyJ ^ r t?requestusK
F pU1,&q “ νx. x?requesty

`

pr!ok srAsK ^ r!kosxq
^ px!okyJ _ x!koyJq ^ r t!ok , !okusK

˘

We have U1 |ù F pT1,‘q and T1 |ù F pU1,&q, as expected (recall tat T1ďU1).

4 Safety and duality in session types

A key ingredient of session type theory is the notion of duality between types. In
this section, we study the relation between duality of session types, character-
istic formulae, and safety (i.e., error freedom). In particular, building on recent
work [9] which studies the preciseness of subtyping for session types, we show
how characteristic formulae can be used to guarantee safety. A system (of ses-
sion types) is a pair of session types T and U that interact with each other by
synchronising over messages. We write T | U for a system consisting of T and
U and let S range over systems of session types.

Definition 3 (Synchronous semantics). The synchronous semantics of a
system of session types T | U is given by the rule below, in conjunction with
the rules of Figure 1.

T
: a
ÝÝÑ T 1 U

:a
ÝÑ U 1

T | U ÝÑ T 1 | U 1
[s-com]

We write ÝÑ˚ for the reflexive transitive closure of ÝÑ. ˛

Definition 3 says that two types interact whenever they fire dual operations.

Example 3. Consider the following execution of system T1 | U2, from (3):

T1 | U2 “ ?request . !ok .end | recx. !request .t. . .u
ÝÑ !ok .end | t?ok .end & ?ok .recx. ?requestt. . .uu ÝÑ end | end

Definition 4 (Error [9] and safety). A system T1 | T2 is an error if, either:

(a) T1 “ ziPI :ai. Ti and T2 “ zjPJ :aj . Uj , with z fixed;
(b) Th “

À

iPI !ai. Ti and Tg “
˘
jPJ ?aj . Uj ; and Di P I : @j P J : ai ‰ aj ,

with h ‰ g P t1, 2u; or
(c) Th “ end and Tg “ ziPI :ai. Ti, with h ‰ g P t1, 2u.
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We say that S “ T | U is safe if for all S1 : S ÝÑ˚ S1, S1 is not an error. ˛

A system of the form (a) is an error since both types are either attempting
to send (resp. receive) messages. An error of type (b) indicates that some of the
messages cannot be received by one of the types. An error of type (c) indicates
a system where one of the types has terminated while the other still expects to
send or receive messages.

Definition 5 (Duality). The dual of a formula φ P F , written φ (resp. of a
session type T P T , written T ), is defined recursively as follows:

φ
def
“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

φ1 ^ φ2 if φ “ φ1 ^ φ2

φ1 _ φ2 if φ “ φ1 _ φ2

r:asφ1 if φ “ r:asφ1

x:ayφ1 if φ “ x:ayφ1

νx. φ1 if φ “ νx. φ1

φ if φ “ J,K, or x ˛

T
def
“

$

’

’

’

&

’

’

’

%

ziPI :ai. Ti if T “ ziPI :ai. Ti

recx.T 1 if T “ recx.T 1

x if T “ x

end if T “ end

In Definition 5, notice that the dual of a formula only rename labels.

Lemma 2. For all T P Tc and φ P Fc, T |ù φ ðñ T |ù φ.

Proof. Direct from the definitions of T and φ (labels are renamed uniformly). ˝

Theorem 2. For all T P T : F pT,zq “ F pT ,zq.

Proof. By structural induction on T , see Appendix A.4. ˝

Theorem 3 follows straightforwardly from [9] and allows us to obtain a sound
and complete model-checking based condition for safety, cf. Theorem 4.

Theorem 3 (Safety). T | U is safe ðñ pT ďU _ U ďT q.

Proof. Direction pùñq follows from [9, Table 7] and direction pðùq is by coin-
duction on the derivations of T ďU and U ďT . See Appendix A.4 for details. ˝

Finally we achieve:

Theorem 4. The following statements are equivalent: paq T | U is safe

pbq U |ù F pT,‘q _ T |ù F pU,‘q pdq U |ù F pT ,&q _ T |ù F pU,&q
pcq T |ù F pU,&q _ U |ù F pT ,&q peq T |ù F pU,‘q _ U |ù F pT,‘q

Proof. By direct applications of Theorem 3, then Corollary 1 and Theorem 2. ˝

5 Alternative algorithms for subtyping

In order to compare the cost of checking the subtyping relation via characteristic
formulae to other approaches, we present two other algorithms: the original
algorithm as given by Gay and Hole in [20] and an adaptation of Kozen, Palsberg,
and Schwartzbach’s algorithm [27] for recursive subtyping for the λ-calculus.
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Γ, recx.T ďc U $ T rrecx.T{xs ďc U

Γ $ recx.T ďc U
[RL]

Γ $ endďc end
[End]

Γ, T ďc recx.U $ T ďc U rrecx.U{xs

Γ $ T ďc recx.U
[RR]

I Ď J @i P I : Γ $ Ti ďc Ui

Γ $
À

iPI !ai. Ti ďc

À

jPJ !aj . Uj

[Sel]
T ďc U P Γ

Γ $ T ďc U
[Assump]

J Ď I @j P J : Γ $ Tj ďc Uj

Γ $
˘

iPI ?ai. Ti ďc

˘
jPJ ?aj . Uj

[Bra]

Fig. 2. Algorithmic subtyping rules [20]

5.1 Gay and Hole’s algorithm

The inference rules of Gay and Hole’s algorithm are given in Figure 2 (adapted to
our setting). The rules essentially follow those of Definition 1 but deal explicitly
with recursion. They use judgments Γ $ T ďc U in which T and U are (closed)
session types and Γ is a sequence of assumed instances of the subtyping relation,
i.e., Γ “ T1ďc U1, ..., Tk ďc Uk, saying that each pair Tiďc Ui has been visited.
To guarantee termination, rule [Assump] should always be used if it is applicable.

Theorem 5 (Correspondence [20, Corollary 2]). T ďU if and only if H $

T ďc U is derivable from the rules in Figure 2.

Proposition 2, a contribution of this paper, states the algorithm’s complexity.

Proposition 2. For all T,U P Tc, the problem of deciding whether or not H $

T ďc U is derivable has an Opn2nq time complexity, in the worst case; where n
is the number of nodes in the parsing tree of the T or U (which ever is bigger).

Proof. Assume the bigger session type is T and its size is n (the number of nodes
in its parsing tree). Observe that the algorithm in Figure 2 needs to visit every
node of T and relies on explicit unfolding of recursive types. Given a type of
size n, its unfolding is of size Opn2q, in the worst case. Hence, we have a chain

Opnq`Opn2q`Opn4q`. . ., or Opř1ďiďk n
2iq, where k is a bound on the number

of derivations needed for the algorithm to terminate. According to [20, Lemma
10], the number of derivations is bounded by the number of sub-terms of T ,
which is Opnq. Thus, we obtain a worst case time complexity of Opn2nq. ˝

5.2 Kozen, Palsberg, and Schwartzbach’s algorithm

Considering that the results of [27] “generalise to an arbitrary signature of type
constructors (. . . )”, we adapt Kozen et al.’s algorithm, originally designed for
subtyping recursive types in the λ-calculus. Intuitively, the algorithm reduces
the problem of subtyping to checking the language emptiness of an automaton
given by the product of two (session) types. The intuition of the theory be-
hind the algorithm is that “two types are ordered if no common path detects a
counterexample”. We give the details of our instantiation below.

The set of type constructors over A, written CA, is defined as follows:

CA
def
“ tendu Y t‘A | H Ă A Ď Au Y t&A | H Ă A Ď Au
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Definition 6 (Term automata). A term automaton over A is a tuple M “

pQ, CA, q0, δ, `q where

– Q is a (finite) set of states,
– q0 P Q is the initial state,
– δ : QˆAÑ Q is a (partial) function (the transition function), and
– ` : QÑ CA is a (total) labelling function

such that for any q P Q, if `pqq P t‘A,&Au, then δpq, :aq is defined for all :a P A;
and for any q P Q such that `pqq “ end, δpq, :aq is undefined for all :a P A. We
decorate Q, δ, etc. with a superscript, e.g., M, where necessary. ˛

We assume that session types have been “translated” to term automata, the
transformation is straightforward (see, [15] for a similar transformation). Given
a session type T P Tc , we write MpT q for its corresponding term automaton.

Definition 7 (Subtyping). Ď is the smallest binary relation on CA such that:

end Ď end ‘A Ď ‘B ðñ A Ď B &A Ď &B ðñ B Ď A ˛

Definition 7 essentially maps the rules of Definition 1 to type constructors.
The order Ď is used in the product automaton to identify final states, see below.

Definition 8 (Product automaton). Given two term automata M and N
over A, their product automaton M đN “ pP, p0, ∆, F q is such that

– P “ QM ˆQN are the states of M đN ,
– p0 “ pq

M
0 , qN0 q is the initial state,

– ∆ : P ˆAÑ P is the partial function which for q1 P Q
M and q2 P Q

N gives

∆ppq1, q2q, :aq “ pδ
Mpq1, :aq, δ

N pq2, :aqq

– F Ď P is the set of accepting states: F “ t pq1, q2q | `
Mpq1q Ę `N pq2q u

Note that ∆ppq1, q2q, :aq is defined iff δMpq1, :aq and δN pq2, :aq are defined. ˛

Following [27], we obtain Theorem 6.

Theorem 6. Let T,U P Tc, T ďU iff the language of MpT q đMpUq is empty.

Theorem 6 essentially says that T ďU iff one cannot find a “common path”
in T and U that leads to nodes whose labels are not related by Ď, i.e., one cannot
find a counterexample for them not being in the subtyping relation.

Example 4. Below we show the constructions for T1 (1) and U1 (3).

&t?requestu

‘t!oku

end

MpT1q

?request

!ok

&t?requestu

‘t!ok,!kou

end

MpU1q

?request

!ok

!ko

&t?requestu Ď &t?requestu

‘t!oku Ď ‘t!ok,!kou

end Ď end

MpT1q đ MpU1q

?request

!ok

&t?requestu Ď &t?requestu

‘t!ok,!kou Ę ‘t!oku

end Ď end

MpU1q đ MpT1q

?request

!ok

Where initial states are shaded and accepting states are denoted by a double
line. Note that the language of MpT1q đMpU1q is empty (no accepting states).
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Fig. 3. Benchmarks (1)

Proposition 3. For all T,U P Tc, the problem of deciding whether or not the
language of MpT qđMpUq is empty has a worst case complexity of Op|T |ˆ |U |q;
where |T | stands for the number of states in the term automaton MpT q.

Proof. Follows from the fact that the algorithm in [27] has a complexity of Opn2q,
see [27, Theorem 18]. This complexity result applies also to our instantiation,
assuming that checking membership of Ď is relatively inexpensive, i.e., |A| !
|QM| for each q such that `Mpqq P t‘A,&Au. ˝

6 Experimental evaluation

Proposition 2 states that Gay and Hole’s classical algorithm has an exponential
complexity; while the other approaches have a quadratic complexity (Proposi-
tions 1 and 3). The rest of this section presents several experiments that give a
better perspective of the practical cost of these approaches.
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6.1 Implementation overview and metrics

We have implemented three different approaches to checking whether two given
session types are in the subtyping relation given in Definition 1. The tool [28],
written in Haskell, consists of three main parts: (i) A module that translates
session types to the mCRL2 specification language [22] and generates a charac-
teristic (µ-calculus) formula (cf. Definition 2), respectively; (ii) A module imple-
menting the algorithm of [20] (see Section 5.1), which relies on the Haskell bound
library to make session types unfolding as efficient as possible. (iii) A module
implementing our adaptation of Kozen et al.’s algorithm [27], see Section 5.2.
Additionally, we have developed an accessory tool which generates arbitrary
session types using Haskell’s QuickCheck library [10].

The tool invokes the mCRL2 toolset [13] (release version 201409.1) to check
the validity of a µ-calculus formula on a given model. We experimented invok-
ing mCRL2 with several parameters and concluded that the default parameters
gave us the best performance overall. Following discussions with mCRL2 de-
velopers, we have notably experimented with a parameter that pre-processes
the µ-calculus formula to “insert dummy fixpoints in modal operators”. This
parameter gave us better performances in some cases, but dramatic losses for
“super-recursive” session types. Instead, an addition of “dummy fixpoints” while
generating the characteristic formulae gave us the best results overall.1 The tool
is thus based on a slight modification of Definition 2 where a modal operator
r:asφ becomes r:asνt. φ (with t fresh and unused) and similarly for x:ayφ. Note
that this modification does not change the semantics of the generated formulae.

We use the following functions to measure the size of a session type.

numpT q
def
“ unf pT q

def
“

$

&

%

0 if T “ end or T “ x
numpT 1q if T “ recx.T 1

|I|`řiPI numpTiq if T “ ziPI :ai. Ti

$

&

%

0 if T “ end or T “ x
p1`|T 1|xqˆunf pT 1q if T “ recx.T 1

|I|`řiPI unf pTiq if T “ ziPI :ai. Ti

Function numpT q returns the number of messages in T . Letting |T |x be the
number of times variable x appears free in session type T , function unf pT q
returns the number of messages in the unfolding of T . Function unf pT q takes into
account the structure of a type wrt. recursive definitions and calls (by unfolding
once every recursion variable).

6.2 Benchmark results

The first set of benchmarks compares the performances of the three approaches
when the pair of types given are identical, i.e., we measure the time it takes
for an algorithm to check whether T ďT holds. The second set of benchmarks
considers types that are “unfolded”, so that types have different sizes. Note that
checking whether two equal types are in the subtyping relation is one of the most
costly cases of subtyping since every branch of a choice must be visited.

1 This optimisation was first suggested on the mCRL2 mailing list.
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Fig. 4. Benchmarks (2)

Our results below show the performances of four algorithms: (i) our Haskell
implementation of Gay and Hole’s algorithm (GH), (ii) our implementation of
Kozen, Palsberg, and Schwartzbach’s algorithm (KPS), (iii) an invocation to
mCRL2 to check whether U |ù F pT,‘q holds, and (iv) an invocation to mCRL2
to check whether T |ù F pU,&q holds.

All the benchmarks were conducted on an 3.40GHz Intel i7 computer with
16GB of RAM. Unless specified otherwise, the tests have been executed with
a timeout set to 2 hours (7200 seconds). A gap appears in the plots whenever
an algorithm reached the timeout. Times (y-axis) are plotted on a logarithmic
scale, the scale used for the size of types (x-axis) is specified below each plot.

Arbitrary session types Plots (a) and (b) in Figure 3 shows how the
algorithms perform with arbitrary session types (randomly generated by our
tool). Plot (a) shows clearly that the execution time of KPS, T |ù F pT,&q,
and T |ù F pT,‘q mostly depends on numpT q; while plot (b) shows that GH is
mostly affected by the number of messages in the unfolding of a type (unf pT q).

Unsurprisingly, GH performs better for smaller session types, but starts
reaching the timeout when numpT q « 700. The other three algorithms have
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roughly similar performances, with the model checking based ones perform-
ing slightly better for large session types. Note that both T |ù F pT,&q and
T |ù F pT,‘q have roughly the same execution time.

Non-recursive arbitrary session types Plot (c) in Figure 3 shows how
the algorithms perform with arbitrary types that do not feature any recursive
definition (randomly generated by our tool), i.e., the types are of the form:

T :“ end |
À

iPI !ai. Ti |
˘
iPI ?ai. Ti

The plot shows that GH performs much better than the other three algorithms
(terminating under 1s for each invocation). Indeed this set of benchmarks is the
best case scenario for GH: there is no recursion hence no need to unfold types.
Observe that the model checking based algorithms perform better than KPS for
large session types. Again, T |ù F pT,&q and T |ù F pT,‘q behave similarly.

Handcrafted session types Plots (d) and (e) in Figure 4 shows how the
algorithms deal with “super-recursive” types, i.e., types of the form:

T :“ recx1.:a1. . . . recxk.:ak
 

z1ďiďk :ai.tz1ďjďk :aj .xju
(

where numpT q “ kpk ` 2q for each T . Plot (d) shows the results of experiments
with z set to ‘ and : to !; while z is set to & and : to ? in plot (e).

The exponential time complexity of GH appears clearly in both plots: GH
starts reaching the timeout when numpT q “ 80 (k “ 8). However, the other three
algorithms deal well with larger session types of this form. Interestingly, due to
the nature of these session types (consisting of either only internal choices or
only external choices), the two model checking based algorithms perform slightly
differently. This is explained by Definition 2 where the formula generated with
F pT,&q for an internal choice is larger than for an external choice, and vice-
versa for F pT,‘q. Observe that, T |ù F pT,‘q (resp. T |ù F pT,&q) performs
better than KPS for large session types in plot (d) (resp. plot (e)).

Unfolded types The last set of benchmarks evaluates the performances of
the four algorithms to check whether T “ recx.V ď recx. pV rV{xsq “ U holds,
where x is fixed and V (randomly generated) is of the form:

V :“
À

iPI !ai. Vi |
˘
iPI ?ai. Vi | x

Plots (f) in Figure 4 shows the results of our experiments (we have set the
timeout to 6 hours for these tests). Observe that U |ù F pT,‘q starts reaching
the timeout quickly. In this case, the model (i.e., U) is generally much larger
than the formula (i.e., F pT,‘q). After discussing with the mCRL2 team, this
discrepancy seems to originate from internal optimisations of the model checker
that can be diminished (or exacerbated) by tweaking the parameters of the tool-
set. The other three algorithms have similar performances. Note that the good
performance of GH in this case can be explained by the fact that there is only
one recursion variable in these types; hence the size of their unfolding does not
grow very fast.
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7 Related work and conclusions

Related work Subtyping for recursive types has been studied for many years.
Amadio and Cardelli [5] introduced the first subtyping algorithm for recursive
types for the λ-calculus. Kozen et al. gave a quadratic subtyping algorithm
in [27], which we have adapted for session types, cf. Section 5.2. A good intro-
duction to the theory and history of the field is in [18]. Pierce and Sangiori [35]
introduced subtyping for IO types in the π-calculus, which later became a foun-
dation for the algorithm of Gay and Hole who first introduced subtyping for
session types in the π-calculus in [20]. The paper [14] studied an abstract encod-
ing between linear types and session types, with a focus on subtyping. Chen et
al. [9] studied the notion of preciseness of subtyping relations for session types.
The present work is the first to study the algorithmic aspect of the problem.

Characteristic formulae for finite processes were first studied in [21], then
in [38] for finite-state processes. Since then the theory has been studied exten-
sively [1–3, 11, 17, 33, 39] for most of the van Glabbeek’s spectrum [41] and in
different settings (e.g., time [4] and probabilistic [36]). See [2, 3] for a detailed
historical account of the field. This is the first time characteristic formulae are
applied to the field of session types. A recent work [3] proposes a general frame-
work to obtain characteristic formula constructions for simulation-like relation
“for free”. We chose to follow [38] as it was a better fit for session types as they
allow for a straightforward inductive construction of a characteristic formula.
Moreover, [38] uses the standard µ-calculus which allowed us to integrate our
theory with an existing model checker.

Conclusions In this paper, we gave a first connection between session types
and model checking, through a characteristic formulae approach based on the
µ-calculus. We gave three new algorithms for subtyping: two are based on model
checking and one is an instantiation of an algorithm for the λ-calculus [27]. All of
which have a quadratic complexity in the worst case and behave well in practice.

Our approach can be easily: (i) adapted to types for the λ-calculus (see
Appendix B) and (ii) extended to session types that carry other (closed) ses-
sion types, e.g., see [9, 20], by simply applying the algorithm recursively on the
carried types. For instance, to check !ax?c & ?dy ď !ax?cy ‘ !bxendy one can
check the subtyping for the outer-most types, while building constraints, i.e.,
t?c & ?d ď ?cu, to be checked later on, by re-applying the algorithm.

The present work paves the way for new connections between session types
and modal fixpoint logic or model checking theories. It is a basis for upcom-
ing connections between model checking and classical problems of session types,
such as the asynchronous subtyping of [9] and multiparty compatibility check-
ing [15, 29]. We are also considering applying model checking approaches to
session types with probabilistic, logical [6], or time [7,8] annotations. Finally, we
remark that [9] also establishes that subtyping (cf. Definition 1) is sound (but
not complete) wrt. the asynchronous semantics of session types, which models
programs that communicate through FIFO buffers. Thus, our new conditions
(items pb)-peq of Theorem 4) also imply safety paq in the asynchronous setting.
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3. L. Aceto, A. Ingólfsdóttir, P. B. Levy, and J. Sack. Characteristic formulae for
fixed-point semantics: a general framework. Mathematical Structures in Computer
Science, 22(2):125–173, 2012.
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A Appendix: Proofs

A.1 Compositionality

Lemma 1. F pT rU{xs,zq “ F pT,zqrF pU,zq{xs

Proof. By structural induction on the structure of T .

1. If T “ end, then
– T rU{xs “ end and F pT rU{xs,zq “ rAsK, and
– F pT,zq “ rAsK “ rAsKrF pU,zq{xs.

2. If T “ x, then
– T rU{xs “ U , hence F pT rU{xs,zq “ F pU,zq, and
– F pT,zq “ x, hence F pT,zqrF pU,zq{xs “ F pU,zq.

3. If T “ yp‰ xq, then
– F pyrU{xs,zq “ F py,zq “ y, and
– F py,zqrF pU,zq{xs “ yrF pU,zq{xs “ y.

4. If T “ ziPI :ai. Ti, then

F pT rU{xs,zq “ F pz
iPI

:ai. TirU{xs,zq

“
ľ

iPI

x: aiyF pTirU{xs,zq

(I.H.) “
ľ

iPI

x: aiy
`

F pTi,zqrF pU,zq{xs
˘

“

˜

ľ

iPI

x: aiyF pTi,zq

¸

rF pU,zq{xs

“ F pT,zqrF pU,zq{xs

5. If T “ ziPI :ai. Ti, then

F pT rU{xs,zq “ F pziPI :ai. TirU{xs,zq

“
ľ

iPI

r: aisF pTirU{xs,zq^

ł

iPI

x: aiyJ ^ r t: ai | i P IusK

(I.H.) “
ľ

iPI

r: ais
`

F pTi,zqrF pU,zq{xs
˘

^

ł

iPI

x: aiyJ ^ r t: ai | i P IusK

“

˜

ľ

iPI

r: aisF pTi,zq^

ł

iPI

x: aiyJ ^ r t: ai | i P IusK

¸

rF pU,zq{xs

“ F pT,zqrF pU,zq{xs
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6. If T “ recy.T 1 (x ‰ y), we have

F precy.T 1rU{xs,zq “ νy. F pT 1rU{xs,zq

(I.H.) “ νy. F pT 1,zqrF pU,zq{xs

“ F pT,zqrF pU,zq{xs

˝

A.2 Extensions and approximations

The proofs in this section follow closely the proof techniques in [38].

Definition 9 (Extended subtyping). Let T,U P T , φ P F , and ~x “ px1, . . . ,xnq
be a vector containing all the free variables in T , U , or φ. We define the extended
subtyping ďe and the extended satisfaction relation, |ùe, by

1. T ďe U ðñ @~V P T n : T r~V{~xsďU r~V{~xs
2. T |ùe φ ðñ @~V P T n@~ψ P Fn : ~V |ù ~ψ ùñ T r~V{~xs |ù φr~ψ{~xs

where ~V |ù ~ψ is understood component wise. ˛

Definition 10 (Subtyping approximations). Let T,U P T and ~x “ px1, . . . ,xnq
be a vector containing all the free variables in T or U . The extended k-limited
subtyping, ďe,k is defined inductively on k as follows: T ďe,0 U always holds; if

k ě 1, then T ďe,k U holds iff for all ~V P T n, T r~V{~xsďe,k U r
~V{~xs can be derived

from the following rules:

I Ď J @i P I : TiEz
e,k´1 Ui

ziPI :ai. TiE
z
e,kzjPJ :aj . Uj

[S-out]

J Ď I @j P J : Tj Ez
e,k´1 Uj

ziPI :ai. TiE
z
e,kzjPJ :aj . Uj

[S-in]

endEz
e,k end

[S-end]

Recall that we are assuming an equi-recursive view of types. ˛

Lemma 3. T Ez
e U ðñ @k : T Ez

e,k U

Proof. The (ñ) direction is straightforward, while the converse follow from the
fact the session types we consider have only a finite number of states. ˝

Definition 11 (Semantics approximations). Let T P T and ~x “ px1, . . . ,xnq
be a vector containing all the free variables in T . The extended k-limited sat-
isfaction relation |ùe,k is defined inductively as follows on k: T |ùe,0 φ always
holds; if k ě 1, then |ùe,k is given by:

T |ùe,k J
T |ùe,k φ1 ^ φ2 iff T |ùe,k φ1 and T |ùe,k φ2
T |ùe,k φ1 _ φ2 iff T |ùe,k φ1 or T |ùe,k φ2

T |ùe,k r:asφ iff @~V P T n @T 1 : if T r~V{~xs
:a
ÝÑ T 1 then T 1 |ùe,k´1 φ

T |ùe,k x:ayφ iff @~V P T n DT 1 : T r~V{~xs
:a
ÝÑ T 1 and T 1 |ùe,k´1 φ

T |ùe,k νx. φ iff @n : T |ùe,k pνx. φq
n ˛
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Lemma 4. T |ùe φ ðñ @k ě 0 : T |ùe,k φ

Proof. The pñq direction is straightforward, while the pðq direction follows
from the fact that a session type induce a finite LTS. ˝

Lemma 5 (Fixpoint properties). Let T P T and φ P F , then we have:

1. T |ùe,k νx. φ ðñ T |ùe,k φrνx. φ{xs
2. recx.T |ùe,k φ ðñ T rrecx.T{xs |ùe,k φ
3. recx.T Ez

e,k T rrecx.T{xs E
z
e,k recx.T

Proof. The first property is a direct consequence of the definition of |ùe,k, while
the last two properties follow from the equi-recursive view of types. ˝

A.3 Main results

Theorem 1. @T,U P Tc : T Ez U ðñ U |ù F pT,zq

Proof. Direct consequence of Lemma 6. ˝

Lemma 6 (Main lemma). @T,U P T : T Ez
e U ðñ U |ùe F pT,zq

Proof. According to Lemmas 3 and 4, it is enough to show that

@k ě 0 : @U, T P T : T Ez
e,k U ðñ U |ùe,k F pT,zq (4)

We show this by induction on k. If k “ 0, the result holds trivially, let us show
that it also holds for k ě 1. We distinguish four cases according to the structure
of T .

1. If T “ x, then must have U “ x, by definition of Ez
e and |ùe.

2. If T “ recx.T 1, then by Lemma 5, we have
(a) U |ùe,k F pT,zq ðñ U |ùe,k F pT

1,zqrF pT,zq{xs
(b) T Ez

e,k T
1rT{xs Ez

e,k T
Applying Lemma 1, it is enough to show that:

@T,U P T : T 1rrecx.T
1
{xsEz

e,k U ðñ U |ùe,k F pT
1rrecx.T

1
{xs,zq

Hence, since we have assumed that the types are guarded, we only have to
deal with the cases where T “ ziPI :ai. Ti, T “ ziPI :ai. Ti, and T “ end.
On the other hand, considering both sides of the equivalence (4), we notice
that U cannot be a variable. Thus, let us assume that U “ recx.U 1, by
Lemma 5, we have
(a) U |ùe,k F pT,zq ðñ U 1rU{xs |ùe,k F pT,zq
(b) U Ez

e,k U
1rU{xs Ez

e,k U
Hence, applying Lemma 1 again, this case reduces to the cases where U is
of the form: zjPJ :aj . Uj , zjPJ :aj . Uj , or end.

3. T “ end
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– pñq Assume end “ T Ez
e,k U , then by Definition 10, we have U “ end.

By Definition 2, we have F pend,zq “ rAsK, and we have end |ùe,k rAsK
since U “ endÛ.

– pðq Assume U |ùe,k F pend,zq. By Definition 2, we have U |ùe,k rAsK,
which holds iff UÛ, hence we must have U “ end. Finally, by Defini-
tion 10, we have endEz

e,k end.

4. T “ ziPI :ai. Ti
– pñq Assume ziPI :ai. TiE

z
e,k U . By Definition 10, U “ zjPJ :aj . Uj with

I Ď J (note thatH ‰ I by assumption) and @i P I : TiEz
e,k´1 Ui. Hence,

@i P I : U
: ai
ÝÝÑ Ui, and by induction hypothesis, we have Ui |ùe,k´1

F pTi,zq, for all i P I.

By Definition 2, we have F pT,zq “
Ź

iPIx: aiyF pTi,zq. Thus we have

to show that for all i P I, U
: ai
ÝÝÑ Ui and Ui |ùe,k´1 F pTi,zq; which

follows from above.

– pðq Assume U |ùe,k F pziPI :ai. Ti,zq. From Definition 2, we have

F pT,zq “
ľ

iPI

x: aiyF pTi,zq

Hence, , @i P I : U
: ai
ÝÝÑ Ui, and Ui |ùe,k´1 F pTi,zq, for all i P I. Hence,

we must have U “ zjPJ :aj . Uj with I Ď J and by induction hypothesis,

this implies that TiEz
e,k´1 Ui for all i P I.

5. T “ ziPI :ai. Ti
– pñq Assume ziPI :ai. TiE

z
e,k U . By Definition 10, U “ zjPJ :aj . Uj ,

with J Ď I and @j P J : Tj Ez
e,k´1 Uj . Hence, by induction hypothesis,

we have Uj |ùe,k´1 F pTj ,zq, for all j P J .

By Definition 2, we have

F pT,zq “
ľ

iPI

r: aisF pTi,zq ^
ł

iPI

x: aiyJ ^ r t: ai | i P IusK (5)

We must show that U |ùe,k F pT,zq. Since J Ď I, we have that @i P I :

T
: ai
ÝÝÑ Ti ùñ U

: ai
ÝÝÑ Ui, hence the first conjunct of (5) holds (using the

induction hypothesis, cf. above). While the second conjunct of (5) must
be true from the assumption that H ‰ J . Finally, the third conjunct

of (5) is false only if U
: an
ÝÝÑ with n R I, which contradicts J Ď I.

– pðq Assume U |ùe,k F pziPI :ai. Ti,zq. From Definition 2, we have

F pT,zq “
ľ

iPI

r: aisF pTi,zq ^
ł

iPI

x: aiyJ ^ r t: ai | i P IusK

Hence, we must have U “ zjPJ :aj . Uj . It follows straightforwardly that

H ‰ J Ď I. Finally, the fact that for all j P J : Tj Ez
e,k´1 Uj , follows

from the induction hypothesis. ˝
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A.4 Duality and safety in session types

Theorem 2. For all T P T : F pT,zq “ F pT ,zq.

Proof. By straightforward induction on the structure of T .

1. The result follows trivially if T “ end or T “ x.
2. If T “ recx.T 1, then we have F precx.T 1,zq “ νx. F pT 1,zq, and F pT ,zq “
νx. F pT 1,zq. The result follows by induction hypothesis.

3. If T “ ziPI :ai. Ti, then we have

F pT,zq “
ľ

iPI

x: aiyF pTi,zq

“
ľ

iPI

x:aiyF pTi,zq

(I.H.) “
ľ

iPI

x:aiyF pTi,zq “ F pT ,zq

4. If T “ ziPI :ai. Ti, then we have

F pT,zq “
ľ

iPI

r: aisF pTi,zq ^
ł

iPI

x: aiyJ ^ r t: ai | i P IusK

“
ľ

iPI

r:aisF pTi,zq ^
ł

iPI

x:aiyJ ^ r t:ai | i P IusK

(I.H.) “
ľ

iPI

r:aisF pTi,zq ^
ł

iPI

x:aiyJ ^ r t:ai | i P IusK

“ F pT ,zq

˝

Theorem 3 (Safety). T | U is safe ðñ pT ďU _ U ďT q.

Proof. pðùq We prove that if T ďU then T | U is safe by coinduction on the
derivation of T ďU (recall that ď stands for E‘).

Case [S-end] Obvious since T “ U “ end and T | UÛ .

Case [S-z] Suppose T “
À

iPI !ai. Ti. Then U “
À

jPJ !aj . U j such that I Ď J

and TiďU i for all i P I. For all ai such that i P I, T
!ai
ÝÝÑ Ti implies U

?ai
ÝÝÑ Ui.

Hence by [S-COM], we have T | U ÝÑ Ti | Ui. Then by coinduction hypothesis,
Ti | Ui is safe.

Case [S-z] Similar to the above case.

pùñq We prove p pT ďUq ^  pU ďT qq implies T | U has an error. Since the
error rule coincides with the negation rules of subtyping in [9, Table 7], we
conclude this direction. ˝
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B Appendix: Recursive types for the λ-calculus

B.1 Recursive types and subtyping

We consider recursive types for the λ-calculus below:

t :“ top | bot | t0 Ñ t1 | rec v.t | v

Let TR be the set of all closed recursive types.
A type t induces an LTS according to the rules below:

top
top

ãÝÝÑ top
[top]

bot
bot

ãÝÝÑ top
[bot]

i P t0, 1u

t0 Ñ t1
i

ãÝÑ ti

[arrow]
trrec v.t{vs

a
ãÝÑ t1

rec v.t
a

ãÝÑ t1
[rec]

where we let a range over t0, 1, bot, topu.

Definition 12 (Subtyping for recursive types). ď Ď TRˆTR is the largest
relation that contains the rules:

t P TR
botď t

[S-bot]
t P TR
tď top

[S-top]

t10ď t0 t1ď t
1
1

t0 Ñ t1ď t
1
0 Ñ t11

[S-arrow]

Recall that we are assuming an equi-recursive view of types. The double line in
the rules indicates that the rules should be interpreted coinductively.

B.2 Characteristic formulae for recursive types

We assume the same fragment of the modal µ-calculus as in Section 3.1 but for
(i) omitting the direction : on labels, i.e., we consider modalities: rasφ and xayφ;
and (ii) using v to range over recursion variables.

Let δ P ttop, botu, and bot “ top, top “ bot.

Λpt, δq
def
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xδyJ if t “ δ

J if t “ δ

x0yΛpt0, δq ^ x1yΛpt1, δq if t “ t0 Ñ t1

νv. Λpt1, δq if t “ rec v.t1

v if t “ v

Theorem 7. The following holds:

– tď t1 ðñ t1 |ù Λpt, topq
– tď t1 ðñ t |ù Λpt1, botq

Proof. We show only the pðq direction here.
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1. We show tď t1 ð t1 |ù Λpt, topq by induction on t.
– If t “ top, then Λpt, topq “ xtopyJ, hence t1 “ top.
– If t “ bot, then Λpt, topq “ J hence t1 can be any type, as expected.
– If t “ t0 Ñ t1, then

Λpt, topq “ x0yΛpt0, botq ^ x1yΛpt1, topq

hence we must have t1 “ t10 Ñ t11 with t10 |ù Λpt0, botq (hence t10ď t0, by
IH, see below) and t11 |ù Λpt1, topq (hence t1ď t

1
1 by IH).

2. We show tď t1 ð t |ù Λpt1, botq by induction on t1.
– If t1 “ bot, then Λpt1, botq “ xbotyJ and t “ bot.
– if t1 “ top, then Λpt1, botq “ J and t can be any type, as expected.
– If t1 “ t10 Ñ t11, then

Λpt1, botq “ x0yΛpt10, topq ^ x1yΛpt11, botq

hence we must have t “ t0 Ñ t1 with t0 |ù Λpt10, topq (hence t10ď t0, by
IH, see above) and t1 |ù Λpt11, botq (hence t1ď t

1
1 by IH).

The other direction is similar to the above, while the recursive step is similar to
the proof of Theorem 1. ˝
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