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Abstract. Asynchronous session subtyping has been studied extensively
in [9, 10, 29–32] and applied in [24, 33, 34, 36]. An open question was
whether this subtyping relation is decidable. This paper settles the ques-
tion in the negative. To prove this result, we first introduce a new sub-
class of two-party communicating finite-state machines (CFSMs), called
asynchronous duplex (ADs), which we show to be Turing complete. Sec-
ondly, we give a compatibility relation over CFSMs, which is sound and
complete wrt. safety for ADs, and is equivalent to the asynchronous
subtyping. Then we show that the halting problem reduces to check-
ing whether two CFSMs are in the relation. In addition, we show the
compatibility relation to be decidable for three sub-classes of ADs.

1 Introduction

Session types [23,25,35] specify the expected interaction patterns of concurrent
systems and can be used to automatically determine whether communicating
processes interact correctly with other processes. A crucial theory in session types
is subtyping which makes the typing discipline more flexible and therefore easier
to integrate in real programming languages and systems [1]. The first subtyping
relations for session types targeted synchronous communications [6,7,18,19], by
allowing subtypes to make fewer selections and offer more branches. More recent
relations treat asynchronous (buffered) communications [9, 10, 12, 13, 16, 29–32].
They include synchronous subtyping and additionally allow an optimisation by
message permutations where outputs can be performed in advance without af-
fecting correctness with respect to the delayed inputs (there are two buffers per
session). Only the relative order of outputs (resp. inputs) needs to be preserved
to avoid communication mismatches. The asynchronous subtyping is important
in parallel and distributed session-based implementations [24, 33, 34, 36], as it
reduces message synchronisations without safety violation.

Theoretically, the asynchronous subtyping has been shown to be precise, in
the sense that: (i) if T is a subtype of U , then a process of type T may be used
whenever a process of type U is required and (ii) if T is not a subtype of U ,
then there is a system, requiring a process of type U , for which using a process
of type T leads to an error (e.g., deadlock). The subtyping is also denotationally
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Fig. 1. Asynchronous subtyping and compatibility: examples.

precise taking the standard interpretation of type T as the set of processes typed
by T [9, 16].

An open question in [9, 10, 29–32] was whether the asynchronous subtyping
relation is decidable, i.e., is there an algorithm to decide whether two types are in
the relation. The answer to that question was thought to be positive, see [10, § 7]
and § 6.

Asynchronous subtyping, informally. In this work, we consider session
types in the form of CFSMs [4], along the lines of [3, 14, 15, 27]. This enables
us to characterise the asynchronous subtyping in CFSMs and reduce the unde-
cidability problem to the Turing completeness of CFSMs. Consider a system of
CFSMs consisting of machines Ms (server) and Mc (client) in Figure 1, which
communicate via two unbounded queues, one in each direction. A transition !a
represents the (asynchronous) emission of a message a, while ?a represents the
receptions of a message a from a buffer. For instance, the transition labelled by
!req in Mc says that the client sends a request to the server Ms, later the server
can consume this message from its buffer by firing the transition labelled by
?req . We say that the system pMs,Mcq, i.e., the parallel composition of Ms and
Mc, is safe if (i) the pair never reaches a deadlock and (ii) whenever a message
is sent by one party, it will eventually be received by the other.

The key property of session subtyping is that, e.g., if the system pMs,M
1
cq is

safe and Mc is a subtype of M 1
c, the system pMs,Mcq is also safe. We write ďa

for the asynchronous subtyping relation, which intuitively requires that, if, e.g.,
McďaM

1
c, then Mc is ready to receive no fewer messages than M 1

c and it may
not send more messages than M 1

c. For instance, Mc can receive all the messages
that M 1

c can handle, plus the message err . Observe that Mc is an optimised
version of M 1

c wrt. asynchrony: the output action !data is performed in advance
of the branching. Thus in the system pMs,Mcq, when both machines are in state
2 (respectively), both queues contain messages. Instead, in the system pMs,M

1
cq,

it is never the case that both queues are non-empty. Note that anticipating the
sending of data in Mc does not affect safety as it is sent in both branches of M 1

c.

Our approach. Using CFSMs, we give the first automata characterisation of
asynchronous subtyping and the first proof of its undecidability. To do this, we
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introduce a new sub-class of CFSMs, called asynchronous duplex (AD) which let
us study directly the relationship between safety and asynchronous subtyping in
CFSMs. Our development consists of the following steps:

Step 1. In § 2, we define a new sub-class of (two-party) CFSMs, called asyn-
chronous duplex (AD), which strictly includes half-duplex (HD) systems [8].
Step 2. In § 3, we introduce a compatibility relation (—) for CFSMs which
is sound and complete wrt. safety in AD CFSMs, i.e., an AD system has no
deadlocks nor orphan messages if and only if its machines are —-related.
Step 3. Adapting the result of [17], we show in § 4 that AD systems are Turing
complete, hence membership of — is generally undecidable.
Step 4. In § 5, we show that the —-relation for CFSMs is equivalent to the
asynchronous subtyping for session types, thus establishing that the latter is
also undecidable.

Throughout the paper, we also show that our approach naturally encompasses
the correspondence between synchronous subtyping and safety in HD systems.

In § 4.1, we show that the —-relation is decidable for three sub-classes of
CFSMs (HD, alternating [21], and non-branching) which are useful to specify
real-world protocols. In § 6, we discuss related works and conclude.

2 A new class of CFSMs: Asynchronous duplex systems

This section develops Step 1 by defining a new sub-class of CFSMs, called
asynchronous duplex, which characterises machines that can only simultaneously
write on their respective channels if they can only do so for finitely many consec-
utive send actions before executing a receive action. In § 2.1, we recall definitions
about CFSMs, then we give the definition of safety. In § 2.2, we introduce the
sub-class of AD systems and give a few examples of such systems.

2.1 CFSMs and their properties

Let A be a (finite) alphabet, ranged over by a, b, etc. We let ω, π, and ϕ range
over words in A˚ and write ¨ for the concatenation operator. The set of actions
is Act “ t!, ?u ˆ A, ranged over by `, !a represents the emission of a message
a, while ?a represents the reception of a. We let ψ range over Act˚ and define

dirp!aq
def
“ ! and dirp?aq

def
“ ?.

Since our ultimate goal is to relate CFSMs and session types, we only consider
deterministic communicating finite-state machines, without mixed states (i.e.,
states that can fire both send and receive actions) as in [14,15].

Definition 2.1 (Communicating machine). A (communicating) machine M
is a tuple pQ, q0, δq where Q is the (finite) set of states, q0 P Q is the ini-
tial state, and δ P Q ˆ Act ˆ Q is the transition relation such that @q, q1, q2 P
Q : @`, `1 P Act : (1) pq, `, q1q, pq, `1, q2q P δ ùñ dirp`q “ dirp`1q, and (2)
pq, `, q1q, pq, `, q2q P δ ùñ q1 “ q2.
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We write q
`
ÝÑ q1 for pq, `, q1q P δ, omit the label ` when unnecessary, and

write ÝÑ˚ for the reflexive transitive closure of ÝÑ.

Given M “ pQ, q0, δq, we say that q P Q is final, written q Û, iff @q1 P Q :
@` P Act : pq, `, q1q R δ. A state q P Q is sending (resp. receiving) iff q is not final
and @q1 P Q : @` P Act : pq, `, q1q P δ : dirp`q “ ! (resp. dirp`q “ ?). The dual of
M , written M , is M where each sending transition pq, !a, q1q P δ is replaced by
pq, ?a, q1q, and vice-versa for receive transitions, e.g., Ms “M 1

c in Figure 1.

We write q0
`1¨¨¨`k
ÝÝÝÝÑ qk iff there are q1, . . . , qk´1 P Q such that qi´1

`i
ÝÑ qi for

1 ď i ď k. Given a list of messages ω “ a1 ¨ ¨ ¨ ak (k ě 0), we write ?ω for the

list ?a1 ¨ ¨ ¨?ak and !ω for !a1 ¨ ¨ ¨!ak. We write q
!
ÝÑ˚ q1 iff Dω P A˚ : q

!ω
ÝÑ q1 and

q
?
ÝÑ˚ q1 iff Dω P A˚ : q

?ω
ÝÑ q1 (note that ω may be empty, in which case q “ q1).

Definition 2.2 (System). A system S “ pM1,M2q is a pair of machines Mi “

pQi, q0i , δiq with i P t1, 2u.

Hereafter, we fix S “ pM1,M2q and assume Mi “ pQi, q0i , δiq for i P t1, 2u

such that Q1 X Q2 “ H. Hence, for q, q1 P Qi, we can write q
`
ÝÑ q1 to refer

unambiguously to δi.
We let λ range over the set tij!a | i ‰ j P t1, 2uu Y tij?a | i ‰ j P t1, 2uu

and φ range over (possibly empty) sequences of λ1 ¨ ¨ ¨λk.

Definition 2.3 (Reachable configuration). A configuration of S is a tu-
ple s “ pq1, ω1, q2, ω2q such that qi P Qi, and ωi P A˚. A configuration s1 “

pq11, ω
1
1, q

1
2, ω

1
2q is reachable from s “ pq1, ω1, q2, ω2q, written s

λ
ùñ s1, iff

1. qi
!a
ÝÑ q1i, ω

1
i “ ωi ¨ a, qj “ q1j, and ωj “ ω1j, λ “ ij!a, for i ‰ j P t1, 2u, or

2. qi
?a
ÝÑ q1i, ωj “ a ¨ ω1j, qj “ q1j, and ωi “ ω1i, λ “ ji?a, for i ‰ j P t1, 2u.

We write s ùñ s1 when the label is irrelevant and ùñ˚ for the reflexive and tran-
sitive closure of ùñ.

In Definition 2.3, (1) says that machine Mi puts a message on queue i, to be
received by machine Mj , while (2) says that machine Mi consumes a message
from queue j, which was sent by Mj .

Given a system S, we write s0 for its initial configuration pq01 , ε, q02 , εq and

let RS pSq
def
“ ts | s0 ùñ

˚ su.

Definition 2.4 (Safety). A configuration s “ pq1, ω1, q2, ω2q is a deadlock iff
ω1 “ ω2 “ ε, qi is a receiving state, and qj is either receiving or final for
i ‰ j P t1, 2u. System S satisfies eventual reception iff @s “ pq1, ω1, q2, ω2q P

RS pSq : @i ‰ j P t1, 2u : ωi P a ¨ A˚ ùñ @q1j P Qj : qj
!
ÝÑ˚ q1j ùñ q1j

!
ÝÑ˚

?a
ÝÑ.

S is safe iff (i) for all s P RS pSq, s is not a deadlock, and (ii) S satisfies
eventual reception (i.e., every sent message is eventually received).

Lemma 2.1 below shows that safety implies progress and that a configuration
with at least one empty buffer is always reachable.
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Fig. 2. Examples of AD (left) and non-AD (right) systems.

Lemma 2.1. If S is safe, then for all s “ pq1, ω1, q2, ω2q P RS pSq

1. Either (i) q1 and q2 are final and ω1 “ ω2 “ ε, or (ii) Ds1 P RS pSq : s ùñ s1.
2. Ds1, s2 P RS pSq : s ùñ˚ s1 “ pq1, ε, q

1
2, ω2 ¨ ω

1
2q ^ s ùñ

˚ s2 “ pq21 , ω1 ¨ ω
2
1 , q2, εq.

2.2 Asynchronous duplex systems

We define asynchronous duplex systems, a sub-class of two-party CFSMs. Below
we introduce a predicate which guarantees that when a machine is in a given
state, it cannot send infinitely many messages without executing receive actions
periodically. This predicate mirrors one of the premises of the defining rules
of the asynchronous subtyping (ďa), cf. Lemma 5.1. Given M “ pQ, q0, δq and
q P Q, we define finpqq ðñ finpq,Hq, where

finpq,Rq
def
“

$

’

&

’

%

true if q
?a
ÝÑ

@q1 P tq1 | q
!a
ÝÑ q1u : finpq1, RY tquq if q

!a
ÝÑ ^ q R R

false otherwise

Definition 2.5 (Asynchronous duplex). A system S “ pM1,M2q is Asyn-
chronous Duplex (AD) if for each s “ pq1, ω1, q2, ω2q P RS pSq : ω1 ‰ ε ^ ω2 ‰

ε ùñ finpq1q ^ finpq2q.

AD systems are a strict extension of half-duplex systems [8]: S is half-duplex
(HD) if for all pq1, ω1, q2, ω2q P RS pSq : ω1 “ ε _ ω2 “ ε. AD requires that for
any reachable configuration either (i) at most one channel is non-empty (i.e., it is
a half-duplex configuration) or (ii) each machine is in a state where the predicate
finp q holds, i.e., each machine will reach a receiving state after firing finitely
many send actions. The AD restriction is reasonable for real-word systems. It
intuitively amounts to say that if two parties are simultaneously sending data to
each other, they should both ensure that they will periodically check what the
other party has been sending.

Example 2.1. Consider the machines in Figure 2. The system pM1,M2q is AD:
finp q holds for each state in M1 and M2. The system pM̂1, M̂2q is not AD. For
instance, the configuration p0, a, 0, cq is reachable but we have  finp0q for both
initial states of M̂1 and M̂2. Observe that both systems are safe, cf. Definition 2.4.
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3 A compatibility relation for CFSMs

This section develops Step 2: we introduce a binary relation — on CFSMs which
is sound and complete wrt. safety (cf. Definition 2.4) for AD systems. That is
M1—M2 holds if and only if pM1,M2) is a safe asynchronous duplex system.

Definition 3.1 (Compatibility). Let Mi “ pQi, q0i , δiq for i P t1, 2u such that
Q1 XQ2 “ H, and let p P Q1, q P Q2, and π P A˚.

The compatibility relation is defined as follows: π § p—0 q always holds, and
if k ě 0, then π § p—k`1 q holds iff

1. if pÛ then π “ ε and q Û

2. if p
?a
ÝÑ then

(a) if π “ ε then, q
!b
ÝÑ and @b P A : q

!b
ÝÑ q1 ùñ pp

?b
ÝÑ p1 ^ ε § p1—k q

1q,

(b) if π “ b ¨ π1 then, Dp1 P Q1 : p
?b
ÝÑ p1 ^ π1 § p1—k q

3. if p
!a
ÝÑ p1 then either

(a) π “ ε and Dq1 P Q2 : q
?a
ÝÑ q1 ^ ε § p1—k q

1, or

(b) finppq, finpqq, and @q1 P Q2 : @π1 P A˚ : q
!π1

ÝÝÑ q1, there exist π2 P A˚

and q2 P Q2 such that q1
!π2

ÝÝÑ
?a
ÝÑ q2 and π ¨ π1 ¨ π2 § p1—k q

2

Define π § p— q
def
“ @k P N : π § p—k q and M1—M2

def
“ ε § q01 — q02 .

The relation M1—M2 checks that the two machines are compatible by exe-
cutingM1 while recording whatM2 asynchronously sends toM1 in the π message
list. The definition first differentiates the type of state p:

Final. Case (1) says that if M1 is in a final state, then M2 must also be in a
final state and π must be empty (i.e., M1 has emptied its input buffer).
Receiving. Case (2) says that if M1 is in a receiving state, then either π is
empty and M1 must be ready to receive any message sent by M2, cf. case (2a);
otherwise, case (2b) must apply: M1 must consume the head of the message list
π, this models the FIFO consumption of messages sent by M2.
Sending. Case (3) says that if M1 is ready to send a, then either M2 must be
able to receive a directly, cf. case (3a). Otherwise, finppq and finpqq must hold
so that case (3b) applies. M2 may delay the reception of a by sending messages
(which are recorded in π1 ¨ π2). Whichever sending path M2 chooses, it must
always eventually receive a.

We write —s for the synchronous compatibility relation, i.e., Definition 3.1 with-
out cases (2b) and (3b).

Example 3.1. (1) Recall the machines from Figure 1, we have Ms—Mc, in par-
ticular: ε § 0— 0 and data § 2— 0. The latter relation represents the fact that Mc

and Ms have exchanged the messages req and ko, but Ms has yet to process the
reception of data. Observe that we also have M 1

s—M
1
c and M 1

s—sM
1
c.

(2) Consider the systems in Figure 2. We have M1—M2 and M̂1ffi M̂2. The
latter does not hold since both initial states are sending states, but the predicate
finp q does not hold for either state, e.g., we have  finp0, t0uq in M̂1.
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Soundness of —. We show the soundness of the —-relation wrt. safety. More
precisely we show that if M1—M2 holds, then the system pM1,M2q is a safe
AD system. We first give two auxiliary definitions which are convenient to relate
safety with the definition of —. Fixing M “ pQ, q0, δq, the predicate Apq, ωq
asserts when a list of messages ω is “accepted” from a state q P Q, which implies
eventual reception of the messages in ω. The function W pq, ωq is used to connect
a configuration to a triple in the —-relation.

Definition 3.2. Let q P Q and ω P A˚, we define

Apq, ωq ðñ

#

@q1 : q
!
ÝÑ˚ q1 : Dq̂ : q1

!
ÝÑ˚

?a
ÝÑ q̂ ^Apq̂, ω1q if ω “ a ¨ ω1

true if ω “ ε

Given q P Q and ω P A˚, the predicate Apq, ωq is true iff the list of messages
ω can always be consumed entirely from state q, for all paths reachable from q
by send actions. Note the similarity with case (3b) of Definition 3.1.

Definition 3.3. Let q P Q and ω P A˚, W pq, ωq Ď A˚ ˆQ is the set such that

pπ, q̂q P W pq, ωq ðñ

#

pϕ, q̂q P W pq1, ω1q if ω “ a ¨ ω1, q
!π1
¨?a

ÝÝÝÝÑ q1, π “ π1 ¨ ϕ
π “ ε^ q̂ “ q if ω “ ε

Each pair pπ, q̂q in W pq, ωq represents a state q̂ P Q reachable directly after
having consumed the list of messages ω, while π is the list of messages that are
sent along a path between q and q̂. For example, consider Mc from Figure 1.
We have Ap0, ko ¨ ko ¨ errq and W p0, ko ¨ ko ¨ errq “ tpreq ¨ data ¨ req ¨ data, 3qu;
instead,  Ap0, ok ¨ koq and  Ap4, koq.

Lemma 3.1. Let M “ pQ, q0, δq, q P Q and ω P A˚. If Apq, ωq and @pϕ, q1q P
W pq, ωq : Apq1, aq then Apq, ω ¨ aq.

Lemma 3.1, shown by induction on the size of ω, is useful in the proof of the
main soundness lemma below.

Lemma 3.2. Let S “ pM1,M2q. If M1—M2, then for all s “ pp, ω1, q, ω2q P

RS pSq the following holds: (1) s is not a deadlock, (2) Apq, ω1q, (3) @pϕ, q1q P
W pq, ω1q : ω2 ¨ ϕ § p— q1, and (4) App, ω2q.

Lemma 3.2 states that for any configuration s: (1) s is not a deadlock; (2)
M2 can consume the list ω1 from state q; (3) for each state q1, reached after
consuming ω1, the relation ω2 ¨ ϕ § p— q1 holds, where ϕ contains the messages
that M2 sent while consuming ω1; and (4) M1 can consume the list ω2 from state
p. The proof of Lemma 3.2 is by induction on the length of an execution from
s0 to s, then by case analysis on the last action fired to reach s. Lemma 3.1 is

used for the case s0 ùñ
˚ 12!a
ùùñ s, i.e., to show that Apq, ω1 ¨ aq holds.

Lemma 3.3. Let S “ pM1,M2q. If for all s “ pq1, ω1, q2, ω2q P RS pSq :
Apq1, ω1q and Apq2, ω2q, then S satisfies eventual reception.
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Lemma 3.3 simply shows a correspondence between eventual reception and
Definition 3.2. The proof essentially shows that if Apqi, ωjq holds, then we can
always reach a configuration where the list ωj has been entirely consumed.

Finally, we state our final soundness results. Theorem 3.1 is a consequence of
Lemmas 2.1, 3.2, 3.3, and 3.4. Theorem 3.2 essentially follows from Theorem 3.1
and the fact that —s Ď —.

Theorem 3.1. If M1—M2, then pM1,M2q is a safe AD system.

Theorem 3.2. If M1—sM2, then pM1,M2q is a safe HD system.

Completeness of —. Our completeness result shows that for any safe asyn-
chronous duplex system S “ pM1,M2q, M1—M2 holds. Below we show that
any reachable configuration of S whose first queue is empty can be mapped to
a triple that is in the relation of Definition 3.1.

Lemma 3.4. Let S be safe and AD, then @pp, ε, q, ωq P RS pSq : ω § p— q.

The proof of Lemma 3.4 is by induction on the kth approximation of —, i.e.,
assuming that ω § p—k q holds, we show that ω § p—k`1 q holds. The proof is a
rather straightforward case analysis on the type of p and whether or not ω “ ε.

Theorem 3.3. If pM1,M2q is a safe AD system, then M1—M2.

Proof. Take pq01 , ε, q02 , εq P RS pSq, ε § q01 — q02 holds by Lemma 3.4. ˝

Following a similar (but simpler) argument, we have Theorem 3.4 below.

Theorem 3.4. If pM1,M2q is a safe HD system, then M1—sM2.

Theorem 3.5. If M1—M2 (resp. M1—sM2), then M2—M1 (resp. M2—sM1).

Proof. We show the — part. By Theorem 3.1, pM1,M2q is safe, hence by defini-
tion of safety, pM2,M1q is also safe. Thus by Theorem 3.3, we have M2—M1. ˝

4 Undecidability of the —-relation

This section addresses Step 3: we show that the problem of checking M1—M2

is undecidable. We show that AD systems are Turing complete, then show that
the halting problem reduces to deciding whether or not a system is safe.

Preliminaries. We adapt the relevant part of the proof of Finkel and McKen-
zie [17] to demonstrate that the problem of deciding whether two machines are
—-related is undecidable. For this we need to show that there is indeed a Turing
machine encoding that is an AD system.

Definition 4.1 (Turing machine [17]). A Turing machine (T.M.) is a tuple
TM “ pV,A, Γ, t0, B, γq where V is the set of states, A is the input alphabet,
Γ is the tape alphabet, t0 P V is the initial state, B is the blank symbol, and
γ : V ˆ Γ Ñ V ˆ Γ ˆ tleft , rightu is the (partial) transition function.
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Assume TM accepts an input ω P A˚ iff TM halts on ω, and if TM does not
halt on ω, then TM eventually moves its tape head arbitrarily far to the right.

Definition 4.2 (Configuration of a T.M. [17]). A configuration of the Tur-
ing machine TM is a word ω1tω2# with ω1ω2 P A˚, t P V , and # R Γ .

The word ω1tω2# represents TM in state t P V with the tape content set to
ω1ω2 and the rest blank, and TM ’s head positioned under the first symbol to
the right of ω1. Symbol # is a symbol used to mark the end of the tape.

T.M. encoding. We present an AD system which encodes a Turing machine
TM “ pV,A, Γ, t0, B, γq with initial tape ω into a system of two CFSMs as in [17].

We explain the T.M. encoding. The two channels represent the tape of the
Turing machine, with a marker # separating the two ends of the tape. Each
machine represents the control of the Turing machine as well as a transmitter
from a channel to another. The head is represented by writing the current control
state t P V on the channel. Whenever a machine receives a message that is
t P V , then it proceeds with one execution step of the Turing machine. Any
other symbol is simply consumed from one channel and sent on the other.

The only difference wrt. [17] is that we construct machines which are deter-
ministic and which do not contain mixed states, cf. Definition 2.1. We also do not
require the machines to be identical hence we encode the initial tape content as
a sequence of transitions in the first machine. These slight modifications do not
affect the rest of Finkel and McKenzie’s proof in [17]. The system consists of two
CFSMs Ai “ pQi, q0i , δiq, i P t1, 2u over the alphabet A Y t#u. The definitions
of δi are given below, the sets Qi are induced by δi. The transition relation δ1
consists in a sequence of transitions from the initial state q01 to a central state
q and a number of elementary cycles around state q, cf. Figure 3; while δ2 is like
δ1 without the initial sequence of transitions and q “ q02 . The initial sequence
of transitions in δ1 is of the form:

q01
!t0
ÝÝÑ q1

!a1
ÝÝÑ ¨ ¨ ¨ qk

!ak
ÝÝÑ q such that a1 ¨ ¨ ¨ ak “ ω ¨#

Both δ1 and δ2 contain six types of elementary cycles given in Figure 3. For
each type of cycle, we illustrate the behaviour of the system from the point view
of machine A2 by giving the type of configuration this cycle applies to as well
the configuration obtained after A2 has finished executing the cycle.

When computing each δi and Qi from the description above, we assume that
each “anonymous” state maintain its own identity, while “named” states, i.e., q,
rt, rx and rtx from Figure 3, are to be identified and redundant transitions to be
removed. This ensures that each machine so obtained is deterministic. Besides
this determinisation, the only changes from [17] concerns the copying cycles. (1)
Each copying cycle is expanded to receive (then send) two symbols so to ensure
the absence of mixed states once merged with left head motion cycles. (2) We
add a cycle which only re-emits # symbols (to make up for absence of it in the
first reception of the copying cycles). (3) We add another blank insertion cycle
to deal with the special case where the head is followed by the # symbol.
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Blank insertion cycles (1). For each t P
V , there is a cycle of the form:

q

rt

?t

?#

!t

!B
!#

pq1, t ¨# ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ t ¨ B ¨#q

Right head motion cycles. For each
pt, a, t1, bq P V ˆ Γ ˆ V ˆ Γ such that
γpt, aq “ pt1, b, rightq, there is a cycle of
the form:

q

rt

?t

?a

!b
!t 1

pq1, t ¨ a ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ b ¨ t

1
q

Blank insertion cycles (2). For each x P Γ and t P V there is a cycle of the form:

q

rx rtx

?x

?t ?#
!x

!t!B!#

pq1, x ¨ t ¨# ¨ ω1, q, ω2q ùñ
˚
pq1, ω1, q, ω2 ¨ x ¨ t ¨ B ¨#q

Left head motion cycles. For each px, t, a, t1, bq P Γ ˆ V ˆ Γ ˆ V ˆ Γ such that
γpt, aq “ pt1, b, leftq, there is a cycle of the form:

q

rx rtx

?x

?t ?a

!t 1

!x!b

pq1, x ¨ t ¨ a ¨ ω1, q, ω2q ùñ
˚
pq1, ω1, q, ω2 ¨ t

1
¨ x ¨ bq

Copying cycles. For all x P Γ and y P
Γ Y t#u, there is a cycle of the form:

q

rx

?x

?y
!x

!y

pq1, x ¨ y ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨ x ¨ yq

Marker transmission cycle. There
is one cycle specified by:

q

?#

!#

pq1,# ¨ ω1, q, ω2q

ùñ
˚
pq1, ω1, q, ω2 ¨#q

Fig. 3. Definition of δi (elementary cycles).

Definition 4.3 (Turing machine encoding [17]). Given a Turing machine
TM and an initial tape content ω, we write SpTM , ωq for the system pA1, A2q

with each Ai constructed as described above.

The rest follows the proof of [17]. Here we recall informally the final result:
any execution of a Turing machine TM with initial word ω can be simulated by
SpTM , ωq, and vice-versa.

Lemma 4.1. For any TM and word ω, SpTM , ωq “ pA1, A2q is AD.

Proof. Take Ai “ pQi, q0i , δiq, we show @q P Qi : finpqq, which implies that the
system is AD. If there was q P Qi such that  finpqq, there would a cycle of send
actions only, the construction of Ai clearly prevents this (see Figure 3). ˝

Theorem 4.1 (Undecidability of —). Given two machines M1 and M2, it
is generally undecidable whether M1—M2 holds.
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The proof of Theorem 4.1 shows that the following statements are equivalent:
(1) TM accepts ω, (2) SpTM , ωq “ pA1, A2q is not safe, and (3)  pA1—A2q.
We show (1) ñ (2) by Lemma 2.1, (2) ñ (1) from the definition of safety, and
(2) ô (3) by Theorems 3.1 and 3.3 and the fact that pA1, A2q is AD.

4.1 Decidable sub-classes of CFSMs

We now identify three sub-classes of CFSMs for which the—-relation is decidable.
We say that M1—M2 is decidable iff it is decidable whether or not M1—M2

holds. The first sub-class is HD systems: HD is a decidable property and safety
is decidable within that class [8], hence — is decidable in HD and it is equivalent
to —s within HD. The second sub-class is taken from the CFSMs literature and
the third is limited to systems that contain at least one machine that has no
branching. We define the last two sub-classes below.

The following definition is convenient to formalise our decidability results.
Given Mi “ pQi, q0i , δiq for i P t1, 2u, the derivation tree of a triple π § p— q is a
tree whose nodes are labelled by elements of A˚ˆQ1ˆQ2 such that the children
of a node are exactly the triple generated by applying one step of Definition 3.1.

For example, consider the machines M1 and M2 from Figure 2, we have a
tree which consists of a unique (infinite) branch:
ε § 0— 0 ÝÑ b § 1— 0 ÝÑ bb § 2— 0 ÝÑ b § 0— 0 ÝÑ bb § 1— 0 ÝÑ bbb § 2— 0 ¨ ¨ ¨

Lemma 4.2. The derivation tree of π § p— q is finitely branching.

Lemma 4.2 follows from the fact that each machine is finitely branching and
the predicate finp q guarantees finiteness for case (3b) of Definition 3.1.

Alternating machines. Alternating machines were introduced in [21] where
it is shown that the progress problem (corresponding to our notion of safety)
is decidable for such systems. A machine is alternating if each of its sending
transition is followed by a receiving transition, e.g., Ms and M 1

s in Figure 1 are
alternating, as well as the specification of the alternating-bit protocol in [21].
Observe that alternating machines form AD systems.

Theorem 4.2. If M1 and M2 are alternating, then M1—M2 is decidable.

The proof simply shows that the π part of the relation (cf. Definition 3.1) is
bounded by 1, by induction on the depth of the derivation tree.

Non-branching machines. Given M “ pQ, q0, δq we say that M is non-
branching if each of its state has at most one successor, i.e., if @q P Q : |δpqq| ď 1.
For example, M 1

s in Figure 1 is non-branching. Non-branching machines are used
notably in [34, 36] to specify parallel programs which can be optimised through
asynchronous message permutations.

Theorem 4.3. Let M1 and M2 be two machines such that at least one of them
is non-branching, then M1—M2 is decidable.
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The proof relies on the fact that (i) the derivation tree is finitely branching
(Lemma 4.2), hence there is a semi-algorithm to checker whether  pM1—M2q

and (ii) over any infinite branches we can find two nodes of the form c “

πn § p— q and c1 “ πm § p— q, with n ď m. If n is large enough, this implies that
the relation holds (i.e., the branch is indeed infinite).

5 Correspondence between compatibility and subtyping

We show a precise correspondence between the asynchronous subtyping for ses-
sion types and the —-relation for CFSMs, i.e., Step 4. We first recall the syntax
of session types and as well as the definition of asynchronous subtyping.

Session types and subtyping. The syntax of session types is given by

T, U :“ end | ‘iPI !ai. Ti | &iPI?ai. Ti | recx.T | x

where I ‰ H is finite and ai ‰ aj for i ‰ j. Type end indicates the end of a
session. Type ‘iPI !ai. Ti specifies an internal choice, indicating that the program
chooses to send one of the ai messages, then behaves as Ti. Type &iPI?ai. Ti
specifies an external choice, saying that the program waits to receive one of
the ai messages, then behaves as Ti. Types recx.T and x are used to specify
recursive behaviours. We only consider closed types, i.e., without free variables.

Since our goal is to relate a binary relation defined on CFSMs to a binary
relation on session types, we first introduce transformations from one to another.

Definition 5.1. Given a type T , we write MpT q for the CFSM induced by T .
Given a CFSM M , we write T pMq for the type constructed from M .

We assume the existence of two algorithms such that T “ T pMpT qq and
M “ MpT pMqq for any type T and machine M . These algorithms are rather
trivial since each session type induces a finite automaton, see [15] for instance.

We write T for the dual of type T , i.e., end “ end, x “ x, recx.T “ recx.T ,
‘iPI !ai. Ti “ &iPI?ai. T i, and &iPI?ai. Ti “ ‘iPI !ai. T i.

Hereafter, we write ďa for the relation in [9] (abstracting away from carried
types) which we recall below. An asynchronous context [9] is defined by

A :“ r sn | &iPI?ai.Ai

We write Ar snPN to denote a context with holes indexed by elements of N and
ArTnsnPN to denote the same context when the hole r sn has been filled with Tn.

The predicate & P T holds if it can be derived from the following rules:

& P &iPI?ai. Ti

@i P I : & P Ti
& P ‘iPI !ai. Ti

& P T
& P recx.T

& P T holds whenever T always eventually performs a receive action, i.e., it
cannot loop on send actions only. It is the counterpart of the predicate finp q

for CFSMs, cf. Lemma 5.1.
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Definition 5.2 (ďa [9]). The asynchronous subtyping, ďa, is the largest rela-
tion that contains the rules:1

@i P I : Tiďa Ui

‘iPI !ai. Tiďa‘iPIYJ !ai. Ui
[sel]

@i P I : Tiďa Ui

&iPIYJ?ai. Tiďa &iPI?ai. Ui
[bra]

@i P I : Tiďa ArUni snPN & P Ti

‘iPI !ai. Tiďa Ar‘iPIYJn !ai. U
n
i s
nPN

[async]
endďa end

[end]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. We are assuming an equi-recursive view of types.

Rule [sel] lets the subtype make fewer selections than its supertype, while rule
[bra] allows the subtype to offer more branches. Rule [async] allows safe permu-
tations of actions, by which a protocol can be refined to maximise asynchrony
without violating safety. Note that the synchronous subtyping ďs [11, 19, 20]
is defined as Definition 5.2 without rule [async], hence ďs Ď ďa. In Figure 1,
T pM 1

sqďs T pMsq, T pM 1
sqďa T pMsq, and T pMcqďa T pM 1

cq.
The correspondence between — (Definition 3.1) and ďa (Definition 5.2) can

be understood as follows. Case (1) of Definition 3.1 corresponds to rule [end].
Case (2a) corresponds to rule [bra]. Case (3a) corresponds to rule [sel]. Cases (2b)
and (3b) together correspond to rule [async].

Correspondences. We show that — on CFSMs and ďa on session types are
equivalent, and, as a consequence, deciding whether two types are ďa-related is
undecidable. We first introduce a few auxiliary lemmas and definitions.

Lemma 5.1. Let M “ pQ, q0, δq and T be a session type.

1. For each q P Q, if finpqq, then & P T pQ, q, δq.
2. If & P T and MpT q “ pQ̂, q, δ̂q, then finpqq.

3. If T “ Ar‘iPI !ai. Uni snPN then & P T .

Lemma 5.1 states the relationship between & P T and finp q (cf. § 2.2).
We write π P A if π is a branch in the context A. Formally, given A and

π P A˚, we define the predicate π P A as follows:

π P A ðñ

#

π “ ε if A “ r s
π “ aj ¨ πj if A “ &iPI?ai.Ai, πj P Aj , with j P I

The next lemma shows that the ďa-relation implies the —-relation.

Lemma 5.2. Let T and U be two session types, such that MpT q “ pQT , qT0 , δ
T q

and MpUq “ pQU , qU0 , δ
U q, then T ďa ArU s ùñ @π P A : π § qT0 — q

U
0 .

1 Note that in [9] rule [async] has a redundant additional premise, & P A, which is
only used to make the application of the rules deterministic.
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The proof of Lemma 5.2 is by coinduction on the derivation of π § p— q. We
use Lemma 5.1 to show that premise of rule [async] implies that finpqT0 q and
finpqU0 q hold when necessary.

The next lemma shows that the —-relation implies the ďa-relation.

Lemma 5.3. Let Mi “ pQi, q0i , δiq, i P t1, 2u and π “ a1 ¨ ¨ ¨ ak P A˚, for all
p P Q1 and q P Q2, π § p— q ùñ T pQ1, p, δ1q ďa ?a1 ¨ ¨ ¨?ak .rT pQ2, q, δ2qs.

The proof of Lemma 5.3 is by coinduction on the rules of Definition 5.2, using
Lemma 5.1 to match the requirements of the respective relations.

We are now ready to state the final equivalence result.

Theorem 5.1. The relations — and ďa are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1ďa T2 ùñ MpT1q—MpT2q.
2. Let M1 and M2 be two machines, then M1—M2 ùñ T pM1qďa T pM2q.

Proof. (1) follows from Lemma 5.2, with T1 “ T , T2 “ U , and A “ r s. (2)
follows from Lemma 5.3, with π “ ε, p “ q01 , and q “ q02 . ˝

A consequence of the correspondence between the two relations is that the
—-relation is transitive in the following sense:

Theorem 5.2. If M1—M and M —M2, then M1—M2.

Proof. By Theorem 5.1 we have (1) M1—M ðñ M1ďaM (2) M —M2 ðñ

M ďaM2. Since ďa is transitive [10], we have M1ďaM2. Thus, using Theo-
rem 5.1 again, we have M1ďaM2 ðñ M1—M2. ˝

As a consequence of Theorem 4.1 and Theorem 5.1, we have the undecidabil-
ity of the asynchronous subtyping:

Theorem 5.3 (Undecidability of ďa). Given two session types T1 and T2, it
is generally undecidable whether T1ďa T2 holds.

We state the equivalence between —s and ďs, and the transitivity of —s.

Theorem 5.4. The relations —s and ďs are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1ďs T2 ùñ MpT1q—sMpT2q.
2. Let M1 and M2 be two machines, then M1—sM2 ùñ T pM1qďs T pM2q.

Theorem 5.5. If M1—sM and M —sM2, then M1—sM2.

Theorem 5.1 together with the soundness and completeness of — wrt. safety
in AD systems (Theorems 3.1 and 3.3) imply a tight relationship between ďa and
session types corresponding to AD systems. A similar correspondence between
ďs and HD systems exists, by Theorems 3.2, 3.4, and 5.4.
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6 Conclusions and related work

We have introduced a new sub-class of CFSMs (AD), which includes HD, and a
compatibility relation — (resp. —s) that is sound and complete wrt. safety within
AD (resp. HD) and equivalent to asynchronous (resp. synchronous) subtyping.
Our results in § 4.1 suggest that — is a convenient basis for designing safety
checking algorithms for some sub-classes of CFSMs. Given the results in the
present paper, we plan to study bounded approximations of — that can be used
for session typed applications. Such approximations would make asynchronous
subtyping available for real-world programs and thus facilitate the integration
of flexible session typing.

Related work. The first (synchronous) subtyping for session types in the π-
calculus was introduced in [19] and shown to be decidable in [20]. Its complexity
was further studied in [28] which encodes synchronous subtyping as a model
checking problem. The first version of asynchronous subtyping was introduced
in [32] for multiparty session types and further studied in [29–31] for binary
session types in the higher-order π-calculus. These works and [10] stated or con-
jectured the decidability of the relations. The technical report [5] (announced
after the submission of the present paper) independently studied the undecid-
ability of these relations. Note that the subtyping relation in [29,31] only differs
from the one in [9,10] by the omission of the premise & P Ti in rule [async]. This
subtyping is not sound wrt. our definition of safety as it does not guarantee even-
tual reception [9,10]. We conjecture that it is sound and complete wrt. progress
(either both machines are in a final state or one can eventually make a move)
in (the full class of) CFSMs (Definition 2.1), hence it is also undecidable since
progress corresponds to rejection of a word by a Turing machine, cf. § 4.

The operational and denotational preciseness of (synchronous and asyn-
chronous) subtyping for session types was studied in [9,10] where the authors give
soundness and completeness of each subtyping through the set of π-calculus pro-
cesses which can be assigned a given type. In this paper, we study the soundness
and completeness of — (resp. —s) in CFSMs through AD (resp. HD) systems.

CFSMs have long been known to be Turing complete [4, 17] even when re-
stricted to deterministic machines without mixed states [21]. The first paper to
relate formally CFSMs and session types was [14], which was followed by a se-
ries of work using CFSMs as session types [3, 15, 27]. The article [2] shows, in a
similar fashion to [17], that the compliance of contracts based on asynchronous
session types is undecidable. Here, we show that the encoding of [17] is indeed
AD and that safety is equivalent to word acceptance by a Turing machine.
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A Comments on transitivity of —

A key property of the asynchronous subtyping is that it is transitive. Let us
recall our transitivity result for —.

Theorem 5.2. If M1—M and M —M2, then M1—M2.

In practice, this means that if software practitioners define a new two-party
protocol, specified by M , whose parties are to be implemented by different teams,
then the teams do not have to check whether their respective implementations,
e.g., M1 and M2, are compatible, it is enough for them to refer to either M or
M (depending on which party they are implementing) so that they can, e.g.,
optimise their implementation as they wish.

The finp q requirements in AD and— (and & P T in asynchronous subtyping)
is key to guarantee transitivity as we illustrate below.

0

!a

0 1 2

?a

?b !c
0 1 2

!a

!b ?c
0 1 2

?a

!c ?b

MT — MU MU ffi MV

We have MT —MU and system pMT ,MU q is safe and AD. We have MU ffiMV

(since  finp0q in MU and both initial states are sending), but system pMU ,MV q

is safe (although not AD).
If we were to remove the finp q conditions in Definition 3.1, we would have

MU —MV , which by transitivity would give us MT —MV . However, the system
pMT ,MV q is not safe since the message c (sent by MV ) will never be received
by MT .

B Proofs for Section 2.1 (Properties of CFSMs)

Lemma B.1. If S is safe, then for all s “ pq1, ω1, q2, ω2q P RS pSq: either (i)
q1 and q2 are final and ω1 “ ω2 “ ε, or (ii) Ds1 P RS pSq : s ùñ s1.

Proof. Take s “ pq1, ω1, q2, ω2q P RS pSq, we make a case analysis on the type of
q1 and q2, and whether or not the queues are empty.

1. If q1 and q2 are final, then ω1 “ ω2 “ ε, otherwise s would be a deadlock
(which contradicts the safety assumption).

2. If qi
!a
ÝÑ for i P t1, 2u, then the result holds trivially: by Definition 2.3, we

have s
ij!a
ùùñ.

3. If there is i P t1, 2u such that qi is a receiving state, we have the following
sub-cases (letting j P t1, 2uztiu):
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(a) if ωj “ a ¨ω1j , then by eventual reception we have qi
?a
ÝÑ (qi is a receiving

state), hence s
ji?a
ùùñ.

(b) ωj “ ε, then we have either:

i. qj
!b
ÝÑ and the result holds (see (2) above)

ii. qj is final, then ωi “ ε (otherwise, we have a contradiction with
eventual reception), hence for s not to be a deadlock qi must be
either sending or final, a contradiction with the assumption of this
sub-case.

iii. qj
?b
ÝÑ, then either

– ωi “ ε, which implies that s is a deadlock, i.e., a contradiction,
or

– ωi “ c ¨ω1i, which implies that qj
?c
ÝÑ (eventual reception), hence

s
ij?c
ùùñ. ˝

Lemma B.2. If S “ pM1,M2q is safe, then for all s “ pq1, ω1, q2, ω2q P RS pSq:

1. Ds1 P RS pSq : s ùñ˚ s1 “ pq1, ε, q
1
2, ω2 ¨ ω

1
2q, and

2. Ds2 P RS pSq : s ùñ˚ s2 “ pq21 , ω1 ¨ ω
2
1 , q2, εq.

Proof. Take an arbitrary s “ pq1, ω1, q2, ω2q P RS pSq, let us show how a config-
uration s1 “ pq1, ε, q

1
2, ω

1
2q is reachable from s1.

– If q2 is a sending state, let q2
!a
ÝÑ q22 , then we obtain s2 “ pq1, ω1, q

2
2 , ω

1
2 ¨ aq

and we can repeat the procedure from s2 (note that ω1 is unchanged).
– If q2 is a receiving state, then either

‚ ω1 “ ε and we have obtained the expected result, or

‚ ω1 “ a ¨ ω21 and q2
?a
ÝÑ q22 , then we obtain s2 “ pq1, ω

2
1 , q

2
2 , ω2q, and we

repeat the procedure from s2 (note that |ω1| ą |ω21 |);
‚ or @pq2, a, q

2
2q P δ2 : ω1 R a ¨A˚ which contradicts the fact that S is safe

(it does not satisfy eventual reception).
– If q2 is final, then either ω1 “ ε and we have obtained the expected result,

or ω1 “ a ¨ ω21 and we have a contradiction with the fact that S is safe.

The procedure must terminate since (i) the size of ω1 does not increase and (ii)
eventual reception guarantees that all messages are eventually consumed.

The procedure to show that s2 “ pq21 , ω
2
1 , q2, εq is reachable is similar to the

one above (making M1 move instead of M2). ˝

C Proofs for Section 3 (Soundness of —)

We give a convenient definition used in the proofs below.

Definition C.1. Given a system S, we says that s “ pp, ω1, q, ω2q P RS pSq is
well-formed, written WFpsq, if

Apq, ω1q and @pϕ, q1q P W pq, ω1q : ω2 ¨ ϕ § p— q1
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Lemma 3.2. Let S “ pM1,M2q. If M1—M2, then for all s “ pp, ω1, q, ω2q P

RS pSq the following holds: (1) s is not a deadlock, (2) Apq, ω1q, (3) @pϕ, q1q P
W pq, ω1q : ω2 ¨ ϕ § p— q1, and (4) App, ω2q.

Proof. We show this by induction on the length of the execution from s0 to

s P RS pSq. Consider s “ pp, ω1, q, ω2q such that s0
φ
ùñ s with |φ| “ k.

Base case. If k “ 0, then s “ s0 “ pp0, ε, q0, εq “ pp, ε, q, εq.
We have to show

– App, εq, which is trivially true,
– Apq, εq, which is trivially true, and
– @pϕ, q1q P W pq0, εq : ϕ § p0— q

1. Since, ω1 “ ε, we have W pq, εq “ tpq0, εqu,
hence we only have to show that ε § p0— q0, which holds by assumption that
M1—M2.

Next, we show that s0 is not a deadlock, by contradiction. Assume we have
s0 “ pp, ε, q, εq. By definition of a deadlock, if s0 is a deadlock we must have
either:

1. p
?a
ÝÑ p2 and q is either final or q

?b
ÝÑ, or

2. q
?a
ÝÑ q2 and p is either final or p

?b
ÝÑ.

Assume case (1) (the other case is similar) above holds and let us show that it
leads to a contradiction. We have W pq, εq “ tpε, qqu, and thus ε § p— q.

Since p
?a
ÝÑ p2, only case (2a) of Definition 3.1 would apply. This lead to a

contradiction since we have p
?a
ÝÑ p2 and either q is final or q

?b
ÝÑ both cases rule

out case (2a)).
Inductive case. Assume the results holds for any k´ 1 ě 0 and let us show

that it holds for k. Pose s1 “ pp1, ω11, q
1, ω12q such that s0

φ1

ùñ s1
λ
ùñ s.

There are four cases depending on the form of λ:

1. If λ “ 12!a, then we have s “ pp, ω11 ¨ a, q1, ω12q. We first note that, since

p1
!a
ÝÑ p, App1, ω12q ùñ App, ω12q.

Then, by induction hypothesis, we have WFps1q hence we have

Apq1, ω11q and @pϕ, q2q P W pq1, ω11q : ω2 ¨ ϕ § p1— q2

Since λ “ 12!a, we have p1
!a
ÝÑ p, hence case (3) of Definition (3.1) must

apply for each ω2 ¨ ϕ § p1— q2.
First, we show that Apq1, ω1 ¨ aq.
– If ω2 ¨ ϕ ‰ ε, then we have, by Definition (3.1):

@q1 P Q2 : @π P A˚ : q2
!π
ÝÑ q1, there exist π1 P A˚ and q2, q3 P Q2 such

that q1
!π1

ÝÝÑ q2
?a
ÝÑ q3 and ω2 ¨ ϕ ¨ π ¨ π

1 § p— q3
Which implies that we have:

@q1 P Q2 : q2
!
ÝÑ˚ q1 there exist q2, q3 P Q2 : q1

!
ÝÑ˚ q2

?a
ÝÑ q3, or in other

words: Apq2, aq.
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– If ω2¨ϕ “ ε, then we must have, by Definition 3.1: q2
?a
ÝÑ q3 and ε § p— q3.

Hence, we have Apq2, aq.

Since we have Apq1, ω11q (by assumption) and @pψ, q2q P W pq1, ω1q : Apq2, aq
(from the development above), we have Apq1, ω1 ¨ aq by Lemma 3.1.
Second, we show that

@pϕ1, q2q P W pq1, ω1 ¨ aq : ω2 ¨ ϕ
1 § p— q2

which follows from the first part of our argument. It suffices to notice that
for all pϕ1, q2q P W pq1, ω1 ¨ aq there are pϕ̂, q̂q P W pq1, ω1q, and q2, q3 P Q2

such that q̂
!ϕ2

ÝÝÑ q2
?a
ÝÑ q3 with ϕ1 “ ϕ̂ ¨ ϕ2 and q2 “ q3.

Finally, note that s is not a deadlock since ω1 ‰ ε.
2. If λ “ 21!a, then we have s “ pp1, ω11, q, ω

1
2 ¨ aq. By induction hypothesis, we

have WFps1q hence we have

Apq1, ω11q and @pϕ, q2q P W pq1, ω11q : ω2 ¨ ϕ § p1— q2

We have to show that,

Apq, ω11q and @pϕ, q2q P W pq, ω11q : ω2 ¨ ϕ § p1— q2

which follows trivially since q1
!a
ÝÑ q.

Next, we have to show that App1, ω12 ¨ aq, knowing that App1, ω12q holds by
induction hypothesis. This follows from Lemma F.1: since finpp2q holds for
any p2 appearing in the following derivations, it must be the case that ω12 is
eventually totally consumed (by repeated applications of case (2b)) and thus
eventually reaches a step where a must be consumed by the first machine.
Finally, note that s is not a deadlock since ω2 ‰ ε.

3. If λ “ 12?a, then we have s “ pp1, ω1, q, ω
1
2q, with ω11 “ a ¨ ω1.

We first note that, since p1 “ p, App1, ω12q ùñ App, ω12q.
By induction hypothesis, we have WFps1q hence we have

Apq1, a ¨ ω1q and @pϕ, q2q P W pq1, a ¨ ω1q : ω2 ¨ ϕ § p1— q2

We have to show that

Apq, ω1q and @pϕ, q2q P W pq, ω1q : ω2 ¨ ϕ § p1— q2

which follows trivially since q1
?a
ÝÑ q.

Finally, if ω1 “ ε “ ω12, we can show that s “ pp1, ω1, q, ω
1
2q is not a deadlock

by contradiction, just like in the base case.
4. If λ “ 21?a, then we have s “ pp, ω11, q

1, ω2q, with ω12 “ a ¨ ω2.

We first note that, since p1
?a
ÝÑ p, App1, a ¨ ω12q ùñ App, ω2q.

By induction hypothesis, we have WFps1q hence we have

Apq1, ω11q and @pϕ, q2q P W pq1, ω11q : a ¨ ω2 ¨ ϕ § p1— q2
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We have to show that

Apq1, ω11q and @pϕ, q2q P W pq1, ω11q : ω2 ¨ ϕ § p— q2

Since p1
?a
ÝÑ p, the second sub-case (2a) of Definition (3.1) must apply to

each a ¨ ω2 ¨ ϕ § p1— q2. Hence, we must have ω2 ¨ ϕ § p— q2, which is the
expected result.
Finally, if ω11 “ ε “ ω2, we can show that s “ pp, ω11, q

1, ω2q is not a deadlock
by contradiction, just like in the base case.

˝

Lemma 3.3. Let S “ pM1,M2q. If for all s “ pq1, ω1, q2, ω2q P RS pSq :
Apq1, ω1q and Apq2, ω2q, then S satisfies eventual reception.

Proof. We show that, for all s “ pp, ω, q, ω1q P RS pSq

App, ω1q ùñ Ds1 : s ùñ˚ s1 “ pp1, ω ¨ ϕ, q, εq (1)

and
Apq, ωq ùñ Ds1 : s ùñ˚ s1 “ pp, ε, q1, ω1 ¨ ϕ1q (2)

which implies naturally eventual reception (when (1) and (2) hold for all s).
We show only (2) since (1) follows the same argument. Below, we show that

the predicate Apq, ωq is preserved by the moves done by q. The case where ω “ ε
follows trivially, hence we only detail the case where ω “ a ¨ ω1.

– If q is a sending state, then we must show that @b, q1 : q
!b
ÝÑ q1 ùñ Apq1, ωq.

By hypothesis, we have Apq, ωq, i.e., @q1 : q
!
ÝÑ˚ q1 : Dq2, q̂ : q1

!
ÝÑ˚ q2

?a
ÝÑ

q̂ ^Apq̂, ω1q.
In addition, we have

!

q | q1
!
ÝÑ˚ q1

)

Ď

!

q | q
!
ÝÑ˚ q1

)

since q1
!
ÝÑ˚ q1 ùñ q

!b
ÝÑ

!
ÝÑ˚ q1 for some b.

Hence we obtain:

@q1 : q1
!
ÝÑ˚ q1 : Dq2, q̂ : q1

!
ÝÑ˚ q2

?a
ÝÑ q̂ ^Apq̂, ω1q

ðñ @b, q1 : q
!b
ÝÑ q1 : Apq1, ω

1q

– If q is a receiving state, then we must show that

Apq, ωq ^ ω “ a ¨ ω1 ùñ q
?a
ÝÑ q1 ^Apq1, ω1q

which follows from the fact that tq2 | q
!
ÝÑ˚ q2u “ tqu since q is a receiving

state. Hence, by definition of Apq, ωq, we have q
?a
ÝÑ q1^Apq1, ω1q as required.

– If q is a final state, and ω ‰ ε, we have a contradiction with the definition
of Apq, ωq.
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˝

Lemma 3.1. Let M “ pQ, q0, δq, q P Q and ω P A˚. If Apq, ωq and @pϕ, q1q P
W pq, ωq : Apq1, aq then Apq, ω ¨ aq.

Proof. By induction on the size of ω.

– If ω “ ε, then W pq, ωq “ tpε, qqu, hence Apq, aq, as required.
– Assume the result holds for |ω| “ n ě 0 and let us show that it also holds

for |ω| “ n` 1.
Take ω “ b ¨ ω1. By Apq, ωq, we have

@q1 : q
!
ÝÑ˚ q1 : Dq2, q̂ : q1

!
ÝÑ˚ q2

?b
ÝÑ q̂ ^Apq̂, ω1q (3)

By definition of W pq, ωq and assumption that Apq, ωq hold, in particular

q
!
ÝÑ˚

?b
ÝÑ q̂, we have

tq0 | p , q0q P W pq̂, ω1qu Ď tq1 | p , q1q P W pq, b ¨ ω1qu (4)

Finally, from (4) and since, by assumption, we have

@p , q1q P W pq, ωq : Apq1, aq

we also have
@p , q1q P W pq̂, ω1q : Apq1, aq

which, together with (3), allows us to invoke the induction hypothesis, i.e.,

Apq̂, ω1q and @p , q1q P W pq̂, ω1q : Apq1, aq ùñ Apq̂, ω1 ¨ aq

Applying weakening in (3), we obtain

@q1 : q
!
ÝÑ˚ q1 : Dq2, q̂ : q1

!
ÝÑ˚ q2

?b
ÝÑ q̂ ^Apq̂, ω1 ¨ aq ðñ Apq, b ¨ ω1 ¨ aq

i.e., the expected result.

˝

Theorem C.1. If M1—M2, then pM1,M2q is safe.

Proof. Direct consequence of Lemmas 3.2 and 3.3. ˝

Theorem C.2. If M1—M2, then pM1,M2q is an asynchronous duplex system.

Proof. Take S “ pM1,M2q such that M1—M2. By contradiction, assume there
is s “ pp, ω1, q, ω2q P RS pSq such that, ω1 ‰ ε, ω2 ‰ ε and  finppq (if  finpqq
the proof is similar).

Since S is safe, by Lemma 2.1, there is s1 P RS pSq such that s ùñ˚ s1 “
pp, ε, q1, ω2¨ω

1
2q. Hence, ω2¨ω

1
2 § p— q

1 holds by Lemma 3.4. Finally, by Lemma F.1,
we must have finppq, a contradiction. ˝
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Theorem 3.1. If M1—M2, then pM1,M2q is a safe AD system.

Proof. By Theorems C.1 and C.2. ˝

Theorem 3.2. If M1—sM2, then pM1,M2q is a safe HD system.

Proof. Since ďs Ď ďa, the safety part follows from Theorem 3.1. The HD part
follows trivially from the definition of —s (if two machines are sending simulta-
neously, none of the cases of —s applies). ˝

D Proofs for Section 3 (completeness of —)

Lemma 3.4. Let S be safe and AD, then @pp, ε, q, ωq P RS pSq : ω § p— q.

Proof. We show this result by induction on the kth approximation of ω § p— q,
i.e., ω § p—k q.

Base case. If k “ 0, then we have the result trivially since ω § p—0 q, for
any p, q, and ω.

Inductive case. Assume that for all @s “ pp, ε, q, ωq P RS pSq, we have
ω § p—k q, let us show that we have ω § p—k`1 q.

1. If p Û, then, by definition of safety, we must have ω “ ε (eventual recep-
tion) and q Û (no deadlock). Hence, we have ω § p— q, following Case (1) of
Definition 3.1.

2. If p
?a
ÝÑ, then we have two cases, depending on ω being empty or not.

– If ω “ ε, then by safety we must have q
!b
ÝÑ (otherwise, we have a

deadlock).

In addition, by eventual reception, we must have @b : q
!b
ÝÑ q1 ùñ p

!b
ÝÑ

p1 and pp, ε, q, εq must be safe.
Hence, Case (2a) of Definition 3.1 applies here, since by the induction
hypothesis, we must have ε § p1—k q

1 for all such p1 and q1.

– If ω “ b ¨ ω1, then, by safety, we must have p
?b
ÝÑ p1 and each pp1, ε, q, ω1q

must be safe.
Hence, Case (2b) of Definition 3.1 applies here since, by the induction
hypothesis, we must have ω1 § p1—k q.

3. If p
!a
ÝÑ p1, we have two cases depending on whether finppq ^ finpqq holds.

We first show that ω ‰ ε ùñ finppq ^ finpqq by contradiction. We have
s ùñ s1 “ pp1, a, q, ωq, s1 is not a valid configuration of an asynchronous
duplex configuration if ω ‰ ε^ pfinppq ^ finpqqq.

– Case  pfinppq ^ finpqqq, then we must have ω “ ε and q
?b
ÝÑ. Then, by

safety, we must have p
!a
ÝÑ p1 ùñ q

?a
ÝÑ q1 and pp1, ε, q1, εq is safe.

Hence, Case (3a) of Definition 3.1 applies here since, by the induction
hypothesis, we must have ε § p1—k q

1 for all such p1 and q1.
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– Case finppq ^ finpqq. By safety, it must be the case that:

@q1 P Q2 : @π P A˚ : q
!π1

ÝÝÑ q1, there exist π2 P A˚ and q2, q1 P Q2 such

that q1
!π1

ÝÝÑ q2
?a
ÝÑ q1 (i.e., a can always be received from state q) and

pp1, ε, q1, ω ¨ π ¨ π
1q is safe.

By induction hypothesis, we have ω ¨ π ¨ π1 § p1—k q1 for each such con-
figuration, hence, Case (3b) of Definition 3.1 applies.

˝

Theorem 3.4. If pM1,M2q is a safe HD system, then M1—sM2.

Proof. The proof is a degenerated case of the proof of Theorem 3.3. We only show
the basic idea here. Take S “ pM1,M2q a safe HD system and s “ pp, ω1, q, ω2q P

RS pSq. By definition of HD: ω1 “ ε or ω2 “ ε. Take ω1 “ ε (the other case is
similar). Since S is safe, we can use Lemma 2.1 and the HD assumption (if M1

could send a message while ω2 is not yet empty, it would contradict the HD
hypothesis) and to reach s1 “ pp1, ε, q, εq such that s ùñ˚ s1. Then we show that
p1—s q holds as in the proof of Theorem 3.3. ˝

E Proofs for Section 4 (undecidability)

Theorem 4.1 (Undecidability of —). Given two machines M1 and M2, it is
generally undecidable whether M1—M2 holds.

Proof. We prove that following statements are equivalent: (1) TM accepts ω,
(2) SpTM , ωq “ pA1, A2q is not safe, and (3)  pA1—A2q.

(1) ñ (2): We show the contrapositive, i.e., if SpTM , ωq is safe, then it does
not halt (i.e., ω is not accepted). By Lemma 2.1 and the fact that neither Ai
contains final states each reachable configuration of SpTM , ωq has a successor,
hence it does not halt (thus ω is not accepted).

(2) ñ (1): We show the contrapositive: if TM does not accepts ω, then
SpTM , ωq is safe. In other words, if TM does not halt, then SpTM , ωq is safe.
Assume by contradiction that TM does not halt and SpTM , ωq is not safe. Then
by definition of safety, there must be s P RS pSpTM , ωqq such that either s is a
deadlock or s does not satisfy eventual reception.

(i) If s is a deadlock, then it clearly contradicts the fact that TM does not
halt (from [17] we now that SpTM , ωq simulates TM ).

(ii) Assume s does not satisfy eventual reception. Without loss of generality,

take s “ pq1, a ¨ ω1, q2, ω2q with q12 such that q2
!
ÝÑ˚ q12 and  pq12

?a
ÝÑq. Then we

have s ÝÑ˚ s1 “ pq1, a ¨ ω1, q
1
2, ω2 ¨ ω

1
2q for some ω12 such that q2

!ω1
2

ÝÝÑ q12. Since

 pq12
?a
ÝÑq, machine A2 is stuck in q12; hence all further moves must be done by

A1 only. Clearly, the size of the input queue of A1 is also stuck with maximal
content ω2 ¨ ω

1
2. Since each cycle in A1 contains at least one reception, its input

queue will eventually be emptied and A1 will be stuck as well, contradicting the
fact that SpTM , ωq does not halt.
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(2) ô (3): By Lemma 4.1, SpTM , ωq is an asynchronous duplex system.
Hence the result follows from Theorems 3.1 and 3.3 (equivalence between safety
and — for asynchronous duplex systems).

We have reduced the halting problem for Turing machines to the problem of
deciding whether M1—M2 holds, hence checking M1—M2 is undecidable. ˝

F Proofs for Section 4.1 (decidable sub-classes)

In order to give an algorithm for checking whether M1—M2 holds, we adapt the
notion of expansion tree [22,26] to our setting.

Definition F.1. The function succ : pA˚ ˆ Q1 ˆ Q2q Ñ PpA˚ ˆ Q1 ˆ Q2q is
defined as follows:

1. tpε, p1, q1q | p
?b
ÝÑ p1 ^ q

!b
ÝÑ q1u if p

?a
ÝÑ, q

!b
ÝÑ, π “ ε, and q

!b
ÝÑ ùñ p

?b
ÝÑ

2. tpπ1, p1, qqu if π “ a ¨ π1 and p
?a
ÝÑ p1

3. tpε, p1, q1q | p
!b
ÝÑ p1 ^ q

?b
ÝÑ q1u if  pfinppq ^ finpqqq and p

!a
ÝÑ, q

?b
ÝÑ, π “

ε, and p
!a
ÝÑ ùñ q

?a
ÝÑ

4. tpπ ¨ π1, p1, q1q | p
!a
ÝÑ p1 ^ q

!π1

ÝÝÑ
?a
ÝÑ q1u if finppq ^ finpqq, p

!a
ÝÑ, and

p
!a
ÝÑ ùñ @q1 P Q2 : q

!
ÝÑ˚ q1 ùñ q1

!
ÝÑ˚

?a
ÝÑ

5. H otherwise.

The derivation tree of π § p— q is a tree whose nodes are (labelled by) triples
of the form c “ pπi, pi, qiq, in which the children of a node are precisely the
(finitely many) set of nodes in succpcq. The root of the tree is c0 “ pπ, p, qq.
A leaf pπ, p, qq is deemed successful only if π “ ε and both p and q are final
states. All other leaves are deemed unsuccessful. We say that a branch (a full
path) is successful iff it is infinite or finishes with a successful node; otherwise it is
unsuccessful (it finishes with an unsuccessful node). It is clear from Definition F.1
that π § p— q holds if and only if all branches of the derivation tree of π § p— q
are successful.

Lemma 4.2. The derivation tree of π § p— q is finitely branching.

Proof. The only interesting case is case (4) of Definition 4. The finite number
of children is due to the requirements that finpqq must hold, which guarantees

that there are finitely many lists π1 such that q
!π1

ÝÝÑ q1. ˝

Lemma F.1. Let Mi “ pQi, q0i , δiq, i P t1, 2u. If M1—M2, then for every node
pa ¨ π, p, qq which is a child of pε, q01 , q02q in the derivation tree of π § q01 — q02 ,
finppq holds.

Proof. This follows directly from Definition 3.1. The π part of the relation only
grows in the second sub-case of (3), where finppq is required to hold. Once π ‰ ε
it can only (i) grow again, in which case finppq must still hold, or (ii) decrease

in which case p
?a
ÝÑ, therefore finppq holds trivially. ˝
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Theorem F.1. If pM1,M2q is half-duplex, then M1—M2 is decidable.

Proof. If pM1,M2q is half-duplex, case (3b) of Definition 3.1 never applies since
it cannot be the case that both machines are simultaneously in a sending state.
Hence, for any node π § p— q in the derivation tree, we have π “ ε; thus the
derivation tree is finite-state. ˝

Theorem 4.2. If M1 and M2 are alternating, then M1—M2 is decidable.

Proof. We show that the π part of the relation is bounded by 1 by induction
on the depth of the derivation tree. We show only the interesting case here. Let

Mi “ pQi, q0i , δiq such that M1—M2 Take p P Q1, and q P Q2 such that p
!a
ÝÑ p1

and q
!b
ÝÑ q1. The successors of c “ π § p— q in the derivation tree have the

form c1 “ π ¨ b § p1— q2, taking q2 such that q1
?a
ÝÑ q2 since M1—M2 and M2 is

alternating. The (unique) successor of c1 must be π1 ¨ b § p2— q2, with π “ c ¨ π1

and taking p2 such that p1
?c
ÝÑ p2 since M1 is alternating. ˝

Lemma F.2. Let Mi “ pQi, q0i , δiq, i P t1, 2u, be two machines such that at
least one of them is not branching and M1—M2 holds, then the derivation tree
of ε § q01 — q02 (resp. ε § q02 — q01) has at most one branch.

Proof. Take a node c “ pπ, p, qq in the derivation tree of ε § q01 — q02 , we make a
case analysis on the type of p, following Definition F.1, we show: |succpcq| ď 1.

1. If pÛ then succpcq “ H

2. If p
?a
ÝÑ,

(a) If π “ ε. We know that there is a unique transition such that q
!b
ÝÑ q1,

and we must have p
?b
ÝÑ p1, hence succpcq “ tpε, p1, q1qu.

(b) If π “ b ¨ π1, then |succpcq| “ 1 by Definition F.1.

3. If p
?a
ÝÑ,

(a) If π “ ε then there must be a unique transition such that p
!b
ÝÑ p1, since

there is a unique receive action fireable from q (no branching). Hence we

must have q
?b
ÝÑ q1 and succpcq “ tpε, p1, q1qu.

(b) If finppq^finpqq. As above, there must be a unique transition such that

p
!b
ÝÑ p1, since there is no branching in M2. Also there must be a unique

state q1 such that q
!
ÝÑ˚ ?a
ÝÑ q1 since M2 does not contain any branching.

Take π1 such that q
!π1

ÝÝÑ
?a
ÝÑ q1, we have succpcq “ tpπ ¨ π1, p1, q1qu.

The reasoning is similar to show that the derivation tree of ε § q02 — q01 has at
most one branch, we show only the interesting case, i.e., take c “ pπ, p, qq in the

derivation tree of ε § q02 — q01 such that p
!a
ÝÑ p1 and finppq ^ finpqq.

Take π “ ε and assume by contradiction that q
!b
ÝÑ

?a
ÝÑ q1 and q

!c
ÝÑ

?a
ÝÑ q2.

Then both b § p1— q1 and c § p1— q2 must hold. Which leads to a contradiction
since M1 is not branching (i.e., it cannot consume both b and c). ˝
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Given ψ P Act˚, we define

sndpψq
def
“

$

’

&

’

%

a ¨ sndpψ1q if ψ “!a ¨ ψ1

sndpψ1q if ψ “?a ¨ ψ1

ε otherwise

rcvpψq
def
“

$

’

&

’

%

a ¨ rcvpψ1q if ψ “?a ¨ ψ1

rcvpψ1q if ψ “!a ¨ ψ1

ε otherwise

Theorem 4.3. Let M1 and M2 be two machines such that at least one of them
is non-branching, then M1—M2 is decidable.

Proof. Take M2 “ pQ2, q0, δ2q such that M2 is not branching. We show that
the problem of checking M1—M2 is decidable, observing that if it is M1 that is
not branching, then we can check M2—M1 (which implies M1—M2 by Theo-
rem 3.5).

From Lemma 4.2, we know that the case  pM1—M2q is semi-decidable. It
suffices to find the first unsuccessful leaf in the derivation tree [26].

We call a (possibly infinite) sequence ci ¨ ¨ ¨ cj ¨ ¨ ¨ strictly positive if @k ě i :
ck “ pπk, p

1, q1q ùñ πk ‰ ε.
If a branch is finite, then we can always decide whether or not it is successful,

similarly if it is finite state (i.e., if the length of the π component of each triple is
bounded). Hence, we focus on infinite branch over an infinite set of triples, i.e.,
where the π component increases infinitely. It is easy to see that such infinite
branches must have a suffix that is a strictly positive sequence, hence we only
address strictly increasing sequences.

Part 1. Consider a branch:

c0 ¨ c1 ¨ ¨ ¨ ci ¨ ¨ ¨ cj ¨ ¨ ¨ (5)

we first show that if there is 0 ď i ă j such that

1. ci “ pω
n, p, qq, and cj “ pω

m, p, qq, with n ď m, and
2. ci ¨ ¨ ¨ cj is a strictly positive sequence.

then branch (5) is infinite (i.e., successful).
Since there is a cycle in p with the message list non-empty, some of ωn must

be consumed between the two configurations. Hence, we first observe that we
must have ci “ pω

l1 ¨ ωl2 , p, qq, with l1 ` l2 “ n, and cj “ pω
l2 ¨ ωl3 , p, qq, with

l2 ` l3 “ m ě n “ l1 ` l2. Note that since m ě n, we must have l3 ě l1 (i.e.,
more is added to the list than is removed).

Since l1 ď m, we can rewrite: cj “ pω
m, p, qq “ pωl1 ¨ ωm´l1 , p, qq, hence cj

must have a successor c “ pωm´l1 ¨ωl3 , p, qq, since cj can simulate the first steps
of ci (without going through a triple where the message list is empty).

Since l3 ě l1, we have m ´ l1 ` l3 ě m, hence we can repeat this reasoning
on cj and c, and build an infinite sequence.

Part 2. We show that for any strictly positive infinite sequence, we can find a
pair of node as in (5) in Part 1. Since we have assumed that M2 is not branching,
M2 must be of the form

q0 q
`1

ψ̂
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Note that finpqq holds since only cases (2) and (4) of Definition F.1 apply in a
strictly positive branch. The latter case requires finpqq while, the former does
not change q. Without loss of generality, pose q “ q0. Since M2 is not branching,
there is at most one elementary cycle between q0 and q0, let ψ0 be that path,

i.e., q0
ψ0
ÝÝÑ q0 and pose ω0 “ sndpψ0q. For any state qi along the cycle

ψ0
ÝÝÑ, we

assume qi
ψi
ÝÑ qi and pose ωi “ sndpψiq. Then, deep enough in the tree each

node is of the form c “ pπ, , qiq with π P suffixespωiq ¨ pωiq
˚. We show that for

any node c “ pπ, , qiq with π P suffixespωiq ¨ pωiq
˚, c has a successor of the form

pπ̂, , qiq with π̂ P pωiq
˚.

Assume we have

q0
!π0
ÝÝÑ

?a1
ÝÝÑ q1

!π1
ÝÝÑ

?a2
ÝÝÑ q2

!π2
ÝÝÑ ¨ ¨ ¨

?ak
ÝÝÑ qk

!πk
ÝÝÑ

?a0
ÝÝÑ q0

Then any node (deep enough in the tree) is of the form, for n ą 1 and j ě i,
pπj ¨ ¨ ¨πi´1 ¨ pπi ¨ ¨ ¨πi´1q

n, p, qq if i ą 0, or pπj ¨ ¨ ¨πk ¨ pπi ¨ ¨ ¨πkq
n, p, qq if i “ 0.

Assume an environment E for any state qi return the size of the “best” prefix
encountered so far (i.e., the shortest sequence πj ¨ ¨ ¨πi´1). Then for each appli-
cation of Definition F.1, size associated to a state decreases or state constant.

Consider c “ pπj ¨ ¨ ¨πi´1 ¨ pπi ¨ ¨ ¨πi´1q
n, p, qiq and let j the start of the best

prefix so far each qi.

1. If j “ i, then πj ¨ ¨ ¨πi´1 ¨ pπi ¨ ¨ ¨πi´1q
n “ pπi ¨ ¨ ¨πi´1q

n`1, and we have found
a good configuration.

2. If j ą 1, then

(a) If p
?a
ÝÑ, pose succpcq “ tpπ̂, p1, qiqu, then we have Epqiq strictly decreases

since we have consumed a message from the prefix.

(b) If p
!a
ÝÑ, pose succpcq “ tpπj ¨ ¨ ¨πi´1 ¨ pπi ¨ ¨ ¨πi´1q

n ¨ πi, p
1, qi`1qu, then

Epqiq is unchanged while Epqi`1q is assigned the length of πj ¨ ¨ ¨πi´1 ¨πi
which cannot be worse than the previous step since j ą i and therefore
j ě i ` 1. Hence if j “ i ` 1, we have found a configuration, otherwise
the invariant is preserved.

Since finppq holds (strictly positive branch), there must be a receive action at
most every |Q1| step, hence step (2a) must be executed infinitely often. Since
there is finitely many states in Q2, the procedure above must terminate. ˝

G Proofs for Section 5 (Equivalence between ďa and —)

The (finite) LTS of a (closed) session type is given by the rules below.

Definition G.1 (LTS of session types).

j P I

‘iPI !ai. Ti
!aj
ÝÝÑ Tj

j P I

&iPI?ai. Ti
?aj
ÝÝÑ Tj

T rrecx.T{xs
: a
ÝÝÑ T 1

recx.T
: a
ÝÝÑ T 1
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We first introduce a dual relation of ďa, for which one easily sees that
T1ďa T2 ðñ T1ďc T2. All the results of Section 5 follow from the results
below, via the following proposition.

Proposition G.1. T ďc U ðñ T ďa U

Definition G.2 (Asynchronous Context [9]).

A :“ r sn | ‘iPI !ai.Ai

We write Ar snPN to denote a context with holes indexed by elements of N and
ArTnsnPN to denote the same context when the hole r sn has been filled with Tn.

Definition G.3 (ďc-Relation [9]). ďc is the largest relation that contains the
rules:

@i P I : Tiďc Ui

‘iPI !ai. Tiďc &iPIYJ?ai. Ui
[sel]

@i P I : Tiďc Ui

&iPIYJ?ai. Tiďc‘iPI !ai. Ui
[bra]

@i P I : Tiďc ArUni snPN & P Ti

‘iPI !ai. Tiďc Ar&iPIYJn?ai. U
n
i s
nPN

[async]
endďc end

[end]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. We are assuming an equi-recursive view of types.

The predicate below is also adapted from [9].

Definition G.4. The predicate & P T holds if it can be derived from the follow-
ing rules:

& P &iPI?ai. Ti

@i P I : & P Ti
& P ‘iPI !ai. Ti

& P T
& P recx.T

Lemma G.1. Let M “ pQ, q0, δq and T be a session type.

1. For each q P Q if finpqq, then & P T ppQ, q, δqq.
2. If & P T and MpT q “ pQ̂, q, δ̂q, then finpqq.
3. If T “ Ar&iPI?ai. U

n
i s
nPN then & P T .

Proof. By Lemmas G.2, G.3, and G.4. ˝

Lemma G.2. Let M “ pQ, q0, δq, for all q P Q if finpqq, then & P T ppQ, q, δqq.

Proof. We prove

@q P Q : @R Ď Q : finpq,Rq ùñ & P T ppQ, q, δqq

by induction on the (increasing) number of states in R. Note that R Ă Q, hence
the definition of finpqq is indeed well-founded.
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Assume finpq,Rq.
If q Û then  finpqq by definition of finp q.

If q
?ai
ÝÝÑ qi, then we have T ppQ, q, δqq “ &iPI?ai. T ppQ, qi, δqq and we have

the result by definition of finp q and Definition G.4.

If q
!ai
ÝÝÑ qi, then we have T ppQ, q, δqq “ ‘iPI !ai. T ppQ, qi, δqq, and either

– q P R, in which case  finpq,Rq.
– q R R, hence by induction hypothesise, we have

finpqi, RY tquq ùñ & P T ppQ, qi, δqq Note that R Ă RY tqu

and the result follows straightforwardly from Definition G.4. ˝

We write fvpT q for the set of free variables in T . In the proof below, we abuse
the notations slightly and identify recursion variables in type T with states in
MpT q, i.e., assuming that a T “ recx.T 1 induces the machine pQ,x, δq. This
way, write, e.g., R “ fvpT q for the set of states corresponding the free variables
of T .

Lemma G.3. If & P T and MpT q “ pQ, q0, δq, then finpq0q.

Proof. We show the following by structural induction on T .

& P T ^ R “ fvpT q Ď Q ^ MpT q “ pQ, q, δq ùñ finpq,Rq

Take T such that & P T , R “ fvpT q, and MpT q “ pQ, q, δq

– If T “ end, then  p& P T q.

– If T “ &iPI?ai. Ti, then we have q
?ai
ÝÝÑ qi, and thus finpqq holds, by defini-

tion.
– If T “ recx.T 1, then we have & P T 1 by Definition G.4 and there are two

sub-cases, either
‚ T 1 “ &iPI?ai. Ti and we have the result as above, or
‚ T 1 “ ‘iPI !ai. Ti and thus & P Ti for each i P I by Definition G.4. By

induction hypothesis, for each i P I, we have:

& P Ti ^ R1 “ RY txu ^ MpTiq “ pQ, qi, δq ùñ finpqi, R
1q

Hence, we have
Ź

tqi | q
!ai
ÝÝÑqiu

finpqi, RY txuq as required.

– If T “ ‘iPI !ai. Ti, & P Ti for each i P I by Definition G.4. Since we have
that fvpT q “ fvpTiq for each i P I as well, we obtain

Ź

tqi | q
!ai
ÝÝÑqiu

finpqi, Rq

from the induction hypothesis.

˝

Lemma G.4. If T “ Ar&iPI?ai. U
n
i s
nPN and A ‰ r s then & P T .
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Proof. Follows from Definition G.4 and the fact that by definition each branch
of A is finite and each branch ends with a hole filled with a &iPI?ai. Ti type. ˝

Lemma G.5. Let T and U be two session types, such that MpT q “ pQT , qT0 , δ
T q

and MpUq “ pQU , qU0 , δ
U q, the following holds

T ďc ArU s ùñ @π P A : π § qT0 — q
U
0

Proof. We show the proof by coinduction on §— .

1. If T “ end, then ArU s “ end and, hence qT0 and qU0 are final states and
π “ ε. Thus we have ε § qT0 — q

U
0 by Definition 3.1.

2. If T “ ‘iPI !ai. Ti, there are two cases depending on the structure of ArU s.
– If ArU s “ &iPIYJ?ai. Ui, we pose A “ rs and U “ &iPIYJ?ai. Ui.

By definition of Mp q, we then have that qT0
!ai
ÝÝÑ qTi ùñ qU0

!ai
ÝÝÑ qUi

and we have ε § qTi — q
U
i follows by coinduction hypothesis.

– If ArU s “ Ar&iPIYJn?ai. U
n
i s
nPN , then we have to show that case (3b)

of Definition 3.1 applies.
(a) We have finpqT0 q since T “ ‘iPI !ai. Ti and & P Ti, by Lemma G.3.
(b) We have finpqU0 q by using Lemma G.4 (the A context must be finite)

then Lemma G.3.
(c) By definition of Mp q, we have qT0

!ai
ÝÝÑ qTi and qU0

!ai
ÝÝÑ qUi , for all

i P I.
By coinduction hypothesis, we have:

@i P I : Tiďc ArUni snPN ùñ @π̂ P A : π̂ § qTi — q
U
i

Thus, we see that the structure of U guarantees that its corre-

sponding machine satisfies the property that qT0
!ai
ÝÝÑ qTi implies that

@qU1 P Q
U : @π P A˚ : qU0

!π
ÝÑ qU1 , there exist π1 P A˚ and qUi P Q

U

such that qU1
!π1

ÝÝÑ
?a
ÝÑ qUi and π ¨ π1 § qTi — q

U
i ; where each π ¨ π1 P A.

3. If T “ &iPIYJ?ai. Ti, then ArU s “ ‘iPI !ai. Ui. We can pose A “ rs without
loss of generality.

By definition of Mp q, we then have that qU0
!ai
ÝÝÑ qUi ùñ qT0

!ai
ÝÝÑ qTi and

ε § qTi — q
U
i follows by coinduction hypothesis.

˝

Lemma G.6. Let Mi “ pQi, q0i , δiq, i P t1, 2u and π “ a1 ¨ ¨ ¨ ak P A˚, for all
p P Q1 and q P Q2, the following holds:

π § p— q ùñ T ppQ1, p, δ1qq ďc !a1 ¨ ¨ ¨!ak .rT ppQ2, q, δ2qqs

Proof. By coinduction on the rules of ďc.

1. If p Û, then q Û and π “ ε, hence we have T ppQ1, p, δ1qq “ end and
πrT ppQ2, q, δ2qqs “ end.
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2. If p
?a
ÝÑ, then there are two cases:

– if π “ ε, then we have q
!b
ÝÑ and @ai P A : q

!ai
ÝÝÑ qi ùñ pp

?ai
ÝÝÑ

pi ^ ε § pi— qiq hence we have

T ppQ1, p, δ1qq “ &iPIYJn?ai. T ppQ1, pi, δ1qq

and

πrT ppQ2, q, δ2qqs “ T ppQ2, q, δ2qq “ ‘iPI !ai. T ppQ2, qi, δ2qq

with I “ ti | q
!ai
ÝÝÑ qiu.

We have the final result by using the coinduction hypothesis, i.e.,

@i P I : ε § pi— qi ùñ T ppQ1, pi, δ1qqďc πrT ppQ2, qi, δ2qqs

– if π “ b ¨ π1, then Dp1 P Q1 : p
?b
ÝÑ p1 ^ π

1 § p1— q1. Hence we have

T ppQ1, p, δ1qq “ &iPI?ai. T ppQ1, pi, δ1qq such that a1 “ b

and

πrT ppQ2, q, δ2qqs “ !b.π1rT ppQ2, q, δ2qqs

We have the final result by using the coinduction hypothesis, i.e.,

π1 § p1— q1 ùñ T ppQ1, p1, δ1qqďc π
1rT ppQ2, q, δ2qqs

3. If p
!a
ÝÑ, then there are two cases:

– If π “ ε, and @ai : p
!ai
ÝÝÑ pi : Dqi P Q2 : q

?ai
ÝÝÑ qi ^ ε § pi— qi hence we

have

T ppQ1, p, δ1qq “ ‘iPI !ai. T ppQ1, pi, δ1qq

and

πrT ppQ2, q, δ2qqs “ T ppQ2, q, δ2qq “ &iPIYJn?ai. T ppQ2, qi, δ2qq

with I “ ti | p
!ai
ÝÝÑ piu and the rest follows naturally by coinduction

hypothesis.

– Otherwise, we have finppq and finpqq, and @ai : p
!ai
ÝÝÑ pi : @q1 P

Q2 : @π1 P A˚ : q
!π1

ÝÝÑ q1, there exist π2 P A˚ and qi P Q2 such that

q1
!π2

ÝÝÑ
?a
ÝÑ qi and π ¨ π1 ¨ π2 § pi— qi.

Since finpqq holds, it is possible to build a finite context A, i.e., a tree
consisting of all the paths π ¨ π1 ¨ π2 as described above (there is only a
finite number of such paths).
Hence, we have

T ppQ1, p, δ1qq “ ‘iPI !ai. T ppQ1, pi, δ1qq
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and
πrT ppQ2, q, δ2qqs “ Ar&iPIYJn?ai. T ppQ2, qi, δ2qqs

By coinduction hypothesis, we have

@i P I : @π̂ : q
!π̂
ÝÑ qi : T ppQ1, pi, δ1qqďc π̂rT ppQ2, qi, δ2qqs

Since finppq, we have & PMppQ1, p, δ1qq by Lemma G.2.

˝

Theorem 5.4. The relations —s and ďs are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1ďs T2 ùñ MpT1q—sMpT2q.
2. Let M1 and M2 be two machines, then M1—sM2 ùñ T pM1qďs T pM2q.

Proof. The proof (1) and (2) is a sub-case of the proof of Theorem 5.1. ˝

Theorem 5.5. If M1—sM and M —sM2, then M1—sM2.

Proof. Same as the proof of Theorem 5.2, ďs is transitive, using Theorem 5.4. ˝
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