Chapter 10

Message Passing

i

Concurrency: message passing 1

eeeeeeeeeeeee

Message Passing

Concepts: synchronous message passing - channel
asynchronous message passing - port
- send and receive / selective receive
rendezvous bidirectional comms - entry
- call and accept ... reply

Models: channel : relabelling, choice & guards
port . message queue, choice & guards
entry . port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

Concurrency: message passing 2
©Magee/Kramer

10.1 Synchronous Message Passing - channel

Channel c _
Sender N > R_ece_lver
send(e,c) v=receive(c)
one-to-one
¢ send(e,c) - send the ¢ V=receive(C) - receive
value of the expression e a value into local variable v
to channel c. The process from channel c. The
calling the send operation process calling the receive
IS blocked until the operation is blocked
message IS received from waiting until a message is
the channel. sent to the channel.

Concurrency: message passing cf. distributed assignment V = € 3

©Magee/Kramer

synchronous message passing - applet

A sender
communicates
with a receiver
using a single
channel.

The sender
sends a
sequence of
Integer values
from O to 9 and
then restarts at
O again.

Instances of Thr eadPanel

Concurrency: message passing

Start | Stop |

/

Channel chan = new Channel ();
tx.start(new Sender (chan, senddi sp));
rx.start (new Recei ver (chan,|recvdi sp));

Instances of Sl ot Canvas

4
©Magee/Kramer

Java implementation - channel

cl ass Channel extends Sel ectabl e {
(bj ect chann = nul |;

public synchroni zed voi d send((bj ect v)
throws InterruptedException {
chann = v;
signal ();
while (chann !'= null) wait();

}

public synchroni zed Object receive()
throws InterruptedException {

bl ock(); clearReady(); [/ part of Sel ectable

(bj ect tnp = chann; chann = null;

noti fyAll (); [/ could be notify()

return(tnp),;

|
The
Implementation
of Channel is a
monitor that has
synchronized
access methods
for send and
receive.

Selectable is

described later.
|

ner

Java implementation - sender

cl ass Sender 1 nplenents Runnable {
private Channel chan;
private SlotCanvas displ ay;
Sender (Channel c¢, Sl ot Canvas d)
{chan=c; display=d;}

public void run() {
try { int el = 0
whil e(true) {

di splay.enter(String.valueOG(el));
ThreadPanel .rotate(12);
chan. send(new I nteger(ei));
di spl ay. | eave(String. val ueO (ei));
el =(el +1) %d0; ThreadPanel . rot ate(348);

}
} catch (InterruptedException e){}

}

}

Java implementation - receiver

cl ass Recei ver inplenents Runnabl e {
private Channel chan;
private SlotCanvas displ ay;
Recei ver (Channel c¢, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { Integer v=null;
while(true) {
Thr eadPanel . rot at e(180) ;
I f (vl=null) display.|leave(v.toString());
v = (Integer)chan.receive();
di splay.enter(v.toString());
Thr eadPanel . rot at e(180) ;
}
} catch (InterruptedException e){}
}

}

model

range M= 0..9 // messages with values up to 9

SENDER = SENDER] 0] , // shared channel chan
SENDER] e: M = (chan. send[e] -> SENDER[(e+1) %40]).

RECEI VER = (chan. recei ve[v: M -> RECEI VER) .

I/ relabeling to model synchronization
| | SyncMsg = (SENDER || RECEI VER)

/ {chan/ chan. { send, recei ve}}. LTS?

IE————————

How can this be message operation FSP model
modelled directly
without the need
for relabeling? Vv = receive(chan) ?

send(e,chan) ?

Concurrency: message passing 8

©Magee/Kramer

selective recelve

Channels How
cl [0 should we deal
c2 U with multiple
Sender|n] Sno 00 A II?)
send(en,cn) channels”
select

when G, and v,=receive(chan,) => S;;

Select
statement. .. ol _
when G, and v,=receive(chan,) =>S,;
or
How would we :
o when G. and v_=receive(chan.) => S_;
model this in FSP? end n N () n

Concurrency: message passing 9

©Magee/Kramer

selective recelve

ARRIVALS CARPARK DEPARTURES
C > CONTROL O O

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[1:0..N] = (when(i>0) arrive->SPACES[i - 1]
| when(i <N) depart->SPACES] | +1]
).
ARRI VALS = (arrive->ARRI VALS). Implementation
DEPARTURES = (depart - >DEPARTURES) . using message

| | CARPARK = (ARRI VALS| | CARPARKCONTROL(4) passing?

| | DEPARTURES) . I

Concurrency: message passing 10

©Magee/Kramer

Java implementation - selective receive

cl ass MsgCar Park i npl enents Runnabl e {
private Channel arrive, depart;
private I nt spaces, N,
private StringCanvas di sp;

publ i c MsgCar Par k(Channel a, Channel |,
StringCanvas d,int capacity) {

depart=l; arrive=a; N=spaces=capacity; disp=d;
}
Implement
public void run() {.} CARPARKCONTROL as a
} thread MsgCar Par k

which receives signals
from channels arri ve
and depart .

Concurrency: message passing 11

©Magee/Kramer

Java implementation - selective receive

public void run() {
try {

Sel ect sel = new Select();

sel . add(depart);

sel .add(arrive);

whil e(true) {
ThreadPanel .rotate(12);
arrive. guard(spaces>0);
depart. guard(spaces<N);
swtch (sel.choose()) {
case 1l:depart.receive(); display(++spaces);

br eak;
case 2:arrive.receive(); display(--spaces);
br eak;
}
} See
} catch InterrruptedException{} Applet

]

10.2 Asynchronous Message Passing - port

Sender|[n] ”[ﬂ@
send(en,p)

¢ send(e,c) - send the
value of the expression e to
port p. The process calling
the send operation is not
blocked. The message Is
queued at the port if the
receiver Is not waiting.

Port p

Recelver

v=receive(p)

many-to-one

¢ V=receive(c) - receive
a value into local variable v
from port p. The process
calling the receive
operation is blocked if
there are no messages
queued to the port.

©Magee/Kramer

asynchronous message passing - applet

Two senders
communicate
with a receiver
via an
“unbounded”
port.

Each sender
sends a
sequence of

integer values Port port = new Port():

from O to 9 and tx1.start (new Asender (port, sendldi sp));
then l_‘estarts at Vi x2. start (new Asender (port, send2di sp));
O again. T x. start (new Arecei ver (port/récvdisp));

/|

Concurrency: message passing 14
©Magee/Kramer

Java implementation - port

cl ass Port extends Sel ectable {
Vect or queue = new Vector();

}

}

}

public synchroni zed void send(Object v){
gueue. addEl enent (v) ;
signal ();

public synchroni zed Object receive()
throws InterruptedException {
bl ock(); clearReady();
(bj ect tnp = queue. el enent At (0);
gueue. renoveEl enent At (0) ;
return(tnp),;

|
The
Implementation
of Port is a
monitor that has
synchronized
access methods
for send and
receive.

Concurrency: message passing

15

©Magee/Kramer

port model

range M= 0..9 // messages with values up to 9

set S={[M,[M[M} Il queue of up to three messages

PORT /lempty state, only send permitted
= (send[x: M - >PCRT[x]),

PORT[h: M //one message queued to port

= (send[x: M - >PORT[x] [h]
| recei ve[h] - >PORT
)
PORT[t:S][h: M //two or more messages queued to port
= (send[x: M ->PORT[x] [t][h]
| recei ve[h] - >PORT[t]

) LTS?
/l minimise to see result of abstracting from data values
| | APORT = PORT/{send/send[M, receivel/receive[M}.

Concurrency: message passing 16

©Magee/Kramer

model of applet

S[1..2]:)
ort:PORT
ASENDER p X | ARECEIVER
port.receive

ASENDER = ASENDER] 0] ,
ASENDER[e: M = (port.send[e]->ASENDER] (e+1) %0]).

ARECEI VER = (port.receive[v: M ->ARECEIl VER) .

| | AsyncMsg = (s[1..2]: ASENDER || ARECEIl VER| | port : PORT)
[{s[1l..2].port.send/ port.send}.

Safety?

Concurrency: message passing 17
©Magee/Kramer

10.3 Rendezvous - entry

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service,

but only one is serviced at a time.

Client

res=call(entry,req)
|

suspended!

!
! Reply

message

r message

Server
|

|
reqi:accept(entry)

perform service

replyi(entry,res)
|

Concurrency: message passing

18
©Magee/Kramer

Rendezvous

¢ res=call(e,req) - send the ¢ reg=accept(e) - receive

value req as a request I the value of the request
message which Is queued to message from the entry €
the entry €. Into local variable req. The

calling process is blocked if
there are no messages
queued to the entry.

¢ The calling process is ¢ reply(e,res) - send the
blocked until a reply message | _1,e res as a reply

IS received into the local <+
. message to entry €.
variable req.

Concurrency: message passing 19
©Magee/Kramer

asynchronous message passing - applet

Two clients call a
server which services a
request at a time.

Entry entry = new Entry();
cl A start(new Cient(entry,clientAdisp,"A"));
clBYstart(new dient(entry,clientBdisp,XB"));
ew Server(entry, serverdi sp))

Instances of Thr eadPanel
Concurrency: message passing Instances Of Sl ot Canvas 20

©Magee/Kramer

Java implementation - entry

Entries are implemented as
extensions of ports,
thereby supporting queuing
and selective receipt.

The call method creates a
channel object on which to
receive the reply message.
It constructs and sends to
the entry a message
consisting of a reference
to this channel and a
reference to the req
object. It then awaits the

reply on the channel.
Concurrency: message passing

list

Select — P Selectable
add()

guard()
choose() A
Channel Port
send() < send()
receive() receive()
Entry

clientChan caII()

accept()
reply()

The accept method keeps a copy of
the channel reference; the reply
method sends the reply message to

this channel.
21
©Magee/Kramer

Java implementation - entry

public class Entry extends Port {
private Call Msg cm

public Cbhject call (Object req) throws InterruptedException {
Channel clientChan = new Channel ();
send(new Cal | Msg(req,clientChan));
return clientChan.receive();

}

public Cbject accept()throws InterruptedException {
cm= (Call Msg) receive();
return cmrequest;

}

public void reply(Object res) throws InterruptedException {
cm repl ychan. send(res);

}

private class Call Msg {
(bj ect request; Channel replychan;

Cal | Msg(Obj ect m Channel c) Do cal | , accept and
{request=m replychan=c;} ’

) reply need to be

} synchronized methods?
'—

model of entry and applet

We reuse the models for ports and channels ...

() entry:ENTRY SERVER
CLIENT() A A A N
. entry.accept

set M= {repl yA repl yB} Il reply channels
| | ENTRY = PORT/{call/send, accept/receive}.
CLIENT(CH="reply) = (entry.call[CH ->[CH] - >CLI ENT).
SERVER = (entry.accept[ch: M ->[ch]->SERVER).
|| EntryDemo = (CLIENT(' repl yA) || CLI ENT(' repl yB) Ysedin

Action labels

expressions or
as parameter
values must be
prefixed with
a single quote.

|| entry: ENTRY || SERVER).

Concurrency: message passing

rendezvous Vs monitor method invocation

What iIs the difference?
.. from the point of view of the client?
.. from the point of view of the server?

.. mutual exclusion?

Which implementation is more efficient?
. In a local context (client and server in same computer)?

. In a distributed context (in different computers)?

Concurrency: message passing 24
©Magee/Kramer

Summary

@ Concepts
® synchronous message passing - channel
® asynchronous message passing - port
- send and receive / selective receive

® rendezvous bidirectional comms - entry
- call and accept ... reply

€ Models
® channel . relabelling, choice & guards
® port . message queue, choice & guards
® entry . port & channel

@ Practice

® distributed computing (disjoint memory)

® threads and monitors (shared memory)
Concurrency: message passing

25
©Magee/Kramer

Course QOutline

K Processes and Threads \

Concurrent Execution

Shared Objects & Interference Concepts

¢
¢
¢+ Monitors & Condition Synchronization >~ Models
¢
¢

el e Practice
Safety and Liveness Properties

KModel—based Design J

¢ ¢

¢ Message Passing ¢

Concurrency: message passing 26
©Magee/Kramer

