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Abstract

Mobile computers and communication devices are establishing themselves as ubiqui-

tous features of daily life. This development is linked to tremendous growth in the

number and sophistication of mobile and mobile-aware software applications. Increas-

ingly, such applications need access to information about their own and other objects'

physical locations, a requirement known as location-awareness.

Existing location-aware applications and systems are typically tailored to a particular

type of positioning technology. This is unsatisfactory considering that no technology

provides ubiquitous coverage. Equally, there are few accepted models and abstractions for

building location-aware applications, making their design and implementation costly and

error-prone.

Location-awareness raises legitimate concerns about personal and organisational

privacy. These vary widely across administrative and application domains. Hence, there

is a need to �nd a model allowing a balance between protection and functionality as

appropriate for a particular target environment.

The functionality and structure of a location-aware system fundamentally depends on

the location model employed. In this thesis, we argue that a formally speci�ed location

model facilitates design and implementation of such systems. Also, location-awareness

generally cannot be achieved autonomously but requires support by a location service,

tracking physical location of objects, and optionally providing location prediction, access

control and other functions. Inevitably, location service and location model are closely

intertwined.

This work presents a model of location information, the components of a location

service to support it, and an architecture-independent protection model. Our approach is

characterised by the following orthogonal principles:

� A global, general location service provides a ubiquitous infra-structure for location-

aware applications,

� A hierarchical, semi-symbolic location model forms the basis of the service's function-

ality and structure,

� Location privacy is protected by policy-based access control.

The applicability of the model is supported by an implementation of a general location

service prototype.
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Chapter 1

Introduction

1.1 Motivation

Recent technological advances have made it feasible to measure and track the location of

people, computers, and practically any other object we care about. Today, there exist a

number of deployed large-scale positioning systems, for example the Global Positioning

System (GPS). Positioning and tracking systems are likely to become even more ubiquitous

in the future. Equally, the increased mobility of people and computers has created a

growing demand for location information. Location-awareness is becoming an essential

feature of software applications, especially for those applications targeted at mobile end-

users. Moreover, location-awareness enables new kinds of services and applications.

While demand and supply are in place, what is lacking is some kind of platform

or infrastructure to build location-aware systems. Currently, such systems are mostly

focussed either on a particular application or on a speci�c sensor technology: there is no

consensus on common abstractions for designing those kinds of systems. As a consequence,

there is no general service infrastructure on which to build location-aware software. Hence,

it is extremely di�cult to develop a location-aware application without making assump-

tions about the underlying sensor technology.

In this thesis, we propose a conceptual framework for dealing with location information.

In particular, we propose data models and processing abstractions to be used by location-

aware systems. On the basis of these abstractions, we propose a security-enabled service

infrastructure as a platform for building location-aware solutions.

To prepare the reader for the coming chapters, we outline below some of the starting

points of our reasoning: location-awareness, privacy, and open distributed processing.

1.1.1 Location-awareness

Interaction within a spatially distributed system is, typically, subject to distance

constraints. Therefore, a mobile object's physical location fundamentally a�ects its ability

to interact with other system components. For example, a mobile telephone works only

if a base station is within range. Although a mobile object's ability to interact can be

directly observed in some cases, location cannot generally be ignored in the presence of

mobility. In other words, mobility naturally leads to the need for location-awareness.
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Location-awareness is often directed inwards: a mobile user wants to know where

he or she is. Equally, it may be directed outwards: parents would like to know where

their children are, secretaries may be required to keep track of their bosses. In other

applications, it may not be obvious to the users that a program is location-aware. They

may simply realise that they do not have to recon�gure their environment when they have

moved to a new location. Indeed, location-awareness appears to be a key to providing

location transparency.

Generally, location-awareness facilitates an application's awareness of its environment

or context. However, location-awareness does not necessarily imply context-awareness,

and context-awareness may be achieved without location-awareness.

Location-awareness carries its cost. Outward location-awareness normally requires

mobile communications at least on a local scale. Inward location awareness may be

achieved through an attached location sensor. Further, there is additional design and

implementation complexity, which is not yet addressed by reusable abstractions and

services.

1.1.2 Privacy

A person's activities are typically correlated with the locations where those activities are

performed: in the kitchen, people prepare meals, in the gymnasium, people work out, etc.

In e�ect, knowledge of a person's location drastically reduces the uncertainty about what

they are doing. This uncertainty decreases further if it is also known who a person is with.

For example, somebody seeing a lawyer in his o�ce is likely to discuss some legal matter.

Location tracking can provide a (literally) far-reaching and detailed picture of a person's

activities.

Hence, it is only natural for people to demand privacy, that is, control over the access

to information regarding their own location. Equally, certain locations may require special

privacy guarantees. For example, a company might decide that nobody should be able to

see who is in the boardroom.

Current security models for location information are mostly tailored to the needs of a

speci�c system. This often implies a limited 
exibility and functionality of the security

model. Also, an ad-hoc system easily introduces dependencies that limit re-use.

1.1.3 Open Distributed Systems

The de�ning characteristics of an open distributed system are distribution and openness.

Distribution entails that the system's components reside at di�erent physical locations.

Openness means that components may enter or leave the system. Typically, openness is

achieved by components having well-de�ned and published interfaces that support interac-

tion through well-de�ned and published protocols.

A common architectural pattern of open distributed systems is the client-server

paradigm. At the centre of this pattern is the concept of a service | a resource or

function that is provided, not to a particular consumer, but to anybody who �ts into the

consumer role. A system component providing services is called a server component.
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At the moment, there is no universally agreed set of services and server components

to support location-aware applications and services.

1.2 Requirements

Support for location-awareness in an open distributed system must meet the requirements

from the following classes:

Location model The location model should provide an expressive, 
exible, and e�cient

representation for the locations of mobile objects. Only essential knowledge of spatial

properties of locations should be represented. Further, the model must be indepen-

dent of application domain and location sensor technology. Also, the model must be

suitable for graphical representation.

Architecture A support platform for location-awareness must be open to heterogeneous

sensor systems and to heterogeneous applications. Also, it must scale in terms of

the number of applications, the geographical scope, and in the number of mobile

objects. It is also desirable to compose the architecture from a number of indepen-

dent building blocks that can be re-arranged to meet di�erent sets of target require-

ments.

Security Location secrecy and location-awareness are con
icting requirements. The

acceptable tradeo�s depend on external constraints. Hence, the platform must

allow �ne-grained control of this balance in order to ensure privacy of individuals

and organisations. The security model must not make assumptions about sensor-

technologies or the deployment environment that would limit its generality.

1.3 Contribution

The claim to novelty and utility of the work described in this thesis is based on the

following considerations.

1.3.1 The location model

A location-aware system must be based on a well-de�ned location model. The major

source of originality in this thesis is our semi-symbolic hierarchical location model. The

model is predominantly symbolic, because location-awareness is most intuitive when using

named locations. The model is hierarchic, because multi-resolution processing is the key

to reducing complexity and ensuring scalability. This simple yet powerful model, which

is free of immediate dependencies on sensor technologies or application domains, provides

the key to solving issues of security, scalability, and manageability. This is the core theme

of our thesis.

A second original solution is our approach to security for location information. The

approach is based on a novel generalised access control matrix in the form of multi-target

access control policies. Our model allows the selective restriction of the level of location
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detail revealed to location-aware applications. This allows �ne-grained control over the

balance between privacy and location-awareness. Similarly, we can selectively protect

people's identities by only revealing some of their roles. Our model uses the hierarchical

location model and is thus free of architectural or scope dependencies.

1.3.2 The utility of the model

A model is useful if it reduces the complexity of the problem domain without omitting

the information necessary to understand problems and to generate solutions. By imposing

a canonical structure on the location space, we achieve such a reduction of complexity.

We demonstrate that the resulting model is powerful enough to serve as the data model

for location tracking and access control. For example, the model provides an elegant

way of identifying and resolving con
icts between location sightings, leading to a novel

algorithm for fusing location data from multiple heterogeneous sensors. The reduction

of complexity achieved by the model is 
exible. This allows multi-resolution processing

which facilitates scalable algorithms and architectures. Finally, the utility of the location

model is supported by a location service implementation.

Our location security model, in itself demonstration of the versatility of the location

model, has formed the basis for a multi-level access control scheme for a location service.

Because this scheme is consistently exploiting both the location model and the security

model, it is highly con�gurable to allow for di�erent security requirements. Its feasibility

has been shown by an implementation of an access control mechanism for a location

service.

1.3.3 Prototyping the model

A model cannot be trusted unless its validity and utility have been established by experi-

ment. For this purpose we rely on two prototype implementations covering di�erent

aspects of this work:

� For more than two years we have been operating an \Active O�ce" location service

for our research group. It acquires data from multiple heterogeneous sensors, and

provides it to clients in a distributed environment. During design and construction

of this system we have prototyped our data acquisition framework, as well as the

concepts of our architectural approach. Further, the prototype has been instru-

mented in order to supply sample data for prediction metrics and heuristics.

� A database-centric location service provided a platform to implement and validate

the semi-symbolic hierarchic location model and the protection model that are

central to this thesis. This prototype supports our argument that a well-speci�ed

location model is essential for the design of a general location service.

Thus, the key concepts that are described in this thesis are supported by prototype

implementations.
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1.4 Structure

The next chapter is dedicated to the review of related work. We elaborate further the

requirements faced by a support platform for location awareness. We explore how other

approaches and systems meet those requirements, and where they fall short of them. It

is of particular interest how design choices determine whether a given requirement can be

met.

Chapter 3 describes the core theme of the work underlying this thesis: the design and

use of a hierarchical location model. After an analysis of existing models, we propose and

formally specify our own hierarchic location model. We support our model with a naming

scheme for symbolic locations and with location-dependent predicates.

Chapter 4 examines the considerations that determine the architecture of a location

service. We examine in detail the functionality that is required, and propose an architec-

ture for a global and general support platform for location awareness.

Chapters 5 and 6 are concerned with the actual processing of location information.

While this employs our location model, it is necessary to introduce the additional model

of a movement plane to capture the characteristics of an object moving in location space.

We also introduce a novel algorithm to integrate location sightings from multiple sensors.

Chapter 7 presents our approach to the security of location information. We examine

traditional approaches to security and their shortcomings when applied to location

information. We extend the traditional access matrix model and use this as a basis to

propose a protection model for location information.

In conclusion, chapter 8, summarises this thesis and re
ects how the original require-

ments where met. We suggest some avenues for further research in this area.
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Chapter 2

Related Work

The high-level goals identi�ed in the previous chapter are too abstract to form a sound

basis for design decisions even on the architectural level. Hence, we need to identify a list

of requirements, which can subsequently be re�ned. When judging existing approaches

against those requirements, it is important to consider which constraints were imposed in

order to meet particular requirements. This balance between constraints and requirements

is the key to understanding the strengths and weaknesses of existing systems.

The objective of this chapter is �rstly to de�ne the requirements that should be

addressed by a general location service. Secondly, we consider related work in order

to identify the impact of particular design decisions on those requirements. Having done

this, we rede�ne the objectives of this thesis.

2.1 Identi�cation of requirements

A general support platform for location awareness, that is, a location service, needs to

address end-to-end requirements from the following classes:

� De�ning requirements have to be satis�ed for the \black box" to qualify as a location

service.

� Scope requirements have to be met if the location service is to be used as part of an

open, global mobility support platform.

� Operational requirements are related to the quality of service provided to clients.

� Business requirements provide the foundations of the business model for the

provision of a location service.

In the paragraphs below, we enumerate the major requirements for each category in order

to create a \requirement space". Having done this, it is then possible to map the require-

ment space into the design space.

2.1.1 De�ning requirements

� Location information about real objects. A location service must provide information

about the physical locations of real-world objects.

21
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� Logical centralisation. Location-aware applications require a single point of access

to use all the functionality of the location service.

� Near real-time information. Location-aware applications mostly require knowledge

of present locations, so timely information delivery is important.

These requirements basically de�ne what we mean by a location service: a logically

centralised entity that keeps track of the physical location of real things.

2.1.2 Scope requirements

� Generality. The service accommodates diverse types of location-aware applications

and location sensors.

� Openness. Independently constructed location-aware applications and location

sensors can use the service.

� Global coverage. Potentially, a location service could cover both all possible locations

(i.e. the world) and the objects in it.

The satisfaction of scope requirements distinguishes special-purpose location services from

a general and global location service. The intended scope of the location service has a

considerable impact on its design: the narrower the scope, the simpler the design. A wider

scope therefore requires the right abstractions to keep complexity in check. Our eventual

aim is to meet the scope requirements in order to design a general and global location

service.

2.1.3 Operational requirements

� Adequate Spatial and Temporal Resolution. Any location-aware application needs a

minimum spatial and temporal resolution of information, or location-awareness will

be severely limited.

� Availability . A location-aware application should always get the service it requires.

This includes accessibility of the service and availability of location information.

� Performance. Low latency and high throughput are desirable for any service. This

applies to both client-side and sensor-side interactions.

� Trustworthiness. The service should not deliver incorrect or incomplete information

unless this possibility is indicated to the client. Further, the service should keep the

secrets of its clients.

These requirements specify the quality of service experienced by clients. They are

inherently contradictory. For example, the temporal sampling resolution may be limited

by the maximum update throughput in a particular location service design. Hence, the

design of a location service needs to identify acceptable tradeo�s given a concrete set of

requirements and constraints.
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2.1.4 Business requirements

The high-level architecture of a global service and the underlying business model are

mutually dependent. Therefore some of the high-level architectural decisions require an

awareness of those issues.

� The architecture must support multiple location service providers with overlapping

coverage areas. Since a location service provider is unlikely to own its coverage

area, the location space becomes a shared resource. Therefore, it is unlikely that the

coverage areas of location service providers will be mutually exclusive.

� Users have to register with a location service provider in order to be tracked or to

receive location information. Registration is necessary in order to relate real-life

objects with data items in the location service. (This raises privacy issues that need

to be addressed.)

� Interfaces and protocols are published and standardised. This reduces the engineer-

ing complexity of communication among location-service providers and also between

location service providers and location-aware applications.

Ultimately, a location service is provided by one or more organisations, which need to

commit resources to set up and maintain the service. Hence, it is conceivable that users

would be charged in some way for using the service. While a comprehensive discussion of

these issues is outside the scope of this thesis, we believe that the above features support

the commercial viability of a location service provided by a community of cooperating yet

competing location service providers.

2.1.5 Summary

A location service must provide a minimum functionality of tracking the physical locations

of real objects in near real-time. Further, a general and global location service needs to

have a wide scope in terms of sensors, applications, and spatial coverage. As a platform

support service, a location service must also maintain a certain quality of service so

location-aware applications can depend on it. Finally, the architecture of a global location

service must facilitate service provision by a community of location service providers

2.2 Design consideration

From these end-user requirements, we infer the following design goals.

� Scalability . The need for a scalable design is derived from the global coverage require-

ment and the performance requirement.

� Manageability . Only a managed system can deliver long-term availability and

trustworthiness. Further, the business requirements entail a certain administrative

overhead (e.g. for the handling of subscription pro�les), i.e. management.
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� Abstraction. Openness and generality require a certain level of independence from

speci�c application domains, location tracking systems, and computing environ-

ments.

� Fault tolerance. Since faults will happen in any system, the design must facilitate

graceful degradation and recovery.

� Distribution. This consideration is primarily a consequence of the needs for global

coverage and performance. It is also implied by scalability and fault tolerance.

Also, the business requirement for multiple service providers indicates a need for a

distributed and decentralised design.

� Security . In an open system, measures are necessary to protect secrecy and integrity

of location data, as well as availability of the location service.

The design principles stated above must serve as a guide to arrive at solutions for

the end-to-end requirements. If one or more of the goals can not be adhered to, also the

end-to-end requirements need to be revised.

2.3 Related work overview

2.3.1 Systems containing similar functionality

Mobile communications networks have built-in special-purpose location tracking

systems in order to set up communication channels between mobile parties. Examples

are GSM [48] and Mobile IP [50]. These systems generally fall short of the requirements

of generality and openness. However, they typically expose the desirable properties of

scalability, fault-tolerance, and manageability.

Mobile tracking and positioning systems are special-purpose mobile networks that

are used solely to facilitate location tracking or navigation. Active Badges [75] and GPS

[78] fall into this category. Their prime de�ciency is that they are normally tied to a

narrow set of tracking technologies, thus making global coverage impossible. Further,

location models are typically derived from the sensor technology. Thus there is a lack of

abstraction.

Geographical Information Systems are database-centric systems that are used to

store, retrieve, and analyse spatially-referenced data [80]. This functionality can (in princi-

ple at least) be extended to track the location of mobile objects. However, the design of

GIS does not support real-time tracking of large numbers of mobile objects or real-time

delivery of that information.

Therefore, GIS systems appear to be unsuitable to serve directly as location tracking

systems. However, a location service may well have a GIS component to provide additional

information about locations. Further, some of the techniques for location modelling and

indexing developed for GIS are also applicable in the wider context of a general location

service.
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Distributed Directories Distributed naming and directory services, such as the

Internet domain service DNS [46, 47] or the X.500 directory service [8] o�er scalable

and fault-tolerant designs to provide a directory service to a very large number of clients.

Mapping names to addresses is not much di�erent from mapping names to locations.

However, directory services such as DNS do not cope very well with frequent updates.

Thus our requirement of real-time information delivery is not met by those designs.

On the other hand, service trading [6], a special kind of directory function, is required

to cope with frequently changing information. Scalability of traders is very much an area

of ongoing research. No large-scale systems have been deployed yet.

Systems Management Research in systems management has spawned the idea of

grouping managed objects into management domains in order to apply the same manage-

ment policies to all members of a given domain [72]. When grouping managed objects

into domains by location we can apply management policies to all objects at a particular

location. However, the grouping of objects into management domains tends to be static

and explicit, which is incompatible with the real-time information delivery requirement.

2.3.2 Related areas of computing science

Distributed Systems The location service is a distributed client-server system.

Further, the location service itself may actually be distributed across many servers in

order to satisfy the requirements of scalability and high availability.

Computer Networks The location service assumes that sources, servers, and clients

of the service are connected to a computer network. Di�erent parts of the systems require

di�erent protocols to operate e�ectively and e�ciently.

Mobile computing The location service has been made possible and necessary only

with the emergence of networked computing environments with a signi�cant number of

mobile computing devices. These mobile devices are important producers and consumers

of location information.

Therefore, the location service will have components that can run on mobile hosts

in order to gather location data. Also, clients of the location service can be mobile.

Further, the mobile host may emulate part of the location service locally in order to provide

gracefully-degraded functionality when disconnected from the communication network.

In the design of the mobile components and their communication protocols the resource

constraints faced by mobile computers need to be taken into account.

2.4 Location tracking and navigation

In this section we discuss the basic technologies which are currently used to locate mobile

objects, such as people and computers. We give an overview of the main technologies to

build absolute sensors, that is sensors that do not rely on knowledge of previous positions.
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Since integration and abstraction is our overall goal, we concentrate on technologies that

we believe will form the basis of location sensors in the near future.

2.4.1 Cellular infrared networks

The main incarnation of this location-tracking technology is the Active Badge system

(developed by Olivetti). An Active Badge location tracking system consists of a network

of �xed infrared transmitters/receivers (badge sensor), and a number of mobile infrared

transponding computers, or `badges' [20].

Badges can be worn by people or attached to equipment (such as computers). Each

badge periodically (typically every 10 seconds) emits a beacon carrying its own identity.

If a sensor picks up the beacon, the location of the badge is known. The system typically

allows for room-level resolution since infrared waves cannot pass through walls. When

combined with low-energy radio �elds the system can also provide more accurate measure-

ments.

Infrared networks have the great advantage of not requiring a part of the precious

radio spectrum. On the other hand, the short e�ective range of the transmitters makes

comprehensive deployment outdoors impractical.

2.4.2 Cellular radio networks

Cell-based radio networks include the categories of cellular telephone networks (such as

GSM [48]) and wireless local area networks (such as WaveLan [17], page 54).

In such systems, the cell base stations send out regular beacon signals. This enables the

mobile station to monitor the signal quality of available cells. Based on the measurement of

the strength of those beacon signals, the station decides when to switch to a new cell. The

switching process is called hand-o� or hand-over. During hand-o�, location information

on the �xed part of the network is updated if necessary.

The tracking mechanism employed by those systems is the converse of the strategy

employed by the Active Badges. There, the mobile unit sends out beacons, which are

picked up by the network. Here, the mobile unit listens for beacon signals and thus

knows where it is. A signi�cant distinction of the latter approach is that all the location

measurements are performed at the mobile end. However, this may con
ict with resource

limitations on the mobile unit.

Radio cells are typically larger than the infrared cells described above, facilitating

outdoor deployment, especially in rural areas with low subscriber density. However, this

also means that typical radio cells can be too big for e�ective positioning (depending on

the needs of location-aware applications).

2.4.3 Satellite-based radio navigation

Satellite navigation is used widely through the Global Positioning System (GPS [78]). GPS

is a world-wide, satellite based radio navigation system. It provides three-dimensional

position, velocity, and highly-accurate time information to users having GPS receivers

anywhere on or near the surface of the earth [17].
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GPS has been developed and is operated by the U.S. Department of Defence. It o�ers

two levels of service | a Standard Positioning Service (SPS) and a Precise Positioning

Service (PPS). SPS is available world-wide free of charge and provides the capability to

obtain a horizontal positioning accuracy of within 100 meters and a vertical positioning

accuracy within 140 meters. Most of this spread is due to noise (called Selective Availabil-

ity, SA) introduced by the operator in order to safeguard its national interest. The PPS

is a more accurate service but restricted to military use [17].

The GPS system consists of 24 satellites in six orbital planes with a 12-hour period.

They are positioned so that between �ve and eight of them are visible from any point of

the earth. Monitor Stations and Ground Antennae control them.

Principle of function Each of the satellites continually broadcasts time information

derived from their internal atomic clocks along with data of their present position. The

GPS receiver, which typically contains a multi-channel radio receiver, can measure the

time it takes for the signal to traverse the distance from the satellite to the receiver. This

method is known as time of arrival (TOA). If the distance to three satellites is known, it

is possible to calculate the three dimensions of the receiver's position. Hence, the signal

from a fourth satellite is needed to provide the exact time. If only a two-dimensional

position is required, signals from three satellites are su�cient.

Coverage and Accuracy In order to get any kind of position, at least three visible

satellites are required. While satellite radio signals are very resistant to interference,

they are re
ected from buildings and windows. Therefore, GPS cannot normally be used

indoors. Further, GPS sightings tend to be more inaccurate in built-up areas since re
ec-

tions may lengthen the path from satellite to receiver. In certain areas the amount of

visible sky may also be restricted, thus reducing the probability of �nding the required

number of satellites.

Accuracy enhancements If additional information about the movement of the receiver

is available (such as knowledge of the fact that the receiver is stationary), SPS sightings

can be made more accurate by statistically eliminating some of the error.

Radically improved accuracy can be obtained by employing Di�erential GPS (DGPS).

DGPS uses a �xed GPS receiver with known position. Therefore, the SPS noise can be

identi�ed. By broadcasting this knowledge other receivers can eliminate the SA noise from

their measurements and get improved sightings. DGPS is typically o�ered as a value-added

commercial service and employs radio broadcasts to transmit the DGPS information.

DGPS cannot remedy distortions due to signal re
ections or obstructed signal paths as

experienced in built-up areas.

2.4.4 Terrestrial radio navigation

The positioning principle used by GPS can also be used with a set of terrestrial rather

than satellite-based radio transmitters. The common techniques are time of arrival (TOA,

used by GPS), angle of arrival (AOA) and time di�erence of arrival (TDOA) (see [85] for
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a more detailed discussion). The necessary calculations can be performed either by the

mobile unit or by a server on the �xed network.

This technology has recently gained momentum with the requirement of the U.S.

government that mobile phones must provide a \push-button" emergency service with

caller location (wireless E911). The caller must be located within a radius of 125m in 67%

of all cases [85]. Since the radio cells of current mobile telephone systems are mostly bigger

(300m...35km), an additional location technology is required. GPS may not be suitable

since it does not work very well in built-up areas. On the other hand, the existing base

stations of mobile telephone networks can be used for terrestrial radio navigation.

In the wireless E911 application, the mobile terminal would try to measure its current

position with respect to three or more base stations when demanded. Then, the terminal

can send the mayday message along with its coordinates to a public-safety answering point.

As a result of this, mobile telephones may become aware of their own physical location,

thus enabling other location-aware applications and services.

2.4.5 Monitoring of �xed terminals

The technologies described above are overkill when it comes to locating people who spend

most of their time working on �xed networked computer terminals (or appliances contain-

ing computers, such as copy-machines). Some researchers predict an even greater computer

penetration of our everyday environment in the future [76]. By monitoring access to those

terminals, location data can be gathered cheaply, non-intrusively, and reliably. An example

is the ruser service o�ered by many Unix systems (e.g. SunOS [70]).

TheUnix operating system keeps track of logon and idle times for all terminal sessions.

This information is made available via the ruser service. It can be queried via remote

procedure calls (RPC) to provide a list of currently logged-in users along with their idle

time and the name of the terminal. Since most terminals have a �xed location, a network

of Unix workstation with enabled ruser service can be used to build an e�ective location

tracking system.

In order to track people's location with such a system, no additional hardware is

required. This approach also o�ers authenticated data since the user's login session

must normally be authenticated with user-name and password. On the other hand, this

approach is only suitable for environments where a signi�cant part of the population

regularly accesses �xed and networked computers.

The same approach could be used to piggy-back location tracking onto other networked

infrastructure with elements of authentication, such as telephone handsets or automatic

teller machines. In many of these cases, concern for privacy outweighs the potential

bene�ts.

2.4.6 Relative sensing technologies

The above technologies are sometimes referred to as absolute sensors since location

measurements do not require knowledge of previous positions (although they may be

facilitated by such information). Relative sensors measure properties of a located-object's
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movements, such as speed, direction, or distance travelled. The respective devices are

tachograph, gyroscope, and odometer.

The typical use of those devices is to compensate for transient unavailability of

direct position measurements from absolute sensors (e.g. dead-reckoning [85], page 45).

Typically, such methods have cumulative errors, that is, with time the position measure-

ments become increasingly inaccurate. Therefore, relative sensors can only be used for

positioning in permanent combination with an absolute sensor (as opposed to a one-o�

calibration). The resulting two-sensor systems appear like improved absolute sensors. For

this reason, we largely ignore relative sensors on the higher levels of the location service

while acknowledging their importance for constructing integrated multi-sensor systems.

Location prediction (see chapter 6) is perhaps the main application of relative location

measurements in a location service.

2.5 General location services

In this section, we describe general location services that have been built on top of some

of the basic technologies described above.

2.5.1 Active Badge System (Olivetti)

Building on the Active Badge technology, researchers at Olivetti have proposed and

implemented an architecture for a distributed location service [20]. Their design follows

a client-server approach. The functionality is partitioned into services provided by the

following servers:

� The Location server collects the badge sightings from the various sensor network

controllers. It maintains a cache of the last sightings. A sighting consists of the

badge address, the sensor address, and a time-stamp.

� The Name server o�ers a White Pages directory service that maps badge addresses

and location addresses into more detailed information, such as the name of the

bearer.

� The Message server co-ordinates message delivery to the Badges.

� The Exchange server controls the federation of location service between organisa-

tions. It encapsulates the issues of security, access control, and information exchange

between administrative domains.

As far as the data model is concerned, the unit of location is a tuple consisting of

badge address, location address, and timestamp. The location of an object is modelled as

a dynamic attribute of the object, which is implemented by a pointer to a service interface

for that object.

Location-aware applications built for this system include GUI teleporting [54, 79],

location-sensitive communications, and location-oriented paging.
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Discussion As far as our requirements are concerned, the Olivetti system is tied to

the Active Badge location system. Thus, abstraction is lacking. Further, the system is

targeted towards a federation of small-to-medium sized organisations. Hence, the issue of

scalability has not been addressed su�ciently.

2.5.2 Ubiquitous Computing (Xerox)

Researchers at the Xerox Paolo Alto Research Center (PARC) have explored the vision of

ubiquitous computing, constructing environments with ubiquitous networked computing

devices [76]. Both mobile and �xed devices have been used, including Active Badges,

Tabs, Pads, and Whiteboards [77]. Context-awareness supported by a location service is

a central theme of this research.

The location service employs a number of tracking subsystems, including an Active

Badge server and a Unix location server [66]. User agents gather the information provided

by those subsystems to allow for user-centric operations. They support the more abstract

location services that have been constructed: Location Query Service (LQS) and Active

Map Service (AMS, [59]). The location services support the new category of context-aware

applications [58].

User Agents To allow for user control over location information, the location service is

built upon a decentralised community of agents [66]. All location information concerning

a particular user is gathered and stored by an agent, responsible for integrating and fusing

location data. It is also responsible for registering with the appropriate regional Location

Broker. Further, the user agent maintains access control over location information and

can thus protect the user's privacy. The user is allowed to specify access control policies

to specify the amount of trust the user agent places in centralised servers. The user agent

provides two services: location of the user and ubiquitous message delivery to the user.

Location Query Service While the community of user agents is responsible for user-

centric operations, the Location Query Service (LQS) provides location-centric services.

The LQS is organised by region, with a Location Broker assigned to each region. The

Location Broker maintains a set of references to the located-objects in its area. These

references can be anonymous if the user-agent wishes to retain access control. Agents can

also choose to delegate their access control to the LQS to improve e�ciency.

Active Map Service The Active Map Service (AMS) provides location information

in an abstract hierarchical location model. The service relies on user agents and LQS as

described above.

Each server contains an active map consisting of a hierarchy of locations with a contain-

ment relation (e.g. Room-Floor-Building-Region). The area covered by a single server is

a region. There is no location service covering more than a region, that is, clients must

directly access all regions they are interested in [59].

Each server maintains a set P of publications (i.e., located-objects, their locations, and

further useful information), and a set S of bandwidth-limited subscriptions. Both user-
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centric queries and location-centric queries are supported. The dissemination of subscrip-

tion updates to multiple clients is performed e�ciently using multicast channels.

Context-aware applications Context-awareness enables an application to adapt to

changes in its environment and location. Thus, context-awareness supports personal

mobility, application mobility, and host mobility.

Important aspects of an application's context include location, nearby users, nearby

resources (such as terminals, the co�ee trolley, etc.), and characteristics of environment

variables (light, noise, bandwidth of network connection) [58]. Context-aware applications

can exploit this information in a number of ways:

� Proximate Selection is a user interface technique to support the choice of easily

accessible objects by the user. Possibilities include annotated menus such that the

user can make an informed choice, and virtual objects that are mapped automatically

depending on the user's location.

� Automatic Recon�guration of the application is caused by changes in the context

of use. When applied too frequently, this may lead to performance problems and

confusion of the user.

� Contextual Queries and Commands have a location-dependent semantic (e.g. print

on the nearest printer, list all the people in this room).

� Context-triggered Actions are policies that declare what should happen upon a

change in the context of use. They are adaptable to the requirements of individual

users.

Context-dependent information is provided by regional environment servers. User-

dependent information (including the location) is queried from the user agent. The applica-

tion is responsible for subscribing to the appropriate environment servers. Typically, it

will always subscribe to the user agent and then select the environment server according

to the user's location. The abstraction of environment variables is used to provide applica-

tion access to contextual information, along with a call-back facility. The asynchronous

noti�cations implemented by those call-backs e�ciently support the applications' ability

to react quickly to changes in their environment [60].

Discussion This system meets our requirements for generality, openness, and real-time

information. The issues of performance and trustworthiness have been addressed. Users

may trade privacy for functionality and e�ciency. Further, the decentralised approach

o�ers a reasonable basis to meet our business requirements. An important feature is that

location information is treated as fundamentally uncertain (with important implications

for location-aware applications).

However, the system has been aimed at a campus-type environment with ubiquitous

personal computing resources. Thus, the design needs further work to be suitable for

global coverage of users and locations. We believe, that optional pooling of user agents

into servers may be necessary to achieve this (a view supported by [29], page 4). Further,
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logical centralisation currently stops at the regional level. The location model does not

allow for overlapping locations, which is convenient for the service but may not be 
exible

enough for applications.

The proposed class of context-aware applications shows that location-awareness is an

essential pre-requisite for context-awareness. The actual location-awareness may be hidden

from the context-aware application if a location-aware service (such as the environment

service) is used.

2.5.3 Active O�ce Project (Canterbury)

Researchers at the University of Kent in Canterbury have proposed the use of a master

location system to integrate several types of local location information sources behind a

uniform interface [55].

For our discussion, the following aspects are important:

� Location representation. A location is a list of attributes, where each attribute

consists of a key (i.e. name) and a set of values. Two locations are taken to be equal

if they have at least one key in common and the intersection of both value sets for

each common key is non-empty ([55], page 5). Hence, we are faced with a 
at (i.e.

non-hierarchic) location model, although the basic representation would support an

inclusion ordering.

� Architecture. The system architecture is recursive, i.e. a Master Locator can serve

as a Slave Locator to another Master Locator. Thus the system can be scaled to a

larger coverage area and user population. There is a location directory that stores a

complete description for all locations in the system. This directory is used to expand

those sightings which do not have all the attributes that belong to the corresponding

location.

� Uncertainty. Location information is given with a con�dence level (0..100). Locators

can return multiple locations for the same objects, typically with decreasing

con�dence.

� Location algorithm. The location algorithm is executed by all Master Locators to

retrieve and unify location information from the Slave Locators. The algorithm uses

a con�dence-ordered priority queue of locations. Di�erent sightings reporting the

same location are corroborated into a single queue entry. The elements of the queue

are made available to the client starting at the entry with the highest con�dence

value.

� Access control. Access control is implemented using capabilities that allow access to

certain Locators (e.g. Active Badges, Diary) for certain individuals. In principle,

those capabilities are 
exible and powerful enough to support higher-level access

control mechanisms, such as policy-based access control.
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� Location strategies. User-speci�c location strategies can be de�ned that determine

which Slave locators should be queried �rst and what level of con�dence is su�cient

to report a location.

Discussion The architecture of the Canterbury location service meets our requirements

for openness, abstraction, logical centralisation, and potential global coverage. Real-time

information delivery is compromised by the lack of asynchronous information delivery. The

system addresses trustworthiness by using access control and con�dence values. Perfor-

mance and availability have not been discussed explicitly. From a business perspective,

the design is perhaps too centralised to permit the federated business structure we have

in mind. The location model is not hierarchical and thus lacks true scalability. This is a

fundamental weakness of the system.

2.5.4 The Walkstation II project (KTH Stockholm)

The Walkstation II research project [43] addresses various issues of VLSI-design, radio

communication, network protocols and mobile application services. Here, we shall focus

on the latter.

In contrast to the ubiquitous computing approach, the Walkstation project focuses (as

the name suggests) on host mobility [42], which is supported by 
oating agents on the

backbone network. Those agents try to minimise the performance impact of migration

by pre-allocation of resources and pre-fetching of cache contents. This approach relies on

accurate mobility models to predict future location of located-objects with a high degree

of con�dence.

Liu [37] proposes two kinds of mobility model: deterministic state machines (sequences

and loops) to predict regular movement, and Markov chains to model constitutional

constraints (highways, bridges, etc.) Both employ state machines to model movements

of the mobile.

The mobility prediction algorithm uses a dynamic movement-pattern database which

is matched against the sequence of N states in a state queue. The algorithm consists of

two parts:

1. Updating the pattern database by either replacing the least recently used pattern or

by increasing the weighting of an existing pattern.

2. Matching the pattern database and the Markov Model with the state queue. State

sequence matching, time matching, and frequency matching are employed to select

a best-match continuation trace. The continuation trace is used to predict the next

state.

Simulation results show a correlation of 95% between prediction ratio and movement

regularity [39].

Discussion While the Location-Sensitive Information Management component of the

framework ([37], page 61) has not been elaborated su�ciently to be considered as a location
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service in its own right, the proposed mobility prediction function o�ers a set of useful tools

to improve the availability of location information. However, the solution described by

Liu is only viable with near-perfect historical location data. Further, e�ective predictions

can only be made for the immediate future.

2.6 Special-purpose location services

Today, there are already a number of location-aware systems in operation. Some of them

cover large areas and large numbers of located-objects. Those systems typically contain

logical or physical modules that can be classi�ed as a special-purpose location service. In

this section, we examine the salient features of those location service modules.

2.6.1 GSM

The GSM mobile telephone system contains a location management component that keeps

track of subscribers' locations. The primary purpose of the location management function

is to help with the setup of mobile-terminating calls ([48], page 44). The wider category

of mobility management also includes authentication and security functions [30].

The cellular network is subdivided into location areas consisting of several cells each.

Each cell can have a radius between 300 meters and 35 kilometres. On the network level,

location information is the address of a particular location area.1 To �nd out the exact

location of a mobile unit the entire location area must be paged.

Each location area has a Visitor Location Register (VLR) that contains copies of

the pro�les of all mobile subscribers currently registered in the location area. Typically,

the VLR is co-located with a Mobile services Switching Center (MSC), and both MSC

and VLR cover the same location area. Additionally, each GSM network has a logically

centralised subscription database, the Home Location Register (HLR). The HLR stores

the network address of the most recently used VLR for each subscriber.

Location updates are necessary whenever the mobile unit enters a new location area

(e.g. moves between location areas or powers up). The mobile unit listens for beacon

signals of nearby cells. The best cell is chosen according to a well-de�ned metric (see [48],

page 453). The mobile then tries to send an update message to indicate its new location.

This update message is sent from the mobile unit to the MSC, which updates the VLR and

HLR. The HLR subsequently informs the previous VLR to cancel the registration there.

For reliability reasons, there is also a periodic update procedure, which is controlled by

the operator. The location update procedure also includes authentication of the mobile

unit and transfer of subscription data from the HLR to the new VLR.

Location information is only accessible to the network operator via the signalling

network (typically Signalling System No. 7). Subscribers must trust the operator to

guard their personal data.

1The VLR may have additional location information.
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Discussion Evidently, GSM is a viable system for mobile telecommunications. However,

the immediate applicability for a more general location service is limited by a number of

factors:

� GSM o�ers an architecture built on very narrow assumptions about required

functionality (�nd a subscriber).

� Scalability is limited because the location server hierarchy has only two layers.

� The location information is too coarse-grained for many location-aware applications.

� The network operator may not allow access to internal location data.

2.6.2 PCS location directories

It is anticipated that future personal communication services (PCS) will have much smaller

cell sizes and much increased number of customers than the current GSM implementations.

It is argued that this will lead to query and update volumes several magnitudes higher

than in GSM systems [73]. Hence, there has been a lot of research into the e�cient and

scalable tracking of mobile users in future PCS networks.

As described in [3], such systems contain two basic operations: \move" (location

update), and \�nd" (location query). Typically, proposed solutions use a multi-level

hierarchy of location servers, e.g. [3, 29, 4, 26, 73]. Each location server node has a

well-de�ned network coverage area. Location updates are triggered by the leaf nodes,

and are propagated through the directory following a well-de�ned algorithm. In contrast,

queries can generally be directed to nodes at any level in the hierarchy. This often leads

to recursive query patterns.

The basic mechanisms employed to improve response time and reduce network tra�c

are data replication and forwarding pointers. Data replication reduces query latency and

query tra�c but increases update tra�c. Further, the consistency of the replicas needs

to be controlled. Forwarding pointers are hints about a likely location of the mobile

unit. They can be traversed if the desired information cannot be found locally. Typically,

forwarding pointer are left behind at a mobile user's old location if the new location is

known. Consistency control is normally achieved by simple timeouts. Since forwarding

pointers o�ers fewer guarantees than replicas, they are also more light-weight in their

implementation. However, forwarding pointers do add an additional layer of complexity.

Problems include pointer loops and in�nite pointer chases (if the mobile user moves too

quickly). Also, long pointer chains are susceptible to failures.

Since e�cient queries and updates need to make assumptions about parameters of user

mobility (such as the call-to-mobility ratio [4]), sometimes systems can adapt dynami-

cally to changing user characteristics. The subscriber pro�le would be used to store such

mobility parameters.

Unlike GSM, many approaches do not rely on an HLR for location queries. The

location server hierarchy subsumes the HLR's location management function.
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Discussion The research on future PCS systems focuses on higher scalability and better

e�ciency than the GSM. As a side e�ect, PCS locations will be smaller and thus more

useful for location-aware applications. On the other hand, PCS will still be a special-

purpose, closed system.

2.6.3 Vehicle-tracking systems

Many companies are faced with the task of tracking the movements of their own vehicle


eet (e.g. truck operators), or the movements of a set of other vehicles (roadside assistance

services).

Vehicle-tracking systems are often employed in computer aided dispatch scenarios.

These are normally found in organisations with a large number of vehicles (trucking

companies, emergency and taxi services, the military) which follow non-regular routes.

Real-time vehicle-tracking enables these organisations to re-route their vehicles e�ciently

when faced with new or changing tasks. Since this leads to substantial productivity

gains and reduces response times, vehicle-tracking is already widely used. For example, a

general commercial 
eet tracking system based on GPS and GSM that is currently in use

in Germany and South Africa is described in [69]. Rockwell's Fleetmaster system o�ers

similar functionality with a combination of GPS and cellular digital packet data (CDPD)

[17].

Vehicle-tracking systems typically have a star-shaped architecture with a dispatch

centre in the middle. The vertices are the autonomous on-board positioning systems of

the vehicles. Communication between the centre and the vertices is performed using a

wireless wide-area network (e.g. GSM or CDPD).

For the on-board positioning system, GPS normally is common because it is cheap

and available in virtually all outdoor locations, often combined with relative sensors (e.g.

gyroscope, odometer) to achieve continuous measurements [85].

On the application side, vehicle-tracking systems employ few purpose-built applications

on top of the location tracking service. Often this includes a map display, and a computer-

aided dispatch system.

Discussion Vehicle-tracking is of interest because it shows that autonomous positioning

systems can be networked to provide a location service. However, being a niche application,

vehicle-tracking falls short of our requirements of generality and openness. On the other

hand, global coverage (in terms of coverage area), logical centralisation and real-time

information have been addressed.

2.7 Related concepts and standards

In this section, we devote some attention to existing classes of software systems that

have functional or architectural aspects in common with a distributed location service.

They include distributed directories, geographical information systems, and domain-based

management systems.
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2.7.1 Distributed directory services

A directory maps a name into a set of attributes (or properties) [84]. In a distributed

directory the data repository is partitioned and held by multiple servers. Hence, navigation

among these servers is also necessary.

Directory services include name-based lookup (white pages service), and property-

based lookup (yellow pages service) [81].

The main issues in constructing a directory service are the potential size of the

directory, the frequency and nature of client requests, and dependability. Typically,

a scalable and fault-tolerant directory service is achieved by employing the following

techniques [63]:

� Partition the service over multiple directory servers.

� Replicate directory servers for improved availability and performance.

� Cache results of queries to improve performance and reduce server load.

Also, a directory service often needs to span multiple administrative domains. This is

facilitated by partitioning the service along the lines of those domains.

The spectrum of directory designs is fairly large. Today, the Internet Domain Name

System (DNS) is the most widely used distributed directory service. It is discussed in more

detail below. We also outline the X.500 directory standard, which has not yet achieved

ubiquity. Further, we discuss service traders, a specialised directory service.

DNS

The Domain Name System DNS [46, 47] is a distributed naming service. It o�ers a white-

pages service that maps names (domain names) from a hierarchical naming scheme into a

list of attributes.

The name space forms a tree, with each node being uniquely identi�ed by its absolute

path. Typically, a name's attribute list represents a list of addresses for di�erent network

protocols (typically IP address, name of the email exchange). It is also referred to as a

name's DNS record.

DNS is provided through a set of name servers. Each server is assigned to a subtree of

the name space. The part of the name space covered by a name server is referred to as its

zone. A name server is primarily an information repository storing the zone's records and

links to other name servers. If a query requires that another name server be consulted,

this recursion can be handled by the client, or, optionally, by the server.

DNS uses both caching and replication to reduce query response times and to increase

availability. A name server can maintain secondary copies of other zones. The maintainer

of a secondary copy must query the maintainer of the primary copy (Primary Server)

periodically in order to �nd out whether the local copy is still valid. This replica control

mechanism guarantees weak (i.e. eventual) consistency. Additionally, both name servers

and clients can cache DNS records. Cache consistency is controlled by a simple timeout.

Again, this guarantees eventual consistency.
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Discussion DNS' design goal was to provide a highly available service with distributed

data maintenance and storage. Data consistency is traded in for data availability. The

system cannot deal well with frequent updates because all the replica control mechanisms

are based on timeouts, i.e. the updates are synchronous.

The X.500 directory service

The X.500 directory standard has been developed since 1984 by CCITT (now ITU-T) and

ISO. O�cial standards were adopted in 1988 and 1993 (for a more detailed account, see

[8]). Historically, X.500 was developed as a directory service for OSI systems. This is still

evident from the use of OSI protocol stacks in the various directory protocols. However,

recent developments, such as LDAP [82, 21], have made X.500 somewhat more popular

in the wider Internet community by employing the ubiquitous TCP/IP underneath the

directory access protocol.

Functionally, X.500 o�ers both name-based and property-based lookup services. Users

access the directory service through a directory user agent (DUA), which in turn interro-

gates or modi�es the local directory service agent (DSA) (The DUA plays a resolver role,

i.e. it provides access to the resolver service). The DSA provides access to the directory

information base [19]. Queries range from straightforward DNS-style lookups to recursive

attribute-based fuzzy matching.

X.500 prescribes a tree-shaped name space formed by distinguished names (DN), where

each DN is an ordered sequence of relative distinguished names (RDN). Each RDN is a set

of key-value assertions [84]. That is, name space and data space are the same. The DN

are used to uniquely identify the objects in the directory information tree. Each object

has a set of typed attributes. All the objects together form the directory information base

(DIB).

The name space can be partitioned into domains (coherent subsets), with a domain

maintained by a DSA. Each DSA also stores the links to all DSA serving neighbouring

domains. Thus, the DSA are organised in a knowledge information tree.

DIB data can be replicated using a master-copy scheme providing weak consistency

[8]. The granularity of replication can range from a single attribute of a single entry to a

complete naming context. Protocols are speci�ed for creating and managing a shadowing

relationship, and for transferring updates from supplier to consumer. In order to avoid the

master-copy becoming a bottleneck, shadow copies may propagate updates to secondary

shadow copies. Updates can be initiated by either the supplying or the consuming DSA,

with no guarantees that such a request will be satis�ed. Updates can be initiated immedi-

ately, periodically, or randomly.

In addition to \static" replication, caching of query results can take place in both

DUA and DSA. Since full access control information is not available in the DUA and the

caching DSA, the caching of query results must take place on a per-user basis. This, of

course, severely limits the e�ectiveness of caching if there is a high user turnover.

There have been proposals to use the X.500 infrastructure as the basis for a location

information service [40]. X.500 was designed for slowly changing directory information,

hence update frequency and the lack of update noti�cations are the obvious problem
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areas. In [40], the authors describe a modi�ed DSA which has dynamic external attributes

and spatial matching rules. The dynamic attributes are queried from an external service

whenever they are needed. This removes the need for frequent updates. On the other hand,

replication of the dynamic attributes to unmodi�ed DSAs seems to become impossible.

Discussion X.500 is more powerful and complex than simple name services, such as

DNS. Although widely deployed, the stated goal of global coverage has not (yet) been

achieved. Therefore, it is hard to evaluate whether the design is adequate. For our

discussion, the meta-architecture (i.e. DSA, DUA, etc.) and the query processing facilities

are of interest. Unfortunately, X.500 does not allow for real-time information delivery.

The X.500 directory access protocols (DAP, LDAP) could be used to provide query-

based access to location information, although hierarchical data types would have to be

emulated by multi-valued attributes. As argued in [40], such a solution would be bene�cial

because it uses a widely accepted protocol standard. However, there is no support for push-

style event dissemination in those protocols. Hence, a location service would appear to

require additional access protocols complementing the functions o�ered by DAP or LDAP.

Service traders

A trader is a directory service that enables clients to �nd suitable servers in a distributed

system [6]. Both white-page and yellow-page services may be supported.

A trader accepts service o�ers from exporters of services, and service requests from

importers of service request. To satisfy a request the trader typically has to perform

attribute-based matching over the available service o�ers. Traders can share information

about service o�ers amongst each other, a concept known as federation. That is, traders

can act recursively as clients to other traders [14].

In the federation scenario, the traders form a graph, which is traversed when the

federation is queried. Replication techniques and traversal algorithms are implementation-

speci�c. The management of the federation graph is also an issue. Additionally, a

hierarchically-structured context space may be used to facilitate trader federation. Then,

imports and exports can occur relative to a context rather than to a speci�c trader [63].

There has been research on building a distributed trading function on top of the X.500

directory service [2, 51]. The idea is to use the directory information base to store the

trader data (service o�ers, trader graph etc). The trader itself uses a DUA to access and

to search this information. Further, the directory can be used to �nd other traders (ideally

other service o�ers, but this seems to be di�cult). The trader link graph is completely

independent of the directory information tree. Thus, link traversal is implemented outside

the directory (but the directory's name resolution service can be used).

Discussion Service information can be as dynamic as location information. Hierarchical

context-spaces and federation graphs are valuable concepts to achieve scalability in the

presence of decentralisation and dynamic information. However, most of this research

appears to be still work-in-progress.
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Directory service summary

A location service can be considered as a specialised directory service. Existing designs

of directory services, such as DNS, expose the desirable properties of global coverage,

openness, and logical centralisation. Some systems, such as X.500, are very general and

have powerful query facilities. However, existing directory service designs cannot cope

with real-time information because of the replica control mechanisms. This indicates the

need for a replica control scheme tailored to the speci�c nature of location data.

2.7.2 Management domains

As described in [65, 72], management domains o�er a framework to group objects explic-

itly in order to apply a common management policy. Since domains can contain other

domains, it is possible to construct domain hierarchies. Domains are a generalisation of

tree-structured directories. The domain space is maintained by a, possibly distributed,

domain service.

Domains are used to specify subject scopes and target scopes for management policies.

Thus, objects can be managed independently of their identity according to their domain

membership. Typically, a policy would link a source domain to a target domain while

specifying a set of permissible or mandatory actions [44]. Management policies can be

speci�ed in terms of rules. A domain can inherit policies from its parent domains. Thus,

the domain structure implicitly supports policy decomposition.

Management typically occurs within an organisation, and co-operation between organi-

sations requires special arrangements. In [72] a federation scheme is suggested, where

organisations can choose to link foreign domain spaces into their local domain space.

These links are called context references. They do not carry policy implications in order

to guarantee the independence of both organisations.

Discussion The management domain approach o�ers a framework for presenting

collocated objects. This may be used both for the visualisation of location information

and for the management of located-objects. Further, a domain framework may be suitable

for specifying security constraints involving location data. However, existing implementa-

tions, such as DOME [72] are geared towards static and explicit domain membership.

2.7.3 Geographical Information Systems

GIS systems store and process spatially referenced data. Here, we outline some of the

modelling concepts and abstractions applied in GIS [71]. These are mostly related to

modelling in the cartographic space. The real world is referred to as geographic space.

� A cartographic model is a set of map layers that are all registered with a common

cartographic frame of reference.

� A map layer is a set of data describing the spatial variation in one characteristic

of a geographical study area. The essential components of a map layer are title,

resolution, orientation, and zones.
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� A zone is a category into which geographic locations are classi�ed on a map layer.

The zones of a given map layer must be both all-inclusive and mutually exclusive in

their spatial coverage. The components of a zone are: label, value, and locations. A

zone can be fragmented.

� A location on a map layer is associated with a unique square unit of cartographic

area referred to as grid square.

� A neighbourhood is a set of locations, each of which bears a speci�c distance

and/or directional relationship to a particular location called the neighbourhood

focus. This relationship may be speci�ed in terms of maximum distance (circle), a

range of distances (ring), ranges of direction (sectors), or combinations of distance

and directions. Neighbourhoods may overlap and do not need to be all-inclusive.

Spatial GIS data can be classi�ed into two groups: geometric data and topological data.

Geometric data is represented in raster or vector format, and describes individual objects.

Topological data is concerned with relations between objects, such as adjacency, connec-

tivity, or inclusion.

Additionally, thematic GIS data consists of application-speci�c attributes related to

geographic entities.

Discussion GIS are basically fancy static map databases. Real-time tracking of large

numbers of users is outside their scope. However, GIS can serve to de�ne and maintain

the location spaces used by a tracking system.

2.8 Chapter Summary

This chapter has identi�ed the requirements for a general distributed location service.

From those requirements, high-level design goals were derived. Our examination of related

work indicates that no existing design meets all our requirements.

2.8.1 Positioning technology

There exist di�erent tracking and positioning technologies, each with their own advantages

and drawbacks. No single approach can deliver the ubiquitous coverage required.

Therefore a general location service must work with multiple tracking technologies simulta-

neously.

2.8.2 Location model

Flat location models inhibit scalability and abstraction. Hence, it appears that only

hierarchical approaches, such as those used by the Active Map Service (Xerox PARC)

or by GSM, can deliver scalability and 
exibility. It also facilitates presentation and

management, as shown by the management domain approach. A hierarchical data model

may form the foundation of a specialised replication protocol as used by GSM.



42 CHAPTER 2. RELATED WORK

2.8.3 Distributed architecture

This chapter has shown that analogous systems achieve scalability through distribu-

tion. While many of the larger systems (GSM, PCS, DNS) use hierarchical distribution

approaches, others, such as Xerox PARC, have opted for a decentralised approach. This

issue needs further consideration.

2.8.4 Thesis objectives

From the above, we derive the primary objective of this work. This is to develop a model

for providing a general global location service based on multiple tracking technologies,

along with a scalable architectural framework.



Chapter 3

Location Models

Location-awareness requires a data model that can adequately represent the locations of

mobile and �xed objects. We refer to such a model as location space. There are two

principal ways to design a location space: as an n-dimensional coordinate system, or as

a set of symbols (i.e. names) with relationships between them. The former we call the

geometric approach, the latter we refer to as the symbolic approach. Both groups of models

have strengths and weaknesses; indeed the following section will discuss these.

To support location-awareness, a location model must address the requirements of

location sensors and location-aware applications. Hence, it is instructive to review the

models used there.

Below is a list of location sensing technologies with the location model employed:

Technology Location space Location identi�er Type of location model

Active Badges Set of Sensors Sensor identi�er Symbolic

GPS Coordinate system Coordinate tuple Geometric

ruserd (Unix) Set of terminals IP address Symbolic

GSM Set of location areas MSC/VLR address Symbolic

Radar Coordinate system Coordinate tuple Geometric

Both symbolic and geometric location models are used by location sensing systems.

Moreover, the coverage of the di�erent technologies is complementary. GPS will not work

indoors, while Active Badge sensors are not normally deployed in the countryside.

But what are the requirements of the application domain? In order to �nd out, consider

the following list of domains of location-aware applications. In each domain, there are

already applications that deal with static or dynamic location information.

Application domain Location representation Type of location model

System Management Hierarchical domains Symbolic

Naval navigation Coordinate system Geometric

Military command Numbered grid squares Symbolic

Intelligent Highway Road name, heading, speed Geom./Symbolic

Active O�ce Building, 
oor, room Symbolic

Postal system Postcode, street, house, 
at Symbolic

GIS Grid square, zone membership Geom./Symbolic

43
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It shows that existing applications use both classes of location models, some even at the

same time. Hence, we expect the same to be the case for location-aware applications in

the respective domains. Also, it appears that in many cases applications do not require

geometric location data. They rather work with the more abstract notions provided by a

symbolic location model.

Therefore, in order to satisfy the generality and coverage requirements identi�ed in the

previous chapter, a location service needs to accommodate both symbolic and geometric

location information. In particular, it must be able to process sensor input in either

representation, and perform client interactions in either representation.

The geometric and symbolic models are orthogonal representations for location

information. Either can be used independently from the other, but they cannot replace

each other. Hence, the challenge is to �nd a way for the two models to coexist.

In the remainder of this chapter, we shall identify the di�erent types of symbolic

and geometric location models. Further, we propose our own location model, which is a

fusion of the two approaches. We will formally specify our location model and outline its

application.

3.1 A brief taxonomy of location models

3.1.1 Symbolic models

Symbolic location models refer to locations by abstract symbols, i.e. names, such as \Room

429", \Stanford Campus", \Huxley Building", or \Canterbury cathedral". Since both

locations and located-objects are represented as symbols, locations are modelled quite

naturally as sets, and located-objects as members of sets. Following this approach, a

located-object would be a member of a location whenever it is physically within the associ-

ated area or volume. This is the essence of a symbolic model.

Acyclic 

location graph

Location treeExclusive Symbolic

Simple Symbolic

+exclusive

+hierarchic locations

+hierarchic locations

membership

(partial order)

(partial order)

e.g. domain model

e.g. zone model

e.g. cell model

Figure 3.1: Classi�cation of symbolic models

The set of location symbols within a given model may be constrained. For example,

it is sometimes the case that locations are not allowed to overlap. Equally, the location

model may include a partial ordering of location symbols based on the spatial inclusion of

the underlying locations. Depending on whether locations overlap, this inclusion ordering



3.1. A BRIEF TAXONOMY OF LOCATION MODELS 45

results in a location tree, or in a location lattice (acyclic graph). Figure 3.1 shows a

classi�cation of location models along those lines. The example models (cells, zones, and

domains) will be described later in this chapter.

Advantages of symbolic models:

� Location-awareness is easier to achieve if the relevant locations can be referred to

simply by name.

� Access control to location information is facilitated if the relevant location can be

referred to by name.

� The hierarchical data model facilitates multi-resolution processing. This in turn can

support scalability, manageability, and adaptation.

� Secondary models of location information (e.g. mobility patterns) are facilitated by

symbolic location models because symbolic models are discrete and well-structured.

Disadvantages of symbolic models:

� Symbolic models require an additional layer of indirection.

� The set of useful named locations depends on the application domain. This can

potentially lead to a very large number of location symbols that need to be managed.

� Symbols for locations often need to be constructed and managed manually.

� A symbolic location model restricts the spatial resolution of the location data

represented in the model.

3.1.2 Geometric models

Geometric models are based on one or more reference coordinate systems. Locations are

represented as points, areas, or volumes within the coordinate system. Such locations

are typically described by sets of coordinate tuples. There is no inherent distinction

between locations and located-objects, everything is expressed by coordinates. Therefore,

geometric models are harder to apply but potentially more powerful.

Figure 3.2 shows a simple classi�cation for geometric models. The uni�ed geometric

model contains multiple coordinate systems with (possibly lossy) mappings between them.

This is useful, for example, to locate objects on a ship that also crosses the ocean. In this

scenario, objects could be located relative to the ship or relative to a world coordinate

system.

Advantages of the geometric model:

� Accuracy of information is preserved unless the mapping between coordinate systems

is lossy.
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+multiple coordinate systems

Simple Geometric

Unified Geometric

Figure 3.2: Classi�cation of geometric models

� Coordinate-based spatial queries provide a very 
exible means of retrieving location

information.

� Sensors and applications only need to understand one of the reference coordinate

systems in order to interact with the location service.

� Reference coordinate systems are typically reusable without customisation.

Disadvantages of geometric models:

� Coordinate data is weakly structured, which makes e�cient design more di�cult.

� All the information acquired needs to be translated to one of the reference co-ordinate

systems. For example, an Active Badge network would need the coordinates for the

coverage areas of all the sensors.

� Applications are burdened with unnecessary geometric data and computations.

� Management, especially access control, requires symbolic location.

� A separate location directory is required to map coordinates into data meaningful

to applications and people.

3.1.3 Summary

Both models address di�erent requirements for the management and processing of location

data. In some cases, especially for closed systems with �xed requirements and provisions,

one of the models can provide the appropriate solution. For example, an Active Badge

network would typically be modelled using the symbolic approach. A single GPS tracking

system maps well onto a geometric model. However, in the general case we believe that

it is necessary to combine the two approaches. In particular, a general location service

needs to accommodate both models of location information.
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3.2 Symbolic models

In this section, we describe three models that represent symbolic location information:

cell model, zone model, and domain model. These models are not mutually exclusive. A

processing pipeline for location data could utilise all of them in di�erent processing stages.

These concepts were �rst proposed in [34].

De�nition 1 A located-object is an object whose location is of interest to the location

service.

The term located-object (�rst used by Schilit [59]) refers to all the real-world entities

(people and hardware) that can be tracked by the location service.

De�nition 2 A symbolic location is a name referring to a well-de�ned geographical

area which does not need to be constant over time.

Symbolic location models di�er in the way they construct and structure symbolic locations.

3.2.1 The cell model

In this model, assume that each location sensing system represents an object's location in

terms of a well-de�ned geographical area (e.g., a room, a square on the map, an IR or RF

cell, etc.). This area we call a cell . In the case of GPS, the cell's area is a circle de�ned

by the sighting coordinates and the accuracy margins.

Active Badge cell
Workstation proximity cell
GSM cell

G

A

F
E

B C

D

Figure 3.3: The geographical view of a simple cell space

Figure 3.3 gives an example of a cell space. There, we have seven cells labelled from

`A' to `G'. Three overlapping sensor systems are involved: Active Badges, GSM, and the

Unix ruser service. A single location sighting can reference only one cell, even though

the object could be in multiple cells at the same time.

Cells are the symbolic locations in this model. They are allowed to overlap because

more than one sensor system can be included in the system. The inclusion relationship

among cells is not represented in the cell model. Hence, this is a simple symbolic model .
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The cell model preserves the accuracy of incoming information because it de�nes

symbols for all locations referenced in sightings. However, it is awkward to use for spatial

queries because of overlaps that it cannot represent. For example, it is impossible to

enumerate all objects within a given cell in this model.

3.2.2 The zone model

In a cell space (such as shown by Figure 3.3), the intersection of the cells generates a set of

mutually exclusive (i.e. non-overlapping) locations. We call these locations zones. Each

zone is part of one or more cells.
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Figure 3.4: The geographical view of a simple zone space

Figure 3.4 shows a zone space derived from the cell space given in Figure 3.3. Now, the

cells have been divided up into non-overlapping zones labelled from `a' to `n'. If an object

is located in zone `a', for example, it should be visible in cells `A' and `G' (cf. Figure 3.3).

In the zone model, we use zones rather than cells as symbolic locations. Since zones do

not overlap, the zone model can be classi�ed as an exclusive symbolic model . A single zone

space can accommodate an arbitrary number of cells, the only prerequisite being knowledge

of their respective overlaps. Thus di�erent and overlapping cell spaces generated by di�er-

ent location sensing systems can be integrated.

Since zones do not overlap, a located-object can be in at most one zone at a time.

Therefore, within a zone space, the movements of one object can be modelled by a single

�nite-state-machine. Hence, a zone space is a natural framework for persistent object

tracking and movement prediction.

By de�ning the zones as the overlaps between di�erent cells (see Figure 3.4), we achieve

a potentially higher positioning accuracy. The zone space can also be partitioned into

independent geographical coverage areas, and therefore zone space computations can be

distributed.

However, the zone space has some shortcomings. Firstly, there is no notion of abstrac-

tion or multi-resolution processing. Secondly, the zone space for one located-object may
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be entirely di�erent from another's if both are visible to di�erent location sensor systems.

3.2.3 The location domain model

A location domain is a symbolic location that can be ordered with respect to other location

domains. Any set of location domains is partially ordered by the \contains" relationship.

This ordering re
ects the spatial inclusion of the underlying geographical areas. As in the

cell model, domains are allowed to overlap.

An example is shown in Figure 3.5. The graph of the seven location domains forms a

lattice. The `College' domain includes, directly and indirectly, all the other domains. Also

shown is a possible mapping from the zones of Figure 3.4 into the domain space.
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Figure 3.5: A partially ordered set of location domains

When employing this model, a location service typically uses a prede�ned set of

domains to represent the locations of the located-objects. Located-objects join and leave

domains as they move in geographical space. If a located-object is a member of a particu-

lar location domain, it must also be a member of all \parents" of this domain. To preserve

strong consistency, changes in the domain membership should instantly propagate up the

domain hierarchy. However, implementations may choose a weaker level of consistency.

An arbitrary set of location domains does not necessarily include a \root" location,

that is, a location domain spatially containing all other domains. However, it is desirable

to include such a domain in the domain space used by a location service. This root domain

we shall call \anywhere".

In principle, a location domain can refer to a non-constant (i.e. mobile) geographical

area. As a result, the position of the mobile domain within the inclusion ordering is variable

over time. Also, changes in domain membership may be triggered both by movements of
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the domain or the located-object. Supporting mobile domains carries an additional cost,

hence it may not be implemented unless required.

Non-mobile objects can also be location domain members. Domain membership

queries can thus accomplish basic location-dependent mapping functions (Example: �nd

a telephone in this room).

The partial ordering of location domains is a very powerful mechanism, which can

be exploited to gain scalability and manageability. Because they are sensor-independent

and support multi-resolution processing, location domains provide a 
exible framework

both for client interaction and management operations. Later in this thesis we describe

how the hierarchical nature of the location domains can be exploited to design scalable

architectures and access control mechanisms.

Speci�cation Since hierarchical location domains are a core theme of this thesis, we

have speci�ed them in the Z notation [52]. A brief introduction to Z is given in appendix B.

By using this formalism, we hope to communicate our ideas concisely and without ambigu-

ity. We have chosen the Z notation because it is well-suited for specifying state-based

systems, and because automated checking tools are available. All the Z speci�cations

in this thesis have been syntax-checked and type-checked using the Z/Eves tool [45]. A

condensed speci�cation is provided in appendix C.

For specifying the location domain model, the entities of interest are symbolic locations

and located-objects.

[LOCATION;OBJECT]

We de�ne an ordering relation for locations that re
ects spatial inclusion. For an

ordering relation, asymmetry and transitivity are essential properties. Asymmetry means,

for example, that a Building containing a Room cannot at the same time be contained by

that Room. Note that asymmetry implies irre
exivity, i.e. a location cannot be contained

by itself. We have chosen to exclude re
exivity to keep the model simple. The location

ordering must also be transitive. For example, a Desk in a Room in a Building must also

be in the Building.

The following schema template speci�es a generic irre
exive partial ordering, which

we shall instantiate later for locations:

Irre
exivePartialOrder[X]

< : X$ X

8x;y : X �

x < y) : y < x

8x;y; z : X �

x < y ^ y < z) x < z

When instantiated for locations, this template forms the core of our speci�cation of

a location hierarchy. We specify a LocationHierarchy as consisting of an ordering
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relationship between locations, a root location anyLoc, and the relation con
icts:

LocationHierarchy

Irre
exivePartialOrder[LOCATION]

anyLoc : LOCATION

con
icts : LOCATION$ LOCATION

8 l1; l2 : LOCATION �

(l1; l2) 2 con
icts,

(8 l3 : LOCATION �

: ((l3 < l1 _ l3 = l1) ^ (l3 < l2 _ l3 = l2)))

8 l : LOCATION �

l < anyLoc _ l = anyLoc

In the above schema, con
icts is de�ned as a convenience relation. Two locations con
ict

if they do not overlap, i.e. if there is no third location contained by both. Further, we

specify that anyLoc should contain all other locations, which intuitively corresponds to

our idea of an all-inclusive root location.

For example, a simple location hierarchy could be constructed as follows:

LOCATION = fHuxleyBldg;MathsDpt;CompDptg

< = f(MathsDpt;HuxleyBldg); (CompDpt;HuxleyBldg)g

anyLoc = HuxleyBldg

con
icts = f(MathsDpt;CompDpt); (CompDpt;MathsDpt)g

In the above example, we consider a building which is shared by two administrative

domains: the departments of mathematics and computing. The building serves as root

location. The two sub-areas con
ict with each other since they do not overlap.

The schema SymbolicLocator models the current locations of located-objects by

associating objects with locations. An object can be in zero, one, or more locations at a

time.

SymbolicLocator

locatedAt : OBJECT$ LOCATION

Note that this speci�cation allows objects to be in several non-overlapping locations

at a time. We have not excluded this case in order to make the speci�cation usable for

components that do not ignore inconsistency.

3.3 A geometric model

Today GPS is the dominant outdoor positioning system. Hence location-awareness in

many applications means processing of geographical coordinates. While some of those



52 CHAPTER 3. LOCATION MODELS

applications could work with symbolic information if it were available, there are some

that require a geometric view on location data. To address the requirements of geometric

location processing, we propose a geometric location model, which can then be integrated

into a hybrid semi-symbolic model.

Geometric location data is provided as a set of coordinates with respect to some

reference co-ordinate system. For GPS, this is often longitude, latitude, and altitude

in the WGS84 reference system [13]. Since this in itself is an adequate mathematical model

of geometric location, we only need to concern ourselves with de�ning symbolic location

abstractions over the coordinate space.

Location areas (such as cities, buildings, or rooms) are represented by the coordinates

of 2-D areas or 3-D volumes, in contrast to the purely name-based symbolic models.
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Figure 3.6: Location uncertainty areas for moving and stationary objects

With respect to located-objects, there are two distinct concepts to be modelled geomet-

rically: position and layout. Position is ideally modelled by a point (i.e. a set of coordinates

with respect to a reference coordinate system). However, no positioning or tracking system

is error-free. So the located-object's position is best represented by an area of positioning

uncertainty (Figure 3.6). The located-object's layout, which is especially important for

large located-objects (e.g. a super-tanker), is modelled in the same way as are \normal"

location areas. We shall not consider layout areas in greater details because we focus on

the case where positioning uncertainty is signi�cantly greater than the footprint of the

located-object.

Spatial relationships between location areas can be established: inclusion, equiva-
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lence, overlap, adjacency. These relationships can be translated into constraints over the

coordinates representing the respective areas. It should be noted that tests for spatial

relationships are non-trivial if the shapes of the areas involved are complex.

Speci�cation Similar to the symbolic model, the entities of interest are locations and

located-objects. Here, we model locations as areas. We do not include the notion of a

point in our model because any point can be represented as a very small area. Hence, we

declare a new sort of area object:

[AREA]

The sort for located-objects has already been introduced in section 3.2.3.

The geometric location model speci�es spatial relationships between areas. We consider

overlap and strict inclusion as the primary relationships. The latter is asymmetric and

transitive, which makes it a partial order. Additionally, geometric inclusion with equiva-

lence is speci�ed for convenience.

GeometricLocationModel

anyArea : AREA

contains : AREA$ AREA

overlaps : AREA$ AREA

containsEq : AREA$ AREA

8a1;a2 : AREA �

(a1;a2) 2 contains) (a2;a1) =2 contains

8a1;a2;a3 : AREA �

(a1;a2) 2 contains ^ (a2;a3) 2 contains) (a1;a3) 2 contains

8a : AREA �

(anyArea;a) 2 containsEq

8a1;a2 : AREA �

(a1;a2) 2 overlaps,

(9a3 : AREA � (a1;a3) 2 contains ^ (a2;a3) 2 contains)

8a1;a2 : AREA �

(a1;a2) 2 containsEq, (a1;a2) 2 contains _ a1 = a2

It should be considered that in contrast to the symbolic locations, the number of possible

geometric areas is in�nite. Therefore the computation of the spatial relationships necessar-

ily involves coordinate-based numerical computations.

The geometric locator associates located-objects with a geometric area, the positioning

uncertainty area. We specify that each located-object has one geometric position.

GeometricLocator

position : OBJECT! AREA
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The speci�cation for the geometric locator is very similar to the symbolic locator. The

main di�erence is that each located-object has only one geometric position but possibly a

multitude of symbolic locations.

3.4 A combined model

In preceding sections, we have discussed symbolic and geometric location models. Applica-

tions require both types of model, sometimes even simultaneously. On the other hand,

location sensors often support only one. Hence there is a strong case for an additional

layer of indirection in order to decouple sensor representation from application represen-

tation. Such a layer needs to integrate both symbolic and geometric location information.

Therefore, a combined model is needed which allows location data to be viewed either

symbolically or geometrically (Figure 3.7).
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Figure 3.7: Symbolic and geometric views on location data

In order to combine the symbolic and geometric approaches, we need to identify

corresponding entities in the two models and map them into a single entity in the combined

model.

In the geometric model, a located-object corresponds to both an area of positioning

uncertainty and a layout area. In the symbolic model, a located-object is an entity that

can be a member of one or more location domains.

We primarily wish to track many small located-objects. Hence, we assume that the

positioning uncertainty area is the primary piece of location information to be associated
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with a located-object. Thus, an object's location is de�ned geometrically by the coordi-

nates of its positioning uncertainty area, and symbolically by its membership in location

domains.

Note that a located-object can be primitive (e.g. an Active Badge) or composite (e.g.

a person wearing an Active Badge and a GPS receiver). In the scope of this work we shall

assume that the composition of a located-object does not change (e.g. an Active Badge is

worn all the time by its designated user).

In the combined model, the abstraction of a location corresponds to two distinct

geometric meanings:

� A well-de�ned �xed area. Example: a room, a building, or a country.

� A large mobile object. This case covers also zones of proximity around mobile

objects. Example: a big ship, an aeroplane, the danger zone around a hungry tiger.

Thus, a location is essentially a well-de�ned partition of space (e.g. 2-D area or 3-D

volume). The de�nition of any such partition may change over time. However, for each

point in time there is at most one such mapping from location to space.

Note: To keep things simple, we do not include time in our model. Hence, a single

instance of the model is valid only for spans of time that do not include changes of locations'

de�nitions.

Speci�cation The speci�cation of the new, semi-symbolic location model incorporates

both the pure symbolic and the geometric speci�cations from the previous sections.

Additionally, mappings are speci�ed in both directions to relate the two views. The

mapping area assigns to each location a geometric area. The function leastMatchin-

gLoc �nds the best matching de�ned location for a geometric area, while any geometric

location is matched by anyLoc.

SemiSymbolicLocationHierarchy

LocationHierarchy

GeometricLocationModel

area : LOCATION! AREA

leastMatchingLoc : AREA 7! LOCATION

area(anyLoc) = anyArea

leastMatchingLoc(anyArea) = anyLoc

8 l1; l2 : LOCATION �

(l1 < l2), (area(l2);area(l1)) 2 contains

8a : AREA; l3 : LOCATION �

leastMatchingLoc(a) = l3, (area(l3);a) 2 containsEq ^

(8 l4 : LOCATION �

(area(l4);a) 2 containsEq) ((l3 = l4) _ (l3 < l4)))

Finally, the speci�cation of SemiSymbolicLocator speci�es that the symbolic and
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geometric positions of each object are known. Again, both the original symbolic and

geometric speci�cations have been incorporated.

SemiSymbolicLocator

SymbolicLocator

GeometricLocator

SemiSymbolicLocationHierarchy

8o : OBJECT; l : LOCATION �

(o 2 dom locatedAt)) (o 2 domposition)

8o : OBJECT; l : LOCATION �

(o; l) 2 locatedAt) (area(l);position(o)) 2 containsEq

8o : OBJECT; l1; l2 : LOCATION �

((o 2 domposition) ^

(area(l1);position(o)) 2 containsEq ^

(o; l2) 2 locatedAt)) ((l1 = l2) _ (l2 < l1))

With the combined model, we have proposed a general abstraction that is powerful enough

to subsume both symbolic and geometric location processing. Hence, it provides a suitable

data model to build an abstraction layer between location sensors and location-aware

applications.

Implementation The database-centric location service described in appendix D is an

implementation of the semi-symbolic hierarchical location model speci�ed above. For

performance reasons, we have chosen to implement the position and area functions

as tables, while the locatedAt relationship is computed on-demand. As a result, the

prototype maintains two pieces of state: an object table, which stores located-objects'

geometric positions, and a location table, which maps location names into geometric areas.

3.5 A notation for location information

The location model described above speci�es the semantic structure of our location model.

Now it is necessary to introduce a notation that is a textual representation of the entities

and relationships of our model. It is especially important to �nd a consistent and scalable

naming scheme for locations.

Also, we aim to make location information amenable to formal reasoning using well-

established formalisms such as �rst-order logic or temporal logic. For example, we propose

to use �rst-order logic to specify logical constraints over location information. These

constraints are a powerful tool for the speci�cation of location-dependent behaviour and

location-dependent queries.

In this section, we �rstly describe a naming scheme for symbolic locations. Then we

proceed to de�ne basic and derived predicates over location information. We show how

those predicates can be used to specify location-aware behaviour and queries.
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3.5.1 Naming

It is necessary to name the objects of interest, that is locations and located-objects, in a

consistent and intuitive manner. We shall focus on the former since the latter appears

to be fairly well understood (see [49] for a discussion of naming). Examples of names

for located-objects are the International Mobile User Numbers ([15]) or Internet email

addresses [11].

A name space for locations needs to address to following issues:

� Location names must be hierarchical. This is necessary for scalability. Also, �xed

locations are intuitively hierarchic.

� The design of the name space should intuitively re
ect the physical location space.

However, this must be a loose coupling since the name space should be less dynamic

than the location space. In particular, movement of a mobile location should not

necessitate a change in the name space.

� Individual locations have characteristics which are important for location-awareness:

Locations can either be �xed or mobile, and their extent can be speci�ed by either

area geometry (e.g. \circle of radius 4") or an abstract concept (e.g. \Room").

While these distinctions should be recognisable in the notation, it is undesirable to

re
ect this in the semantic model.

Additionally, there are a number of pre-existing naming schemes for locations. These

have the advantage of familiarity and maturity. Therefore, we would like to incorporate

those schemes. We take into consideration the following approaches:

� Path names for �xed symbolic locations. This assumes a static acyclic graph with a

root location. There may be more than one name for a location. Such a namespace

is very similar to the Internet's DNS [46] or the naming in management domains [72].

For example, \/UK/London/Imperial/Huxley/336" identi�es a particular room in

Imperial College.

� Coordinate tuples to identify a geometric position. It is important to know the

reference coordinate system. Example: \WGS84:(0.04W, 51.3N, 0)" identi�es a

particular point in the London area. The reference coordinate system is WGS84

(World Geodetic System 1984).

� Abstract locations. Natural language contains number of instantly recognisable

and fairly unambiguous location abstractions, e.g. \room", \river", \town", or

\country".

� Geometric shapes or volumes. The space covered by a location can be described

mathematically by a geometric structure, such as a circle, a cube, or a rectangle,

In order to construct a namespace, it must be recognised that any concrete location

contains two orthogonal dimensions: a geometric area, and the position of this area with

respect to some reference point. Although the area component is sometimes implicit in

the location's position, we think it is always desirable to explicitly state the area.
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location ::= hareai `@' hpositioni

If position is a �xed point, then the de�ned location is always static.1 The area component

is speci�ed directly as a geometric area, or as an abstract area:

area ::= hlocation concepti j hgeometric de�nitioni

While the abstract area requires an additional level of indirection, it would be undesirable

to specify all location with coordinates.

For the speci�cation of an area's position, we need to distinguish between �xed

positions and mobile positions. A mobile position is treated as a located-object.

position ::= hlocated objecti j h�xed positioni

For �xed positions, there remain two possibilities: specify a point with reference to some

world coordinate system, or identify a \mount point" in a �xed structure.

�xed position ::= hgeometric positioni j hsymbolic positioni

geometric position ::= hreference systemi `:' hcoordinatesi

symbolic position ::= (hsymbolic positioni `/' hlabeli) j hwell known positioni

The names for symbolic positions are hierarchical path names. Hence, they allow the

construction of hierarchical location spaces. We assume that there is set of well known

symbolic reference points, such as \New York City" or \Imperial College" which can serve

as root locations. Note that a symbolic position usually implies a certain coverage area.

By requiring the explicit speci�cation of the area we force such hidden knowledge to be

made explicit.

Below are some examples of locations speci�ed with our notation:

Room@Imperial/Huxley/529 Room 529 in Huxley Building in Imperial College.

Room@Jeff.Magee Room where Je� Magee is currently located.

<5m@Jeff.Magee Zone of proximity around Je� Magee.

<1m@WGS84:(0.04W, 51.3N, 0) Sphere around a spot somewhere in London

With this naming scheme we can concisely refer to locations of interest. Additionally,

a resolution scheme is required in order to map names to locations. The resolution of

location names depends on the nature and capabilities of the underlying location model.

The resolution process requires that the location corresponding to the resolved name be

identi�ed. Such a location may be constructed if necessary.

In the previously described semi-symbolic location model, name resolution is

implemented by two directory functions:

[LOCNAME;OBJNAME]

1We assume that areas are immutable.
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NameResolver

resolveLoc : LOCNAME 7! LOCATION

resolveObj : OBJNAME 7! OBJECT

The resolveLoc mapping requires the resolveObj because locations can be attached to

located-objects. The functions are partial because some names may not be resolvable.

The resolution of location names comprises the following steps (but not necessarily in this

order):

� Resolve references to located-objects. This requires the consultation of a location

tracking service.

� Resolve aliases for symbolic positions. This requires an external directory which

maps symbolic positions into a location reference known to the location service.

� Match position and area directly with the location hierarchy. For purely symbolic

locations, this would result in a straight lookup of the location in question. If

geometric information is involved, the corresponding location is found using a spatial

index (such as an R-tree index [18]). The target location is found using both the

area and position components of the name.

We feel that a further investigation of this area is necessary. However, this is outside the

scope of this thesis.

3.5.2 Basic predicates

Since we have namespaces for locations and located-objects, we can de�ne predicates

of �rst-order logic representing common relationships within the location model. These

are used to construct constraints over locations and located-objects. Primarily, we are

interested in membership relationships between located-objects and locations, and in the

spatial inclusion relationships among locations.

The predicates are de�ned over names and not directly over objects and locations.

Thus, the previously de�ned semantic relationships (e.g. contains or overlaps) cannot

be used directly.

Inclusion

NameResolver

LocationHierarchy

cont : LOCNAME$ LOCNAME

8n1;n2 : LOCNAME �

(n1;n2) 2 cont, resolveLoc(n1) � resolveLoc(n2)
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Position

SymbolicLocator

NameResolver

loc : OBJNAME$ LOCNAME

8on : OBJNAME; ln : LOCNAME �

(on; ln) 2 loc, (resolveObj(on); resolveLoc(ln)) 2 locatedAt

With the help of the predicates cont and loc, simple constraints about locations and

located-objects can be speci�ed. Here are some examples:

loc(Fred,Room@Imperial/Huxley/429) Fred is located in 429 in Huxley

loc(Joe,<4m@Fred) Joe is less than 4m from Fred

loc(Fred,Room@Joe) Fred is in the same room as Joe

cont(Room@Fred,Room@Joe) Fred is in the same room as Joe

Further examples can be found further below in section 3.5.5.

3.5.3 Collocations

An interesting abstraction is the notion of collocation. Informally, a collocation exists

between located-objects that are spatially close to one another. The two located-objects

are then said to be collocated. In one sense, collocation can be seen as the most basic

symbolic location information. However, collocation is a relative notion. Therefore, it is

not suitable as the primary concept in our model.

Formally speaking, collocation can be represented as a ternary relationship between

two located-objects and a location pattern (which maps to a dynamic set of locations).

In e�ect, collocation is a predicate that can hold between to objects with respect to a

certain location pattern. It therefore lends itself quite naturally to describing conditions

or assertions over location data.

[LOCPATTERN]

A matching function maps patterns into a set of location names.

LocationPattern

match : LOCPATTERN! PLOCNAME
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Collocation

LocationPattern

Position

colloc : P(OBJNAME�OBJNAME� LOCPATTERN)

8o1;o2 : OBJNAME; p : LOCPATTERN �

(o1;o2;p) 2 colloc,

(9 ln : LOCNAME �

(ln 2match(p)) ^ ((o1; ln) 2 loc) ^ ((o2; ln) 2 loc))

Thus, two located-objects are collocated with respect to a particular pattern if, and only

if, there is at least one common location which matches this pattern.

This notion of collocation is based purely on the syntactic matching of location names.

The matching process can be optimised by using only locations corresponding to a zone

of proximity if there are multiple matches (see examples).

Collocation is a powerful abstraction when it comes to specifying constraints. Here

are some examples:

� colloc(Joe,Fred,Room@429:Huxley). Joe and Fred are in Room 429 in Huxley.

� colloc(Joe,Fred,<4m). Joe and Fred are less than 4m apart from each other. This

can be rewritten since

colloc(Joe,Fred,<4m) iff loc(Joe,<4m@Fred) or loc(Fred,<4m@Joe).

� colloc(Joe,Fred,Room). Joe and Fred are in the same room. Again, this can be

optimised using

colloc(Joe,Fred,Room) iff loc(Joe,Room@Fred) or loc(Fred,Room@Joe)

These examples show how the colloc predicate can be used to de�ne constraints over the

locations of located-objects. Such constraints can be readily employed in event conditions

or location-dependent database queries.

3.5.4 Distance

So far in this chapter we have ignored all spatial relationships but inclusion (overlaps were

derived from inclusion). While this allows an accurate static model of how located-objects

relate to locations, it makes queries of the type \Find the nearest ..." di�cult to answer.

To solve this problem, we need to include a notion of distance into our location model.

[DISTANCE]

We do not specify how distance should be represented by the location model, but we

do say that distance values should at least be partially ordered.
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Distance

Irre
exivePartialOrder[DISTANCE]

dist : OBJECT�OBJECT! DISTANCE

� : DISTANCE$ DISTANCE

8o1;o2 : OBJECT �

dist(o1;o1) = dist(o2;o2)

8o1;o2 : OBJECT �

(: o1 = o2)) (dist(o1;o1) < dist(o1;o2))

8d1;d2 : DISTANCE �

(d1 � d2), (d1 = d2 _ d1 < d2)

Distance is directional, and it also depends on certain assumptions about the mobility

of a located-object. The distance from A to B when going by car will be di�erent from

the distance by plane.

DistanceNamed

Distance

NameResolver

dists : (OBJNAME�OBJNAME) 7! DISTANCE

8o1;o2 : OBJNAME �

dists(o1;o2) = dist(resolveObj(o1); resolveObj(o2))

Ideally, we would like to de�ne distance on top of the previously de�ned location

hierarchy. As it turns out, the notions of distance between objects and geographical

inclusion between areas are completely orthogonal. Theoretically, the distance between

two objects does not have any impact on the likelihood of the two being in the same

location area. Only if the maximum possible distance between two objects in a given area

is known does such a dependency exist. Therefore, we conclude that distance, along with

geometric inclusion, is a basic and axiomatic notion of the location model.

Having the de�ned the concept of distance, we can now specify the notion of \nearest"

(which is of great importance for location-awareness).

Nearest

Distance

nearest : OBJECT� POBJECT! POBJECT

8o1 : OBJECT; O : POBJECT �

nearest(o1;O) = fo2 : OBJECTj

o2 2 O ^ (8o3 : OBJECT �

(o3 2 O) (dist(o1;o2) � dist(o1;o3))))g

This function yields a set of objects because multiple objects may have the same

distance, and because the set of input objects may be empty.
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A similar function needs to be speci�ed over location names:

NearestNamed

Nearest

NameResolver

nearests : (OBJNAME� POBJECT) 7! POBJECT

8on : OBJNAME; O : POBJECT �

nearests(on;O) = nearest(resolveObj(on);O)

Collocation versus Distance Collocation and Distance are di�erent concepts with

the common purpose of modelling spatial proximity between located-objects. In fact, we

can construct locations as zones of proximity around located-objects to capture a binary

notion of distance. However, collocation is not an appropriate abstraction when trying to

�nd the located object with the minimum distance. On the other hand, distance is not

very helpful if we are interested in a more abstract notion of distance, such as \in the

same room" or \on the same street". Then, collocation is the more powerful abstraction.

3.5.5 Examples of use of locations, collocations, and distance

To conclude the section about our notation for location information, we have assembled

some examples showing the application of constraints in event conditions, location-

dependent queries, and for location-dependent access control.

Event Conditions When an event condition becomes true, the event is triggered. This

principle is used, for example, by Schilit's context-triggered actions [58].

� when colloc(Jeff Magee, Jeff Kramer, Room) and

colloc(Jeff Magee, Morris Sloman, Room) => start the meeting. Colloca-

tion is not necessarily transitive, but colloc is.

� when loc(x, <3m@MyCar) => set off car alarm. When somebody is near my

car, set o� the car alarm.

� when loc(MyChild, >20@Me) => raise alarm . When my child is more than 20

metres away from me raise an alarm.

Queries SQL with object-oriented extensions, such as used by Illustra [25], lends itself

naturally to construct database queries with location information.

� Query \Find the nearest restaurant".

SELECT Name FROM Restaurants ORDER BY dists(Me,Name) ASC (procedurally)

or, return nearests(Me, SELECT Name FROM Restaurants) (declaratively)

� Query \Find a restaurant within 1 km".

SELECT Name,Address FROM restaurants WHERE dists(Me,Name) � 1km
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location ::= hareai `@' hpositioni
area ::= hlocation concepti j hgeometric de�nitioni
�xed position ::= hgeometric positioni j hsymbolic positioni
geometric position ::= hreference systemi `:' hcoordinatesi
symbolic position ::= (hsymbolic positioni `/' hlabeli) j hwell known positioni

location predicate : loc(hobjecti,hlocationi)
collocation predicate : colloc(hobjecti,hobjecti,hpattern expressioni)

Table 3.1: Summary of location notation

� Query \Who is with Je� Magee in a room?".

SELECT Name FROM Persons WHERE colloc(Name, Jeff Magee, Room)

Access control Recently, there has been interest in location-dependent access control.

The idea is to modify a principal's access rights according to his or her physical location.

Equally, it is important to prevent unauthorised access to location information.

� A+: SOURCE f �x:loc(x;Room) g TARGET

i.e. Members of SOURCE may evaluate the loc() predicate over Room and members

of TARGET.

� A+: SOURCE f � l:colloc(x;y; l) g TARGET

i.e. Members of SOURCE may evaluate the collocation predicate with respect to any

pattern from TARGET.

� A+: SOURCE f access g TARGET WHEN loc(SOURCE, France)

i.e. Members of TARGET are only accessible from within France.

The policy syntax is based on [44], except for the lambda notation, introduced to

clarify which of the constraint's parameters is the policy's target.

3.6 Chapter Summary

In this chapter, we have examined location models to support location-aware applications

and services. We have clari�ed the distinction between geometric and symbolic location

models. From an analysis of existing location-aware applications and location sensors we

have concludeds that both representations need to be accommodated by a general location

service.

Hence, we have de�ned and speci�ed geometric and symbolic models with a view

to integrate them. The result of the integration is a hybrid, semi-symbolic model that

decouples application representation from the sensor representation of location informa-

tion. The hybrid model can accept location data in both forms, and all data in the model

can be viewed from both perspectives. This functionality is supported by a prototype
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implementation (cf. appendix D). The hybrid model is hierarchical and thus allows for

multi-resolution processing of location data. This feature is essential for building a scalable

and manageable location service.

In order to facilitate name-based access we have de�ned a scalable naming scheme for

locations, which is summarised in table 3.1. The scheme accommodates both symbolic and

geometric location data. Also, mobile locations are supported. An algorithm to resolve

such names has been outlined.

Reasoning about location data is further facilitated by predicates exposing the relation-

ships among locations and located-objects. We have discussed the application of such

predicates in constraints for event conditions, database queries, and access control

conditions.
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Chapter 4

Service Models

The previous chapters have described how locations can be modelled, and how location

information can be represented. In this chapter, we exploit those models by proposing a

general location service based on a hierarchical location model. We start by specifying the

service functions for both symbolic and geometric location information. Then, we discuss

how the components of the service functions map to concrete location service architectures.

Finally, we outline an architecture for a global federated location service.

What is a location service?

The notion of a service is widely used in the �elds of operating systems and distributed

computing. However, it is useful to clarify at this point what is meant in this context by

a service.

De�nition 3 A service is a shared object encapsulating shared resources.

De�nition 4 A service access point is an instance of an interface to a service.

To de�ne a location service, we need to identify the shared resources encapsulated by

it. These resources consist of:

� Positioning and tracking systems (Hardware), e.g. an Active Badge system.

� Historical location data (Dynamic data), e.g. the last known locations of located-

objects.

� Geographical information (Static data), e.g. digital maps.

� Value-adding services (Service logic), e.g. event dissemination, access control,

movement prediction.

A location service is a shared object that integrates those components in order to

provide clients with a high-level interface to obtain location information. Location-aware

applications are a category of such clients.

However, we should not base a de�nition on the above enumeration of encapsulated

resources alone. What really matters is the pragmatic aspect: What does it do?

67
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De�nition 5 A location service is a shared object that provides information about the

physical location of located-objects.

We do not specify the architectural framework nor a single set of functions for such

a service. Both need to be chosen for a concrete type of location service (such as general

location service, mobile telephone subscriber tracking, etc.) to address the balance of

requirements for the target system.

We aim to provide a toolkit of functionality and architectural approaches to build

di�erent types of location services, and more generally, to make applications location-

aware. So while our work primarily views a location service as a shared resource on the

network, a stand-alone application (e.g. a GPS hand-held receiver) is seen as a degenerate

case of a system with a location service.

4.1 Functional requirements and taxonomy

The de�nition given above leaves open many aspects of the design of a concrete location

service. In the following, we examine the most important of those choices and their

motivating requirements. Thus, we de�ne a design space [33] for location services by

identifying its dimensions, both functional and structural.

4.1.1 Location model

As discussed in some length in chapter 3, there are two main types of location model:

geometric and symbolic. The choice of location model depends directly on the format

supported by the sensors, and the formats required of the interface of the service. While

the internal location model does not need to coincide with the internal format or formats,

it makes sense to use an internal format that is easily translated to external formats. For

example, if all inputs and outputs are geometric, it would most probably be a bad choice

to employ symbolic locations internally.

The location model can also include knowledge of spatial relations between locations,

especially inclusion and distance. Those relationships determine what kinds of queries

are possible. For example, a \nearest" query necessitates a notion of distance between

locations or objects. Similarly, multi-resolution tracking requires knowledge of the spatial

inclusion relationship.

In some cases, the design phase for a location service not only establishes the location

model to be used, but also de�nes types of locations and their characteristics (e.g. streets,

highways, bridges in the case of a vehicle-tracking service). This results in very special-

purpose location services, which can then be optimised for a certain operating environ-

ment. Such optimisation often includes static partitioning and distribution of the location

information. Hence, the choice of the location model is often intertwined with the architec-

ture, and especially with the distribution model of the target system.

Note: At this time, there does not seem to be a location service with a freely de�nable

set of locations, perhaps with dynamically adapting (possibly self-organising) architecture.

This is an avenue for future research.
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4.1.2 Single vs. Multiple choices

The scope of the location service is narrowed by restricting certain types of entities to be

singletons. Restrictions of this kind often reduce architectural complexity.

Tracked objects. With only one tracked object the location service degenerates to a

personal tracking system. An example is a hand-held GPS receiver.

Monitored locations. This is the surveillance approach (\Who is in the building?").

However, in practice such systems tend to di�erentiate between more than one

location. We believe that restricting a location service to a single location is not

very useful.

Sensors. This can either mean one of the two cases discussed above, or we have a very

capable sensor, possibly an integrated multi-sensor system appearing to be a single-

ton. For example, we can treat a closed location tracking system (such as an Active

Badge system) as a single sensor.

Clients. Although a service by de�nition is not restricted to a single client, we wish to

include the case where the location service is dedicated to serving a single instance

of a location-aware application (such as a tra�c-monitoring centre).

We concentrate on the general case: multiple instances of objects, locations, sensors,

and clients.

4.1.3 Security

Open systems, by de�nition, are vulnerable to attacks on secrecy, availability, and integrity

of information. In the context of a location service, two aspects are especially important:

Privacy Improper disclosure of people's locations infringes their privacy.

Trustworthiness Applications and their users may base decisions on location data.

Hence the service must be trusted either to deliver correct and complete information,

or to 
ag possible de�ciencies.

Both issues apply also to other kinds of personal data, but location data is di�erent

in a number of ways. Firstly, the data itself is highly dynamic. Secondly, the need for

privacy is variable, depending, for example, on the person's current environment. Thirdly,

there are other paths for the disclosure of location information (e.g. through personal

observation). An unnecessarily secretive location service will limit functionality without a

gain in security. Finally, the trustworthiness of location data is challenging because most

of the information is gathered automatically from sensors that are vulnerable to deception.

These challenges can be addressed in a number of ways by the architecture and design

of the system. Some systems may rely on auditing measures (such as revealing the identity

of the person querying somebody's location), others will prefer enforced access control.

There appears to be a trade-o� between the involvement of the service itself in the

security measures (undesirable) and the granularity of those measures (�ne-grained control

is desirable).



70 CHAPTER 4. SERVICE MODELS

4.1.4 Correctness and completeness of information

Ideally, a location service should provide correct and complete location information.

However, both qualities are di�cult to achieve because of the physical characteristics

of positioning and tracking systems.

Many applications survive without perfect information. The Internet's current domain

naming service (DNS [46]) sometimes fails to resolve a name (incompleteness), or the

resolution yields the wrong IP address (incorrectness). Hence, applications have no choice

but to tolerate these de�ciencies. We believe a similar approach is viable and necessary for

large-scale location service implementations. This view is also supported by the end-to-end

argument [57].

Nevertheless, higher quality information will be needed in some cases. This may require

special location sensor systems that cannot be fooled without major e�ort. Further, the

application needs to be made aware of the quality (trustworthiness) of the data it receives,

by tagging either data items or service instances as a whole.

4.2 Functional decomposition

We have de�ned the location service in terms of its minimum functionality (de�nition 5),

which is basically a tracking function. In practice, this tracking function will require some

additional knowledge: a location directory and a spatial relationship database. Further,

value-added services, such as tracing and prediction may be required. Hence, a location

service must be seen as a set of services, con�gured by local requirements.

We have identi�ed a tool-kit of functionality used to design and implement a location

service. Each element corresponds to an `encapsulated resource' (page 67).

� Tracking Function (Historical location data). This function provides the last

observed positions of located objects. It can be subdivided into an object tracking

function which keeps track of selected located-objects, and a location monitoring

function, which monitors a selected location for located-objects. This function is

also responsible for providing sighting histories if required.

� Directory Function (Geographical information). The directory function is respon-

sible for translating between di�erent representations of location information. It

includes a symbolisation function, a desymbolisation function, and a coordinate

translation function. We have already speci�ed a simple directory function with

asArea in x 3.3 (page 53), and area/leastMatchingLoc in x 3.4 (page 55).

� Spatial Relationship Function (Geographical information). This provides

information about the spatial relationship between locations. Knowledge of spatial

relationship is important both for acquisition and dissemination of location informa-

tion. Digital maps and movement planes are examples of this category. The spatial

relationships of interest are inclusion (speci�ed in x 3.2.3, page 51), and distance

(speci�ed in x 3.5.4, page 61).
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� Acquisition Function (Positioning and tracking system). This is responsible for

gathering and pre-processing sensor data. It includes reception function, abstraction

function, and fusion function. It is discussed in detail in chapter 5.

� Trace Function (Historical location data). The movement trace function

reconstructs continuous movement models from the available discontinuous position

measurements. Includes history function, and prediction function. We describe this

function in chapter 6

� Dissemination Function (Value-adding services). This function is responsible

for making the data provided by the other function accessible to clients. An

important feature is asynchronous information, which may be provided either by

events or event-triggered standing queries. The dissemination function consists of

query function, an event function, and a standing query function.

� Access Control Function (Value-adding services). Access control prevents

unauthorised disclosure of location information as well as unauthorised data acquisi-

tion. It consists of security control and update control .

The dependencies between these functions are shown in Figure 4.1. In the �gure,

a module depends on all modules beneath it. That is, a module can be used only if all

supporting modules are present, too. However, it may be possible for module to work with

a reduced functionality when non-essential supporting modules are missing. For example

the Tracing function could work in reduced form (i.e. without interpolation or prediction)

if the Spatial Relationship function is unavailable. Similarly, the dissemination function

would work with only the tracking and directory functions supporting it.

4.3 Speci�cation of the core functionality

The core function of the location service is tracking. Without the tracking function, we

would have a geographical information system (GIS) at best. Also, tracking potentially

involves a large amount of dynamic state and is therefore a key area of the architecture.

For these reasons, and in order to have a formal basis for the following chapters, we

specify the tracking function using the Z-notation [52]. For the purposes of this speci�ca-

tion, we shall consider a service that provides the object tracking function and the location

monitoring function. This functionality is supported by a directory function and a spatial

relationship function as speci�ed in chapter 3. Further, we assume dissemination by a

query function. The acquisition function is modelled by simple updates.

Our approach is valid for both symbolic and geometric models. We have speci�ed

tracking functions for symbolic, geometric, and hybrid models (see appendix C). Here, we

focus on the symbolic case, which we believe to be the most important.
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Location Sensors

Location-aware Clients

Tracing

Spatial
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Directory

Acquisition

Dissemination

Access Control

Tracking

Access Control

Figure 4.1: Layers of a location service
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SymbolicLocationService

LocationHierarchy

SymbolicLocator

8o : OBJECT; l1; l2 : LOCATION �

((o; l1) 2 locatedAt ^ (o; l2) 2 locatedAt)) (l1; l2) =2 con
icts

This schema states that the service uses a LocationHierarchy (cf. x 3.2.3, page 51)

as the spatial relationship service. The SymbolicLocator (cf. x 3.2.3, page 51) provides

an object tracking function. As a constraint, an object can only be in non-con
icting (that

is, overlapping) locations at the same time.

SObjectQuery

�SymbolicLocationService

target? : OBJECT

result! : PLOCATION

result! = fx : LOCATIONj(target?;x) 2 locatedAtg

An object query returns the set of currently known locations for a given object. In

theory, it could return also all the sublocations of each of the locations (see SObject-

QueryComplete, appendix C). Since the location hierarchy is typically static, the

simpler query should be the default behaviour. This is an instance of the end-to-end

argument [57].

A location query returns all the objects at a given location, not including sub-locations:

SLocationQuery

�SymbolicLocationService

target? : LOCATION

result! : POBJECT

result! = fx : OBJECTj(x; target?) 2 locatedAtg

Similarly to schema SObjectQueryComplete, we have additionally speci�ed an

iterative version, SObjectQueryComplete (appendix C) which cycles through all the

target's sub-locations. We prefer SLocationQuery because it is more likely to yield

a scalable implementation. The iterative, complete versions of both queries may be

implemented as an option.

Location updates are submitted by the acquisition function. We model updates so

that an update overwrites all previous information in the locator:
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SUpdate

�LocationHierarchy

�SymbolicLocator

l? : LOCATION

o? : OBJECT

locatedAt0 = (fo?g �C locatedAt) [ f(o?; l?)g

There are two potential pitfalls with this speci�cation of an update. Firstly, a stateless

service would not need updates. Hence, the update function should be seen as optional.

Secondly, less precise updates will overwrite previous accurate updates. (A mobility model

is required in order to detect this. Mobility models are functionally a part of the trace

function. Chapter 6 o�ers a more detailed discussion of this area.)

Implementation The database-centric location service described in appendix D

implements the above speci�cation, along with queries and updates over geometric location

information. However, the prototype's algorithmic structure di�ers from the speci�cation

because the locatedAt relationship is computed on-demand rather than for each update.

This is permissible since the external behaviour matches the speci�cation.

4.4 Architectural considerations

System model Location-aware systems are composed of location sensors, a location

processing layer, and location-aware application (Figure 4.2). Focusing on distributed

location-aware systems, we can further subdivide the location processing layer into a shared

location service, as well as application and sensor agents (Figure 4.3). This structure is

adopted from distributed directory services (see [19], page 823).

Service: Object tracking, digital maps, event publication

Sensor: GPS+GSMSensor: GPS+GSM Sensor: GPS+GSM

Client: GUI

Service: Tracking, maps

Sensor: GPS

Client: GUI, Route planning, scheduling, emergency assistance

(a) hand-held GPS (b) vehicle-tracking system

Figure 4.2: Location-aware systems
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LSSA - Location Service Sensor Agent
LSAA - Location Service Application Agent

Location-aware

Sensor

application

API

API

Location Service LSAALSSA

Figure 4.3: Service model: external interaction

Internally, the location service consists of two logical entities: location register (LR)

and object register (OR) (Figure 4.4). The LR maintains location-speci�c state and

performs location-centric processing. The OR maintains state information for located-

objects and performs processing related to located-objects. Note that both LR and OR

can be distributed. Further, both LR and OR can be implemented by the same facility,

or be entirely stateless.

We model the register entities from the above discussion in terms of agent and database

(Figure 4.5). By de�nition, a register contains persistent state. Entities that merely route

and process information we call processors. These can be thought of as a register without

database.

4.4.1 State

Some of the function of the location service, such as acquisition, tracking, tracing, and

dissemination may contain state. For example, the last known position of each located-

object is often persistently stored by a location service to make location information

available when position measurements are impossible.

Which information is stored rather than computed on demand depends on the desired

synchronisation patterns and on performance considerations. The same functional design

can often be mapped to architectures that are very di�erent from one another as far as

the amount of state and its distribution are concerned.

For this discussion, we consider the state of the location service as a set of associations

between locations and located-objects as speci�ed in schema SymbolicLocator (page 51).

Stateless design. All queries ultimately trigger actual location measurements, for

example a radio triangulation. This approach is appropriate if the service is used

only infrequently. An example is the location-dependent emergency call feature for

mobile telephones, called \wireless E-911" in the USA (see [85], page 259).

Maximum state. All observable location changes trigger state updates. Such a solution

would be adopted if on-demand measurements are unavailable, or if the volume and

frequency of queries outweighs updates. Here, a useful metric is the query-to-update

ratio, also known as call-to-mobility ratio [28].
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LSSA LSSA LSSA LSSA

LSAA LSAA LSAA LSAA

LSSA - Location Service Sensor Agent
LSAA - Location Service Application Agent

Location
Register
(LR)

Location Service

Object
Register
(OR)

Figure 4.4: Logical architecture

Register Agent Register DB

Register =

Figure 4.5: Register model
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Reduced state. Only certain observable location changes trigger updates. If more �ne-

grained data is required, additional measurements have to be taken on-demand. This

approach reduces the update volume and is therefore suitable if full updates would

overload the system while full on-demand measurements are impractical. The GSM

system [48] uses the reduced state approach.

The amount of state kept by the location service has a profound e�ect on its scope

and scalability. While many systems assume a characteristic query-to-update ratio, it is

possible to dynamically adapt the amount of state according to current load conditions.

For example, caching is a common technique of optimising access to frequently used data

by dynamically creating additional transient state.

4.4.2 State distribution

In our system model (Figure 4.3), we distinguish location service, application agent

(LSAA), and sensor agent (LSSA), leaving open the design choice of how state is

distributed between location service and external agents. This we refer to as external

state distribution. Further, the location service itself may be a distributed system. Hence,

the internal state distribution needs to be considered.

External state can be situated in one of three places:

Sensor-side. Location information can be stored at the point of measurement, such as

the GPS receiver. This is practical for positioning systems where located-objects

have a dedicated sensor (e.g. GPS), or if only a location monitoring function is

required (e.g. for tra�c monitoring).

Client-side. Location information can be stored at the point of query, i.e. in the client-

side agent. This may compensate for lack of state at the service or sensor level, or

may facilitate disconnected operation. However, client-side state can be wasteful if

the same location information is stored (and updated) at many clients.

Centralised. Location information can be stored by the shared service facility.

Centralised state is often necessary in order to avoid ine�cient global broadcasts of

queries and updates. Centralised state is typically provided by a logically centralised

object register (OR), or a logically centralised location register (LR) (Figure 4.4). In

GSM, the OR is implemented centrally in the home location register (HLR). There

is no logically centralised LR, although a distributed location register is provided by

the VLR.

The character and distribution of logically centralised state greatly in
uence scalability

and performance of a location service. We think of the distribution of internal state as

having the orthogonal dimensions of state replication and state partitioning.

Replication

Replication of state means that multiple copies of state data are maintained at di�erent

nodes in a distributed system. Typically, it is workable only if queries to the replicated
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data items far outnumber their updates. If updates become too frequent, either availability

or consistency su�ers. The tradeo� between availability and consistency is determined by

the consistency control mechanism. Strong consistency (such as guaranteed by two-phase

locking) reduces data availability if updates become too frequent. Weak (i.e. eventual)

consistency (such as provided by DNS' replica timeout mechanism) results in incorrect

query results if the data is updated too often.

Thus only slowly-changing data items can be replicated with strong consistency. Even

then, there need to be compelling reasons to justify the additional communicational and

computational complexity. Typical large scale distributed systems, such as DNS or GSM,

only guarantee weak replica consistency. This indicates that scalability is much easier to

achieve with weak consistency.

Since high-resolution location data may change too quickly to contemplate replica-

tion based on multiple identical copies, multi-resolution replication needs to be employed.

Considering the data items in question (that is location, located-object pairs), there is an

obvious correlation between the physical size of the location and the probability that the

data item will be updated (i.e. become valid or invalid). Replication of location data at

a reduced level of detail is used, for instance, in the GSM system.1 Alternatively, it is

possible to identify dynamically located-objects that either move slowly or whose location

is queried often. Then, location information related to those users can be cached. Such a

scheme has been proposed for the PCS context [28].

Weakly consistent replication is sometimes combined with forwarding pointers [3]. A

forwarding pointer is essentially a temporary and unreliable local modi�cation of a single

out-of-date replica. It provides a hint towards the correct information.

Partitioning

Partitioning of state subdivides state entities into disjoint pieces and assigns them to

di�erent nodes in a distributed system. It allows distribution of load resulting from queries

and updates among multiple nodes without the constraints of consistency control. This is

especially e�ective if access is evenly spread over all partitions. As a drawback, sometimes

a partition directory is required in order to �nd the partition containing a certain piece

of state. As far as location information is concerned, the two main approaches to state

partitioning are by location and by located-object.

Combination

Replication and partitioning will normally be combined in order to build hierarchical server

structures. Figures 4.6 and 4.7 show two examples.

Partitioning by location means that each node is assigned a coverage area such that it

only stores state related to that area (i.e. the locations of located-objects within it). When

combined with replication, this naturally leads to hierarchic server structures (Figure 4.6,

1The HLR only knows the location area, whereas the VLR has more detailed information ([48],

page 102).
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Signalling links

Coverage Area

Location Databases

Figure 4.6: State partitioning by location

adapted from [26]). Highly scalable systems, such as mobile telephony systems, have been

designed with this pattern. In a two-level form, this approach is used in current mobile

communications systems, such as GSM [48]. For better scalability, deeper hierarchies have

been proposed, especially for PCS [26, 73].

Partitioning by user (i.e. by located-object) means that one or more located-objects

are assigned to a node such that the node only stores data related to those objects.

The extreme case is a 
at community of user-agents as proposed in [66]. This approach

eliminates the need to trust location servers as repositories of private information [68].

Alternatively, a hierarchy of user state nodes can be constructed following some arbitrary

structuring of the user space (Figure 4.7). This requires some kind of state replica-

tion. Considering the processing updates and queries, this user-partitioned hierarchy is

as scalable as the location-partitioned hierarchy described above. However, the latter has

the bene�t of lower communication costs because location state nodes will be \near" to

the location they are responsible for. This cannot be said for user-state nodes.

It should be noted that certain distribution patterns entail additional state (\meta-

state"). For example, a partitioned database may need a partition index to avoid exhaus-

tive searches through all partitions. Hence, the amount of state in the system is not

independent of distribution pattern.
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Root User Register

User Register

User agents

Figure 4.7: State partitioning by located-object

4.4.3 Distribution of processing

Considering Figure 4.3 (page 75), processing of location data can be performed sensor-

side, client-side, or somewhere \in the middle". These processing tasks can be subdivided

into query-related and update-related processing. While distribution of tasks is closely

related to distribution of state, it is possible to migrate processing tasks in exchange for

an increased communications cost.

Sensor-side processing involves measuring positions, which can involve complex

computations (as in the case of GPS). As more and more processing power becomes

available in the form of specialised microprocessors and digital signal processing chips,

there can be considerable processing resources available at sensor level. Sensor-level

processing is highly desirable because it tends to reduce the bandwidth requirement.

However, it is constrained by the amount of information available to a single sensor.

Client-side processing is desirable because it reduces the complexity of the servers'

tasks, and thus leads to more light-weight and robust servers. Further, load on the servers

is reduced. However, client-side processing may lead to increased message volumes between

client and server, because the principal 
ow of information is from location service to

application. Further, the client may be unavailable to receive communications from the

server during periods of disconnection.

Centralised processing While sensor-speci�c computations are best carried out by

sensors, and complex client-speci�c computations by clients (the end-to-end argument put

forward in [57]), there often is a set of processing tasks which is so closely coupled to

shared state that it cannot be performed e�ciently by either sensor or client. E�ectively,

shared state leads to shared processing. Shared state is often logically centralised,

implying logically centralised processing. As with the distribution of location state,
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centralised processing facilities can be partitioned according to location or located-object

and physically distributed.

4.5 Control 
ow and synchronisation

A system with a location service may be viewed as a network of processing

entities. The mode of communication between these entities (\push"/asynchronous,

\pull"/synchronous) is related to state distribution and also a�ects the functionality

available to clients.

Di�erent location sensors support di�erent communication modes: Active Badge

sensors with the abpoll driver support only \push"-mode, while the Unix ruser RPC

service [70] supports only \pull"-mode. On the other hand clients require asynchronous

noti�cations (\push"), queries (\pull"), or both. It appears that reconciling di�erent

communication modes is an important challenge of a location service. A location service

that builds client \push" on top of sensor \push", or client \pull" on top of sensor \pull"

can be implemented easily and without any state. If the communication modes of sensors

and clients are mismatched, the service itself needs to hold state. If the client supports

only \push", then it is the service's responsibility to obtain updates for centralised state.

4.6 Architectural examples

Having discussed the main design issues for a location service architecture, in this section

we examine the architecture of two deployed location services. Then, we propose an

architecture for a general, global location service.

4.6.1 Xerox PARC

The location service architecture developed at Xerox PARC [66] follows both partition-

by-location and partition-by-user patterns, supporting our belief that a general location

service will typically expose both patterns.

As mentioned above, most location state is held by the user agents, which act as partial

object registers. They get their information from lower-level location services (Active

Badges, ruser daemons). These we have labelled as stateless location processors (although

they might be PLRs or PORs in their own right). Geographical space is subdivided into

regions, each serviced by a location broker, which thus plays the role of a PLR.

No logically centralised OR or LR exist, although their functions could be easily

provided by adding an object directory and a location directory to the system (see x 4.6.3

below).

4.6.2 GSM

The GSM architecture [48] basically follows a partition-by-location approach (Figure 4.9).

That is, it can be modelled as a tree of nodes each with its own coverage area. Nodes

at the same level have disjoint coverage areas, the area of a parent includes the area of
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Figure 4.8: Location service architecture of the Xerox PARC ubiquitous computing

environment

its children. The root entity is the home location register, which ful�ls the function of a

central OR. The next level is made up of visitor location registers (VLR, collocated with

mobile services switching centres). The VLRs form a distributed LR, with no logical centre

(single point of query). Location information is replicated in HLR and VLR, with the VLR

having more detailed location information but only a subset of the HLR's located-objects.

The replica control scheme e�ectively supports eventual consistency between HLR and

VLRs (see [48], page 471). Other mobile telephone standards, such as IS-41, follow a

similar approach for replica control [27]. The nodes further down the tree, base station

controllers and transmitters, do not explicitly store location information and are therefore

shown as stateless location processors.

The mobile terminal, i.e. GSM phone, monitors available cells and decides which to

use. Thus we can say that the phone hosts the location service sensor agent LSSA. The

phone itself cannot access the location information stored in HLR or VLRs, that is, it

cannot actually host a client to the location service. Location-aware applications, or at

least their agents, LSAA, must run on the �xed network (for example, in the mobile

switching centre). Such applications include the setup of mobile-terminating calls, and

the generation of location-dependent tra�c reports.

4.6.3 A global location service

The above sections have discussed general aspects of location service, in conjunction with

a discussion of existing architectures. We now propose a novel architecture that overcomes

some of the shortcomings of existing approaches. The principal aim is to achieve a scalable

design for multiple, non-hierarchic administrative domains. Further, we do not wish to

tie the architecture to either user-agent or location-server approach, and both should be
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HLR

BSC BSC

BST BST BST

MSC/VLR MSC/VLR

Object Register

Partial Location Registers

Location Processors

MSC - Mobile services Switching Centre
VLR - Visitor Location Register
BSC - Base Station Controller
BST - Base Station Transmitter

HLR - Home Location Register

Figure 4.9: Location management architecture of GSM

allowed to co-exist.

The principal idea of the architecture is a 
exible partitioning and distribution scheme

for both OR and LR. We achieve this by introducing logically centralised directories for

located-objects and locations, object directory (OD) and location directory (LD), respec-

tively (Figure 4.10). These provide a layer of indirection that hides physical location

and structure of user-related and location-related information in the system. It does not

matter, for example, whether user-related information is stored by a user agent or by

a central HLR. As a result, a single framework can cover an architecturally heteroge-

neous system. The functionality of OD and LD could also accommodate mobile agents

for located-objects and locations.

Figure 4.11 gives an overview of our architecture. The dotted lines show administra-

tive boundaries. The service consists of a central directory for both located-objects and

locations, plus a number of independent location service providers. The central directory

must know the service providers for all located-objects and locations in the system. This

implies that if a located-object's (or a location's) agent permanently moves to another

service provider, the central directory has to be updated. We also anticipate that the

location directory is fully aware of the hierarchical structure of the location space such

that queries over multiple location service providers can be correlated.

Each location service provider covers a subset of sensors, located-objects, and locations.

In the extreme case, a location service provider could cover a single location or located-

object. Located-objects, locations and sensors must be allowed to overlap between service

providers. Located-objects may be allowed to roam between location service providers. In

this case, a hand-o� procedure between service providers would have to be executed. In

order to avoid frequent updates of the central directory, stationary or slowly-moving home
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Figure 4.10: Distributed location and object registers
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Figure 4.11: Proposed architecture for a global general-purpose location service
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agents would be employed.

The sensor agents (LSSA) are each connected to either a PLR or a POR of a location

service provider, depending on whether the sensor is location-centric (e.g. an Active Badge

sensor), or user-centric (e.g. a GPS receiver). Sensor and sensor agent do not necessarily

belong to the location service provider.

In this architecture, the location service application agent (LSAA) has the task of

integrating data gathered from di�erent components. Firstly, the LSAA needs to consult

the directory before performing any query regarding a location or located-object. Secondly,

the LSAA must recognise and reconcile overlaps between service providers. For example,

in order to count the number of people in a certain building, it may be necessary to consult

multiple service providers and eliminate any duplicated results.

We have conducted some experiments with this approach in the context of an \Active

O�ce" location service (cf. x 5.8). There, a client program connects to two overlapping

location services, and integrates the results. This is feasible as long as there is a directory

relating the respective location models. Fusing heterogeneous asynchronous event noti�-

cations appears to be the most signi�cant di�culty.

We envisage that propagation of updates and events between service providers and

application agents would be supported by an underlying hierarchical event channel. This

infrastructure adaptively instantiates and garbage-collects sub-channels for events related

to particular sets of located-objects and locations. Equally, such a support platform could

selectively employ lower-level broadcast protocols when they are more e�cient than point-

to-point communication.

Our approach provides a framework for integrating heterogeneous location services

globally. The architecture separates concerns: global scope is provided by the central

directories (LD/OD), functionality is supported by the location service providers, and

communicational complexity is addressed by the underlying event distribution infrastruc-

ture. Therefore, we think that this is a promising approach to provide a global, scalable,

and general-purpose location service.

4.7 Chapter Summary

In this chapter we have de�ned the notion of location service: a shared object provid-

ing information about the physical location of located-objects. We have analysed which

resources would be encapsulated and managed by such a service, and which additional

service logic is required. Having thus clari�ed the scope of functionality of such a service,

we proceeded to identify the basic dimensions of its functionality. On this basis, we

proposed a functional decomposition (Figure 4.1 page 72). The basic service functionality

is supported by a formal speci�cation and a corresponding implementation (appendix D).

Since the functionality of a service constitutes only a part of its design, we have

proposed a system model addressing both structural layering and structural distribution

within the service, closely following the system modelling approach of the X.500 directory

service. Based on our model, we have identi�ed the basic dimensions of the design of a

distributed architecture: amount and distribution of state, distribution of processing, and
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control 
ow. By applying these dimensions to existing location services, we have derived

the fundamental patterns of partitioning by location and user.

Our architectural considerations were concluded by three examples, one of which is

our proposal for a general and global location service. Our approach is based on a federa-

tion of heterogeneous location service providers, with centralised support functions such

as directories and an event delivery service. By accommodating heterogeneous location

service subsystems we recognise that no single architecture or design is appropriate for all

located-objects or for all locations. Initial validation for this approach is provided by the

\Active O�ce" location service described in x 5.8.
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5.1 Requirements

Considering the global requirements for the acquisition function identi�ed in x 2.1

(page 21), spatio-temporal resolution, real-time delivery, global coverage, and

openness/generality are particularly relevant.

Spatio-temporal resolution This is a requirement that needs to be addressed by the

functional design. It appears that location-aware applications often require more detailed

information than is supported by location-sensor technology. Conversely, if information

is available, there is bound to be an application that uses it. Hence, the acquisition

layer should provide the means to achieve the maximum spatio-temporal resolution that

is supported by the input from the location sensors. Nevertheless, it is desirable to adapt

acquisition accuracy to application requirements in order to avoid unnecessary overheads.

Device
Location

Active Badges
Swipe Cards

Passive Infrastructure

Mobile
Object

Unaided
Navigation

Navigation using

Infrastructure-guided GPS, GSM

CCTV
Navigation

Location Infrastructure

Log, Compass, and Sextant

automated observer
human observer observed

Figure 5.2: Patterns of tracking and positioning

Openness and generality Figure 5.2 demonstrates the heterogeneity of the problem

domain, by showing that location sensors can be part of the infrastructure and/or the

mobile object. Further, there are various low-level control and data 
ows. The generality

requirement means covering important approaches to location sensing, while openness

means that new sensing technologies can be integrated as they are developed. This implies

a general functional design and an open architecture. In this chapter, we shall concentrate

on functional generality.

Real-time delivery of information If the location service as a whole needs to support

real-time information delivery, this must be based on real-time low-latency acquisition of

information, and needs to be supported by the structure (architecture) of the acquisi-

tion layer. In this chapter, we shall concentrate on functional issues enabling real-time
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information delivery if an appropriate architecture is chosen.

Global coverage This requirement overlaps with the generality/openness requirement

in that global coverage requires dealing with heterogeneous sensors systems. Additionally,

there is an implied requirement for a scalable architecture that can handle a large number

of sensors and an even larger number of located-objects. This is an architectural issue

that will be discussed in the following chapters.

5.2 Design considerations

Given the requirements elaborated above, there are a number of functional and architec-

tural dimensions to be considered when designing the acquisition layer.

5.2.1 Functional design issues

The internal data model is perhaps the most important design choice from the point of

openness and generality. To solve the problem of n heterogeneous inputs and m hetero-

geneous outputs the following solutions appear applicable:

� Choose an abstract internal representation. Then, m+ n translation functions are

needed.

� Use external formats internally. Providem �n translation functions to convert data.

As far as openness and generality are concerned, the �rst solution is preferable for extensi-

bility and independence from sensor-technology. Elements of the second approach may

be applicable for special-interest location data, that is, for data provided only by a few

sensors and used by a few applications.

Should the internal data model be based on geometric or symbolic locations? In a

heterogeneous environment, it seems that a hybrid location model is appropriate. Perhaps

surprisingly, there is also an architectural dimension to this choice. Geometric models seem

to be a good match for continuous stateful positioning systems, whereas symbolic models

are well suited for stateless event-driven systems.

Another interesting choice is how to treat spatially and temporally overlapping

information. Such overlaps are likely if heterogeneous sensor technologies are chosen.

While overlaps make the processing of location data more complicated, they also present

the opportunity to detect inconsistencies and improve accuracy. Hence, overlaps can

enhance correctness and completeness of location data.

5.2.2 Architectural design issues

Although we are not going to propose a particular architecture for the acquisition function

in this chapter, it is valuable to look at some of the issues involved to provide a background

for the functional design.
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� Positioning vs. Tracking . An acquisition function can be used in order to build

either a positioning or a tracking system. A positioning system measures its own

location with the help of the infrastructure (e.g. vehicle navigation systems [85]).

A tracking system measures the location of other located objects (e.g. the Active

Badge System [75]). Di�erent architectures are required for each case, although the

processing functions may be very similar.

� Local vs. Remote measurement . Tracking systems may be built on top of position-

ing systems, and vice versa. In such cases, the acquisition layer has the task of

providing a specialised location transparency. This also requires physical and logical

distribution of the acquisition function.

� Synchronous vs. Asynchronous dissemination. Applications are likely to require

both events and polling, while location sensors may only support one of the two.

� Discrete update vs. Continuous change. Location sensing is mostly opportunistic

(i.e. discrete), with the exception of integrated multi-sensor positioning systems

which can provide continuous information (see [85]).

� Stateful vs. Stateless sources. Location sources can also be classi�ed into stateless

and stateful sources. Stateless sources need to wait for the underlying hardware to

supply data, whereas stateful sources can provide information (i.e. current state)

continuously.

� Homogeneous vs. Heterogeneous sensors. Sensor types are often complementary in

their spatial and temporal coverage. Also, dissimilarity of their error pro�les makes

simultaneous failure unlikely. Therefore the architecture of the acquisition function

must be designed to cope with a variety of sensor types with di�erent computational

and communication characteristics.

Considering these dimensions of the architectural design space, we have identi�ed two

points (i.e. designs) that appear to be \natural" architectures for acquisition systems:

1. The stateless infrastructural location tracking system. Such a system uses a symbolic

location model to provide discrete updates via asynchronous events. This system

would be distributed covering many sensors of the same type. For example, the

Active Badges use this approach.

2. The stateful positioning system. This system would use an integrated multi-sensor

system to provide continuously changing geometric location measurements, which

can be retrieved at any point in time through synchronous queries. The system

would be mostly local using a mix of sensor technologies. Such an approach is used

today for in-car navigation systems.

This idea of a \match" between location model, information dissemination, state,

and distribution is certainly supported by our experience with building location services.

Things tend to become complicated if both approaches need to be combined. However,
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combination is necessary in order to build an acquisition function for a general-purpose

location service.

In our approach, we aim to provide the end-user functionality of the second approach

while using elements of the �rst approach internally. For the acquisition function, this

means focusing on event-based stateless information processing.

5.3 Functional structure

The acquisition component has to collect data from all the sensors in the system and

present it in a uni�ed way to higher levels of the application.

Reception

Abstraction

Fusion

Acquisition stack

Sensor 1 Sensor 2 Sensor 3

Figure 5.3: Simple acquisition stack

We model the acquisition module as stack of layers (Figure 5.3). There are three

principal layers: reception, abstraction, and fusion.

These three layers form the acquisition stack. As shown in (Figure 5.4), a single acquisi-

tion stack can receive input from either sensors or from other acquisition stacks. Hence,

the architecture is recursive, allowing for multi-stage acquisition trees. This structure

should also aid the partitioning and distribution of the acquisition function. Similarly,

openness is facilitated by this non-monolithic approach.

The acquisition stack model is architecture-independent and can be expressed in a

variety of architectural styles [62], such as pipe/�lter, layered, event-based, or object

oriented system. Below is a brief description of each of the layers as shown in Figure 5.3.

Sensors

The sensor layer comprises hardware and low-level software (�rmware) that is responsible

for operation of the tracking or positioning sensors. This is where low-level communication

protocols, such as the badge{sensor protocol of the Active Badge system or the satellite{

to{receiver protocol of the GPS system would be implemented.

Since such systems tend to be proprietary or vendor-speci�c, we cannot make any

assumption except that there is a communication protocol or API allowing the sensor

layer to be connected to the location service.



94 CHAPTER 5. ACQUISITION OF LOCATION DATA

Abstraction

Reception

Fusion

Reception

Abstraction

Reception

Abstraction

FusionFusion

Sensor 1 Sensor 2 Sensor 3 Sensor 5 Sensor 6Sensor 4

Figure 5.4: Tree of acquisition stacks

Reception layer

The reception layer supports distribution and synchronisation transparency by providing

a \sensor bus", a substrate for communication with location sensors.

Sensors may be attached to a set of sensor-dependent locations (e.g. radio cells), or to

a located-object. The acquisition layer removes dependencies on the identity of the sensor.

If a sensor is a positioning sensor rather than a tracking sensor, the reception layer hides

this by employing some wireless communications medium.

Abstraction layer

The abstraction layer uni�es the sensors' data representations. It therefore needs sensor-

independent data and con�dence models. Even if there is only one sensor type in the

system, e.g. badge sensors, it is useful to have an abstraction layer which hides, for

example binary identi�ers or low-level con�dence metrics. Such an approach keeps the

system open to addition of new location tracking systems as they become available.

Fusion layer

The fusion layer correlates the sightings belonging to the same located-object from various

sources. In this chapter, we only discuss the fusion of sightings at a single point in time.1

Since the data provided by the abstraction layer already has a homogeneous representation,

the main issues of fusion are to exploit overlap and to detect inconsistencies.

1Fusion over the temporal domain is discussed in chapter 6 (page 111).
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5.3.1 Layer mapping

The functional layers of the acquisition stack can reside on di�erent processing entities in

the system: on the sensor, within the service, or in the client. These mappings are not

mutually exclusive.

� Sensor-level acquisition functions can create multi-sensor systems that integrate

primitive sensors of di�erent types. To the outside world, the composite sensor

looks like a normal sensor with improved accuracy, coverage, and fault-tolerance.

� Service-level acquisition is performed within the location service to combine input

from multiple sensors relating to a single located-object. The aims are to shield the

application from the sensor details and to reap the bene�ts of multi-sensor integra-

tion.

� Client-level abstraction and fusion is carried out at the application level. This is

undesirable in most cases because it implies exposure to the heterogeneity of location

sensors. However, sometimes the client has additional, application-speci�c location

data that need to be combined with the input from the location service.

In the following sections, we present a mathematical model detailing data 
ow between,

and processing within, the layers of the acquisition stack.

5.4 Reception

The reception layer collects location events from various sensors. Therefore, its main

functional task is to resolve dependencies of single sensor contexts. For example, a sensor

may report on a number of its sub-locations. Knowledge of a sub-location is only useful

when the sensor itself is also known.

To characterise the functionality of each layer, we use a simple calculus of mathematical

functions. We use the following notational conventions: � denotes a sensor type, � denotes

a sensor. S denotes a sensor identi�er, L a location identi�er, T identi�es a certain time

(point or interval), O is a object identi�er. Superscripts denote context dependencies, e.g.

O� means object identi�er O as seen by sensors of type � . Subscripts denote indices.

Input We model the primary input of the acquisition stack as a set of events E. This

does not restrict the interaction style, since each location event could be delivered using

a variety of methods, including request-reply (pull) and groupcast (push).

The data exchanged between sensors and the reception layer has the general form:

E = fE1; :::;Eng

= f(�1; �1;T
�

1 ;L
�
1 ;O

�
1 ); :::; (�n; �n;T

�
n ;L

�

n ;O
�

n)g
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��
i
is the sensor identi�er for a sensor of type � , T�

i
is the sensor-type-dependent timestamp

(which may be missing), L�
i
is the location datum, O�

i
is the identi�er of the located-object.

Often only either L�
i
or O�

i
will be provided since they are relative to the sensor. Both

data items can contain auxiliary data, such as con�dence, velocity, or direction. All the

data exchanged depends on the sensor type �.

Processing and Output The processing functionality is characterised by the reception

function recept, which is applied to each incoming event. This function translates sensor-

dependent identi�ers of objects and locations into sensor-independent identi�ers (which

are still relative to sensor type �):

recept: (�; �;T� ;L�;O�) 7! (�; time�(T�); loc�(L�);obj�(O�))

loc�: L� 7! L�

obj�: O� 7! O�

time�: T� 7! T�

Also the timestamp can contain dependencies of the sensor instance. For example, sensors

might be situated in di�erent time zones but report sightings stamped with the local time.

Since the dependency on the sensor instance has been removed, ��
i
is now redundant.

The acquisition layer applies the acquisition function to each event in turn:

E0 = fE01; :::;E
0

ng

= frecept(E1); :::; recept(En)g

= frecept((�1; �1;T
�

1 ;L
�

1 ;O
�

1 )); :::; recept((�n; �n;T
�

n ;L
�

n ;O
�

n))g

= f(�1;T
�

1 ;L
�

1 ;O
�

1); :::; (�n;T
�

n;L
�

n;O
�

n)g

As a result, the reception layer produces a set of events independent of the sensor instances

where they originated.

5.5 Abstraction

The task of the abstraction layer is to map all sightings into a single, uni�ed, represen-

tation domain. This applies mainly to representations of identi�ers for located-objects

and symbolic locations, but also the representation of time values may be sensor-type-

dependent, in which case time values need to be translated, too. The abstraction function

is applied to each event in turn.

Input As produced by the reception layer, the abstraction layer accepts a set E0 of

sensor-independent events E0
j
. Each of the events must be interpreted against the context

of the type of sensor that produced it.
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Processing and Output Similarly to the reception function, there is an abstraction

function which translates sensor-type-dependent identi�ers into an abstract representation.

The translation function is selected by sensor type � .

abstr: (�;T� ;L� ;O� ) 7! (time� (T� ); loc� (L� );obj� (O� ))

time� : T� 7! T

loc� : L� 7! L

obj� : O� 7! O

E00 = fE001 ; :::;E
00

ng

= fabstr(E01); :::;abstr(E
0

n)g

= fabstr((�1;T
�

1 ;L
�

1 ;O
�

1)); :::;abstr((�n;T
�

n;L
�

n;O
�

n))g

= f(T1;L1;O1); :::; (Tn;Ln;On)g

Abstraction is applied to individual events. Hence, the output of the abstraction layer

is a set of abstracted events. The representation of the output events is free from sensor

dependencies.

5.5.1 Translation properties

At this point, we would like to devote some attention to the translation functions (time,

loc, obj). To be useful, these functions satisfy correctness and completeness properties.

Let f � 2 ftime� ; loc� ;obj�g be a translation function, and representation domains

D� and Dabstr, such that f � : D� ! Dabstr. We compose all f � for a set of sensor types T

into a single function:

fabstr: (�;d
� ) 7! f � (d� ), d� 2 D� and � 2 T

Intuitively, a correct translation does not change the semantic meaning of the translated

symbols. This notion of correctness is mathematically expressed as a homomorphism,

a relationship-preserving mapping. In our case, the relevant relationships are semantic

equivalence =s (relating symbols corresponding to the same real-life entity), and semantic

ordering �s (relating symbols which refer to objects that are semantically ordered).

Property 1 A translation function fabstr is correct, if, and only if, it satis�es the follow-

ing constraints:

(8 �1; �2 2 T):(8d�1 2 D�1):(8 d�2 2 D�2):(fabstr(�1;d
�1) =s fabstr(�2;d

�2)), (d�1 =s d
�2)

(8 �1; �2 2 T):(8d�1 2 D�1):(8d�2 2 D�2):(fabstr(�1;d
�1) �s fabstr(�2;d

�2)), (d�1 �s d
�2)

2
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Further, translation functions may be required to provide a lossless mapping. Loss of

information happens if two semantically distinct values are mapped to the same value in

the abstract domain. For example, a mapping translating both Ale and Lager into Beer

is semantically lossy.

Property 2 A translation function fabstr is complete, if, and only if, it satis�es the

following constraint:

(8 �1; �2 2 T):(8d�1 2 D�1):(8 d�2 2 D�2):(fabstr(�1;d
�1) = fabstr(�2;d

�2))) (d�1 =s d
�2)

2

Note that if fabstr is bijective (one-to-one), completeness follows trivially. However,

often a bijective mapping will be impossible because di�erent symbols can refer to the

same real-life object. It is even desirable to have at most one abstract symbol for each

real-life entity. This non-duplication property is the converse of the completeness property

given above.

Property 3 A translation function fabstr is non-duplicating, if, and only if, it satis�es

the following constraint:

(8 �1; �2 2 T):(8d�1 2 D�1):(8 d�2 2 D�2):(d�1 =s d
�2)) (fabstr(�1;d

�1) = fabstr(�2;d
�2))

2

These are the formal properties of translation functions. For the design of the acquisi-

tion function, correctness is crucial. Non-duplication is also important. It should be noted

that, in practice, semantic mappings (especially of identi�ers for located-objects) may be

dynamic. This makes correctness and non-duplication more di�cult to achieve. On the

other hand, lossy translation may be acceptable in some cases, especially if the raw data

has an unnecessary degree of accuracy.

To design a translation function, one would typically start by specifying the target

domain Dabstr. The following options may be considered:

� Choose a sensor-type dependent representation domain D�
i as the target represen-

tation domain Dabstr. Thus, the abstraction function fabstr translates all inputs

from other domains values into the representation domain D�
i . This approach can

be chosen if there is one primary input which is only augmented by other sources.

However, the openness and 
exibility of the system are restricted.

� Design a target representation domain Dabstr independent of the sensor-types being

used. The construction of Dabstr should be guided by application requirements.

Then mappings for all the sensor-dependent input domains need to be de�ned. This

approach implies more e�ort, but results in a more general and more open system.

In both cases, the choice of Dabstr determines the granularity of information that will be

available to applications and the end-user. We can either strive to preserve all information
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from all inputs, or preserve only information required by applications. Since both criteria

are likely to change when the system is deployed, Dabstr and fabstr should be easily

recon�gurable.

5.6 Fusion

In this context, fusion is concerned with merging inputs related to a single object for a

single point in time. Fusion across the temporal domain is discussed in chapter 6.

Input The input is a set E00 of abstract sighting events as provided by the abstraction

layer:

E00 = fE001 ; :::;E
00

ng

= f(T1;L1;O1); :::; (Tn;Ln;On)g

Processing and Output The fusion layer must integrate related sightings events for a

point in time, resulting in a set of con�dence-weighted location values. Processing consists

of the following tasks:

1. Identify the points in time for which to perform the fusion. This can be driven by

application requests or by sighting events received from location sensors.

2. Group the input events from the input stream E00 according to their relation to

individual located objects. This may require knowledge of dynamic relationships

between located-objects (for example, between a badge and its wearer).

3. Integrate previously identi�ed groups of related sightings. Conceptually, this process

compounds the information from each group into a single piece of data. Due to

incomplete and inconsistent information, this piece of data is likely to be a con�dence

function.

The �rst two tasks are modelled by the relevance function relevant, aided by the function

obj to map object aliases. The third task is modelled by the function fusion:

fusion: f(L1;O1); ::; (Ln;On)g 7! (L 7! c)

relevant: (T;O;E00) 7! f(L;Oi)j(T;L;Oi) 2 E00 ^ Oi 2 obj(O)g

obj: O 7! fO1; :::;Ong

The fusion function produces a con�dence function that weights each location value L

with a con�dence value c. The con�dence function describes the amount of incorrectness

and incompleteness detected by the fusion function.

Con�dence values must be partially ordered. This allows for multi-dimensional

con�dence metrics that would be excluded by a requirement for total ordering:



100 CHAPTER 5. ACQUISITION OF LOCATION DATA

Property 4 The set C of all possible con�dence values c is an irre
exive partial order.

(8 c1; c2; c3 2 C):(c1 < c2 ^ c2 < c3 ) c1 < c3)

(8 c1; c2 2 C):(c1 < c2 ) : c2 < c1)

2

Further, each con�dence function f resulting from a fusion must bemonotonic with respect

to the partial ordering of locations:

Property 5 For all con�dence functions f : L 7! c the following property holds:

(8L1;L2):(L1 < L2 ) f(L1) � f(L2))

This property ensures that the con�dence weighting has a degree of semantic consistency.

That is, con�dence that an object is in a certain location cannot decrease if we expand

that location.

Armed with the function described above, the fusion stage can now be described as a

function mapping the input event set E00 into the output event set E000:

E000 = fE000(Oi)jOi 2 dom objg

E000(O) = fE000(Ti;O)j(9 e):(e 2 relevant(Ti;O;E00)g

E000(T;O) = fusion(relevant(T;O;E00))

As a result of fusion, there is one con�dence function per object for each point in time

where a related location event has occurred.

5.7 Acquisition algorithms

The previous sections have presented a high-level view of the structure of the acquisi-

tion stack and the functions performed in each layer. In this section, we describe two

concrete acquisition algorithms for discrete symbolic location data. The �rst algorithm

was proposed by Rizzo et al. [55]. This we use as a background to propose our own

acquisition algorithm, an earlier version of which has been propounded in [34].

5.7.1 Attribute matching

In the context of the Active O�ce project described in x 2.5.3 (page 32), an attribute-

based approach to abstraction and fusion of location data has been proposed. We shall

use our notation to describe this algorithm.

Location model Locations are modelled by a set of attribute-value assertions. For

example, a location associated with a room would have attributes room number , telephone

extension, workstation name, and badge sensor . Thus, the identity of location tracking
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sensors is speci�ed by attributes of the locations associated with their coverage area. This

location model has the advantage that additional location-dependent information (such as

room number, telephone extension) can be readily accommodated. Further, multi-valued

attributes (i.e. attributes with lists of values) can be used to model overlapping locations.

Let L be the set of all de�ned locations in the system. L is stored by a location

directory . Let A� be the set of all attributes that are used to describe locations l 2 L.

Further, let L� be the set of all locations that can be described using A�. Since also L is

de�ned in terms of attributes from A�, L must be a subset of L�.

IfA(l) denotes the set of attributes of a location l, and a(l) the set of values of attribute

a, Rizzo et al. have de�ned equivalence � between locations as follows ([55], page 5):

l1 � l2 ( : (A(l1) \A(l2) = ;) ^ (8 a 2 A(l1) \A(l2)):(: (a(l1) \ a(l2) = ;))

: l1 � l2 ( : (A(l1) \A(l2) = ;) ^ (9 a 2 A(l1) \A(l2)):(a(l1) \ a(l2) = ;)

The de�nition leaves us with pairs of locations whose equivalence we cannot establish.

Further, the de�ned relationship is not an equivalence relationship in the mathematical

sense because it is not transitive. However, transitivity can be established if no overlaps

between locations are allowed.

A key notion in the algorithm is expansion of locations with the help of the location

directory:

expand : L� ! L

(expand(l�) = l), (A(l�) � A(l) ^ (8 a 2 A(l�)):(a(l�) = a(l)))

Expansion means adding attributes and their values to the sighting's location record in

order to make tests for equivalence (see above) possible. It relies on the implicit notion

of ordering between location records (although this is not mentioned in [55]). Also, there

appears to be the assumption that each location sighting is matched by at most one

pre-de�ned location.

Expansion and equivalence form, implicitly, the basis of the algorithm. The following

paragraphs describe the algorithm's functionality applying the stages of the acquisition

stack identi�ed earlier.

Reception This stage is concerned with querying sightings from sensors or low-

level slave-locators. The low-level mappings to make sightings sensor-independent are

performed by sensor-speci�c sub-systems (called slave locators).

Abstraction The abstraction stage is also performed by slave locators. It consists

mainly of mapping sensor sightings into the attribute-based location model described

above:

abstr: (T� L� )! L�

abstr: (�; l� ) 7! l�

E�ectively, this entails construction of a location record whose sensor identi�er is stored

as an attribute value.
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Fusion The master locator queries its slave locators to collect their location records.

The returned location records are expanded using the location directory. Subsequently,

expanded sightings are fused using a corroboration function, which yields a con�dence

weighted priority queue of locations. The corroboration function uses the equivalence

relation described above to test whether the locations returned by di�erent slave locators

are the same.

fusion: fl�1; :::; l
�

ng 7! (L! C)

fusion(fl�1; :::; l
�

ng) = corroborate(fexpand(l�1); :::; expand(l
�

n)g)

The corroboration function uses hard-coded knowledge to arbitrate between con
icting

sightings. More 
exible policies are also mentioned, although no concrete details are

given.

Discussion As indicated by the above description, it appears that the underlying

location model was not clearly identi�ed before designing this algorithm. While the

attribute-based location representation is very powerful, it not a good formalism to de�ne

algorithms over location information. We believe that a formal location model would

have facilitated the design of the acquisition algorithm. Further, the model could have

been used to specify and document location processing independent of its implementa-

tion. The attribute-based location representation should have come into play only at the

implementation level.

5.7.2 Translation into a lattice

In the previous section, we have argued that location{processing algorithms should be

based on a formal location model. Hence, we shall use this section to sketch an acquisition

algorithm based on an inclusion{ordering relation between locations.

Location model We use the symbolic model proposed in chapter 3: we treat locations

as symbols, that is, opaque entities which can be tested for equivalence, inclusion, and

overlap. To compare quality of sightings, we also require the location's geographical area.

Reception We propose to use sensor-type speci�c sub-system (e.g. an Active Badge

service), or user-agents. (This is similar to Rizzo's algorithm.) Additionally, we require

that each sighting be weighted with a con�dence value expressing the probability that it

is valid.

Abstraction The abstraction stage maps each sensor-type-speci�c location into a

location symbol. This is achieved either by pre-de�ning location symbols for all sensor

locations, or by creating location symbols dynamically.

abstr: l� 7! l

As a result, a location symbol is associated with each sighting event.
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Fusion This maps a set of location symbols Linp into a con�dence function. We use the

following algorithm over inclusion-ordered location lattices to fuse location data:

Firstly, we construct a lattice Llat from the input data that is closed against the

greatest lower bound (glb) and the least upper bound (lub). For pairs of non-overlapping

locations the greatest lower bound is not de�ned. Hence Llat can have multiple leaf nodes.

l 2 Llat ( l 2 Linp

l 2 Llat ( (9 l1; l2 2 Linp):(l = glb(l1; l2)) ^ (l 2 L)

l 2 Llat ( (9 l1; l2 2 Linp):(l = lub(l1; l2)) ^ (l 2 L)

We construct the smallest set Llat satisfying these constraints. The bounds (glb and lub)

are computed with respect to the spatial inclusion ordering, an asymmetric and transitive

relationship.

Intuitively, the glb closure identi�es overlaps, and includes them as separate symbolic

locations.2 The lub closure adds redundant lower-resolution locations. While this is not

essential to the algorithm, it is convenient for subsequent multi-resolution processing and

detail �ltering. If the location hierarchy is static, the least upper bound closure can be

deferred.

If the lattice Llat has more than one leaf node, the set of sightings refers to more than

one physical location. Since we assume that a located-object can only be in one place at a

given time, the set of sightings is then inconsistent. To remove these inconsistencies, two

approaches are possible:

� Construct the biggest con
ict-free subset of Llat. This we term the consensus

approach.

� Construct multiple con
ict-free sets such that their union is equal to Llat. This

approach we call factoring .

Both approaches are built on the notion of a con
ict-free lattice.

Property 6 We call a lattice Lcf con
ict-free if, and only if, it satis�es the following

condition:

(8 l1; l2 2 Lcf ):(9 l3 2 Lcf ):(l3 = glb(l1; l2))

2

A corollary is that each Lcf has at most one leaf node, that is, a least element .

Figures 5.5 and 5.6 illustrate the construction of Llat. In Figure 5.6 there are three

con
ict-free lattices. Each has a least element that is spatially contained by all other

elements.

2We assume that all de�ned leaf nodes in L are non-overlapping.
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Figure 5.5: Set of location sightings before fusion
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Figure 5.6: Llat with con
ict-free lattices
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Consensus method With this approach, we aim to make Llat consistent by removing

as few nodes as possible. Essentially, we remove all nodes from Llat that do not overlap at

least one other location in Llat whose greatest lower bound is not de�ned. We construct

the con
ict-free lattice with the following rule:

l 2 Lcf ( l 2 Llat ^ (8 l1 2 Llat):(l < l1 _ l1 < l _ l = l1)

The Lcf constructed by this method is guaranteed to be non-empty if the location hierarchy

has a greatest element. Figure 5.6 shows the result of the consensus method.

Factoring An alternative (and possibly more useful) method is to factor Llat into

multiple con
ict free lattices. This has the advantage that location accuracy is preserved.

We identify distinct leaves in Llat and construct a separate lattice Lcf for each leaf such

that all locations are greater or equal than the de�ning leaf.

lleaf 2 Lcf

l 2 Lcf ( (l 2 Llat) ^ (lleaf < l)

Since a lattice is inconsistent only if it has multiple leaves, this method constructs con
ict-

free lattices.

If Llat is inconsistent, the factoring algorithm will generate multiple non-con
icting

lattices Lcf . Each represents an alternative location for a located-object. Therefore, we

need to order those locations according to some metric of con�dence or quality. For

example, we could use:

metric(Lcf ) =
X
l2L

cf

con�dence(l) � (1� area(l))

This is a heuristic metric combining sighting con�dence with the size of sighting area. The

rationale is that accuracy and validity are two sides of the same coin, and that applications

may favour accuracy if the con�dence values are roughly equivalent. (Other metrics are

possible.) In any case, it is crucial to get an accurate indication of sighting validity from

the sensors.3

Discussion By using a hierarchical location model, our acquisition algorithm is based

on well-understood set-theoretical concepts. In particular, the following features of the

hierarchic location model are exploited:

� We can determine whether a node is a re�nement (i.e. sub-location) of another node.

Re�nement is indicative of one sighting supporting another.

� We can determine whether two nodes overlap. This is the case if they have common

descendants. Non-overlapping nodes are indicative of con
icting sightings.

3In chapter 6 we discuss in greater detail measures of validity and their e�ect on location processing.
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� All ancestors of each location are known. Hence, results can be returned and

subsequently processed at multiple resolutions.

As a result, our algorithm can exploit overlapping sightings to increase accuracy. Further,

multi-resolution sensor-systems and applications can be supported.

The proposed algorithm can be implemented by extending the attribute-based

representation proposed by Rizzo et al . To do so, we use subset inclusion over attribute

values to model spatial inclusion of locations. Thus, a parent location would contain a

superset of the attribute values of all its children.

5.8 Case study: An active o�ce system

In this section, we discuss an existing system implementing acquisition of location data.

We examine an experimental \Active O�ce" location system that uses location informa-

tion from Active Badges and Unix workstations. It has been in operation for over two

years in our research group.

An application is the cwhere client program. When invoked, it produces a list of

people (denoted by their Unix account name), along with their last known location and

the time when they were seen there:

scorch.doc.ic.ac.uk% cwhere

yt3 was at 336H Ph.D. Room 48249 on Mon Oct 13 21:47:50

az now in 563aH Ph.D. Room 58239 seen 23 seconds ago

mpn was at 558cH Ph.D. Room 58238 on Thu Jul 31 15:19:08

ul now in 336H Ph.D. Room 48249 seen 4 seconds ago

ndcm was at 558cH Ph.D. Room 58238 on Thu Oct 16 17:37:23

jcf1 was at 557H Room 557 on Thu Oct 16 23:26:29

gu1 now in 5xxH Level 5 seen 5 seconds ago

ar3 was at 359H A. Russo 48353 on Thu Oct 16 18:54:42

ban was at 428H Bashar Nuseibeh 48286 on Thu Oct 16 20:05:59

wlp was at 563aH Ph.D. Room 58239 on Thu Oct 16 20:45:24

vh3 was at 564H Vassos 48355 on Mon Aug 18 17:21:41

paul was at 429Ha DSE-Lab (NE) 48293 on Fri Oct 17 04:08:34

scorch.doc.ic.ac.uk%

The system architecture is shown in Figure 5.7. There are two location services used

by the cwhere client: an Active Badge service (as implemented by Je� Magee [41]), and

a Unix location service based on ruser daemons. As support platform we use Regis, a

lightweight multi-threaded distributed programming environment [41].

The badge location service is provided by the Regis component badgeman, connected

via TCP/IP to the abpoll daemons. Each abpoll drives a chain of badge sensors via an

RS.232 serial link. Whenever a badge sensor receives a message from a badge, it is relayed

through an abpoll process to blocate.
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Figure 5.7: Active o�ce location system

The blocate component of badgeman is responsible for collecting badge sightings into

a badge-indexed database, which is stored persistently. Clients query blocate via the

interface exported through badgeman for the current location of users. Clients can also

subscribe to location events. All client interactions use badge identi�ers and badge sensor

identi�ers to refer to users and locations, respectively.

The Unix location service mirrors the structure of the badge location service. The

main di�erence is that the sensors do not generate location events (as badge sensors do),

but need to be queried. Hence, the rpc poll component periodically queries the ruser

daemons via RPC calls. In turn, the ruser daemons read the local /etc/utmp �le to �nd

out who is logged on. By calling kernel functions the idle time for each login session is

established.

Similarly to blocate, rlocate maintains a persistent database of current user

locations. This time, Unix login names and DNS host names are used as representa-

tion schemes for users and locations, respectively. The rlocate database can be queried

for users' current locations. Also location events are available.

The client, cwhere, connects to both badgeman and r2 to query all location entries

which are not older than a certain threshold. After unifying the representation schemes,

entries from both systems are merged, and the result of this process displayed.

Reception In the Active Badge subsystem, the functional mappings of the reception

layer are performed inside mux. For each sighting, it pre�xes the badge sensor identi�er

(which is unique per sensor chain) with the identi�er of the sensor chain. The Unix
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location subsystem does not perform mappings since Unix account names and DNS host

names are unique in the context of the subsystem.

Abstraction Abstraction mappings are performed inside the cwhere client. To integrate

user identi�ers, we chose to use Unix account names as the uni�ed representation domain.

The motivation was that while only a few people have badges, all have a Unix account (at

least in our Department). For location, we chose badge sensor identi�ers as the abstract

representation domain. While this limits the accuracy and coverage of the system, it

allows the reuse of the pre-existing location directory of the Active Badge system.

Fusion The fusion algorithm is applied to sets of sightings that are related to the same

user. In our case, such a set consists at most of one badge sighting and one Unix sighting.

The algorithm consists of two phases: con
ict detection and con
ict removal. To detect

a con
ict between two sightings, we check whether both correspond to the same location.

If not, we compare the timestamps of the sightings and choose the more recent sighting.

In case the timestamps are equal, we use the badge sighting. By using these two rules,

each of the sets is reduced to a single \current" sighting. Note that fusion of sightings is

a more general problem than fusion of locations discussed earlier in this chapter.

Discussion

The described system uses a special-purpose acquisition function. Abstraction and Fusion

are tailored to the processing of badge sightings and Unix location sightings. We have

applied the acquisition stack to understand the location processing in the system. This is

remarkable since the system was not implemented as a design exercise, but in order to get

a working user tracking system.

Architecturally, it is arguable whether client side abstraction and fusion is the best

choice. It certainly leads to simpler server implementations, which in turn makes servers

more light-weight and more robust. However, reuse of the processing logic is easier when

exposed as a service. Further, client-side processing in this case substantially increases

the bandwidth requirement.

5.9 A note on acquisition in robotics

Acquisition and fusion of sensor data is a classic problem in robotics. A typical robot has

multiple sensors (sound sensors, vision sensors, etc.) which let it monitor di�erent aspects

of its environment. The robot needs to combine the inputs from these sensors in order to

gain a more complete knowledge of its environment.

For example, Alberto Elfes has designed a sonar-based navigation system for robots

[16]. The system constructs a picture of the robot's environment from the data collected

by an array of sonar sensors. Subsequently, the robot matches feature descriptions from a

database against the combined sensor input. As a result, the robot can determine its own

physical location.
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The system uses a layered architecture. It includes the following layers:4

� A sensor-interpretation layer acquires and interprets sensor data.

� A sensor-integration layer translates the data into an abstract common format.

� A real-world-modelling layer integrates the data into a global world model. Object-

recognition and map matching are used as heuristic integration methods.

This layering approach bears resemblance to our approach since it is driven by the need

to combine multiple sensor systems. However, in robotics sensor fusion is used in order

to recognise or match features of the environment (objects, landmarks, etc.). The result

is context-awareness, rather than location-awareness. Further, the algorithms are often

numerical (i.e. focussed on \number crunching"). Hence, we have found that robotics-

related research is quite far removed from our work.

5.10 Chapter Summary

The collection of data from location sensors, their subsequent abstraction and fusion are

performed by the acquisition function. In this chapter, we have identi�ed the functional

and structural requirements that need to be addressed by the acquisition function of a

location service. The main functional requirements are generality and adequate spatio-

temporal resolution. The important structural requirements include openness and real-

time information delivery.

After a discussion of architectural design issues, we have proposed the acquisition

stack as the basic structure of the acquisition function. The stack consists of reception,

abstraction, and fusion layers. We have presented a function-based model for layers and

their interaction.

We have examined a concrete fusion algorithm in order to demonstrate that a formal

understanding of the location model facilitates the design of an acquisition algorithm. We

have proposed a new algorithm based on the ordering of locations by spatial inclusion. The

algorithm allows for overlapping locations and multi-resolution input. Inconsistencies in

the location input are dealt with either by �nding the maximum consensus or by factoring

the input into con
ict-free sets.

Finally, we have examined an existing location service and applied the abstract

structure described earlier in this chapter. We have found that the elements of the acquisi-

tion stack can be identi�ed, and their identi�cation helps to structure and understand the

system.

4The more robotics-oriented higher layers have been omitted.
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Chapter 6

Uncertainty, Prediction, and

Interpolation

Location sensors provide location information at discrete points in time in the past. Often,

these points in time are determined by availability of location information rather than

demand for it. This lack of synchronisation between supply and demand, and physical

limitations of location sensors, are the main reasons why location information is always

incomplete, and sometimes incorrect. This property we call uncertainty of location

information.

Typical context-aware applications use location data to adjust their present behaviour

and to prepare for the immediate future (e.g. by pre-allocating resources and pre-fetching

data). However, location tracking systems can only deliver information about the past

(even if this includes directions or intention for future moves). Location prediction helps

deduce future and present locations from past location data.

Missing information, incorrect information, and prediction may cause relatively short

temporal gaps in the availability of location information. While location-awareness is often

event-driven (and thus una�ected by gaps in availability), there will often be a comple-

mentary requirement for location information for times when it is or was not available.

Thus, there is a need to bridge temporal gaps in the available location information, a

process we refer to as interpolation.

Interpolation and prediction reduce uncertainty by exploiting mobility models, that is,

knowledge of how located-objects move through space. Uncertainty is thus reduced, but

is never eliminated completely. Hence, it needs to be tolerated at all processing stages.

Prediction and interpolation are performed by the Trace function (cf. Figure 4.1,

page 72). While this chapter does not o�er a comprehensive solution for this layer, we

identify the available technologies and abstractions. Further, we propose metric-based

selection of heuristics as a general mechanism to reduce uncertainty.

In the remainder of this chapter, we discuss causes and models of uncertainty. We

propose metrics that allow us to measure completeness and correctness of individual events

and traces of related events. Further, we discuss extant mobility models and their applica-

bility to certain classes of correctness and completeness. Finally, we describe interpolation

across events and state traces in order to integrate predicted locations.

111
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6.1 Preliminaries

We use the hierarchical location model described in chapter 3 in which each symbolic

location l has a well-de�ned area of size A(l). The ordering of symbolic locations represents

the spatial contains-relation.

6.1.1 Sightings and traces

A sighting event s is described by a tuple

s = (t; l;p)

where ts is the time of the sighting, ls is the symbolic location of the sighting , and ps is

the probability that the sighting is valid. This corresponds to the information provided

by the acquisition layer and stored by the tracking function.

For each located-object, sighting events si are composed into a trace T, a time-ordered

set with start-time tT
s
and end-time tT

e
.

T = (ts; te; hs1; :::; sni) with t
T

s
� ts1 and tsi < tsi+1 and tsn � tT

e

We shall assume, with no loss of generality, that no two events are simultaneous. Thus,

exactly one sequence of sighting events can be constructed.

Besides the notion of a trace of discrete events, we de�ne an interval I as the time for

which an object remains at a given location l.

I = (ts; te; l) with t
I

s
� tI

e

Further, we de�ne an interval trace as a sequence of intervals, each corresponding to a

location, and there may be gaps but no overlaps between the intervals.

IT = (ts; te; hI1; I2; :::; Ini) where t
IT

s
� tI1

s
and te

i
� ts

i+1
and tIn

e
� tIT

e

Continuous interval traces are state traces, or state transition 
ows, a special case of

interval traces:

ST = (ts; te; hI1; I2; :::; Ini) where t
ST

s
= tI1

s
and te

i
= ts

i+1
and tIn

e
= tST

e

Note that the de�nitions of interval traces and state traces are only useful over a disjoint

set of locations. Otherwise, a located-object can be in more than one location at a time.

We address this issue using the concept of a movement plane.

6.1.2 Movement planes

A movement plane M is a tuple (L;Adj ;Dist) with

L : PLOC

Adj : LOC$ LOC

Dist : LOC� LOC! DIST�DIST

Dir : LOC� LOC! DIR�DIR
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L is the set of non-overlapping locations that constitutes the spatial coverage of the

movement plane M.

The binary relationship Adj relates physically adjacent locations. If A is adjacent to

B, then a located-object can travel directly from A to B. Hence, Adj is dependent on

the capabilities of the located-object | what is adjacent for a seagull may not be for an

ostrich. Thus a given movement plane is only valid for located-objects satisfying certain

conditions. Adjacency is directional (i.e. not symmetric).

The distance function Dist provides a quanti�cation of distance between locations.

Since each location covers an area of non-zero size, Dist yields two values: a lower bound

dmin and an upper bound dmax .

Dist(A;B) = (dmin ;dmax )

If one located-object is situated at A and another located-object at B, the distance

between those object is guaranteed to be between dmin and dmax .

Analogously, the directionality function Dir maps pairs of locations to minimum and

maximum bearings between objects in the respective locations. E�ectively, Dir de�nes

the notion of a straight line within a Movement Plane. Located-objects are inert and thus

follow straight lines unless redirected by some event. Note that \inertia" and \straight

line" could mean di�erent things for di�erent kinds of located-objects.

In order to relate incoming location information to a selected movement plane, it is

necessary to restrict an event trace T to a movement plane M:

T nM = (tT
s
; tT
e
;
D
sT1 ; :::; s

T

n

E
n LM)

By restricting T to M, all spatially irrelevant sightings are removed. Also, the locations

of remaining sightings are matched, if possible, against the locations in M.

Taking advantage of the hierarchical nature of location space, we de�ne restriction of

a sequence of sightings to a set of locations as follows:

hi n L = hi (6.1)

(hSi : s) n L =

8><>:
ls 2 L hSi n L : s

(9 l 2 L):(l < ls) hSi n L : (ts; l;ps)

otherwise hSi n L

(6.2)

The second case of 6.2 includes events that originally have a higher spatial resolution. This

mapping is unique since the members of L are non-overlapping. Restriction over interval

traces is de�ned analogously.

Note: sightings of lower spatial resolution, which may be spatially relevant, are

discarded. To extract them a lower-resolution movement plane must be used.

6.2 Uncertainty

Location information is potentially de�cient in two ways: it can be incomplete (lack of

precision) and it can be incorrect (lack of accuracy). We subdivide these two general
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notions into more measurable sub-categories:

� Elements of Correctness: spatial accuracy and temporal accuracy, validity.

� Elements of Completeness: spatial and temporal sampling resolution.

They are related. Correctness typically imposes an upper bound on achievable complete-

ness given a location sensor technology. Sensor systems often have inherent upper limits

of correctness and completeness.

Correctness and completeness ultimately indicate how faithfully location information

re
ects movement of located-objects. Therefore, absolute measures of correctness and

completeness require some knowledge of their mobility (such as maximum speed or size).

If such knowledge is not available, comparative metrics over sets of objects with similar

mobility must be employed.

Spatial accuracy is a measure of distance between actual and reported location. With

coordinate-oriented sensors its measurement is straightforward. Some sensor systems (such

as GPS) can dynamically determine the accuracy of their measurements, others may have

known accuracy limits. Cell-oriented sensors are based on a well-de�ned level of accuracy,

hence the size of the cell already re
ects potential spatial inaccuracy in the sighting.

Temporal accuracy is a measure of time between actual and reported sighting.

Temporal inaccuracies are caused by clock drift, transmission delays, and other physical

limitations of the tracking system. Also the acquisition stack can introduce temporal

inaccuracies. It should be noted that GPS sensors can measure the time of a sighting very

accurately, while others have no notion of time whatsoever (such as Active Badge sensors).

Validity is a qualitative measure of a sighting's truth. An invalid sighting di�ers from

the truth by an unknown amount. This is the case, for example, if a location tag has been

separated from its bearer. Similarly, false authentication of located-objects can lead to

invalid location information. We use con�dence values to represent the probability of a

sighting being valid.

Spatial sampling resolution determines the spatial precision of a sighting. The

accuracy of location sensors imposes an upper bound on the precision of location sightings.

For instance, the cell size in GSM determines the precision of the location information in

that system. However, it is possible to reduce the spatial sampling resolution arbitrarily

(e.g. to reduce update volumes).

Temporal sampling resolution is the frequency with which a located-object's location

is sampled. In relation to a located-object's maximum rate of location change, this

indicates how closely the movements of that object can be monitored. As implied by

Nyquist's Sampling Theorem, a given sampling rate can only faithfully monitor a certain

maximum rate of location change. Thus, any temporal sampling resolution will only be

adequate for located-objects below a certain speed. The maximum possible sampling
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resolution is limited by resource constraints (power, bandwidth). There is a correlation

between spatial and temporal sampling resolution: smaller locations imply a higher rate

of location changes, which in turn require a higher sampling frequency. Also, social factors

place an upper bound on the frequency of monitoring people's movements.

Discussion

In order to reduce complexity, it is desirable to reduce the number of uncertainty factors

which need to be considered. Spatial accuracy can be accommodated by adjusted precision.

Temporal inaccuracy can safely be ignored as long sensor systems are not applied outside

their design envelope (i.e. for located-objects that move too fast for them).

Temporal and spatial resolution can be determined easily. Using knowledge of the

mobility of a given located-object, both can be composed, along with the con�dence

measures, into a probabilistic location space (see below).

6.2.1 Representing uncertainty

The fundamental requirement of an uncertainty model is to give an indication of the

likelihood that a given located-object was, is, or will be, at a particular location at a given

time. Thus, we model the space of location uncertainty as a function f :

f : LOC�T! [0; 1]

This function maps a symbolic location to a probability that the object is there at a given

time. For a single instant t in time, this simpli�es to:

f t : LOC! [0; 1]

Such a function has already been used (chapter 5) as a con�dence function to model

uncertainty in the output of the acquisition stack. f t can be represented as a set of

pairs (li;pi) of locations and probabilities. This facilitates the pruning of pairs with low

probabilities or with locations outside a particular area. Such pruning is necessary in order

not to to swamp location-aware applications with location data irrelevant to them. We

believe that a single pair (li;pi) will often be su�cient.

6.2.2 Rationale

Figure 6.1 shows how we model incompleteness and incorrectness in location information.

The spatial and temporal sampling resolution is a systematic source of incompleteness,

whereas noise leads to both incorrectness and additional incompleteness. We distinguish

those two sources of uncertainty because the sampling resolution is, in principle, known

in advance, whereas noise occurs non-deterministically.

Between the actual movements of the located-objects (Reality) and the gathered

location data (Actual Sample), we introduce the abstraction of a Perfect Sample, the

maximum amount of data that could have been gathered given the movements of the

located-object and the available location sensors. Hence, it contains less information than
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Actual Sample

Noise
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Reality

Measurements

Sampling
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Expected
Measurements

Figure 6.1: Model of uncertainty in location information

is inherent in the actual movement, the reduction being determined by the spatial and

temporal sampling resolution.

An actual sample is a noise-degraded perfect sample. Hence, the perfect sample marks

the upper bound of the actual sample with respect to correctness and completeness of

information. Noise may manifest itself as lost, phantom, or distorted sightings. It is a

random occurrence caused by external in
uences. Such a non-systematic degradation of

location sightings can only be determined by measurements.

Despite its deterministic nature, in a large and heterogeneous environment the spatio-

temporal sampling resolution can be a product of many factors, including the capabilities

and the location of the located-object. In such cases, it may be easier to measure the

spatio-temporal sampling resolution rather than estimate it. However, if the sampling

resolution is not known in advance, it is impossible to distinguish the e�ect of noise from

the e�ect of the sampling resolution. Ultimately, it does not really matter whether a

sighting is not available because it was lost due to noise or because the sensor system was

not able to acquire it. Hence, for measuring uncertainty we do not necessarily rely on

knowledge of the characteristics of the perfect sample. We compute measurements over

the actual sample, which may be compared against expected measures if available.

6.2.3 Measuring uncertainty

While we assume that location sightings enter the system tagged with some con�dence

value (measured by sensors or calculated through error analysis), we need ways to extract

more abstract measures from this data. It is especially necessary to establish the amount

of uncertainty in our knowledge of the location trace of a particular object. This naturally

requires some compounded uncertainty metrics. Such compounded measures are intended

to be used by later processing stages to select appropriate heuristics, since each prediction

method tends to be most e�ective if the input trace has certain characteristics. Further,
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the quality of a prediction is bound to depend on the trace information it was based on.

Typical de�ciencies of sighting traces include lack of sightings during prolonged periods

of time, and imprecise (i.e. too coarse-grained) locations. A compounded metric must

facilitate the detection of those shortcomings.

In the following, we propose a series of measures that can be computed for sightings

and traces to give an indication of the quality of the available information.

Quality measures for single sighting events

The two main dimensions of quality for single sighting events are spatial resolution and

reliability.

Firstly, each sighting s is tagged with a con�dence value ps, i.e. a probability of

validity. This is a good indication of whether a sighting is correct. Typically, a sighting's

validity-probability is derived from physical characteristics of the tracking system, and

perhaps the user pro�le (some users might give their Active Badge away quite often).

Secondly, from the sighting's location we can derive the sighting's relative area:

Ar(s) =
A(ls)

A(anyLoc)
where (8 s):(Ar(s) 2 [0; 1])

Ar(l
s) is the relative coverage of a location relative to the `Root' location anyLoc (page 51)

of the location hierarchy. A sighting's relative area is a measure of spatial precision, and

implicitly a measure of accuracy. A value of zero indicates the highest possible precision:

a point-sized area. On the other hand, a value of one means that the sighting is void of

any spatial information.

Intuitively, the amount of information conveyed by a single sighting depends both on

the sighting's precision and the probability that the sighting is valid (i.e. accurate).1 To

capture this duality of precision and con�dence, we de�ne the energy (or entropy) E(s) of

a sighting s as:

E(s) = ps(1�Ar(s)) with E(s) 2 [0;ps]

A sighting's energy weights the \payload" of information that is carried by the sighting.

The larger the relative area of the location, the less newsworthy it becomes. Conversely,

the probability of validity is correlated with the amount of uncertainty removed by the

sighting.

We shall use the energy as the main measure of uncertainty because it captures both

correctness and completeness. Thus, it is a measure of the sighting's quality. However, it

characterises only one sighting at a time. In the next section, we discuss how measures

over sets of related sightings can be obtained.

Trace metrics

When considering a set of location events from an application's point of view, two criteria

are important. Firstly, information has to be available. Secondly, available information

has to be of a certain quality, that is, of a minimum spatial resolution and reliability.

1Information is often described as reduction of uncertainty .
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A set of sightings (i.e. trace) T is characterised by the number nT of events it contains.

Further, the duration � tT of the trace T is de�ned as:

� tT = tT
e
� tT

s

These two simple trace measures are prerequisites for availability and quality metrics.

Availability The overall availability of location sightings is characterised by the event

density: the number of events occurring per unit of time. The event density is closely

related to the average time between events, which is not discussed here.

The temporal sighting density �n(T) measures the average sighting density over

the duration of trace T:

�n(T) =
nT

� tT

This metric gives an indication of the temporal resolution of the information available

about a given located-object. However, it does not distinguish recent sightings from old

ones, and does not take account of the spatial resolution, or reliability, of sightings.

Often, the availability of recent information is of greater interest than an overall

average. Such a bias in favour of recent sightings can be modelled by an aging function

weighting events based on their age. We propose ex as the basis for the aging function:

ageT(s) = e�a(t
T

e
�t

s
)

This function converges to 0 with age of sighting. For the most recent sightings it yields

1. The steepness of the aging function is tuned by the constant a. With big a, all but the

most recent sightings will e�ectively be �ltered out. Conversely, small a results in slow

aging of sightings. In the degenerate case when a = 0, all sightings are equal regardless of

age. In e�ect, a lets us de�ne the notion of an event's half-life:

thalf =
ln2

a

After thalf , an event has lost half its weight.

Thus, an aged-biased availability measure can be de�ned. The aged sighting density

computes a measure of temporal sighting density that favour recent sightings:

f�n(T) =
X
s2T

ageT(s) (6.3)

=
X
s2T

e�a(t
T

e
�t

s
) (6.4)

f�n(T) = e�a�t
T

e �
X
s2T

ea�t
s

(6.5)

Computed over a particular trace, this measure gives an indication of availability of

sightings at the end time te of the trace. If an event is old, its impact on the total

will be small. If the trace is actually a stream of real-time location events, the aged-

sighting density is a metric of current availability of location sightings. The transforma-
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tion (equation 6.5) shows how the measure can be computed incrementally over a stream

of incoming events.

Figure 6.2: Aged sighting density for an Active Badge trace

Figure 6.2 shows the aged sighting density measure computed over a trace of sightings

of a particular Active Badge.2 For di�erent event half-lifes, the measures converge to

di�erent ceilings. Given the values for a and the minimum time min(� t) between sighting

events, we can derive the upper bound X�n as:

X�n(min(� t)) = lim
n!1

nX
i=0

e�a�n�min(� t)

=
1

1� e�a�min(� t)

An Active Badge normally emits a beacon signal every 9 seconds. Therefore, the measures

plotted in Figure 6.2 converge against the following ceilings in periods when no sightings

are lost:

a half-life X�n(9)

0:023104906 30 5:326299674

0:011552453 60 10:12662972

0:005776227 120 19:74026585

0:002888113 240 38:97403382

Note that the rate of convergence depends on the value of a. This is not surprising

since a speci�es the weight carried by older sightings. E�ectively, a determines the metric's

memory.

2The trace was generated by the \Active O�ce" system described in x 5.8.
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The ceiling X�n characterises the maximum temporal sampling resolution. Hence, it is

a measure of the temporal resolution of a perfect sample. The divergence of the actual �n

from X�n is due to noise, in particular due to lost sightings (assuming that the located-

object has not ventured outside the coverage area of the Active Badge system).

On the other hand, the possibility that the located-object could have been in a room

without an Active Badge sensor underlines the di�culty of establishing spatio-temporal

resolution in the presence of noise. When the located-object was outside the reach of

the sensors, the ceiling on the sighting density should have been adjusted accordingly.

However, such adjustment requires knowledge of the object's location. Hence we conclude

that X�n can only be an approximate measure of the perfect sample. Further, this indicates

that the perfect sample can only be computed accurately if there is complete information

about the located-object's movements. If such complete information is not available (i.e.

all our knowledge is in the movement trace), we may not be able to distinguish the e�ects

of noise from the e�ects of a temporarily lowered sampling resolution.

Quality Based on quality metrics for single events, the quality of a trace is characterised

by the following averaged measures:

� Average area

A(T) =
1

nT
�
X
s2T

Ar(s)

� Average con�dence

p(T) =
1

nT
�
X
s2T

ps

� Average energy

E(T) =
1

nT
�
X
s2T

E(s)

These measures characterise the average quality of the sighting events within a trace.

In addition, other statistical measures can easily be applied: median, variance, mean

deviation, etc.

In order to measure the quality of recent sightings we calculate age-weighted averages.

The age-bias is modelled by the same aging function as used earlier in this section.

� Age-averaged area eA(T) = P
s2T

(Ar � age
T(s))P

s2T
ageT(s)

� Age-averaged con�dence

ep(T) = P
s2T

(ps � ageT(s))P
s2T

ageT(s)

� Age-averaged energy eE(T) = P
s2T

(E(s) � ageT(s))P
s2T

ageT(s)
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These age-weighted averages can be used interchangeably with the \normal" averages,

the only di�erence being that more recent sightings have a greater impact on the overall

result.

These quality measures are useful only if there are signi�cant variations in reliability or

spatial resolution. This is often the case in a heterogeneous environment. In homogeneous

location systems, such as Active Badge systems, all sightings are of similar quality with

similar spatial accuracy and reliability (if the acquisition system is not too sophisticated).

In such cases, only availability measures are of relevance.

Information density While it is useful to separate availability and quality metrics, in

certain cases a single metric incorporating both is required. For example, we can envisage

an application in which an alert is raised if somebody cannot be located anymore. The

alert would be triggered either if no sightings were available, or available sightings were

too coarse-grained.

The amount of information carried by a sighting s is measured by the sighting's energy

E(s). Hence, we compute the energy density (or temperature) generated by the events

of a given trace:

�E(T) =

P
s2T

E(s)

� tT

This allows us to distinguish \red-hot" traces with detailed sightings and frequent updates

from \cold" traces that receive only occasional low-quality sightings.

Analogous to the aged sighting density, we de�ne aged energy density as:

e�E(T) = X
s2T

(E(s) � ageT(s))

The measure has the same age-bias characteristic as the aged sighting density. If there is

no variation in sighting energy, this measure degenerates to the aged sighting density.

Intuitively, energy density describes the temporal density of location information about

a particular located-object. Thus, it incorporates aspects of both quality and availability.

If sightings are infrequent, the energy density will be low. If sightings are coarse-grained

or unreliable, the energy density will also be low. However, a bounded sighting density

must be assumed.

6.2.4 Movement trace properties

The quantitative measures proposed above need to be abstracted into qualitative proper-

ties in order to help make decisions and choices. For example, we envisage selecting

suitable movement prediction heuristics based on quality of location trace.

Firstly, in order to choose a prediction heuristic, it is important to know whether the

location information for a located-object allows a complete reconstruction of the movement

path in the sampling space. This is re
ected by the continuity property. Secondly, physical

located-objects are subject to inertia, i.e. they follow some regular path until redirected

by some kind of event. Whether this regularity caused by physical inertia is re
ected in

the sampling space or not is indicated by the directionality property.
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In the subsequent discussion, we use the concept of a Movement Plane, which has

been described brie
y in x 6.1.2. Here it is only necessary to know that a movement plane

consists of a set of disjoint locations, along with a local de�nition of what constitutes a

straight-line (speci�ed by the function DirM). An event trace is restricted to a movement

plane by removing events that are irrelevant or too coarse-grained, and by relaxing the

spatial resolution of events that are too �ne-grained.

Continuity

An event trace T over a movement plane M is continuous if, and only if, there is at least

one sighting in T for each visit of the located-object to any of M's locations. A necessary

precondition is that temporally adjacent sightings of T have spatially adjacent locations

in M as de�ned by AdjM. By de�nition, located-objects move only between adjacent

locations. Hence, a violation of the continuity property is indicative of an inadequate

temporal sampling resolution.

Applying Nyquist's sampling theorem, a continuous movement trace can be

constructed if the minimal sighting density min(�n) is greater than the maximum rate

at which the located-object changes its location (assuming that locations are disjoint).

In an Active Badge system a continuous movement trace can be constructed if people

always stay longer than 9 seconds in the area of a sensor, and if badge beacons are collected

every 9 seconds.

The rate of location change depends on three underlying factors: the speed of the

located-object, the size and shape of the locations, and the coherence of the movement

(straight-line vs. oscillation). If the movement patterns of located-objects are extremely

constrained (e.g. cars on a motorway), the rate of location change can be determined

analytically. Otherwise, we must resort to statistical observation or simulation methods.

Once the expected rate of location change has been determined, an adequate temporal

sampling resolution can be chosen to guarantee trace continuity.

After a trace has been acquired, we believe that in most cases non-continuous traces

can be identi�ed simply by using the adjacency graph AdjM to detect spatial gaps in the

location trace. This should allow an informed choice of whether to use heuristics that

require a continuous trace.

(a) discontinuous movement trace

Sighting

(b) continuous movement trace

Figure 6.3: Movement trace continuity
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Figure 6.3 illustrates the continuity property: the left-hand trace is not continuous

because the located-object appears to \jump" between the second and third sighting.

Directionality

We call a movement trace directional with respect to a movement plane M if, and only

if, each movement segment of the located-object touches at least three di�erent locations

of M. That is, in a directional movement trace each segment has a start location, an end

location, and at least one intermediate location.

A movement segment is a period of time where the located-object travels with a non-

zero speed along a straight line as de�ned by DirM. It may correspond to a straight-line

movement of the located-object in reality, butM could also de�ne other directed movement

patterns as segments. For example, a movement plane could be constructed that allows

the \journey to work" to be a single movement segment.

While continuity of location information can always be achieved by choosing a low-

resolution movement plane, directionality imposes a lower bound on both the spatial and

the temporal resolution (for a given set of movement patterns).

A movement trace is directional with respect to a movement plane M if the trace is

continuous and if the minimum length of a movement segment is more than twice the

maximum diameter of the locations in M. This is a su�cient pre-condition for direction-

ality.

(a) non-directional movement trace (b) directional movement trace

Sighting

Figure 6.4: Movement trace directionality

Figure 6.4 illustrates the concept of directionality. The left trace is not directional

because the spatial resolution is too coarse for intermediate locations to exist.

In general, we cannot distinguish a directional trace from a non-directional trace by

observation in the sample space. However, oscillations between two locations (Figure 6.4)

would indicate a non-directional trace.

Discussion

Continuity and directionality are two higher-level properties of location traces with respect

to a given Movement Plane. The continuity property indicates that the located-object's

movement can be modelled faithfully (i.e. without missing intermediate locations) as a
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state machine. The directionality property indicates the state machine is non-Markovian:

the next state depends not only on the current state, but also on the previous state(s).

6.3 Prediction

Predicting future locations requires assumptions about the mobility of a located-object.

Such assumptions represent knowledge of constraints that in reality limit the mobility of

located-objects. Common assumptions include:

� A located-object can only be in one place at a time. However trivial this may seem,

this is a fundamental property of a located-object.

� Located-objects do not move faster than a maximum speed . While the speed of light

is the ultimate limit, there are often more precise assumptions that can be made if

the mode of transport is known. For example, cars on the road will not move faster

than 250 kilometres per hour (except perhaps in Germany).

� The movements of a particular located-object are repetitive to some degree. Since

located-objects mostly move in an environment with plenty of static stationary

features (Rooms, Buildings, Streets, etc.), there are often certain paths which the

located-object will traverse more than once.

� The movements of a set of located-objects are repetitive to some degree. Among a

set of located-object with similar characteristics, some paths will typically be shared

(for example the subway between underground station and college).

� Located-objects' movements are in
uenced by scheduled activities and events.

Scheduled events are future events that are extremely likely to happen at a particular

time, and each event a�ects the movements of the located-object in a speci�c way.

For example, the closure of a bridge during a certain period would force a detour.

Each of these assumptions e�ectively de�nes a body of knowledge which can be applied

in order to predict future movements of a located-object. The usefulness of each assump-

tion and the associated heuristics depend on the target scenario. For example, when

the sampling resolution is too low to identify movement patterns, prediction based on

repetitive patterns will not be successful.

The available knowledge of a located-object's movements consists of the following

components:

� The set of movements possible in a certain environment. This knowledge is

represented by the movement plane, or more generally, by a set of movement planes.

� The history of its past movements. This knowledge is represented by a movement

trace.

� Expectations about its behaviour. This knowledge is embodied by a set of heuristics.
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Predictions are made by combining factual knowledge (movement plane and trace) with

knowledge gained by induction or deduction (expectations).

Our approach is to use the movement plane as the reference framework for predictions.

Movement traces and heuristics are always applied in the context of a speci�c movement

plane to limit complexity and scope. It is also possible to employ multiple movement

planes in parallel and combine their results.

Further, we utilise the quality of the movement trace with respect to a certain

movement plane as a heuristic to choose the actual prediction heuristic. Thus we hope to

target prediction heuristics at those scenarios they are most applicable to.

6.3.1 Prediction heuristics

We distinguish inductive heuristics, which incrementally predict the \next" location, and

deductive heuristics, which do not rely on constructing a continuous trace between the

present and the prediction.

Inductive heuristics

Central to an inductive heuristic is the notion of a current state (or location), which is

used as a base to predict a \next" state. Once a \next" state can be predicted, longer-term

predictions can be made by chaining basic induction steps.

Naturally, induction heuristics crucially depend on accurate information about the

current state. Also, induction is prone to accumulation error. On the other hand, short-

term inductive predictions can be very accurate [37].

Di�erent inductive approaches are distinguished by their notion of state, and by the

methods used to compute the \next" state. In the following we describe some of them.

Trajectory projection A located-object tends to possess inertia: its movement follows

a certain path unless disturbed by an external event. The simplest variant of this heuristic

is the calculation of a future position based on current location and velocity. The projection

can be made for arbitrary points into the future with diminishing accuracy.

Typically, a trajectory projection requires knowledge of current speed and direction.

Sometimes, location sensors will provide this information along with the position (e.g.

GPS). Otherwise, those measures can be derived (with less con�dence) from the movement

plane M in combination with the movement trace. Here, AdjM and DirM would respec-

tively be used as a basis for the computation of speed and direction. Naturally, this is

only feasible for high-quality (i.e. continuous and directional) movement traces.

In e�ect, a trajectory projection is a one-step induction from current to target state.

State includes location, speed, and direction of the located-object within a movement

plane.

Markov process In a Markov process [12], a discrete random variable changes contin-

uously over time. The next state of this variable depends only on its current value.

Prediction using a Markov process is a multi-step induction where the located-object's

location is its state.
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Location change can be treated as a Markov process if it is assumed that there is no

observable inertia a�ecting the movements of the located-object. This may be justi�ed, for

example, if the sampling resolution is too low for inert movement segments to be visible.

Markov processes lend themselves both to simulation and to analytical solutions. Also,

a Markov model can be constructed automatically from historical data. Given a movement

planeM as a reference framework, a Markov model is represented quite easily by labelling

the relation AdjM with transitional probabilities.

As observed in [37], Markov processes alone are not suitable for all scenarios due to the

fundamental assumption of ignoring the lessons of history! However, they have been used

in combination with other heuristics to model random aspects of an object's movements.

For example, Lam et al. [31] employ Markov models for one of several categories of mobility

behaviour.

Pattern base If a located-object's movements can be represented as a sequence of state

transitions, the sequence of visited locations lends itself to pattern matching. Thus, if the

start of a pattern is recognised in the movement trace of a located object, the completion

of this pattern can be used for location prediction. This is a multi-step induction where

each state is characterised by a current location and a trace of past locations.

Liu [37] describes a pattern base consisting of traces and circles of subsequent states.

The contents of the pattern base are matched against the movement trace using a number

of metrics3. Also, patterns are extracted dynamically from historical data and added to

the pattern base.

Patterns can vary in their generality. Sometimes, the pattern will be expressed as a

sequence of concrete locations [37]. It is also conceivable to have more generic patterns

(such as home-work-pub-home) that use generic rather than concrete locations. Also,

grammars (such as regular expressions) could be used. Interestingly, it is also possible to

interpret a trajectory as a movement pattern.

In contrast to the Markov model, a pattern-base approach is most suitable if inert

movement segments typically cross multiple locations (i.e. the trace is directional). This

is because a pattern normally needs to be matched with more than one location.

Deductive heuristics

Sometimes a located-object's location can be predicted for a certain time in the future

without constructing a path from current to predicted location. This avoids the error

accumulation typically associated with inductive methods.

Also, deductive methods do not make strong assumptions about the quality of the

available location information. Thus, they can often be applied when inductive methods

fail.

Application level itineraries and goals Certain applications are concerned with

scheduling and planning of future activities of located-objects (e.g. diaries, route-

3Equality of corresponding locations, trace duration, transition frequency (see [36], page 78).
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planners). Other applications may have knowledge of events that will a�ect the movements

of the located-object.

This application-level knowledge is potentially very useful for longer-term location

prediction. The challenge is to allow the prediction system access to application knowledge.

However, without standardisation, access will be feasible and worthwhile only to the most

commonly-used applications (such as distributed diary systems). A further concern is

that application knowledge may be sensitive, i.e. it must be protected from unauthorised

disclosure.

Statistical pro�les Given a location service, statistics on the movements of a particular

located-objects can be obtained easily. For example, we can measure the frequency of visits

to a particular location along with the average duration of those visits. In turn, statistics

can be used to predict the time, likelihood and duration of a future visit.

Rose and Yates [56] suggest using time-varying mobile unit location probability distri-

butions to predict the movements of located-objects.

Statistics o�er a cheap and relatively powerful way to predict locations. The necessary

information can be acquired automatically and transparently. Hence, the statistical pro�le

is an approach that can be used widely.

Discussion

This section has described various methods of location prediction, which can be used

individually or in combination. For example, rather than starting an induction from the

current location, a deduced future location could be used. Conversely, deduction could

help to verify or rank the results of an induction process.

6.3.2 Applicability

As indicated above, each heuristic has a scope within which it can be successfully applied.

The scope of applicability is measured along the following dimensions: time frame, trace

continuity, and trace directionality.

Induction

Deduction

Distant Past

Movement Trace

Now

Immediate Future Distant FutureImmediate PastRecent Past

Interpolation

Figure 6.5: Time frames for location prediction
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Time frame

For purposes of location-tracking, the current time signi�es the end-point of the available

location trace. With reference to this notion of current time, a request for location informa-

tion falls into one of the following categories (�gure 6.5):

� Immediate future. This time frame is perhaps most useful for location-aware applica-

tions. While no \hard" location data is available, the immediate future lends itself

naturally to inductive heuristics. Deductive heuristics may be applied too, if an

inductive approach fails.

� Distant future. The distant future requires prediction using deductive heuristics

since error accumulation renders inductive methods ine�ective.

� Immediate past . By de�nition, this time frame covers the available location trace.

Hence only interpolation may be required.

� Recent past . This time frame precedes the immediate past time frame. Backward

induction is possible.

� Distant past . No trace information is available, and no backward induction is

feasible. Similarly to the distant past, deductive heuristics must be applied.

We conclude that for the recent past and the immediate future, induction is the most

e�ective prediction method. Deduction can be applied, but it will be less e�ective due to

the lack of reference to the current location. For the distant past and future, constructing

a path from the present location is too error-prone, and only deduction is applicable.

Trace continuity

The continuity property of a trace over a given movement plane M indicates whether

su�cient location information is available to faithfully track a located-object in M.

Continuity is necessary in order to model the movement trace as a sequence of state

transitions over AdjM. State machines are the basis for some induction heuristics (e.g.

Markov process, patterns base). Therefore lack of continuity makes it di�cult to apply

those heuristics. Note that in some cases interpolation can �ll temporal gaps and make a

trace continuous.

Other heuristics should not be directly a�ected if the movement trace is discontin-

uous. However, lack of continuity may indicate generally poor availability of location

information, and a�ects any aspect of a location service.

Trace directionality

The directionality property of a trace over a given movement plane M indicates whether

the direction and speed of the located-object can be inferred from the trace. If continuity

is lacking, interpolation may produce a trace that is both continuous and directional.

If a trace is directional, the �nal state of each movement segment depends on at least

two preceding states. Therefore, if a trace is directional the Markov property does not hold.



6.4. MOVING FROM EVENTS TO STATES 129

Hence the movement trace cannot be treated as a Markov process. Equally, directionality

indicates that the trace can be used for pattern matching and also for trajectory projec-

tions.

Directionality can be used to decide which inductive method to apply. On the other

hand, directionality does not appear to have an in
uence on the applicability of deductive

methods except that it indicates an adequate spatial and temporal sampling resolution.

Discussion

The time frame of prediction and the quality of movement trace have a signi�cant impact

on applicability ranking of prediction heuristics. Naturally, the more powerful heuris-

tics (pattern base, trajectory projection) have the narrowest scope of applicability, while

deductive methods o�er lower-quality predictions in almost any scenario.

In a homogeneous system with known characteristics the best heuristic can often be

chosen in advance for the system as a whole. Otherwise it is also possible to select

dynamically the approach that is best suited for a given located-object or trace.

6.4 Moving from events to states

The previous section has outlined the importance of state-based mobility models for

location prediction. Hence, there is a need to transform the sequence of location sightings

gathered by the acquisition stack into a sequence of state transitions.

State transitions require an underlying state machine. We use the movement plane, or

more precisely the adjacency relations Adj as the speci�cation for this state machine.

shortest path heuristic
Inserted by
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Event trace Restricted event trace Interval trace State trace
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Figure 6.6: Translation of an event trace into a state trace
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l2 l3

l4l5

Adj MAdjacency relationship

l1

Location hierarchy

l2 l3 l4 l5

l6 l7

M

Figure 6.7: Location hierarchy and movement plane

Given the representations for interval traces IT and state traces ST de�ned earlier in

this chapter, we identify the following stages of translating a trace T into a state trace

STM over a movement plane M:

1. Restriction removes events from T that are irrelevant to M, it computes T nM.

2. Consolidation translates the restricted event trace T nM into an equivalent interval

trace ITM.

3. Interpolation produces a state trace STM over M by closing the gaps in ITM.

Figures 6.6 and 6.7 illustrate this process. The consolidation stage is facilitated since

restriction limits the trace to a �nite and mutually exclusive set of locations. Restriction

has been described at the beginning of this chapter and shall not be discussed further.

Consolidation and interpolation are described below.

6.4.1 Consolidation

The consolidation stage must translate a sequence of discrete sightings into a sequence of

intervals. (An interval is the time span when a located-object is at a particular location.)

Since consolidation is preceded by a restriction to a particular movement plane, we may

assume that the locations occurring in the trace are mutually exclusive. Hence, an interval

spans only events referring to the same location (rather than its sub-locations). Our

consolidation algorithm works as follows:

1. Each event forms a primitive interval with duration zero.

I(s) = (ts; ts; ls)

2. Adjacent intervals are joined if they refer to the same location.

IA + IB =

(
(tA
s
; tB
e
; lA) when tA

s
< tB

s

(tB
s
; tA
e
; lA) when tB

s
< tA

s
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3. Step 2 is repeated until no more joins are possible,

Figure 6.6 gives an example. The consolidation process results in an interval trace overM.

If the original trace was continuous over M, and if the located-object stayed within the

scope ofM for the whole trace, the computed interval trace will have no gaps. Otherwise,

remaining gaps can be closed by interpolation if possible. The resulting continuous interval

trace is a state trace.

6.4.2 Interpolation

If consolidation does not produce a continuous trace, two explanations are possible:

1. The located-object went out of scope of the movement plane during the trace.

Detection of this is outside the scope of this algorithm. We assume that the located-

object remains in scope for the duration of a trace.

2. The temporal sampling resolution was too coarse to record a continuous trace over

M. In this case, it may be possible to close some or all of those gaps using heuristic

interpolation.

Our approach assumes that the adjacency relation AdjM accurately models all the

potential transitions among locations. Thus, the following interpolation algorithm can

be executed:

1. Identify a gap as a pair (Is; Ie) of neighbouring but non-bordering intervals.

2. For each gap, �nd the set P of all possible cyclic-free paths between lIs and lIe . If

P is empty, we have an error condition. If P is large, interpolation will only have a

small chance of yielding a correct result.

3. Apply a selection metric to each member of P in order to choose the most probable

path between lIs and lIe .

4. Insert the selected path into the trace. We have to choose the timing of the transi-

tions according to some heuristic.

This algorithm can be performed using a number of path selection and path timing heuris-

tics. If state transition probabilities are available (Markov model), they can be used to

choose the most probable path of the located-object. If a pattern base is available, pattern-

matching can be applied to generate interpolated paths. Otherwise, the selection of the

shortest-path (either in terms of geometric distance or number of state transitions) appears

to be a promising solution.

A pattern base can be also be used to determine the timing of interpolated state

transitions. Otherwise, we have to settle for a notion of constant speed, either relative to

geometric distance or the number of state transitions. Again, this should work reasonably

well for short gaps.

If successful, interpolation produces a continuous trace, i.e. a state trace. However, it

appears that interpolation only works well if there are very few probable alternative paths
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to choose from. How good this interpolation is depends on the quality of the original

trace. It is fairly easy to smooth over minor de�ciencies in a basically continuous trace.

If the located-object's movements are very constrained (e.g. a car on a motorway), it is

even possible to compensate for longer gaps. In most other cases, interpolation will have

so many alternatives to choose from that it becomes a lottery. Therefore we suggest using

the trace metrics described earlier in order to decide whether interpolation is appropriate.

6.4.3 Summary

If a movement trace is of high-quality with respect to a particular movement plane, the

sighting trace may be translated into a continuous sequence of state transitions. This

translation involves restriction, consolidation, and interpolation. The motivation for

translation is that many mobility-models are based on state machines.

6.5 Chapter Summary

Location information is only available for the past, which is not immediately useful for

most location-aware applications. Hence, prediction and interpolation are employed to

make constraints on the availability of location data transparent to applications. Thus,

uncertainty is reduced by injecting \external" knowledge in the form of prediction heuris-

tics.

Information about the position of a located-object accrues at discrete points in time.

Hence, we have proposed the notion of a time-ordered event trace as a general model for

the location data gathered by the acquisition stack. The quality and availability of location

data represented by such a trace can be quanti�ed using a number of measures. While

the applicability of these measures depends on the target scenario, we have identi�ed the

notion of a sighting's energy as an interesting model to rank sighting quality. Consequently,

energy density and average energy can be used to measure availability and quality over a

trace of sightings. We have applied the measure of aged sighting density (a special case of

aged energy density) to continuously measure the availability of location information for

Active Badges.

Quantitative measures are useful tools but require some idea of the expected outcome.

Our discussion has shown that for large heterogeneous systems such expectations cannot

be identi�ed for the system as a whole but only for parts of it. To alleviate the resulting

complexity, we have proposed the more abstract properties of continuity and directionality,

de�ned relative to a directed graph of mutually exclusive locations as represented by the

movement plane model.

In order to predict location, several inductive and deductive location prediction heuris-

tics are available. Inductive heuristics, such as Markov models or a pattern base, are useful

for accurate short-term location prediction. However, they are state-based and thus require

a continuous and (in the case of pattern-based approaches) directional trace. Deductive

heuristics do not rely on the trace itself but solely on \external" knowledge such as long-

term statistics or scheduled events. Hence deduction is always available but single-case

accuracy may not be very good.
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Due to the relative importance of state-based heuristics, we have described a way of

translating an event trace into a sequence of state transitions over a movement plane.

During this process, it is often necessary to interpolate between location events. Such

interpolation can utilise state-based prediction heuristics, such as Markov chains or a

pattern base, in modi�ed form.

This chapter has not championed any particular method of location prediction. Our

aim has been to outline a framework and a set of tools to build a prediction system to suit

a particular target environment. The framework is de�ned by the hierarchical location

model, the movement plane model, along with the representation scheme of traces for

events, intervals, and states. The tools are the various uncertainty metrics over events

and traces, plus the heuristics for prediction and interpolation.
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Chapter 7

Security Considerations

Security of information systems is of great concern to individuals and organisations for

di�ering reasons: commercial organisations are mostly interested in the integrity of their

data, the military worries more about secrecy (see [9] for a discussion), and individuals are

concerned about privacy , broadly personal control over the secrecy of private information.

In this chapter, we consider the security requirements of a location service. The

spectrum of application for a location service is wide, ranging from mobile telecommu-

nication systems to emergency assistance services and computer-supported cooperative

work. As a result, location services will often become repositories of potentially sensitive

personal and corporate information. Where you are and who you are with are closely

correlated with what you are doing . To leave this information unprotected for everybody

to see is clearly undesirable. People would feel uncomfortable if their every move could be

watched anonymously. Similarly, businesses would probably not like the idea of competi-

tors or sta� monitoring the attendance of every meeting. Further, location data will be

used, directly or indirectly, as input for decision-making processes. Hence, the integrity of

location data is also important.

We conclude that location information needs to be protected against unauthorised

disclosure and modi�cation. However, the exact level of protection varies widely from

context to context. Personal location services, corporate location services, and military

location services will all have di�erent requirements for secrecy and integrity. Hence, we

concentrate in this chapter on models for specifying security. Those models can then be

used to address the requirements of a speci�c location service.

We shall focus on the secrecy aspects of security. We outline two typical deployment

scenarios for a location service. Then, we explore the application of traditional mandatory

and discretionary security mechanism to our problem. We conclude with a brief description

of our prototype implementation, along with a discussion of related work.

7.1 Requirements

We outline two usage scenarios for a location service, which highlight di�erent deployment

environments and the resulting sets of requirements. We are especially concerned with

the balance between security imposed by the system (mandatory security), and security

135
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speci�ed by individuals (discretionary security).

7.1.1 Scenario I: Organisational location service

Within organisations, there is often the need to locate people in real-time. For instance,

trucking companies often use GPS-based systems to reroute vehicles e�ciently. Further

examples include computer-supported collaborative work, communication with mobile

workers, and location-based security mechanisms. Their common theme is that acquisi-

tion, management, and use of location information are ultimately controlled by a single

decision-making body, or organisation.

Security policy is set by the organisation for the whole location service. Typically,

local discretion is permitted only within the bounds de�ned by organisational policy. The

system is closed to outside access (except for limited and controlled cases). The people

and mobile objects to be tracked are registered with the organisation. The coverage

area, however, may well be very large if tracking technology and communication networks

permit.

In this setting, both integrity and accuracy of location information are of importance,

since the organisation's processes and decisions will be a�ected. It should be possible to

tell whether information is at least trustworthy. Some applications demand a high degree

of trustworthiness from location information, while others may well trade availability of

information for accuracy.

As far as secrecy within organisations is concerned, we see two basic requirements:

location-centric and user-centric privacy1. Firstly, an organisation may want to allow only

a certain group of people to discover who is in a speci�c room or building. For example,

a 
oor of a building might be `open' to everyone who works there, but not to people from

other 
oors and buildings. Secondly, a person's location should probably only be visible

to a restricted group. For example, the managing director might be visible all the time to

his or her secretary, while other people can see him only when he is in his o�ce.

At present, most location services fall into the organisational category. However,

provision of a global, public location service requires a more general, inter-organisational

approach.

7.1.2 Scenario II: Global location service

In contrast to the well-controlled, relatively closed environment described above, we

now discuss the scenario of a global location service. We expect such a service to be

provided by a network of cooperating providers, similar to today's mobile telephone

system. The providers would have roaming agreements with each other. Subscription

would be necessary in order to be tracked by the service, and also to access the service.

Service level and security provisions would be governed by legal contract.

The applications for such a service are the same as described in the previous scenario.

Further, there is scope for third-party location-aware services. For example, such a service

1User-centric privacy is not the same as personal privacy, but rather user-centric organisational privacy.

Personal privacy is an orthogonal concept.
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might be responsible for automatically informing emergency services when a distress signal

from a subscriber is received. Users will have to trust the service providers to obey the

security policy laid down in the service contract.

The global location system is open in two ways. Firstly, roaming subscribers may

encounter service providers that they have not met before. Secondly, service providers

may encounter unknown subscribers in their area. There could also be competing service

providers in the same area, further complicating matters. The problem here is mainly one

of cross-domain authentication and user pro�le management, which is outside the scope

of this thesis.

We envisage that service providers will be obliged to implement certain generic security

policies, such as nondisclosure to unauthorised third parties. Additionally, subscribers

would specify an acceptable security policy for themselves. For example, someone might

choose to be visible to their boss at work but not at home or at weekends. These policies

would presumably be mostly user-centric, while location-centric policies (for example, to

protect the privacy of a person's home) could be useful, too.

Ideally, there should also be more generic ways to specify access authorisation. For

example, when attending a conference I would like to be visible to all the other attendees

without actually knowing them. Similarly, I might wish to be anonymous in locations

matching a given constraint, such as a motorway.

Generic authorisation constraints are especially important since the service is

partitioned among many providers. These providers must rely on local knowledge to make

access control decisions. Constraints that require frequent access to non-local information

cannot be considered a scalable solution to this problem.

The requirements governing integrity and accuracy of the location information can

also be expected to vary widely. Even a single subscriber could have multiple accuracy

requirements for di�erent applications.

7.1.3 Discussion

In both scenarios, secrecy is the main concern. In the �rst, secrets of the organisation need

to be protected while individuals' privacy is of lesser concern. In the second, subscribers'

personal privacy is the main requirement. In each case, privacy has user-centric and

location-centric components.

A location service also needs to be protected from false location data. Further, there is

a need in both scenarios to distinguish trusted from untrusted location information. The

integrity of trusted information needs to be protected against improper modi�cations.

In the remainder of this chapter, we focus on models for speci�cation of secrecy

constraints applicable to both scenarios.

7.2 Access control for a location service

Functionality and manageability of a location service depend primarily on the location

model used. We argue that manageability (and security) are facilitated by symbolic

location abstractions.
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A location service over a symbolic location model o�ers the following basic function-

ality:

� Given a located-object, return all the current symbolic locations of this object.

� Given a symbolic location, return all the located-objects currently located there.

The di�culty in specifying a security model over these two functions is indicated by

their symmetry. Either function can reveal all available location information. Hence access

control for both functions must be consistent.

As far as the architecture of the location service is concerned, many di�erent process-

ing and distribution models are possible. However, in this chapter we shall focus on

architecture independent security models.

In the following, we discuss how security for a symbolic location service with those two

functions can be speci�ed. We expect that the results can be applied to location models

including geometric data and to location services with more complex functionality.

7.2.1 New challenges

Location information essentially consists of fast-moving dynamic relationships between

multiple objects. Di�culties for existing approaches are the dynamism of the informa-

tion, and the fact that location information does not consist of knowledge of objects, but

knowledge of object relationships.

The �rst di�culty arises because management systems tend to rely on a relatively

static framework, e.g. the domain-based management framework described in [72]. Here,

the problem domain is structured into a graph of management domains, each domain

containing a set of references to managed objects. Managers are expected to explicitly

add objects or remove objects from a domain. We believe that while the domain graph

should remain mostly static, dynamic location-dependent domain membership is required

to manage mobile objects. However, this is more an architectural problem and lies outside

the scope of this work.

The second di�culty mentioned above is the actual motivation for writing this chapter.

We seem to be unable to specify security policies for location information using the

standard models for access control, Lampson's access matrix [32] and Bell-LaPadula's

security labels (see [7]).

Traditionally, the use of access control is either mandatory (imposed by the system),

or discretionary (left to the owners of the objects). Both approaches are based on the

subject-target paradigm. With mandatory access control, a subject is allowed read-access

or write-access to a target if certain axioms over the security labels of subject and target

are satis�ed. When using discretionary access control, an access matrix [32] with possible

subject-action-target combinations is constructed. Access by a subject to a target with

an action is granted if the corresponding combination is a member of the access matrix.

With location information, there is no obvious target object. If the located-object is

treated as the target object, it is hard to specify access control for all objects at a given

location. If the location is the target object, it is di�cult to specify access control for
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a given located-object. Using both methods in combination is not satisfactory because

access control information is duplicated.

In the remainder of this section, we describe how the classic access control models

can be generalised to cope with this problem. For the purpose of the discussion, we shall

assume a domain-based framework with dynamic location-dependent domain membership.

7.2.2 Matrix-based access control

In domain-based frameworks, matrix access control policies are speci�ed by rules of the

form:

<subject scope> f <list of actions> g <target scope>

Semantically, such a policy allows any subject from <subject scope> to perform one

of <list of actions> on a target from <target scope>. This corresponds to an access

matrix where both subjects and targets are domains. This additional level of indirection

allows policies to be speci�ed for groups rather than individual objects.

Application

As far as location information is concerned, a typical (informal) policy is

Joe may see that Fred is located at Building@/School

A policy with the same meaning is:

Joe may see that Building@/School encloses Fred

Clearly, both policies specify the same thing: Joe is allowed to observe a particular

relationship, collocation, between Fred and Building@/School. However, such a policy

cannot be expressed adequately in conventional subject-action-target paradigm. This

limitation is somewhat alleviated by policies with additional constraints [44], allowing

expression of the policy in canonical form:

Joe f testForCollocation(PERSON) g Building@/School WHEN PERSON=Fred

This speci�es that Joe is allowed to perform the action testForCollocation(PERSON)

on Building@/School when PERSON equals Fred. The action contains Fred as an implicit

target. Unfortunately, this necessitates the evaluation of the WHEN clause at run-time.

The WHEN clause contains an arbitrarily complex �rst-order logic expression, which makes

a lightweight implementation somewhat di�cult. Even worse, conceptual clarity is lost.

The essence of the actual policy is obscured: granting authorisation for an action that,

symmetrically, a�ects the rights of multiple targets.

To deal with this problem, we propose the use of multi-target policies of the form:

<subject> f <action> g <target 1> ... <target n>
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The (informal) semantics of such a policy are: subject is authorised to perform action

over the composite entity consisting of targets 1 to n. Obviously, multi-target policies are

only useful for actions that a�ect multiple targets at the same time, such as binding of

component interfaces in a distributed system by a third party [10], or arranging business

deals (\match-making"). Applied to our example, this reads:

Joe f testForCollocation g Fred, Building@/School

For completeness' sake, multiple subjects can also be introduced:

<subject 1> ... <subject m> f <action> g <target 1> ... <target n>

Multi-subject authorisation policies describe authorisations for actions which require

multiple subjects to perform an action together, such as opening a deposit locker, or

authorising a cheque. A set of policies over m subjects and n targets corresponds to an

m+n dimensional access matrix. An example:

Sweden, Finland f mediate g Israel, Syria

This policy speci�es that Sweden and Finlandmay (together) mediate between Israel

and Syria. This does not convey authorisation for either Sweden or Finland to mediate

alone.

Such policies are necessary for actions that operate over dynamic relationships between

a �xed number of objects. The objects in those relationships can collectively act as subject

or target of an action. Arguably, the relationships themselves could be promoted to �rst

class objects, leading to a more general solution. However, we believe the additional

complexity is not justi�ed here.

Note: The approach of multiple source scopes and target scopes is distinct from the

additional grantee scope proposed in [83]. This scope is used to specify objects to which

a policy can be delegated. Grantee-scopes are an extension facilitating the management

of policies rather than extending their expressive powers. The approach described here is

orthogonal and could be combined with grantee scopes.

7.2.3 Label-based access control

Mandatory access control in the domain framework is implemented by assigning security

labels to management domains. All objects within a domain inherit the domain's label.

If an object is a member of multiple domains, it inherits the least upper bound of all its

parents' labels. Access is granted whenever the security labels of subject and target satisfy

a certain set of axioms.

Analogous to the matrix-based case, the pair of single subject and single target does

not in itself contain enough information to decide whether access to location information

should be allowed. Hence, the security labels for both targets, that is location and located-

object, should be consulted along with the label of the subject. Therefore, the axioms must

cater for multiple subjects and multiple targets.

A label consists of a �xed number of attributes. There is an equivalence relationship

de�ned over the set of values for each attribute. Further, attribute values may be partially
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or totally ordered. These relationships are used by the axioms to establish a \dominates"

relationship between labels. This in turn is also a partial ordering relation.

The most common label format, as used by Bell-LaPadula (see [7]), has two attributes.

The �rst attribute, S, a sensitivity level (e.g. non-classi�ed, con�dential, secret, etc.), is

totally ordered. The second attribute, C, is a set of categories. Examples of categories

are nuclear physics, data encryption, and global positioning. Category sets are partially

ordered by sub-set inclusion. A label A is said to dominate label B if both of A's

attributes are greater or equal to B's corresponding attributes:

dominates(A;B), (SB � SA) ^ (CB � CA)

For brevity, we shall use the object's name to refer to the object's label in the dominates

predicate. Commonly used axioms are:

1. Subject S may read target T only if dominates(S;T)

2. Subject S may append to target T only if dominates(T;S)

3. Subject S may overwrite target T only if dominates(S;T) and dominates(T;S)

These axioms ensure that information may only 
ow from objects with lower security

classi�cation to objects with higher classi�cation. Thus, classi�ed information cannot be

declassi�ed by `normal' operations.

Application

We need to de�ne a set of axioms over subject and target that allow a decision to be made

whether access should be granted. In contrast to the approach described above, we need

to deal with two targets: locations and located-objects.

We wish to express the following high-level policy for mandatory access control:

Location data may be disclosed only if the secrecy of neither

located-object nor location is infringed.

In this context, \infringement of secrecy" translates to a 
ow of classi�ed information to

a target with lesser classi�cation.

We attach security labels S, L, and O to subject, location, and located-object, respec-

tively. The above policy can then be expressed as follows:

S may see L at O only if dominates(S;L) and dominates(S;O)

The dominates relationship is a partial order because attribute values are drawn from

partially-ordered sets. Therefore, instead of verifying the dominates relationship for each

label, we may choose to combine all target labels into a single label. The combined label's

level is intended to be greater than or equal to any of the individual labels. This notion

corresponds to the mathematical concept of a least upper bound (lub) over a set S partially

ordered by the dominates relationship. We de�ne the lub over a set of labels as follows:

ub(S;x) , (8y 2 S):(dominates (x;y))

(lub(S) = x) , ub(S;x) ^ : (9 z):(ub(S; z) ^ dominates(x; z) ^ : (x = z))
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In this de�nition ub(S;x) is a predicate that is true if x is an upper bound of the set S

ordered by the dominates relationship. An upper bound x is not required to be a member

of S.

Using the lub of the participants' security labels, we can express the above policy as:

S may see L at O only if dominates(S; lub(fL;Og))

The computation of the lub can be simpli�ed because the ordering of security labels is

based on the ordering of labels' attributes: sensitivity level and category set. The lub

of two composite labels can be constructed from the lubs of the corresponding attributes

of the label. That is, we compute the lub of the sensitivity levels and the lub of the

category set. The label consisting of both results is the lub of the two original labels.

More generally, the lub of a set of attribute tuples can be computed as the tuple of the

lubs of the individual attribute values:

lub(f(a1; :::;an); (b1; :::;bn)g) = (lub1(fa1;b1g); :::; lubn(fan;bng))

Note that the lub for each set of attribute values operates over the partially-ordered set

speci�c to that attribute.

Axioms over operations with multiple subjects can be de�ned analogously. Here, the

compound label of all subjects should be less than or equal to the individual labels. Hence,

the compound label is de�ned as the greatest lower bound (glb) of the subject labels.

Consider the following policy with T and S de�ned as sets of objects:

S may read T if dominates(glb(S); lub(T))

This policy permits a 
ow of information from a group S of objects to a group T of

objects, provided that the least classi�ed element of S still dominates the highest classi�ed

member of T. This shows how the Bell-LaPadula security model can be applied to actions

with multiple subjects or multiple targets. It does not really matter how many of the

members of S or T are involved in a particular action. Hence, the proposed mechanism is

applicable also to arbitrary groupings of objects, such as management domains.

When applying the proposed mechanism to the secrecy of location information, we use

the pair of (location, located-object) as the set of target objects. A test for collocation is

allowed if the source object dominates both target objects:

S may testForCollocation(L,O) if, and only if, dominates(S; lub(fL;Og)

This basically is a read operation. Since there is only one dominates ordering, it is not

easily possible to specify more selective security policies, e.g. for the protection of personal

anonymity. On the other hand, update authorisation can be speci�ed:

S may submitLocationUpdate(L,O) if, and only if, dominates(S; glb(fL;Og)

This is an append operation, i.e. previous updates are not discarded. Updates that

overwrite previous values are tricky because the corresponding axiom requires symmetric

domination between source and target. In turn, this requires that both location and

located-object have the same security label. This is impractical.
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E�ective protection by a mandatory security scheme requires careful design of the

security labels, and a consistent labelling policy. Further work is required in order to

establish the relevant design principles. However, we have shown that in principle, a

generalised form of the Bell-LaPadula can be applied to the problem of specifying security

for location information.

7.3 Mandatory vs. discretionary access control

From a functional point of view, mandatory label-based access control provides a simple

framework for consistent protection of secrecy. However, individuals cannot selectively

allow or restrict access to private information. Hence, label-based access control is not a

suitable mechanism to protect people's privacy. It will therefore be favoured by organisa-

tions with strong internal security requirements. This simplicity, however, comes at the

cost of reduced 
exibility. Most environments, organisational or global, will require some

kind of matrix-based access control. These controls can be speci�ed at the organisational

level, or by the owner of the information.

From an administrative point of view, mandatory labels require a central authority

for creating and assigning security labels. Therefore, a mandatory scheme is not suitable

for decentralised environments, such as described in scenario II. Matrix-based systems can

be administered either centrally (scenario I) or in a decentralised fashion (scenario II). In

general, central administration is less complex but not always practical.

We believe that few environments will rely solely on mandatory label-based access

control to location information. The needs of most scenarios can be satis�ed with matrix-

based access controls, perhaps using management domains and a policy notation as

supporting framework. Further, security labels can be emulated by policies. The converse

does not hold.

7.4 What kinds of access control policies are needed?

No single monolithic access control scheme appears to work well in all (or even most)

environments. Therefore, we advocate a mix-and-match approach, which allows orthog-

onal �ne-grained access control mechanisms to be chosen and combined according to the

actual security requirements. Additionally, conventional access control mechanisms can

be applied to protect the location service as a whole.

Our protection mechanism is structured into three layers: control of access, control of

visibility and control of anonymity. In an actual system, only one or two of these layers

might be used. Semantically, the authorisation granted by one layer is only a necessary

precondition for the actual access authorisation. It can be overridden by higher layers. In

the following paragraphs, we describe the functionality of each of the layers.

Access policies

Access policies specify the traditional level of access authorisation. That is, unauthorised

queries are rejected. However, in order to achieve �ne-grained access control query results
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must also be considered. A single query can produce a perfectly-authorised result in

one set of circumstances, and an unauthorised result in a di�erent set of circumstances.

Therefore, results that are unauthorised need to be removed from the result set. Only

queries that cannot possibly produce authorised results should be rejected straight away.

The decision whether a query should be rejected must not allow anything to be inferred

about the a�ected locations and located-objects. Therefore, this decision should be made

without reference to objects' current locations.

Joe f accessCollocation g Fred, Building@/Hux

This policy states that Joe is allowed to observe collocations between Fred and

Building@/Hux (and all of its sub-locations).

Building@/Hux

Level@/Hux:1 Level@/Hux:2

Staircase@/HuxRm@/Hux:101 Rm@/Hux:102 Rm@/Hux:202Rm@/Hux:201

Visible Domain Set

Figure 7.1: Location hierarchy with a visible domain set

Access policies specify necessary pre-conditions which may be strengthened by policies

governing anonymity and visibility. We think of access policies as the \ring fence"

surrounding the \playground" of the visibility policies and anonymity policies described

below.

Visibility policies

Visibility policies control the level of location detail released. These policies typically act as

�lters replacing detailed location information with less detailed information. Such a substi-

tution is made possible by the hierarchic structure of the location domain space as shown

in Figure 7.1. For example, if a query yields the unauthorised result Level@/Hux:201, the

result is replaced by Level@/Hux:2. The set of visibility policies for a given subject and

located object de�nes the set of visible location domains.
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Joe f accessLocation g Fred, Level@/Hux:1

This policy states that a co-location between Fred and Level@/Hux:1 (including its sub-

locations) may be observed as Level@/Hux:1. The policy does not specify whether access

is allowed or whether the identity Fred should be revealed.

Anonymous

Jo Fred

Student

Laura

Visible Domain Set

Teacher

BobLuise

Figure 7.2: Located-object hierarchy with a visible domain set

Anonymity policies

Anonymity policies control the level of detail released about the identity of an object

at a particular location. This is conceptually similar to the visibility policies described

above. Instead of using a hierarchy of locations, we employ a hierarchy of identities

as shown by Figure 7.2. The ordering of identities for a given located-object re
ects

increasing anonymity. Therefore, we can automatically replace concrete identities with

more anonymous identities in a result set without a�ecting its correctness. A set of

anonymity policies for a given subject and location de�nes a set of visible identities.

Joe f accessIdentity g Anonymous, Building@/Huxley

Joe f accessIdentity g Fred, Building@/Huxley

The �rst policy states that within Huxley Building (and its sub-locations), everybody

should be visible as anonymous. The second policy speci�es an additional but non-

con
icting authorisation to Joe allowing him to see Fred as Fred in Huxley Building

and all its sub-locations.
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Higher-level policies

The three levels of access control can be combined in di�erent ways to implement higher-

level organisational or personal security policies. Examples include:

� Correlate publicity of location with anonymity. Such a policy corresponds quite

closely to our intuition about privacy. In a public place, we expect to be anonymous,

whereas everybody knows our identity when we are in our o�ce. Such a style of

access control can be speci�ed directly using anonymity policies.

� Correlate enquirer's role with the revealed granularity of location. Actually, we would

like to correlate the purpose of a query with the granularity of the result, but this

is hard to do directly. Fortunately, the enquirer or his role are often a good approx-

imation for the purpose of the query. This high-level policy can be re�ned using the

visibility policies described above.

� Do not allow outside access. In type I scenarios, we expect this to be a common

high-level policy. While this could be expressed using visibility policies or anonymity

policies (or rather, their absence), we prefer not to over-complicate things. Access

policies o�er a simpler and thus more suitable mechanism to specify \hard" access

control (as opposed to \soft" access control with anonymity and visibility policies).

These examples show that the proposed policy types o�er signi�cant 
exibility, thus

enabling them to address the requirements of a range of organisational contexts from

both scenarios. Larger case-studies are required to evaluate the practical suitability of our

approach.

7.5 Prototype implementation

We have implemented the protection model described above in a database-centric location

service (cf. appendix D). Each of the protection layers | access, visibility, and anonymity

| is enforced by a corresponding �lter implemented as a stored procedure.

A �lter is con�gured by access rules stored in a database table. It enforces access

control by removing unauthorised elements from result sets. Filters are idempotent and

can be chained.

� Access policies were implemented by computing the geographical area of authorised

access for each pair of subject and located-object. At run-time, the �lter checks

whether the located-object is within the authorised area. This has the advantage

of by-passing the hierarchical data representation but assumes that the location

structure is static. If no area of authorised access is known, the query can be rejected

right away.

� Visibility and anonymity policies are implemented as �lters over result elements. For

each element, the relevant tables are checked to see whether it is authorised. Since

our result sets are complete (i.e. contain all higher-level domains), we can simply
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remove unauthorised result elements. This is straightforward but perhaps not the

most e�cient solution.

This prototype has allowed us to verify the consistency of our protection model.

Unfortunately, we have met performance problems caused by the evaluation of visibility

and anonymity policies. Better performance could be achieved if the �lters were working

over a result set as a whole rather than over each element in turn.

7.6 Previous approaches to location service security

Typical commercial location service implementations, as used by GSM [48] for example,

need to o�er strong guarantees for the secrecy of location data. Secrecy is ensured by

closing the system to outside access and by coarse-grained traditional access control

(if there is any). More sophisticated approaches have been proposed by the research

community.

Researchers at Xerox PARC where among the �rst to recognise the security implica-

tions of a location service [67]. In [68] they argue that di�erent environments need di�er-

ent levels of protection for people's privacy. They also advocate user control over the

disclosure of location information. The approach allows for protection of anonymity via

`secret groups'. They argue that in a large, heterogeneous system only the user-agent

approach (as opposed to the location service approach) can deliver a meaningful protec-

tion of privacy. Xerox PARC's user-centric architecture is spelt out in [66]. Here, the

user agent implements the access control decisions as speci�ed by the corresponding user.

Access control can also be delegated to a central Location Broker to increase e�ciency.

Locations are not treated as �rst-class objects in this model, that is, no explicit policy

regarding access to a speci�c location can be speci�ed.

Rizzo et al. describe their work on a secure location service for an o�ce environment

in [55]. Their location service is constructed of a tree of Locators, which are location

tracking subsystems. Secrecy is protected by access control to those Locators. Capabilities

are employed to allow select access to Locators. (These capabilities could, in principle,

be used to specify the range of authorised results for Locator queries.) Organisational

policies are expected to be hardwired into the Locators, while discretionary policies can

be speci�ed and altered by the individuals who `own' the location information.

In both cases, the location services have been designed with a concrete implementation-

speci�c security model in mind. There is no general architecture-independent speci�cation

of security policy which could be applied to a di�erent location service architecture.

7.7 Chapter Summary

In this chapter, we have discussed the security requirements faced by location services

deployed in di�erent organisational environments. We have identi�ed two likely deploy-

ment scenarios, large organisations and heterogeneous global services.

Both mandatory label-based protection and matrix-based protection can be applied

to a location service. In both cases, the traditional approaches need to be generalised in
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order to be suitable for the location service. This is because location information does not

provide an obvious target object for policies and labels. If the located-object is treated

as the target object, it becomes very hard to specify an access control for all objects at

a given location. If the location is made the target object, it is di�cult to specify access

control for a given located-object. Using both methods in combination is not satisfactory

because the access control information would be duplicated. Therefore, we have proposed

multi-target policies for discretionary access control, and three-label axioms for mandatory

policies.

Matrix-based access control o�ers a 
exibility and expressiveness far superior to label-

based access control. When using a domain-based framework, the access matrix can be

speci�ed as a set of canonical policies over groups of objects. Thus, the policy-based

approach becomes scalable and manageable. Further, both centralised and decentralised

system can use policies. Label-based access control caters for a much narrower set of

requirements. Therefore it is only appropriate for use in systems with very specialised

requirements.

We have designed and implemented a policy-oriented security model over a location

service based on a hierarchy of symbolic locations. Our model allows for 
exible protection

of organisational and personal privacy. We have identi�ed three levels of protection: access

protection, location anonymity and personal anonymity. These protection levels can be

provided by either mandatory or discretionary access controls.
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Conclusions

This thesis has discussed the provision of location-awareness in an open distributed

computing environment. For this purpose, it has identi�ed the functional and structural

elements of global and general location tracking. These elements should be provided to

applications through a logically centralised location service.

While there are many more issues to be discussed and problems to be solved, we have

focussed on what we believe are core problems: data model, functionality, architecture,

and security.

The next section summarises the contribution of this thesis, followed by a discussion

of areas worthy of future investigation.

8.1 Recapitulation

8.1.1 Location-Awareness

Users and applications require information about the physical location of real-world

objects. They require knowing their own location, or the location of other objects.

Location-awareness comprises both.

Location-awareness should not imply location-sensor awareness. Hence, we propose a

level of indirection between location sensors and location-aware application. If sensors and

applications are not connected to the same computer, this indirection layer is encapsulated

by the abstraction of a location service.

8.1.2 Location model

It was recognised early on that the chosen location model determines the functionality

supported by a location service. Later it became evident that the location model also has

major architectural implications.

Hierarchical symbolic locations are a recurring theme of this thesis. We think that

this is the only way to successfully marry generality and scalability. We have shown

how geometric location information can be incorporated into this model. Hierarchical

data naturally lends itself to multi-resolution processing, which can be used to address

scalability and performance problems.
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Finally, our location model has been formally speci�ed in Z, and also been implemented

on an object-relational database platform.

8.1.3 Architectural approach

We have examined in detail the architecture of today's most widely used directory and

location services, and found that some degree of replication is necessary in order to provide

scalability. However, location information is too volatile for traditional replication. So the

solution must be to replicate at the appropriate level of resolution. The previously-de�ned

hierarchical location model can be employed to support such a scheme.

Further, we have identi�ed partitioning by user and partitioning by location as

important design approaches. User-agents and location-agents are the respective extreme

cases. It appears to be impossible to �nd one partitioning scheme that is optimal in

general. We can either chose a particular partitioning scheme based on a very narrow

set of requirements or tolerate heterogeneous sub-systems within the architecture. For a

global and general location service, only the second solution is viable.

We think that a general, global location service should be provided by a community

of competing location service providers. Inter-working between service providers must

be supported by a logically-centralised infrastructure, which o�ers directory services for

locations and located-objects, as well as a scalable event propagation service.

8.1.4 Acquisition of location data

In many ways, acquiring and integrating location data from a set of heterogeneous location

sensors is the core functionality of a support platform for location awareness. Acquisi-

tion consists of reception, abstraction, and fusion. Reception gathers data from sensors,

abstraction translates it into a common representation, while fusion integrates multiple

sightings of the same object.

A hierarchical data model facilitates abstraction and fusion. Then, the relationships

between the translated locations become explicit so that con
icts and overlaps can be easily

detected. We have proposed and speci�ed a fusion algorithm over a location hierarchy. In

our opinion, this demonstrates the superiority of a well-speci�ed location model over an

ad-hoc solution.

8.1.5 Uncertainty and prediction

Due to limited spatio-temporal resolution and other factors, location information is never

perfect. This imperfection manifests itself as incorrect and incomplete information.

Perhaps the most important limitation is that location sensors only provide information

about the past. No element in the processing chain can be shielded completely from this

fundamental uncertainty.

However, imperfection can be compensated for by injecting probabilistic external

knowledge in the shape of prediction heuristics and mobility patterns. In order to know

which heuristic or pattern is applicable, the quality of the trace must be measured. We

have proposed continuity and directionality as abstract properties to be used for this task.
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For movement prediction, a variety of mathematical models are available: Markov

processes, statistical pro�les, state machines, and others. We believe that it is important

to match a trace to the right model. Also, one has to be aware that any prediction is

inherently unreliable.

We have found that multi-resolution processing is an essential pre-requisite for serious

location prediction. Hence, our hierarchical location model facilitates prediction. However,

the orthogonal notions of adjacency, distance and directionality need to be added in order

to reason about the movement of objects. Hence, we have proposed the concept of a

movement plane consisting of a �nite set of mutually exclusive locations. This model

enables state-based reasoning about mobility.

8.1.6 Security and privacy

Many people do not like the prospect that other people might be able to track their every

move. This concern is legitimate, even more so since somebody's activities can often be

inferred from where they are and who they are with. Hence, mechanisms for protecting

privacy of people and organisations are necessary. Since more protection implies less

information (and thus functionality), such mechanisms must be 
exible enough to strike

an acceptable balance for most environments.

We have come to the conclusion that traditional protection models are not suitable for

location information. This is because we can either specify how to protect a location or a

located-object, but not both at the same time. So we have proposed multi-target access

control to overcome this fundamental problem.

Also, location privacy is more about controlling the level of detail provided to clients

rather than about a decision whether to allow or deny access. We have used the aforemen-

tioned multi-target access rules to specify policies for protection of location detail and

anonymity. This is another instance of multi-resolution processing enabled by hierarchical

locations.

8.1.7 Prototyping

We have gained a degree of con�dence in our models with the support of two prototype

implementations. A �rst prototype, an \Active O�ce" location service (cf. x 5.8,

page 106), has allowed us to experiment with heterogeneous location sensors in a

distributed environment. The acquisition framework described in chapter 5 has been

implemented there. We have used the data gathered to perform statistical experiments in

order to look for applicable prediction metrics and heuristics. Also, the implementation

has provided initial validation for our architectural approach.

From this prototype, we have learned the following lessons:

� A clearly de�ned location model is essential when fusing data from heterogeneous

sources.

� Client-side fusion is feasible and desirable, but con
icts with asynchronous location

event noti�cation.
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� Inductive prediction is only feasible with high-quality location traces.

A second prototype, a database-centric location service (cf. appendix D), served as

a testing platform for the hierarchic semi-symbolic location model (i.e. location domain

model). Location queries and updates can be submitted in either geometric or symbolic

form, thus re
ecting the dual nature of the underlying location model. On this basis, we

have implemented the protection model over the location hierarchy (cf. chapter 7).

We have learned the following lessons from this implementation:

� Conceptually, a location service is a database and can be implemented as such.

� Hierarchical structures and corresponding recursive operations do not perform very

well in a relational database.

� Conventional database technology does not provide the scalability and distribution

that is necessary for a global location service.

The two prototypes implement di�erent aspects of our work. Together, they support

the important concepts described in this thesis. However, there can be no doubt that a

comprehensive, integral implementation of our ideas will lead to further insights.

8.2 Future Work

There is considerable scope for re�ning, extending, and applying the ideas in this thesis.

Scalable event propagation In the scenario of a global location service, one can easily

imagine that there would be located-objects or locations which would be of interest to

many people at the same time. Propagating updates via point-to-point noti�cations

does not seem a viable strategy in such cases.

Therefore, we envisage that a global location service would be supported by a hierar-

chy of event channels propagating a restricted event set. Here, one could exploit a

hierarchic location model as a hierarchic code to reduce tra�c volume. Also, the

event-channel hierarchy should be sparse, i.e. only required channels should exist.

Further, low-level groupcast protocols should be used if an event channel has a large

number of subscribers.

Security policies and implementation In the case of a location service spanning

multiple administrative domains (analogous to today's Internet), traditional ways

of authorising access seem less applicable. For example, the approach described in

this thesis assumes that users are grouped into domains. But how are access rights

assigned appropriately if the service is queried by somebody it has never met before?

We believe that novel models for establishing trust are needed for a large-scale open

location service. Above all, such a model must be scalable to very large user popula-

tions.
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Trusted location information While location information is often more or less

uncertain, there are some potential application domains for location information

where strong authenticity guarantees are required. For instance, a global organisa-

tion might (for legal reasons) only allow access to certain documents if the inquirer

is not located in the United States of America. Here, reliable knowledge of the

inquirer's location could be invaluable.

The thesis has pointed out some of the di�culties of generating reliable location

information. It is a challenge to �nd a schema that works for multiple location

sensor technologies!

Patterns for location-awareness Currently, the research community appears to

struggle to develop viable paradigms for building location-aware applications and

services. A set of commonly-recognised abstractions and design patterns would

reduce the cost of developing the growing number of increasingly sophisticated

location-aware applications.

While some of the models described in this thesis could be used as such, there

is a need for more speci�c design patterns for location-awareness. For example,

when should a component in a design expose location-awareness instead of location-

transparency? What are the typical interactions?

Naturally, this list does not claim to be complete as it is biased by the preferences of

the author. There are other areas, such as movement prediction heuristics or visualisation

of location information which are also worthy of investigation.

8.3 Closing Remarks

Parts of this work and direct in
uences on it have been previously published:

Regis The Regis system [41] provided an implementation platform for most of this

research.

Location Service The genesis of this thesis has been work on the Active Badge system

by the author. A subsequent design by Je� Magee [41] provided an invaluable concep-

tual and physical platform to start this research. Our �rst ideas were published in

[34].

Security Policies For many years, Morris Sloman has headed research into system

management at Imperial College. Our approach to security is based on this work.

A comprehensive overview is can be found in [64]. Our work on access control for

location information has been published in [35].
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Appendix A

Glossary

Active Badge. An electronic tag developed by Olivetti that periodically sends out

infrared beacon signals carrying its identity [74].

Agent. A software entity who acts for, or manages the transactions of, another.

Agent mobility. Refers to the ability of a software agent to migrate to another logical

location (domain) and/or physical location (host) while executing.

Availability. Avoiding the denial of service [7].

Base station. The �xed transmitter/receiver device with which a mobile radio

transceiver establishes a communication link to gain access to the public-switched

telephone network [61].

Cell. The geographic area served by a single low-power transmitter/receiver. A cellular

system's service area is divided into multiple cells [61].

Cellular connectivity. Communication provided by a radio or IR network consists of

many cells (macro-cells, micro-cells, pico-cells) such that the moving mobile host

frequently crosses cell boundaries.

Context-aware computing. The ability of a mobile user's applications to discover and

react to changes in the environment in which they are situated [59].

Disconnected working. Continued operation without connection to the backbone

network (e.g. vital servers).

Discretionary Access Control. A protection model which entails that the owner of an

object has the discretion to allow or deny access to it.

GIS (Geographical Information System). Typically, a database-centred system for

handling spatially-referenced static data.

GPS (Global Positioning System). Satellite-based radio navigation system [85].
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GSM (Global System for Mobile Communications, originally Group Speciale Mobile).

International standard for second-generation digital cellular mobile communication

systems [48]. Currently, GSM-based systems are widely used in Europe and Asia.

HLR (Home Location Register). The logically centralised user pro�le database of a

cellular communication system.

Horizontal application. A domain-independent software application, e.g. a spreadsheet

[23].

Host mobility. The ability of a host to be physically moved to a new environment

without signi�cantly impeding its functionality.

Integrity. Maintaining integrity means preventing/detecting/deterring the improper

modi�cation of information [7].

Location domain. A well-de�ned geographical area providing a logical location for

located-objects.

Location management. Gathering, storing, and disseminating information about the

location of entities.

Location sensor. A sensing device whose inputs are used to measure the locations of

objects.

Location service. A service that provides information about the physical location of

real-world objects.

Location-awareness. The ability to adapt behaviour to the physical locations of users,

resources, and processes.

Location-dependence. At di�erent locations a di�erent behaviour can be observed.

This is not necessarily the result of location-awareness.

Located-object. A mobile object whose location can be tracked.

Location-sensitive information. The information about services or resources (includ-

ing hardware and software resources, network connectivity, available communication

protocols, etc.) provided by the system or networks in a de�ned location (i.e.,

geographical area) [39, 38].

Mandatory access control. A protection model which entails that access control is

imposed by the system. Usually, this involves the labelling of documents and users.

It is typically used to secure large amounts of information requiring strong protection

in environments where system data can be classi�ed and users cleared [7].

Mobile application. Software application which is partially or totally mobile. This

mobility can be based on host or software mobility.
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Mobile host. Abstraction for a computer that can be moved easily over a signi�cant

distance.

Mobility. The ability to move (or be moved).

Personal mobility. The mobility of a person between terminals and networks [38].

PCS (Personal Communication Services). A loosely-de�ned future ubiquitous telecom-

munications service that will allow \anytime, anywhere" voice and data communi-

cation with personal communication devices [61].

Privacy. \The right of an individual group or institution to determine when, how, and

for what purpose information concerning himself/itself can be collected, stored, and

released to other people or entities" [7].

QoS (Quality of Service). Quantitative property speci�cation of service provisions or

requirements. Examples: delay, throughput, jitter for communication channels (see

[22]).

R-tree. A height-balanced tree, similar to a B-tree [5], which may be applied to index a

large collection of points in multi-dimensional space [18].

Resource Mobility. Movement of resources (such as system data/programs, user data,

user programs, etc.) in the underlying network to meet the QoS requirements of the

mobile user [38, 39].

Roaming. A mobile user who roams temporarily uses a di�erent communication service

provider. Roaming typically happens when the mobile user is outside his or her

home subscription area.

Secrecy. Preventing/detecting/deterring the improper disclosure of information [7].

Service Mobility. Movement of service logic in the underlying network to meet QoS

requirements of the mobile user [38, 39]. A sub-category of resource mobility.

Terminal mobility. The mobility of a terminal within a mobile network system [38].

Terminal model. Design approach where the mobile host has the processing capabilities

of a terminal, with applications running on a server computer.

User mobility. The user's ability to change the physical location where he or she accesses

computing and communication services.

Vertical applications. Application for a speci�c application domain [23]

VLR (Visitor Location Register). Database temporarily storing subscription data for

those subscribers currently within the service area of the corresponding switching

centre of a cellular communication system [48].

Wireless connectivity. Channel to a communications network that does not rely on

wire or �ber. Typically, based on radio-�eld or infrared signals.
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WLAN (Wireless local area network). A computer network that allows transfer of data

and provides the ability to share resources, such as printers, without the need to

physically connect each node. WLANs may also o�er mobility within an o�ce or

similar environment [61]. An example is Lucent's WaveLan.

Workstation model. Design approach where the mobile computer has the capabilities

of a workstation, and will therefore run most applications locally.



Appendix B

A brief tour of Z

This appendix aims to provide the reader with a basic understanding of Z which will help

to read the speci�cations given in this thesis. For a more comprehensive introduction we

would like to refer the reader to [52].

Z is a speci�cation language based on �rst-order logic and typed set theory. Speci�-

cations are divided into reusable schemas which can be composed into larger schemas. A

speci�cation consists of both formal and English components, providing a model of an

actual system.

The English component consists of a rationale, a short description of the schema's

meaning. In this thesis, this is provided by the text where the schema is embedded.

The formal component is represented by an open frame with a title and two sections:

Signature and Predicate. The signature section consists of a list of variable declara-

tion. It can be thought of as declaring the possible states of an object or operation

conforming to the schema. The predicate section speci�es constraints of the declared

variables, for example state invariants, preconditions and postconditions of state transi-

tions. Constraints are expressed using typed �rst-order predicate logic. Be aware that

there is a rich set of pre-de�ned symbols and functions which can be used here!

Below is the formal component of a simple example schema:

Store

contents : NUM

capacity : NUM

contents � capacity

This schema declares an \object" named Store whose state consists of two variable:

contents and capacity. The predicate section speci�es a state invariant: The contents

counter must be less than or equal to the capacity counter.

The above schema refers to the opaque type NUM. Normally, such types must be

declared before use, for example by writing:

[NUM]
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Further, Z contains a schema calculus, \which allows us to express a schema by making

reference to other already de�ned schemas" ([53], page 140). In this thesis, we have mainly

used schema inclusion which comes in three di�erent 
avours:

Inclusion declares that the including schema uses all the declarations and constraints of

the included schema. For example:

NonEmptyStore

Store

lowerBound : NUM

lowerBound � contents

The resulting schema di�ers from Store by having an additional variable and an

additional constraint.

Delta schema inclusion is used to indicate that a state transition is performed. For

example:

FillStore

�Store

contents0 = capacity

This schema speci�es a change to the state of Store. Additionally, we have added

a post-condition expressing that the Store should be �lled to its capacity.

Xi schema inclusion indicates that no state transition concerning the included schema

was performed. For example:

MonitorStore

�Store

currentCount? : NUM

currentCount? = contents

Here, Xi-inclusion of Store shows that the operation does not a�ect the state of

Store. Note that the question mark at the end of currentCount indicates that it

is an output variable.

Delta-inclusion and Xi-inclusion are actually de�ned as inclusions of implicitly de�ned

Delta and Xi schemas, respectively. In Z, schema inclusion is a mechanism for building

modular and well-structured speci�cations.

Finally, we have used generic schema de�nitions (templates) in this thesis. A template

is simply a schema with one or more type variables. For example:
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StoreTemplate[X]

contents : X

capacity : X

contents � capacity

A template is instantiated with a de�ned type. In our example, StoreTemplate[NUM]

is equivalent to Store.
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Appendix C

Location services speci�ed

This appendix provides speci�cations for symbolic, geometric, and hybrid location services.

Parts of the speci�cations have been used in chapters 3 and 4. We use the Z formalism

[52], combined with the Z/Eves speci�cation checker [45].

C.1 A purely symbolic location service

This section speci�es a location service purely based on hierarchical symbolic locations.

We model this hierarchy as a partial ordering < over symbolic locations. Located-objects

can join and leave these locations freely. However, con
icting locations for the same object

are disallowed, that is, all locations of a single object need to be on the same path through

the hierarchy.

We start with the declaring the types of objects we deal with:

[LOCATION;OBJECT]

The inclusion ordering must be asymmetric and transitive:

Irre
exivePartialOrder[X]

< : X$ X

8x;y : X �

x < y) : y < x

8x;y; z : X �

x < y ^ y < z) x < z

The above template is instantiated below in a schema specifying a location hierarchy. The

schema also contains provision for a root location (anyLoc), and a relationship associating

non-overlapping locations (con
icts).
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LocationHierarchy

Irre
exivePartialOrder[LOCATION]

anyLoc : LOCATION

con
icts : LOCATION$ LOCATION

8 l1; l2 : LOCATION �

(l1; l2) 2 con
icts,

(8 l3 : LOCATION �

: ((l3 < l1 _ l3 = l1) ^ (l3 < l2 _ l3 = l2)))

8 l : LOCATION �

l < anyLoc _ l = anyLoc

SymbolicLocator

locatedAt : OBJECT$ LOCATION

For a location service, we assert that no con
icting locations are allowed for any

located-object. More than one location per object is permitted.

SymbolicLocationService

LocationHierarchy

SymbolicLocator

8o : OBJECT; l1; l2 : LOCATION �

((o; l1) 2 locatedAt ^ (o; l2) 2 locatedAt)) (l1; l2) =2 con
icts

Firstly, a simple query for all located-objects at a given location:

SLocationQuery

�SymbolicLocationService

target? : LOCATION

result! : POBJECT

result! = fx : OBJECTj(x; target?) 2 locatedAtg

Then, a recursive query that includes sub-locations:

SLocationQueryComplete

�SymbolicLocationService

target? : LOCATION

result! : POBJECT

result! = fx : OBJECTj(x; target?) 2 locatedAt _

(9y : LOCATION � y < target? ^ (x;y) 2 locatedAt)g
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This query returns all locations at which a located-object is positioned:

SObjectQuery

�SymbolicLocationService

target? : OBJECT

result! : PLOCATION

result! = fx : LOCATIONj(target?;x) 2 locatedAtg

The same as above, but now including all super-locations:

SObjectQueryComplete

�SymbolicLocationService

target? : OBJECT

result! : PLOCATION

result! = fx : LOCATIONj(target?;x) 2 locatedAt _

(9y : LOCATION � y < x ^ (target?;y) 2 locatedAt)g

A sighting is inserted by removing previous locations of the object and adding the new

location:

SUpdate

�LocationHierarchy

�SymbolicLocator

l? : LOCATION

o? : OBJECT

locatedAt0 = (fo?g �C locatedAt) [ f(o?; l?)g

Note that explicit updates may not be necessary if locatedAt maps to an on-demand

measurement of the located-object's position (for example, by performing a radio triangu-

lation).

C.2 A geometric location service

A purely geometric location service deals with located-objects and their geometric

positions. The sort of located-object has been de�ned above. The geometric categories of

interest are:

[AREA;POINT]

A geometric ordering relation asserting asymmetry and transitivity:
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contains : AREA$ AREA

8a1;a2 : AREA � (a1;a2) 2 contains) (a2;a1) =2 contains

8a1;a2;a3 : AREA �

(a1;a2) 2 contains ^ (a2;a3) 2 contains) (a1;a3) 2 contains

For convenience:

containsEq : AREA$ AREA

8a1;a2 : AREA � (a1;a2) 2 containsEq, (a1;a2) 2 contains _ a1 = a2

We prefer to deal only with areas because points naturally translate into areas.

asArea : POINT! AREA

8p1;p2 : POINT � : (p1 = p2)) : (asArea(p1) = asArea(p2))

Located-objects can have a geometric position.

GeometricLocator

position : OBJECT 7! AREA

GeometricLocationService

GeometricLocator

This query returns all located-objects within a geographical area:

GLocationQuery

�GeometricLocationService

target? : AREA

result! : POBJECT

result! = fx : OBJECTj(target?;position(x)) 2 containsEqg

This query returns a located-object's geometric position, which may be unknown

(modelled by an empty set):

GObjectQuery

�GeometricLocationService

target? : OBJECT

result! : PAREA

result! = fposition(target?)g

An update overwrites any information about previous positions:
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GUpdate

�GeometricLocationService

a? : AREA

o? : OBJECT

position0 = (fo?g �C position) [ f(o?;a?)g

C.3 A hybrid location service

This section describes how geometric data can be combined with the purely symbolic

location model speci�ed above. This is achieved by mapping locations into areas such

that location ordering is isomorphic to spatial containment of areas.

Over the combined, semi-symbolic location model we de�ne the operations previously

speci�ed for symbolic and geometric models. We extend SymbolicLocator by assigning

an area to each location. Further, we require that the area function de�nes an isomor-

phism with regard to the ordering relations. The leastMatchingLoc function returns

the smallest location that contains or is equal to a given area.

HLocationHierarchy

LocationHierarchy

area : LOCATION! AREA

leastMatchingLoc : AREA 7! LOCATION

8 l1; l2 : LOCATION �

(l1 < l2), (area(l2);area(l1)) 2 contains

8a : AREA; l3 : LOCATION �

leastMatchingLoc(a) = l3,

(area(l3);a) 2 containsEq ^

(8 l4 : LOCATION �

(area(l4);a) 2 containsEq) ((l3 = l4) _ (l3 < l4)))

We assert that locations stored symbolically are consistent with SymbolicLocator.

Further, we require that locations stored symbolically re
ect the position stored in

GeometricLocator as accurately as possible.
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HLocationService

HLocationHierarchy

SymbolicLocator

GeometricLocator

8o : OBJECT; l : LOCATION �

(o 2 dom locatedAt)) (o 2 domposition)

8o : OBJECT; l : LOCATION �

(o; l) 2 locatedAt) (area(l);position(o)) 2 containsEq

8o : OBJECT; l1; l2 : LOCATION �

((o 2 domposition) ^

(area(l1);position(o)) 2 containsEq ^

(o; l2) 2 locatedAt))

((l1 = l2) _ (l2 < l1))

The following schemas de�ne operations over a hybrid location service. Each type of

operation exists in two variants: a geometric and a symbolic version.

This query �nds all located-objects at a given symbolic location:

HSLocationQuery

�HLocationService

target? : LOCATION

result! : POBJECT

result! = fx : OBJECTj(x; target?) 2 locatedAt _

(9y : LOCATION � (y < target?) ^ (x;y) 2 locatedAt)g

This query �nds all located-objects in a given geometric area:

HGLocationQuery

�HLocationService

target? : AREA

result! : POBJECT

result! = fx : OBJECTj

(x; leastMatchingLoc(target?)) 2 locatedAt ^

(target?;position(x)) 2 containsEqg

This query returns all symbolic locations associated with a particular located-object:
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HSObjectQuery

�HLocationService

target? : OBJECT

result! : PLOCATION

result! = fx : LOCATIONj(target?;x) 2 locatedAt _

(9y : LOCATION � (y < x) ^ (target?;y) 2 locatedAt)g

This query returns a singleton set with the current geometric location of the queried

located-object:

HGObjectQuery

�HLocationService

target? : OBJECT

result! : PAREA

result! = fposition(target?)g

This operation updates the located-object's position with a new geometric location:

HGUpdate

�HLocationService

a? : AREA

o? : OBJECT

position0 = (fo?g �C position) [ f(o?;a?)g

locatedAt0 = (fo?g �C locatedAt)[

f(o?; leastMatchingLoc(a?))g

This operation updates a located-object's position with a new symbolic location:

HSUpdate

�HLocationService

l? : LOCATION

o? : OBJECT

position0 = position� f(o? 7! area(l?))g

locatedAt0 = (fo?g �C locatedAt) [ f(o?; l?)g
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Appendix D

A database-centric general

location service

This thesis has identi�ed the models and abstractions on which a general location service

should be based. A prototype implementation uses an object-relational database manage-

ment system with a plug-in for three-dimensional spatial data-types and operations

(Informix' Illustra with 3-D spatial DataBlade [24, 25]).

The implementation supports the semi-symbolic location model (cf. chapter 3), the

service model (cf. x 4.3)), and the protection model (cf. chapter 7) proposed in this

thesis. We use the server implementations described in x 5.8 to acquire location sightings.

Additionally, inputs from GPS receivers are used.

D.1 Overview

The database schema consists of two main tables, one for records of located-objects and

one for locations. Object-records hold all the status associated with a particular user, while

location-records hold spatial information for a particular symbolic location. Additionally,

alias-tables for both user and location names provide a many-to-one mapping. This is

useful, for example, when mapping a user's badge identi�er and email address to the same

user-record. Further, we have three rule tables specifying access control: Accessibility,

Visibility, and Anonymity. These are employed to �lter query results.

D.2 Representation of located-object information

create table LObjects of new type object_t (

Id userid_t not null primary key,

CPos Poly3d, /* model users position as area of uncertainty */

TOS Timestamp /* time of sighting*/

);

The located-object record contains the unique identi�er of the user (currently the email

address), along with the time and coordinates of last sighting. More sophisticated trace

information could also be stored here.
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The position of a located-object is modelled as a geometric area (not as a point) in

order to allow for uncertainty in updates and query results.

D.3 Representation of location information

create table Locations of new type location_t (

Id locid_t not null primary key,

Boundary Poly3d,

SubAreas setof(locid_t),

When Timestamp /* last update */

);

Locations are identi�ed by a globally unique identi�er and the geometric area enclosed

by Boundary. Alternatively, a location can consist of a set of SubAreas. Since locations

may change position, we also record the time of last update.

Physically, location records are stored in a 
at table. Logically, however, they form

a lattice de�ned by the containment relation. Most queries and updates operate on this

conceptual lattice.

In our schema, the lattice is implicit and needs to be computed whenever we need to

traverse it. In terms of performance, this is its most signi�cant drawback.

D.4 Access control

create table AccessR of new type rule_t (

Suid userid_t, /* subject */

Tuid userid_t, /* target user */

Lid locid_t /* target location */

);

create table VisiR of type rule_t;

create table AnonR of type rule_t;

Access rules Access rules de�ne a geographical area of accessibility for each pair of

(source user, target user). They are the �rst restriction applied to a query. If a user is

queried, and the user is outside any authorised geographical area for that (source user,

target user) pair, the query is rejected. If a location is queried, all users that are not

accessible are removed from the result set.

Visibility rules Visibility rules de�ne a set of visible symbolic locations for each pair

of (source user, target user). If a location is queried, users that are not visible there

are removed from the result set. If a user is queried, all locations where the user is not

supposed to be visible are removed from the results set.
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Anonymity rules Anonymity rules specify for each triple (source user, target user,

symbolic location) whether the source user can identify the target when located at the

given location. If a location is queried, the identity of all users in the result set that are

not allowed to be identi�ed is changed to `Anonymous'. If a user is queried, `Anonymous'

locations (i.e. those where the target is not allowed to be identi�ed) are stripped from the

result set.

D.5 Updates

D.5.1 Geometric sightings

create function loc_sighting_poly(useral_t,Poly3d, Timestamp)

returns void

as

begin

update LObjects

set

CPos = $2,

TOS = $3

where

LObjects.Id = get_uid($1)

AND ( LObjects.TOS IS NULL OR LObjects.TOS < $3);

end;

We model geometric sightings as a triple (Object Alias, Area, Timestamp). In terms

of processing, we look up the relevant object records and update the current positions if

the new sighting is more recent then the last recorded sighting.

D.5.2 Symbolic sightings

create function loc_sighting(userid_t,locid_t,Timestamp)

returns void

as

begin

update LObjects

set

CPos =

(select unique Boundary

from Locations

where Locations.Id = $2),

TOS = $3

where LObjects.Id = $1 AND LObjects.TOS < $3;

end;

Firstly, we resolve the location and object aliases. Then, we update the object's current

position with the area corresponding to the speci�ed symbolic location. (Naturally, this
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update is conditional on the new sighting being more recent then the previous position in

the user record.)

D.6 Queries

D.6.1 Symbolic queries

create type symb_sighting_t

(

Id id_t,

TOS Timestamp

);

In our model, symbolic queries return a set of sightings relative to the target of the

query, i.e. the target itself is not included in the sightings.

/* return set of users for a given location alias */

create function get_users_alias (local_t)

returns setof(symb_sighting_t)

as

select symb_sighting_t(LObjects.Id,LObjects.TOS)

from Locations, LObjects

where get_lid($1) = Locations.Id AND

ns_contains(Locations, LObjects);

This query looks up a location record and then scans through all objects to discover

whether they happen to be in this area. The check ns_contains() is recursive if the

location is composed of sub-areas.

By using an R-tree index [18] over the current positions of the located-objects we can

avoid a linear table-scan but incur an increased update cost.

Alternatively, the location records could know about the objects currently within their

area. (This solution would mean that updates are more costly.) Moreover, the update

cost goes up with the number of locations to be updated.

The recursive containment check as performed by ns_contains() should probably be

executed in a more e�cient way outside the databases.

/* return set of locations for a given user id */

create function get_locs (userid_t)

returns setof(symb_sighting_t)

as

select symb_sighting_t( l.Id , u.TOS)

from Locations l, LObjects u

where $1 = u.Id AND ns_contains(l, u);

This query is similar to the previous one, except that here the geometric area is the

last position of the located-object. The points made about optimisation of the previous

query apply.
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For purposes of access control, we layer �lters on top of the two basic queries described

above.

create function is_accessible(useral_t,useral_t,Poly3d)

returns boolean

as

return exists(select * from Locations l

where ns_contains(l, $3)

AND checkAccessRule(get_uid($1),get_uid($2),l.Id));

create function safe_query_user(useral_t, useral_t)

returns setof(symb_sighting_t)

as

select * from get_locs_alias($2)

where is_accessible($1,$2,deref(get_user($2)).CPos);

create function safe_filtered_query_user(useral_t, useral_t)

returns setof(symb_sighting_t)

as

select * from safe_query_user($1,$2) p where

is_visible(get_uid($1),get_uid($2),p.Id::locid_t)

AND

is_identifiable(get_uid($1),get_uid($2),p.Id::locid_t);

In this example, is_accessible() performs a recursive rule lookup to �nd out

whether access to the user's current position is allowed. The functions is_visible()

and is_identifiable() perform straight lookups to the rule tables for visibility (VisiR)

and anonymity (AnonR).

D.6.2 Geometric queries

Queries for located-objects within a speci�c area can be satis�ed in the same way as

above. As far as access control is concerned, only Accessibility protection applies. The

same holds, if an object's current location is queried.

Queries of the type \Find the nearest..." can be satis�ed by using temporary and

successively enlarged locations with the above queries.

D.7 Critical evaluation

The choice of a database as a prototyping platform has allowed for an extremely short

development time of the prototype. However, even for a relatively small data set (parts of

our Computing department), queries and updates take on the order of seconds rather than

milliseconds. Unsurprisingly, this loss of speed happens mostly when recursive queries are

involved. In our model, the location hierarchy is the only recursive data structure. This

should be implemented outside the database, while 
at tables (such as user pro�les or

access rules) remain within the database.
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Issues of distribution are also not adequately addressed by this prototype. For a real

implementation, a distribution mechanism outside the database must be found. At the

same time, it may still be bene�cially to use local databases for tasks that they perform

well.

D.8 Summary

We have implemented and veri�ed the functions and abstractions for a general location

service. Our prototype proved a useful workbench to develop this model further. In order

to investigate performance and scalability issues it will be necessary to choose another

implementation platform (at least for critical parts of the design.)



Appendix E

Spatial relationships

In this appendix, we give a brief account of our terminology for some of the fundamental

spatial relationships.

E.1 Inclusion

This is treated as fundamental notion. The spatial concept that is being modelled is strict

area inclusion (i.e. equality is excluded).

Notation: a < b means that location a is a strict sub-area of b.

Properties:

� Transitivity: a < b ^ b < c) a < c

� Asymmetry: a < b) : b < a

Corollaries:

� Inclusion is a partial ordering relation.

� Inclusion is irre
exive.

� The least upper bound and greatest lower bound can be computed.

E.2 Overlap

This notion can be derived from inclusion. De�nition: overlaps(a;b) means that the

locations a and b share a common sub-area: overlaps(a;b), (9 c):(c < a ^ c < b)

Corollaries:

� Overlaps are not transitive.

� Overlaps are symmetric.

� Overlaps are re
exive.

� An area overlaps with all its sub-areas.
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E.3 Adjacency

This is a fundamental notion that models how located-objects traverse the location space.

In order to keep adjacency independent from inclusion, we allow adjacent locations to

overlap. Also, adjacency must be directional.

De�nition: adj(a;b) means that a located-object can travel from a to b without setting

foot on another location.

Properties:

� Adjacency is not transitive

� Adjacency is not symmetric.

� Adjacency is re
exive

� Adjacency is implied by inclusion and overlap.



Appendix F

Properties of age-weighted metrics

F.1 Properties of aged average

The aged average has the following general form:

em(T) =

P
s2T

(m(s) � ageT(s))P
s2T

ageT(s)

=

P
s2T

(m(s) � e�a�(t
T

e
�t

s))P
s2T

e�a�(t
T

e
�ts)

Properties:

� Given an even event distribution, older events become increasingly insigni�cant for

the computation of the average.

� If m(s) = const, em(T) equals the normal average(m(T)).

� A trace starved of recent events will converge towards it normal average.

� The upper bound of em(T) is max(m(s)).

F.2 Properties of aged density

We have discussed measures of the general form:

e�m(T) =
X
s2T

(m(s) � ageT(s))

=
X
s2T

(m(s) � e�a�(t
T

e
�t

s
))

Assuming that the event density is bounded (e.g. if trace T is �nite), such measurese�m(T) satisfy the following properties:
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1. Events that are su�ciently old become insigni�cant for the computation of the

measure. This allows us to ignore events earlier than a time tx with tT
s

< tx < tT
s

without unduly a�ecting the result. The choice of tx depends on the constant a, the

maximum event density, and the required accuracy of the result.

2. The measures for a trace starved of recent events converge towards zero. This is a

corollary of the previous point.

3. Given the event density is bounded, also the measure e�m(T) is bounded.
Metrics of this form are particularly useful to compare competing traces. In isolation,

the metric's value is useful only when an expected value is known. For example, see x 6.2.3

for some expected measures for Active Badges.

However, those metrics alone do not indicate how closely a sighting trace follows the

located-object's movement. This is only possible when taking into account movement

characteristics (especially the speed of the located-object.)
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