
11

Persistency Semantics of the Intel-x86 Architecture

AZALEA RAAD,MPI-SWS, Germany

JOHN WICKERSON, Imperial College London, UK

GIL NEIGER, Intel Labs, US
VIKTOR VAFEIADIS,MPI-SWS, Germany

Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance of

RAM. To describe the persistency guarantees of NVM, several memory persistency models have been proposed

in the literature. However, the persistency semantics of the ubiquitous x86 architecture remains unexplored to

date. To close this gap, we develop the Px86 (‘persistent x86’) model, formalising the persistency semantics of

Intel-x86 for the first time. We formulate Px86 both operationally and declaratively, and prove that the two

characterisations are equivalent. To demonstrate the application of Px86, we develop two persistent libraries
over Px86: a persistent transactional library, and a persistent variant of the Michael–Scott queue. Finally, we

encode our declarative Px86 model in Alloy and use it to generate persistency litmus tests automatically.

CCS Concepts: • Theory of computation→ Concurrency; Semantics and reasoning.

Additional Key Words and Phrases: weak memory, memory persistency, non-volatile memory, Intel-x86

ACM Reference Format:
Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency Semantics of the Intel-x86

Architecture. Proc. ACM Program. Lang. 4, POPL, Article 11 (January 2020), 31 pages. https://doi.org/10.1145/

3371079

1 INTRODUCTION
Emerging non-volatile memory (NVM) technologies [Kawahara et al. 2012; Lee et al. 2009; Strukov

et al. 2008] provide byte-level access to data guaranteed to persist beyond a power failure at

performance comparable to regular (volatile) RAM. It is widely believed that NVM (a.k.a. persistent

memory) will eventually supplant volatile memory, allowing efficient access to persistent data [Intel

2014; ITRS 2011; Pelley et al. 2014]. This has led to a surge in NVM research in recent years [Boehm

and Chakrabarti 2016; Chakrabarti et al. 2014; Chatzistergiou et al. 2015; Coburn et al. 2011; Gogte

et al. 2018; Izraelevitz et al. 2016a; Kolli et al. 2017, 2016a,b; Nawab et al. 2017; Raad and Vafeiadis

2018; Raad et al. 2019b; Volos et al. 2011; Wu and Reddy 2011; Zhao et al. 2013; Zuriel et al. 2019].

Using persistent memory correctly, however, is not easy. A key challenge is ensuring correct

recovery after a crash (e.g. a power failure) by maintaining the consistency of data in memory,

which requires an understanding of the order in which writes are propagated to memory. The

problem is that CPUs are not directly connected to memory; instead there are multiple volatile

caches in between. As such, writes may not propagate to memory at the time and in the order that

the processor issues them, but rather at a later time and in the order decided by the cache coherence

protocol. This can lead to surprising outcomes. For instance, consider the simple sequential program

Authors’ addresses: Azalea Raad, MPI-SWS, Saarland Informatics Campus, Germany, azalea@mpi-sws.org; John Wickerson,

Imperial College London, UK, j.wickerson@imperial.ac.uk; Gil Neiger, Intel Labs, US, gil.neiger@intel.com; Viktor Vafeiadis,

MPI-SWS, Saarland Informatics Campus, Germany, viktor@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART11

https://doi.org/10.1145/3371079

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079

11:2 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

x:= 1; y:= 1, running to completion and crashing thereafter. On restarting the computer, thememory

may contain y=1, x=0; i.e. the x:= 1 write may not have propagated to memory before the crash.

To ensure correct recovery, one must understand and control the order in which writes are

committed to persistent memory. To this end, Pelley et al. [2014] introduced persistency models to
define the persistency semantics of programs (i.e. their permitted behaviours upon recovery) by

prescribing the order in which writes are persisted to memory. Existing literature includes several

proposals of persistency models varying in strength and performance [Condit et al. 2009; Gogte et al.

2018; Izraelevitz et al. 2016b; Joshi et al. 2015; Kolli et al. 2017, 2016b; Raad and Vafeiadis 2018; Raad

et al. 2019b]. However, none of these works explore the persistency semantics of the mainstream

Intel-x86 architecture [Intel 2019]. This is a significant gap not only because Intel-x86 hardware is

ubiquitous, but also because Intel are one of the forerunners in supporting and developing NVM

technologies and infrastructures. In particular, Intel-x86 processors provide extensive support

for persistent programming via numerous persistence primitives [Intel 2019]. Further, Intel have

recently manufactured their own line of NVM technology: Optane 3D [Intel 2019]. Intel are also

behind large-scale projects such as PMDK (the persistent memory development kit), which provides

a collection of libraries and tools for persistent programming [Intel 2015].

To close this gap, we formalise the persistency semantics of the Intel-x86 architecture. More

concretely, we develop the Px86 (‘persistent x86’) model by extending the x86-TSO (weak) memory

model [Sewell et al. 2010] with the Intel-x86 persistency semantics as described informally in

the Intel reference manual [Intel 2019]. We developed Px86 in close collaboration with research

engineers at Intel. During our formal development, we discovered several ambiguities in the Intel

reference manual. Following our discussions with Intel engineers, we were informed that the

manual text is under-specified in that it allows for more behaviours than intended, underlining the

ever-growing need for formal hardware specifications immune to misinterpretation. To remain

faithful to the manual text and to capture the behaviour intended by the Intel engineers, we thus

develop two models: (1) the weaker Px86man model which is faithful to the manual; and (2) the

stronger Px86sim model which is a simplification of Px86man and reflects the intended behaviour.

We write Px86 when the distinction between Px86sim and Px86man is immaterial. We formally

describe the Px86sim and Px86man models both operationally and declaratively, and prove that the

two Px86sim (resp. Px86man) characterisations are equivalent. Whilst the operational models provide

a more intuitive account of the hardware guarantees, the declarative models streamline correctness

proofs such as those by Herlihy and Wing [1990] and Owens [2010]. We have encoded our Px86sim

and Px86man models in the Alloy modelling language [Jackson 2012].

To showcase the application of our Px86 semantics, we present two persistent libraries imple-

mented in Px86. First, we present a library for persistent transactions. Transactions are a powerful
high-level abstraction for concurrency control, readily available to programmers in the volatile

setting. Persistent transactions extend volatile transactions by additionally providing persistency

control, thus streamlining the task of writing correct persistent programs. Our library makes

persistent programming on Px86 more accessible to the uninitiated programmer as it liberates

them from understanding the low-level details of Px86. We then show that our library is correct

in that it guarantees persistent serialisability [Raad et al. 2019b], which is a strong transactional

consistency guarantee in the NVM context. Second, we present a persistent variant of the Michael–

Scott queue library [Michael and Scott 1996], and show that our implementation is correct in that

it ensures persistent linearisability [Izraelevitz et al. 2016b], which is the persistent extension of the

well-known notion of library correctness: linearisability [Herlihy and Wing 1990].

Finally, we use our Alloy encoding of Px86 to generate persistency litmus tests automatically.
This process guided our formalism of Px86, allowing us to identify its corner cases. We believe that

our persistency litmus tests are beneficial to those seeking to understand and program over Px86.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:3

Contributions and Outline. Our contributions (detailed in §2) are as follows: (1) in §3 and §4

we respectively develop the operational Px86sim and Px86man models as the first formal models of

the Intel-x86 persistency semantics; (2) in §5 we present the declarative Px86sim/Px86man models

and show that the two Px86sim (resp. Px86man) characterisations are equivalent; (3) in §6 we discuss

our persistent transactional library and our persistent Michael–Scott queue library implemented in

Px86, and show that our implementations are correct; (4) in §7 we describe how we encode Px86 in

Alloy to generate persistency litmus tests automatically. We discuss related and future work in §8.

Additional Material. The full proofs of all stated theorems in the paper are given in the

accompanying technical appendix available at http://plv.mpi-sws.org/pmem/. We provide machine-

readable versions of Px86sim and Px86man models in the Alloy modelling language [Jackson 2012].

2 OVERVIEW
2.1 Persistency Semantics
Memory consistency models describe the permitted behaviours of programs by constraining the

volatile memory order, i.e. the order in which memory instructions (e.g. writes) are made visible to

other threads. Analogously, memory persistency models [Pelley et al. 2014] describe the permitted

behaviours of programs upon recovering from a crash (e.g. due to a power failure) by defining a

persistent memory order, i.e. the order in which the effects of memory instructions are committed to

persistent memory. To distinguish between the twomemory orders, memory stores are differentiated
from memory persists. The former denotes the process of making an instruction (e.g. a write) visible

to other threads, whilst the latter denotes the process of committing instruction effects durably to

persistent memory. Existing persistency models [Gogte et al. 2018; Izraelevitz et al. 2016b; Kolli

et al. 2017; Pelley et al. 2014; Raad and Vafeiadis 2018; Raad et al. 2019b] can be categorised along

two axes: (1) strict versus relaxed; (2) unbuffered versus buffered.

Under strict persistency, instruction effects persist to memory in the order they become visible to

other threads, i.e. the volatile and persistent memory orders coincide. This makes reasoning about

persistency simpler, but hinders performance as it introduces unnecessary dependencies between

persists. To remedy this, relaxed persistency models allow for volatile and persistent memory orders

to disagree. As we describe shortly, the Intel-x86 architecture follows a relaxed persistency model.

The second dichotomy concerns when persists occur. Under unbuffered persistency, persists

occur synchronously: when executing an instruction, its effects are immediately committed to

persistent memory; i.e. execution is stalled by persists. To improve performance, persist buffering
allows memory persists to occur asynchronously [Condit et al. 2009; Izraelevitz et al. 2016b; Joshi

et al. 2015], where memory persists are buffered in a queue to be committed to persistent memory

at a future time. This way, persists occur after their corresponding stores and as prescribed by

the persistent memory order; however, execution may proceed ahead of persists. As such, after

recovering from a crash, only a prefix of the persistent memory order may have successfully

persisted. As we describe shortly, the Intel-x86 architecture follows a buffered persistency model

[Intel 2019]. When it is necessary to control the committing of buffered persists explicitly (e.g.

before performing I/O), buffered models typically offer explicit persist instructions (with varying

granularity) that drain the relevant pending persists from the persistent buffer and commit them to

persistent memory. For instance, the epoch persistency model provides a sync instruction which

commits all pending writes, while Intel-x86 provides per-cache-line persist instructions which
commit all pending writes on a given cache line (a set of memory locations). Moreover, explicit

persist may themselves execute synchronously or asynchronously. For instance, the sync instruction
in epoch persistency executes synchronously: it blocks until all pending writes are persisted. By

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

http://plv.mpi-sws.org/pmem/

11:4 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

contrast, the per-cache-line persist instructions of Intel-x86 execute asynchronously: they do not

stall execution and merely guarantee that the cache line will be persisted at a future time.

2.2 The Px86 Model: An Intuitive Account
As discussed in §1, we formalise the persistency semantics of the Intel-x86 architecture via two

models: the weaker Px86man model which is faithful to the manual, and the stronger Px86sim model

which is a simplification of Px86man and captures the behaviour intended by Intel engineers. As

we discuss shortly, the Px86sim and Px86man models coincide in most cases and only diverge on

their ordering constraints between read and persist instructions. As such, we write Px86 when

the distinction between Px86sim and Px86man is inconsequential and the described behaviour holds

under both Px86man and Px86sim. We proceed with an intuitive description of Px86; we then discuss

the differences between Px86sim and Px86man in §2.3. Later we describe the Px86sim and Px86man

semantics formally both operationally (§3 and §4) and declaratively (§5), and prove that the two

Px86sim (resp. Px86man) characterisations yield equivalent semantics.

The Px86 Model. The Intel-x86 architecture follows a relaxed, buffered persistency model. The

buffered persistency of Px86 is reflected in the example of Fig. 1a. Due to the buffered model of

Px86, if a crash occurs during the execution of this program, at crash time either write may or may

not have already persisted and thus x, y ∈ {0, 1} upon recovery. However, the relaxed nature of

the Px86 model allows for somewhat surprising behaviours that are not possible during normal

(non-crashing) executions. In particular, at no point during the normal execution of the program the

x=0, y,1 behaviour is observable: the two writes cannot be reordered under Intel-x86. Nevertheless,
in case of a crash it is possible under Px86 to observe x=0, y=1 after recovery. This is due to the
relaxed persistency of Px86: the store order, describing the order in which writes are made visible

to other threads (x before y), is separate from the persist order, describing the order in which writes

are persisted to memory (y before x). Under the Px86 model the writes may be persisted (1) in any

order, when they are on distinct locations; or (2) in the store order, when they are on the same

location. That is, for each location, its store and persist orders coincide.

In order to afford more control over when pending writes are persisted, Intel-x86 provides explicit

persist instructions, flush x, flushopt x andwb x, that asynchronously persist all pending writes on

all locations in the cache line of x [Intel 2019].
1
That is, when location x is in cache line X , written

x ∈ X , an explicit persist on x persists all pending writes on all locations x ′ ∈ X . Persist instructions
vary in strength (in terms of their constraints on instruction reordering) and performance. More

concretely, flush is the strongest of the three enforcing additional ordering constraints. On the

other hand, flushopt and wb are equally weak with varying performance. In other words, flushopt

and wb have the same specification and exhibit equivalent behaviour; however, wb provides better

performance than flushopt. This is because when x ∈ X , although executing both instructions

persists the X cache line, flushopt x invalidates X , while wb x may retain X . Note that retaining X
is not guaranteed when executing wb x; rather, X may be retained. As such, both wb and flushopt

follow the same specification, while wb may improve performance in certain cases:

‘For usages that require only writing back modified data from cache lines to memory

(do not require the line to be invalidated), and expect to subsequently access the data,

software is recommended to use wb (with appropriate fencing) instead of flushopt or

flush for improved performance.’ [Intel 2019, p. 3-149]

1
In [Intel 2019] flush is referred to as CLFLUSH or ‘cache line flush’; flushopt is referred to as CLFLUSHOPT or ‘cache

line flush optimized’ and wb is referred to as CLWB or ‘cache line write back’.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:5

x:= 1;
y:= 1;

(a)

x:= 1;
flushopt x ′; †
FAA(y, 1);

(b)

x:= 1;
flushoptx ′;
y:= 1;

(c)

x:= 1;
flush x ′;
y:= 1;

(d)
rec: x, y ∈ {0, 1} rec: y=1 ⇒ x=1 rec: x, y ∈ {0, 1} rec: y=1 ⇒ x=1

x:= 1;
flushopt x ′; †
sfence;
y:= 1;

(e)

x:= 1;
x:= 2;
flushopt x ′; †
sfence;
y:= 1;

(f)

x:= 1;
flushopt x ′; †
sfence;
y:= 1;

a:= y;
if a then
z:= 1;

(g)

x:= 1;
flushopt x;
x:= 2;

a:= x;
if a=2 then
y:= 1;

(h)

rec: y=1 ⇒ x=1 rec: y=1 ⇒ x=2 rec: z=1 ⇒ (x=1 ∧ y ∈ {0, 1}) rec: y=1 ⇒ x ∈ {0, 1, 2}

Fig. 1. Examples of Px86 programs and possible values of x,y, z upon recovery; in all examples x, y, z are
locations in persistent memory, a is a (local) register, x, x ′∈X (x, x ′ are in cache line X), y, z<X , and initially
x=y=z=0. The † annotation denotes that replacing flushopt with flush yields the same result after recovery.

As flushopt and wb have equivalent specifications, in the remainder of this article and in our

formal development we only model flush and flushopt. However, all behaviours and specifications

ascribed to flushopt are also attributed towb. We next describe the behaviour of flush and flushopt

and their ordering constraints via several examples.

The persist behaviour of flushopt and flush is illustrated in Fig. 1b (where FAA denotes an

atomic ‘fetch-and-add’ instruction): executing flushopt x ′ persists the earlier write on X (i.e. x:= 1)
to memory. As such, if a crash occurs during the execution of this program and upon recovery y=1,
then x=1. That is, if FAA(y, 1) has executed and persisted before the crash, then so must the earlier

x:= 1;flushopt x ′. Note that this behaviour is guaranteed thanks to the ordering constraints on

flushopt and flush instructions. More concretely, both flushopt and flush instructions are ordered

with respect to earlier (in program order) write instructions on the same cache line, as well as all

(both earlier and later in program order) atomic read-modify-write (RMW) instructions regardless

of the cache line. Hence, flushopt x ′ in Fig. 1b cannot be reordered with respect to the x:= 1 write
or the RMW instruction FAA. As such, upon recovery y=1 ⇒ x=1. Note that flushopt x/flush
x instructions persist the X cache line asynchronously: their execution does not block until X is

persisted; rather, the execution may proceed and X is made persistent at a future point.

Note that although persist instructions execute asynchronously, together with ordering con-

straints they impose a particular persist order. Given x ∈ X and C=flushopt x or C=flush x, all
writes on X ordered before C persist before all instructions ordered after C, regardless of their
cache line. For instance, since x:= 1 in Fig. 1b is ordered before flushopt x and flushopt x is ordered

before FAA(y, 1), x:= 1 is guaranteed to persist before FAA(y, 1).
However, certain instruction reorderings under Px86 mean that persist instructions may not

execute at the intended program point and thus may not guarantee the intended persist ordering.

For instance, when x ′∈X , the execution of flushopt x
′
is only ordered with respect to earlier writes

on the same cache line X and thus may be reordered with respect to writes on locations in different

cache lines, i.e. those not in X . This is illustrated in the example of Fig. 1c. Note that the program

in Fig. 1c is obtained from Fig. 1b by replacing the RMW instruction FAA on y with a plain write.

Since y < X , the execution of flushopt x ′ in Fig. 1c is not ordered with respect to y:= 1 and may be

reordered after it. Therefore, if a crash occurs after y:= 1 has executed and persisted but before

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:6 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

flushopt x ′ has executed, then upon recovery it is possible to observe x=0 and y=1. That is, there is
no guarantee that x:= 1 persists before y:= 1, despite the intervening persist instruction flushopt x ′.

The main difference between flushopt and flush lies in their ordering constraints with respect to

writes. More concretely, the execution of flushopt x ′ is ordered only with respect to earlier writes

on the same cache line, whereas the execution of flush x ′ is ordered with respect to all (both earlier

and later) writes regardless of the cache line. This is illustrated in the example of Fig. 1d, obtained

from Fig. 1c by replacing flushopt with flush. Unlike in Fig. 1c, flush x ′ in Fig. 1d is ordered with

respect to y:= 1 and cannot be reordered after it. Hence, if after recovery y=1 (y:= 1 has executed
and persisted), then x=1 (x:= 1;flush x ′ must have also executed and persisted). In particular,

while x=0 ∧ y=1 is not possible upon recovery in Fig. 1d, it is possible in Fig. 1c.

In order to afford more control over the order in which writes on different locations are persisted,

Intel-x86 provides fence instructions, including memory fences, writtenmfence, and store fences,
written sfence. Memory fences are strictly stronger than store fences: while memory fences cannot

be reordered with respect to any memory instruction, store fences may be reordered with respect to

only reads. That is, flushopt and flush cannot be reordered with respect to fences. This is illustrated

in the program of Fig. 1e, obtained from that of Fig. 1c by introducing an sfence after the persist
instruction. Although in the case of Fig. 1c it is possible under Px86 to observe y=1 ∧ x=0 upon
recovery as discussed above, the introduction of sfence in Fig. 1e ensures that the write on x
persists before that on y and thus upon recovery y=1 ⇒ x=1. More concretely, sfence cannot be
reordered before or after any of the instructions, and flushopt x ′ cannot be reordered before the

earlier (in program order) write on x. As such, if upon recovery y=1 (i.e. y:= 1 has executed and

persisted prior to the crash), then x=1 (i.e. x:= 1;flushopt x ′ has also executed and persisted).

Note that the writes on the same location are persisted in the execution order. That is, for each

location x, the store and persist orders on x coincide. This is illustrated in the example of Fig. 1f,

obtained from Fig. 1e by inserting a second write on x before the persist instruction. As in Fig. 1e,

the instructions in Fig. 1f cannot be reordered. As such, if upon recovery y=1 and thus y:= 1 has
executed and persisted before the crash, then the earlier x:= 1; x:= 2;flushopt x ′ must have also

executed and persisted. Moreover, x:= 1 and x:= 2 are executed and persisted in the same order (i.e.

x:= 1 before x:= 2) and thus y=1 ⇒ x=2 upon recovery, and it is not possible to observe y=1, x=1.
The examples discussed thus far all concern sequential programs and the persist orderings on the

writes in the same thread. The example in Fig. 1g illustrates how persist orderings can be imposed

on the writes of different threads. Note that the program in the left thread of Fig. 1g is that of Fig. 1e.

Under Px86 one can use message-passing between threads to ensure a certain persist ordering. A

message is passed from thread τ1 to τ2 when τ2 reads a value written by τ1. For instance, if the
right thread in Fig. 1g reads 1 from y (written by the left thread), then the left thread passes a

message to the right thread. Under the Intel-x86 architecture message passing ensures that the

instruction writing the message (e.g. y:= 1) is executed (ordered) before the instruction reading

it (e.g. a:= y). As such, since x:= 1;flushopt x ′ is executed before y:= 1 (as in Fig. 1e), y:= 1 is

executed before a:= y, and z:= 1 is executed after a:= y when a=1, we know x:= 1;flushopt x ′

is executed before z:= 1. Consequently, if upon recovery z=1 (i.e. z:= 1 has persisted before the

crash), then x=1 (x:= 1;flushopt x ′ must have also persisted before the crash). Note that by contrast

z=1 ⇒ y ∈ {0, 1}. This is because y:= 1 may persist after z:= 1. As such, if a crash occurs after

z:= 1 has executed and persisted but before y:= 1 has persisted, it is possible to observe y=0, z=1
after recovery, even though y=0, z=1 is never possible during normal (non-crashing) executions.

Recall that flushopt instructions are ordered only with respect to earlier (in program order)

writes on the same cache line and thus may be reordered with respect to later writes on any cache

line. This is illustrated in the example of Fig. 1h: flushopt x in the left thread may be reordered after

x:= 2. As such, even though at no point during the normal execution of the program the y=1, x,2

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:7

x:= 1;
y:= 1;

a:= y;
flush x;
if a then
z:= 1;

(a)

x:= 1;
y:= 1;

a:= y;
sfence;
flush x;
if a then
z:= 1;

(b)

x:= 1;
y:= 1;

a:= y;
mfence;
flush x;
if a then
z:= 1;

(c)

Px86man rec: z=1 ⇒ x, y ∈ {0, 1} rec: z=1 ⇒ x, y ∈ {0, 1} rec: z=1 ⇒ x=1 ∧ y ∈ {0, 1}
Px86sim rec: z=1 ⇒ x=1 ∧ y ∈ {0, 1} rec: z=1 ⇒ x=1 ∧ y ∈ {0, 1} rec: z=1 ⇒ x=1 ∧ y ∈ {0, 1}

Fig. 2. Examples programs and possible values of x,y, z upon recovery under Px86man and Px86sim; in all
examples x, y, z are locations in persistent memory, a is a (local) register, initially x=y=z=0, x ∈X and y, z<X .

behaviour is observable, it is possible to observe y=1, x,2 after recovery as follows: first x:= 1 and
x:= 2 in the left thread are executed (but not persisted), then the instructions in the right thread are

executed and y:= 1 is persisted, and finally the program crashes before flushopt x is executed. By

contrast, since flush cannot be reordered with respect to any writes, replacing flushopt in Fig. 1h

with the stronger flush prohibits this behaviour and ensures y=1 ⇒ x,0 upon recovery.

2.3 Px86man vs. Px86sim: Read and flushopt/flush Ordering Constraints
The ordering constraints discussed above are described as follows in [Intel 2019], where italicised
text in square-brackets denotes our added clarification:

(fl) ‘Executions of the flush instruction are ordered with respect to each other and with respect

to writes, locked read-modify-write [RMW] instructions, fence instructions [mfence and
sfence], and executions of flushopt to the same cache line. They are not ordered with

respect to executions of flushopt to different cache lines.’ [Intel 2019, p. 3-142]

(fo) ‘Executions of the flushopt instruction are ordered with respect to fence instructions

[mfence and sfence] and to locked read-modify-write [RMW] instructions; they are also

ordered with respect to the following accesses to the cache line being invalidated: older

[earlier in program order] writes and older [earlier in program order] executions of flush.
They are not ordered with respect to writes, executions of flush that access other cache

lines, or executions of flushopt regardless of cache line; to enforce flushopt ordering with

any write, flush, or flushopt operation, software can insert an sfence instruction between

flushopt and that operation.’ [Intel 2019, p. 3-144]

(sf) ‘The sfence instruction is ordered with respect to memory stores [writes], other sfence
instructions, mfence instructions, and any serializing instructions... It is not ordered with

respect to memory loads [reads]...’ [Intel 2019, p. 4-597]

Observe that (fl)-(fo) do not constrain the order between flushopt/flush and read instructions:

persist instructions may also be reordered with respect to read instructions. However, our extensive

discussions with engineers at Intel revealed that the intended behaviour is more constrained:

(sim) Executions of flushopt/flush are ordered with respect to older [earlier in program order]
reads regardless of their cache line. Executions of flushopt/flush are not ordered with

respect to younger [later in program order] reads regardless of their cache line.
At the time of publishing this article, the additional constraints in (sim) are not reflected in the

recently revised manual text [Intel 2019]. As such, in order to remain faithful to the manual text

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:8 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

E
a
r
l
i
e
r
i
n
P
r
o
g
r
a
m

O
r
d
e
r

Later in Program Order

1 2 3 4 5 6 7
Read Write RMW mfence sfence flushopt flush

A Read ✓ ✓ ✓ ✓
Px86man ✗
Px86sim ✓*

Px86man ✗
Px86sim ✓

Px86man ✗
Px86sim ✓

B Write ✗ ✓ ✓ ✓ ✓ CL ✓

C RMW ✓ ✓ ✓ ✓ ✓ ✓ ✓

D mfence ✓ ✓ ✓ ✓ ✓ ✓ ✓

E sfence ✗ ✓ ✓ ✓ ✓ ✓ ✓

F flushopt ✗ ✗ ✓ ✓ ✓ ✗ CL

G flush ✗ ✓ ✓ ✓ ✓ CL ✓

Fig. 3. A summary of ordering constraints in Px86sim and Px86man, where ✓denotes that two instructions
are ordered, ✗ denotes that they are not ordered (and thus may be reordered), and CL denotes that they are
ordered if and only if they are on the same cache line; see page 9 for a clarification of ✓*. Px86sim and Px86man
agree on all constraints but those between earlier reads and later flushopt/flush/sfence. The highlighted
cells denote the Px86sim/Px86man extensions from the original x86-TSO model by Sewell et al. [2010].

and to account for the intended behaviour enforced by (sim), we develop two formal persistency

models for Intel-x86: (1) the weaker Px86man model which is faithful to the manual [Intel 2019]

and excludes the constraints in (sim); and (2) the stronger Px86sim model which is a simplification

of Px86man obtained from extending Px86man with (sim). We formulate both specifications as an

extension of the original x86-TSO model by Sewell et al. [2010].

The examples in Fig. 2 illustrate the difference between Px86man and Px86sim. Under Px86man,

the a:= y read in Fig. 2a may be reordered after flush x and thus when flush x is executed, it may

not necessarily persist the x:= 1 write in the left thread. As such, upon recovery it is possible to

observe x=0, z=1, even though x=0, z=1 is not possible during normal (non-crashing) executions.

Note that inserting an sfence after a:= y in Fig. 2b does not alter this behaviour since read

instructions may be reordered with respect to sfence (see (sf) above). Consequently, as in Fig. 2a

the a:= y can be reordered after sfence;flush x, and once again it is possible to observe z=1, x=0.
However, inserting anmfence after a:= y in Fig. 2c prohibits this behaviour:mfence ensures

that a:= y cannot be reordered after flush. As such, if upon recovery z=1 (i.e. z:= 1 has executed
and persisted), then x=1 (i.e. flush x must have executed, thus persisting x:= 1).
Observe that by contrast, due to the extra constraint in (sim), under Px86sim the a:= y reads in

Fig. 2a, Fig. 2b and Fig. 2c are ordered with respect to the later (in program order) flush instructions

and thus cannot be reordered after it. As such, in all three examples, regardless of the presence of

additional fences z=1 ⇒ x=1 holds, and thus z=1, x=0 is not possible after recovery.

Ordering Constraints in Px86man/Px86sim. Fig. 3 presents a summary of ordering constraints

between earlier (in program order) instructions (rows) and later instructions (columns) under

Px86sim and Px86man. Intuitively, if two instructions are ordered (denoted by ✓), then their program

order (i.e. the order in which they appear in the program) and store order (the order in which they

are made visible to other threads) always agree. Conversely, if two instructions are unordered and

thus can be reordered (denoted by ✗), then their program and store orders may disagree. The CL

entries denote that two instructions are ordered if and only if they access the same cache line.

The top left corner of the table (not highlighted) corresponds to the original x86-TSO model by

Sewell et al. [2010]. We develop Px86sim and Px86man by extending x86-TSO with sfence, flushopt

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:9

and flush instructions. The ordering constraints on the Px86sim/Px86man extensions are denoted

by the highlighted cells. As shown, Px86sim and Px86man agree on all constraints except for those

between earlier reads and later flushopt/flush instructions (cells A6-A7) as mandated by (sim), as

well as those between earlier reads and later sfence instructions (cell A5) as discussed below.

Px86 and sfenceOrderings (✓*). Recall from (sf) that sfence instructions are not ordered with
respect to reads and may be reordered. Under Px86sim, however, reordering a later sfence before
an earlier read does not affect the program behaviour. In particular, as earlier read instructions are

ordered with respect to all other later instructions under Px86sim (see row A in Fig. 3), reordering

them after a later sfence instruction does not alter the program behaviour. That is, given a program

P ≜ a:= x; sfence;C with C , sfence, the a:= x read cannot be reordered after C, and reordering

it after sfence alone does not affect the behaviour of P. An example of this is illustrated in Fig. 2b:

although a:= y may be reordered after sfence, as it cannot be reordered after flush x, the program
behaviour is unaltered regardless of whether a:= y and sfence are reordered. As such, for simplicity

we opt to order earlier reads and later sfence under Px86sim, as denoted by ✓* (cell A5).

Note that by contrast, under the Px86man model earlier reads are not ordered with respect to other

later instructions (e.g. later flushopt/flush – see cells A6 and A7), and thus reordering an earlier

read after a later sfence may alter the program behaviour. For instance, as shown in Fig. 2b, the

a:= y read is not ordered with respect to the later sfence and flush x, and thus may be reordered

after both, allowing us to observe z=1 ∧ x=0 upon recovery under Px86man. However, had we not

allowed the reordering of a:= y after sfence, it could subsequently not be ordered after flush x,
and thus as in the case of Px86sim, we could no longer observe z=1 ∧ x=0 upon recovery.

Similarly, as later reads are not always ordered with respect to earlier instructions (see column 1),

reordering them before earlier sfence may alter the behaviour; they are thus unordered (cell E1).

2.4 The Operational Px86sim and Px86man Models
We briefly describe the operational x86-TSO model and how we extend it to model Px86sim/Px86man.

The x86-TSO Model with Store Buffers. The Intel-x86 architecture follows the total store or-
dering (x86-TSO) model [Sewell et al. 2010] first introduced by the SPARC architecture [SPARC

1992]. Under this model, each thread is connected to the main (volatile) memory via a FIFO store
buffer, as illustrated in Fig. 4a. The execution of writes is delayed: when a thread issues a write to a

location, the write is recorded only in its buffer. The delayed writes in the buffer are debuffered and

propagated (in FIFO order) to the memory at non-deterministic points in time. By contrast, reads

are executed in real time. When a thread issues a read from a location x, it first consults its own
buffer. If it contains delayed writes for x, the thread reads the value of the last buffered write to x;
otherwise, it consults the memory. In other words, one can model the reordering of a writew after

a later read r (cell B1 of Fig. 3) by delaying the debuffering ofw until after r has executed in real

time. Programmers can use mfence instructions to control this debuffering: executing an mfence
flushes the store buffer of the executing thread to the memory, debuffering all its delayed writes.

Alternative x86-TSO Model with Load Buffers. Abdulla et al. [2015] propose an alternative

operational x86-TSO model where each thread is connected to the memory via a FIFO load buffer
rather than a store buffer. Under this model the execution of reads can be promoted: at any point a

thread may pre-fetch the value of a location from memory and append it to its load buffer. That

is, each buffer entry is of the form ⟨x ,v⟩, denoting that value v was read from x in memory. By

contrast, the writes are executed in real time: when a thread issues a write x:=v , value v is written

directly to memory at x, updating all x entries of the form ⟨x,−⟩ in its load buffer to ⟨x,v⟩. When a

thread issues a read a:= x, it may proceed only if the first entry in its buffer is of the form ⟨x,v⟩, in

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:10 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

thread
b
u
ff
e
r

delayed

instructions

thread

b
u
ff
e
r

. . .

. . .

reads

from

buffer

debuffered

instructions

(volatile) memory

reads

from

memory

(a)

thread

b
u
ff
e
r

thread

b
u
ff
e
r

. . .

. . .

persistent buffer

p
r
o
m
o
t
e
d

i
n
s
t
r
u
c
t
i
o
n
s

p
r
o
m
o
t
e
d

i
n
s
t
r
u
c
t
i
o
n
s

reads from

persistent

buffer

debuffered

instructions

(non-volatile) memory

debuffered instructions

(b)

Fig. 4. The storage subsystems of the x86-TSO (left) and Px86 (right) memory models

which case it returns v . To make sure that the execution of reads is not stuck, a thread may always

discard the promoted entries from its buffer. Before executing a:= x, a thread may thus inspect

the entries in its load buffer in turn until it arrives at the first entry for x, discarding the non-x
entries along the way. Intuitively, one can model the reordering of a write w after a later read r
by promoting (pre-fetching) r beforew is executed in real time. As before, mfence can be used to

prevent such instruction reorderings: executing mfence drains the load buffer of the thread.

Px86man: Modelling the Ordering Constraints. Note that in the x86-TSO models discussed

above there is only one type of entries in the buffer: either delayed entries in the store buffer, or

promoted entries in the load buffer, but not both. However, to model the ordering constraints in

Px86man, we need both delayed and promoted entries. To see this, let us attempt to extend the store

buffering model with delayed entries where reads are executed in real time. As shown in Fig. 3, the

order between read and sfence/flush/flushopt instructions is not preserved under Px86man and they

may be reordered in either direction. As in the store buffering model, we can model the reordering of

sfence/flush/flushopt after later reads by delaying their executions in the buffer. However, as reads

are executed in real time, we cannot model the reordering of sfence/flush/flushopt before earlier
reads without promoting their executions. Similarly, let us attempt to extend the load buffering

model with promoted entries where writes are executed in real time. Note that the order between

write and flushopt instructions on different cache lines is not preserved and they may be reordered

in either direction. We can then model the ordering of flushopt before earlier writes by promoting

the execution of flushopt. However, since writes are executed in real time, we cannot model the

reordering of flushopt after later writes without delaying the flushopt execution.

By allowing both types of entries in the buffer we can extend either model to Px86man. Here we

extend the store buffering model of Sewell et al. [2010] as it is more widely known. More concretely,

(1) the execution of writes is delayed in the buffer while reads are executed in real time, as before;

and (2) the execution of sfence/flush/flushopt may be delayed or promoted in the buffer.

Px86sim: Modelling the Ordering Constraints. As shown in Fig. 3, unlike in Px86man, the order

between earlier reads and later sfence/flushopt/flush is preserved in Px86sim and they cannot

be reordered. As such, in the Px86sim model the execution of sfence/flush/flushopt is no longer

required to be promoted. More concretely, (1) the execution of writes is delayed in the buffer while

reads are executed in real time, as in Px86man; (2) the execution of sfence/flush/flushopt may

be delayed (but not promoted) in the buffer. The reordering of sfence/flushopt/flush after later

reads can be modelled by delaying sfence/flushopt/flush. The remaining bidirectional reorderings

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:11

Basic domains
a ∈ Reg Registers

v ∈ Val Values

τ ∈ TId Thread IDs

Programs
P ∈ Prog ≜ TId

fin

→ Com

Expressions and sequential commands
Exp ∋ e ::=v | a | e+e | · · ·

PCom ∋ c ::= load(x) | store(x, e) | CAS(x, e, e′) | FAA(x, e)
| mfence | sfence | flushopt x | flush x

Com ∋ C ::= e | c | let a:=C in C
| if (C) then C else C | repeat C

Fig. 5. A simple concurrent programming language

amongst write, flushopt and flush instructions can be modelled by debuffering their associated

delayed entries from the store buffer in the desired order.

Px86: Modelling Buffered and Relaxed Persistency. In order to allow for buffered persists,

the Px86 storage system has an additional layer compared to its x86-TSO counterpart: a persistent
buffer, as illustrated in Fig. 4b. The persistent buffer contains those writes that are pending to be

persisted to the (non-volatile) memory. As with the memory, the persistent buffer is accessible

by all threads. However, while the memory is non-volatile, the persistent buffer is volatile and its

contents are lost upon a crash. When delayed writes in the thread-local buffer are debuffered, they

are propagated to the persistent buffer; this debuffering denotes the store associated with the write,

i.e. when the write is made visible to other threads. Pending writes in the persistent buffer are in

turn debuffered and propagated to the memory at non-deterministic points in time; this debuffering

denotes the persist associated with the write, i.e. when the write is written durably to memory. This

hierarchy models the notion that the store of each write takes place before its associated persist.

Note that the real time execution of reads must accordingly traverse this hierarchy: when reading

from x, the thread first inspects its own buffer and reads the value of the last buffered write to x if

such a write exists; otherwise, it consults the persistent buffer for the value of the last buffered

store to x if such a store exists; otherwise, it reads x from the memory.

Lastly, recall that under Px86 the writes on distinct locations may persist in any order (see Fig. 1a),

while the writes on the same location persist in the store order (see Fig. 1f). We thus model the

persistent buffer as a queue, where the pending writes on each location x are propagated in the

FIFO queue order, while those on different locations are propagated in an arbitrary order.

3 THE OPERATIONAL Px86sim MODEL
Locations and Cache Lines. We assume a set of locations, Loc, and a set of cache lines CL ≜

P (Loc). We typically use x, y, . . . as meta-variables for locations, and X , Y , . . . for cache lines.

Programming Language. To keep our presentation concise, we employ a simple concurrent

programming language as given in Fig. 5. We assume a finite set Reg of registers (local variables); a

finite set Val of values; a finite set TId ⊆ N+ of thread identifiers; and any standard interpreted

language for expressions, Exp, containing registers and values. We usev as a metavariable for values,

τ for thread identifiers, and e for expressions. We model a multi-threaded program P as a function

mapping each thread to its (sequential) program. We write P=C1 | | · · · | |Cn when dom(P)={τ1 · · · τn}
and P(τi)=Ci . Sequential programs are described by the Com grammar and include primitives (c),
as well as the standard constructs of expressions, assignments, conditionals and loops.

The highlighted primitives denote the extensions of the original x86-TSO model by Sewell et al.

[2010]. The load(x) denotes an atomic read from location x; similarly, the store(x, e) denotes an
atomic write to location x. The CAS(x, e, e′) denotes the atomic ‘compare-and-swap’, where the

value of location x is compared against e: if the values match then the value of x is set to e′ and 1

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:12 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

Thread transitions: Com
TId:Lab∪{ϵ }
−−−−−−−−−−→ Com Program transitions: Prog

TId:Lab∪{ϵ }
−−−−−−−−−−→ Prog

Lab ≜ {(R, x,v), (W, x,v), (U, x,v,v ′), MF, SF, (FO, x), (FL, x) | x ∈ Loc ∧v,v ′ ∈ Val}

C1

τ :l
−−→ C′

1

let a:=C1 in C2

τ :l
−→ let a:=C′

1
in C2

(T-Let1)

let a:=v in C
τ :ϵ
−→ C[v/a]

(T-Let2)

C
τ :l
−−→ C′

if (C) then C1 else C2

τ :l
−−→ if (C′) then C1 else C2

(T-If1)
v,0 ⇒ C=C1 v=0 ⇒ C=C2

if (v) then C1 else C2

τ :ϵ
−−−→ C

(T-If2)

repeat C
τ :ϵ
−−−→ if (C) then (repeat C) else 0

(T-Repeat)

store(x,v)
τ :(W,x,v)
−−−−−−→ v

(T-Write)

load(x)
τ :(R,x,v)
−−−−−−→ v

(T-Read)

FAA(x,v)
τ :(U,x,v0,v0+v)
−−−−−−−−−−−−→ v0

(T-FAA)

mfence
τ :MF
−−→ 1

(T-MF)

v , v1

CAS(x,v1,v2)
τ :(R,x,v)
−−−−−−−→ 0

(T-CAS0)

CAS(x,v1,v2)
τ :(U,x,v1,v2)
−−−−−−−−−−−→ 1

(T-CAS1)

sfence
τ :SF
−−→ 1

(T-SF)

flushopt x
τ :(FO,x)
−−−−−→ 1

(T-FO)

flush x
τ :(FL,x)
−−−−−→ 1

(T-FL)

P(τ)
τ :l
−−→ C

P
τ :l
−→ P[τ 7→ C]

(Prog)

Fig. 6. Program transitions in Px86

is returned; otherwise x is left unchanged and 0 is returned. Analogously, FAA(x, e) denotes the
atomic ‘fetch-and-add’ operation, where the value of x is incremented by e and its old value is

returned. TheCAS and FAA are collectively known as atomic update or RMW (‘read-modify-write’)

instructions. The mfence and sfence denote a memory fence and a store fence, respectively. Lastly,
flushopt and flush denote persist instructions, persisting a given cache line as discussed in §2.

For better readability, we do not always follow syntactic conventions and write e.g. a:= C for

let a:=C in a, and C1;C2 for let a:=C1 in C2, where a is a fresh local variable. We write a:= x for

let a:=load(x) in a (where a is fresh); similarly for CAS and FAA. We write x:= e for store(x, e).

3.1 The Operational Px86sim Model
We describe the Px86sim operational model by separating the transitions of its program and storage
subsystems. The former describe the steps in program execution, e.g. how a conditional branch

is triggered. The latter describe how the storage subsystem (the non-volatile memory, persistent

buffer and thread-local buffers in Fig. 4b) determine the execution steps. The Px86sim operational

semantics is then defined by combining the transitions of its program and storage subsystems.

3.1.1 Program Transitions. The Px86sim program transitions are given in Fig. 6. Program transitions

are defined via the transitions of their constituent threads. Thread transitions are of the form:

C
τ :l
−−→ C′

, where C,C′ ∈ Com denote sequential commands (Fig. 5). The τ :l marks the transition

by recording the identifier of the executing thread τ , as well as the transition label l . A label may

be ϵ , to denote silent transitions of no-ops; (R, x,v) to denote reading v from location x; (W, x,v)
to denote writing v to location x; (U, x,v,v ′) to denote a successful update (RMW) instruction

modifying x to v ′
when its value matches v ; MF or SF to denote the execution ofmfence or sfence,

respectively; and (FO, x) or (FL, x) to denote the execution of flushopt x or flush x, respectively.
Most thread transitions are standard. The (T-CAS0) transition describes the reduction of the

CAS(x,v1,v2) instruction when unsuccessful; i.e. when the value read (v) is different from v1. The
(T-CAS1) transition dually describes the reduction of aCASwhen successful. Note that in the failure

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:13

Px86sim Storage transitions: Mem × PBuff × BMap

TId:Lab∪{ϵ }
−−−−−−−−−−−→ Mem × PBuff × BMap

M ∈ Mem ≜ Loc

fin

→ Val PB ∈ PBuff ≜ Seq ⟨(Loc × Val) ∪ ({per} × Loc)⟩

B ∈ BMap ≜ TId

fin

→ Buff b ∈ Buff ≜ Seq ⟨(Loc × Val) ∪ {sf} ∪ ({fo, fl} × Loc)⟩

B(τ)=b

M,PB,B
τ :(W,x,v)
−−−−−−−→ M,PB,B[τ 7→ b.⟨x,v⟩]

(M-Write)

B(τ)=b rd(M,PB,b,x)=v

M,PB,B
τ :(R,x,v)
−−−−−−→ M,PB,B

(M-Read)

B(τ)=ϵ rd(M,PB, ϵ, x)=vr

M,PB,B
τ :(U,x,vr ,vw)
−−−−−−−−−−−−→ M,PB.⟨x,vw ⟩,B

(M-RMW)

B(τ)=ϵ

M,PB,B
τ :MF
−−→ M,PB,B

(M-MF)

B(τ)=b

M,PB,B
τ :SF
−−→ M,PB,B[τ 7→ b.⟨sf⟩]

(M-SF)

B(τ)=b

M,PB,B
τ :(FO,x)
−−−−−→ M,PB,B[τ 7→ b.⟨fo, x⟩]

(M-FO)

B(τ)=b

M,PB,B
τ :(FL,x)
−−−−−→ M,PB,B[τ 7→ b.⟨fl, x⟩]

(M-FL)

B(τ)=b1.⟨x,v⟩.b2
∀y,v ′. ⟨sf⟩, ⟨y,v ′⟩, ⟨fl, y⟩<b1

M,PB,B
τ :ϵ
−→ M,PB.⟨x,v⟩,B[τ 7→ b1.b2]

(M-BPropW)

B(τ)=⟨sf⟩.b

M,PB,B
τ :ϵ
−→ M,PB,B[τ 7→ b]

(M-BPropSF)

B(τ)=b1.⟨fo, x⟩.b2 x ∈ X ∀v . ∀x ′ ∈ X . ⟨sf⟩, ⟨x ′,v⟩, ⟨fl, x ′⟩ < b1

M,PB,B
τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b1.b2]

(M-BPropFO)

B(τ)=b1.⟨fl, x⟩.b2 x ∈ X ∀y,v . ∀x ′ ∈ X . ⟨sf⟩, ⟨y,v⟩,⟨fo, x ′⟩, ⟨fl, y⟩ < b1

M,PB,B
τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b1.b2]

(M-BPropFL)

PB=PB1.⟨x,v⟩.PB2 ∀y,v ′. ⟨x,v ′⟩, ⟨per, y⟩ < PB1

M,PB,B
τ :ϵ
−→ M[x 7→ v],PB1.PB2,B

(M-PropW)

PB=PB1.⟨per,x⟩.PB2 x ∈ X ∀x ′ ∈ X . ∀y,v . ⟨x ′,v⟩, ⟨per, y⟩ < PB1
M,PB,B

τ :ϵ
−→ M,PB1.PB2,B

(M-PropP)

rd(M,PB, b, x) ≜

v if rdS(b, x) = v
v else if rdS(PB, x) = v
M(x) otherwise

rdS(S, x) ≜


v if ∃S1, S2. S=S1.⟨x,v⟩.S2

and ∀v ′. ⟨x,v ′⟩ < S2

undef otherwise

Fig. 7. Storage transitions in Px86sim

case, as no update takes place, the transition is marked with a read label (R, x,v) and not an update

label as in the success case. The (T-FAA) transition behaves analogously. The (T-MF) and (T-SF)

transitions respectively describe executing an mfence and sfence, reducing to value 1 (successful

termination). Analogously, (T-FO) and (T-FL) describe the execution of persist instructions.

Program transitions are of the form: P
τ :l
−−→ P′

, where P,P′ ∈ Prog denote multi-threaded

programs (Fig. 5). Program transitions are given by simply lifting the transitions of their threads.

3.1.2 Storage Transitions. The Px86sim storage transitions in Fig. 7 are of the form:M,PB,B
τ :l
−−→

M′,PB′,B′
, whereM,M′∈Mem denote the memory, modelled as a (finite) map from locations to

values; PB,PB′ ∈PBuff denote the persistent buffer, represented as a sequence of persist-pending

instructions; and B,B′∈BMap denote the buffer map, associating each thread with its buffer.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:14 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

Recall from §2.4 that under the Px86sim model the buffer contains delayed entries only. More

concretely, each entry in the buffer may be of the form: (1) ⟨x,v⟩, denoting a delayed write x:=v ;
(2) ⟨sf⟩, ⟨fo, x⟩ or ⟨fl, x⟩, denoting a delayed sfence, flushopt x or flush x, respectively.

Px86sim: Thread Buffers and Ordering Constraints. A delayed entry (e.g. ⟨x,v⟩) is added to

the buffer when a corresponding instruction (e.g. x:=v) is encountered in the program, and is

debuffered at arbitrary times (subject to ordering constraints), as we describe shortly. Intuitively,

the order in which delayed entries are added to the buffer corresponds to the program order, while

the order in which they are debuffered denotes their store order (i.e. the order in which they

are made visible to other threads). That is, a delayed entry reaches its program (resp. store) point
when it is added to (resp. removed from) the buffer. We use this intuition to encode the Px86sim

ordering constraints in Fig. 3. In particular, we check the constraints between delayed entries when

debuffering them by comparing their program order (the FIFO buffer order) and store order (the

debuffering order). Note that despite allowing only delayed entries in the thread buffers, we can

still model the reordering of later instructions before earlier instructions allowed under Px86sim.

For instance, we can model the reordering of flushopt before earlier writes on different cache lines

by debuffering their associated delayed entries in the reverse order.

The Persistent Buffer. As discussed in §2.4, the persistent buffer entries are propagated to the

memory at arbitrary times. Intuitively, the effect of an entry is committed durably to memory (i.e. its

persist takes place) once it leaves the persistent buffer. Therefore, since sfence instructions have no
durable effect andmerely constrain the execution order, they are not retained in the persistent buffer:

when an ⟨sf⟩ entry is eventually debuffered from the thread buffer, it is simply discarded. Each entry

in the persistent buffer may be thus of the form: (1) ⟨x,v⟩, denoting a persist-pending write; or

(2) ⟨per, x⟩, denoting a persist-pending flushopt x/flush x. This is because the fo, fl tags determine

the constraints on the execution order and do not affect the durable effect of flushopt/flush. That
is, flushopt x and flush x have the same durable effect: when made durable, they both persist

the cache line containing x. As such, distinguishing the persist type in the persistent buffer is

unnecessary and we simply represent them by the ‘per’ tag.

Px86sim Storage Transitions. When a thread writes v to x, this is recorded in its buffer as the

⟨x,v⟩ entry, as described by (M-Write). Recall that when a thread reads from x, it first consults its
own buffer, followed by the persistent buffer (if no write to x is found in its buffer), and finally the

non-volatile memory (if no store to x is found in the thread or persistent buffer). This lookup chain

is captured by rd(M,PB, b, x) in the premise of (M-Read), defined at the bottom of Fig. 7.

The (M-MF) rule ensures that anmfence proceeds only when the buffer of the executing thread

is drained, as stipulated by the B(τ)=ϵ premise. In the (M-RMW) rule, when executing an RMW

instruction (i.e. a CAS or FAA) on x, a similar lookup chain is followed to determine the value

of x, as with a read. To ensure their atomicity, RMW instructions act as memory fences and may

only proceed when the buffer of the executing thread is drained. Moreover, the resulting update

is committed directly to the persistent buffer, bypassing the thread buffer. This is to ensure that

the resulting update is immediately visible to other threads. Note that the behaviour of RMW

instructions with respect to thread buffers differs from that of write instructions: writes are added

to the thread buffer; updates bypass the thread buffer and flush it of pending entries.

The (M-SF) rule describes the (delayed) sfence execution by adding ⟨sf⟩ to b. Similarly, (M-FO)

and (M-FL) describe the (delayed) execution of flushopt and flush, respectively.
The (M-BPropW) describes the debuffering of a delayed write and propagating it to the persistent

buffer, i.e. when its store finally takes place. Let d=⟨x,v⟩ denote the write debuffered from b in

(M-BPropW). As discussed above, when debuffering d we must check the constraints between d

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:15

Operational semantics: Prog × Rec ⊢ Conf ⇒ Conf Conf ≜ Prog ×Mem × PBuff × BMap

rec ∈ Rec ≜ Prog ×Mem → Prog

P
τ :ϵ
−−−→ P′

∆ ⊢ P,M,PB,B ⇒ P′,M,PB,B
(SilentP)

P
τ :l
−−→ P′ M,PB,B

τ :l
−−→ M′,PB′,B′

∆ ⊢ P,M,PB,B ⇒ P′,M′,PB′,B′
(Step)

M,PB,B
τ :ϵ
−−−→ M′,PB′,B′

∆ ⊢ P,M,PB,B ⇒ P,M′,PB′,B′
(SilentS)

∆=(P0, rec) B0≜ λτ .ϵ PB0≜ ϵ

∆ ⊢ P,M,PB,B ⇒ rec(P0,M),M,PB0,B0
(Crash)

Fig. 8. The Px86 operational semantics

and other delayed entries in b. This is captured by the second premise of the rule. For instance,

let d ′=⟨y,v ′⟩ denote a delayed write preceding d in b; i.e. d ′
is program-ordered before d . Note

that since two writes cannot be reordered, the store and program order between d and d ′
must

agree: d ′
must be debuffered before d . Hence when d is debuffered, no delayed write may preceded

it in b: ∀y,v ′. ⟨y,v ′⟩<b1. Analogously, (M-BPropSF), (M-BPropFO) and (M-BPropFL) describe the

debuffering of delayed sfence, flushopt and flush instructions, respectively.

The (M-PropW) rule describes the debuffering of a write from the persistent buffer PB, i.e. when
its persist finally takes place. Recall that the writes on the same location are persisted in the store

order. That is, the writes on each location in PB are debuffered (persisted) in the order in which

they were added to PB. This is ensured by requiring that the debuffered ⟨x,v⟩ entry be the first

x entry in PB. Moreover, as discussed in §2.2, given x ∈ X and a persist instruction C on x, all
writes on X (store-) ordered before C persist before all instructions (store-) ordered after C. This is
captured by ensuring that no persist entry precedes the debuffered ⟨x,v⟩. Similarly, (M-PropP)

describes the debuffering of a persist entry from the persistent buffer.

3.1.3 Combined Transitions. The Px86sim operational semantics is defined by combining the tran-

sitions of the program and storage subsystems under a recovery context, as presented in Fig. 8. The

recovery context records the information necessary for correct recovery after a crash. A recovery

context is a pair ∆=(P, rec), where P denotes the original program, and rec denotes its associated
recovery program. A naive recovery program may always choose to restart executing P from the

beginning. However, a more sophisticated recovery may resume executing P upon recovery by

determining the progress made prior to the crash. To do this, the recovery program may inspect the

memory to determine the operations whose effects have persisted to memory. To capture this, we

model a recovery program as a function rec : Prog ×Mem → Prog. That is, rec(P,M) describes

the recovery program of P when the memory upon recovery is described by M.

The (SilentP) rule describes the case when the program subsystem takes a silent step and

thus the storage subsystem is left unchanged; mutatis mutandis for (SilentS). The (Step) rule
describes the case when the program and storage subsystems both take the same transition (with

the same label) and thus the transition effect is that of their combined effects. Lastly, the (Crash)

rule describes the case when the program crashes: the execution is restarted with the recovery

program rec(P,M); the memory is left unchanged as it is non-volatile; the thread-local buffers and

the persistent buffer are lost (as they are volatile) and are thus reset to empty.

4 THE OPERATIONAL Px86man MODEL
As with Px86sim, we describe the Px86man operational model by separating the transitions of its

program and storage subsystems. While the Px86man program transitions are those of Px86sim in

Fig. 6, the Px86man storage transitions are more complex than those of Px86sim, and are presented

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:16 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

in Fig. 9. As with Px86sim, the Px86man operational semantics is then defined by combining the

transitions of its program and storage subsystems, as described in Fig. 8.

The Px86man storage transitions in Fig. 9 are of the form:M,PB,B
τ :l
−→M′,PB′,B′

, whereM,M′,PB,
PB′

are defined as before, and highlighted sections denote extensions from Px86sim. Recall that

Px86man buffers contains both delayed and promoted entries. As such, the buffer mapsB,B′
associate

each thread with its Px86man buffer, extended from Px86sim buffers to include promoted entries.

More concretely, each Px86man buffer entry may be of the form: (1) ⟨x,v⟩, denoting a delayed write
x:=v ; (2) ⟨sf⟩, ⟨fo, x⟩ or ⟨fl, x⟩, denoting a delayed sfence, flushopt x or flush x, respectively; or
(3) ⟨psf⟩, ⟨pfo, x⟩ or ⟨pfl, x⟩, denoting a promoted sfence, flushopt x or flush x, respectively.

Px86man: Thread Buffers and Ordering Constraints. As in Px86sim, a delayed entry (e.g.

⟨x,v⟩) is added to the buffer when a corresponding instruction (e.g. x:=v) is encountered in

the program, and is debuffered at arbitrary times (subject to ordering constraints). Conversely,

a promoted entry may be added to the buffer at arbitrary times (subject to constraints), and is

debuffered when a corresponding instruction is encountered. Additionally, a promoted entry may

always be discarded to ensure progress. Recall that the order in which delayed entries are added to

the buffer corresponds to the program order, while the order in which they are debuffered denotes

their store order. Dually, the order in which promoted entries are added denotes their store order,

while the order in which they are debuffered (not discarded) corresponds to the program order.

That is, a promoted entry reaches its program (resp. store) point when it is removed from (resp.

added to) the buffer. As such, given promoted entries p,p ′, a delayed entry d and a buffer b=p.d .p ′,
then: (1) p ′ is store-ordered after p (p ′ is added after p); d is program-ordered before p,p ′ (d has

reached its program point while p,p ′ are yet to reach theirs); and (2) d is store-ordered after p,p ′

(d is yet to reach its store point while p,p ′ have reached theirs). As the program and store orders

between d and p,p ′ disagree, p,p ′ are reordered before d , or (equivalently) d is reordered after p,p ′.
We use these intuitions to encode the Px86man ordering constraints in Fig. 3. In particular,

the constraints between delayed entries are checked when debuffering them by comparing their

program order (the FIFO buffer order) and store order (the debuffering order). The constraints

between promoted entries are checked when debuffering them by comparing their program order

(the debuffering order) and store order (the FIFO buffer order). The constraints between delayed

and promoted entries are checked when adding either. For instance, in the example above, when d
is added yielding p.d , we compare the program order (d before p) against the store order (p before d)
to ensure that ordering constraints are respected. Similarly, when p ′ is later added yielding p.d .p ′,
we compare the program order (d before p ′) against the store order (p ′ before d).

Debuffering promoted entries justifies their execution: it ensures that their execution speculated

beforehand corresponds to a later instruction in program. This prohibits the promoted execution of

non-existent instructions as unjustifiable promoted entries must be discarded to ensure progress.

Px86man Storage Transitions. Given a thread τ and its buffer b, the (M-ProFO) rule describes

the promoted execution of flushopt x by τ , where ⟨pfo, x⟩ is added to b. As discussed above, we

must check the constraints between the promoted entry ⟨pfo, x⟩ and existing delayed entries in

b. Recall from Fig. 3 that flushopt instructions cannot be reordered with respect to sfence. As
such, when adding ⟨pfo, x⟩, the buffer cannot contain a delayed sfence entry. This is captured by

requiring ⟨sf⟩<b in the last premise. Note that otherwise the flushopt associated with ⟨pfo, x⟩ is
reordered before sfence which is prohibited. The last premise additionally checks the ordering

constraints between ⟨pfo, x⟩ and delayed write/flush entries in b. Lastly, recall that the persist of
each instruction occurs after its associated store. As the store of a promoted persist entry is reached

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:17

Px86man Storage transitions:Mem × PBuff × BMap

TId:Lab∪{ϵ }
−−−−−−−−−−−→ Mem × PBuff × BMap

B ∈ BMap ≜ TId

fin

→ Buff b ∈ Buff ≜ Seq⟨ (Loc × Val) ∪ {sf, psf} ∪ ({fo, fl, pfo, psf} × Loc)⟩

B(τ)=b x ∈ X ∀v .∀x ′∈X . ⟨sf⟩, ⟨x ′,v⟩, ⟨fl, x ′⟩<b
M,PB,B

τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b.⟨pfo, x⟩]

(M-ProFO)

B(τ)=b x ∈ X ∀y,v .∀x ′∈X . ⟨sf⟩, ⟨y,v⟩, ⟨fo, x ′⟩, ⟨fl, y⟩<b
M,PB,B

τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b.⟨pfl, x⟩]

(M-ProFL)

∀x,v . ⟨sf⟩, ⟨x,v⟩, ⟨fo, x⟩, ⟨fl, x⟩<B(τ)
M,PB,B

τ :ϵ
−→ M,PB,B[τ 7→B(τ).⟨psf⟩]

(M-ProSF)

B(τ)=b1.o.b2 o ∈{⟨psf⟩,⟨pfo,−⟩,⟨pfl,−⟩}

M,PB,B
τ :ϵ
−→ M,PB,B[τ 7→ b1.b2]

(M-Drop)

B(τ)=b x ∈X ∀y.∀x ′∈X .⟨psf⟩,⟨pfl,y⟩,⟨pfo,x ′⟩<b
M,PB,B

τ :(W,x,v)
−−−−−−−→ M,PB,B[τ 7→ b.⟨x,v⟩]

(M-Write)

B(τ)=b rd(M,PB,b,x)=v

M,PB,B
τ :(R,x,v)
−−−−−−→ M,PB,B

(M-Read)

B(τ)=ϵ rd(M,PB, ϵ, x)=vr

M,PB,B
τ :(U,x,vr ,vw)
−−−−−−−−−−−−→ M,PB.⟨x,vw ⟩,B

(M-RMW)

B(τ)=ϵ

M,PB,B
τ :MF
−−→ M,PB,B

(M-MF)

B(τ)=b ∀x . ⟨psf⟩, ⟨pfo, x⟩, ⟨pfl, x⟩<b
M,PB,B

τ :SF
−−→ M,PB,B[τ 7→ b.⟨sf⟩]

(M-SF)

B(τ)=⟨psf⟩.b′

M,PB,B
τ :SF
−−→ M,PB,B[τ 7→ b′]

(M-SF2)

B(τ)=b x ∈ X
∀x ′ ∈ X . ⟨psf⟩, ⟨pfl, x ′⟩<b

M,PB,B
τ :(FO,x)
−−−−−→ M,PB,B[τ 7→ b.⟨fo, x⟩]

(M-FO)

B(τ)=b1.⟨pfo, x⟩.b2 x ∈X ⟨psf⟩<b1
∀x ′∈X . ⟨pfl,x ′⟩<b1

M,PB,B
τ :(FO,x)
−−−−−→ M,PB,B[τ 7→ b1.b2]

(M-FO2)

B(τ)=b x ∈ X
∀y.∀x ′ ∈ X . ⟨psf⟩, ⟨pfl, y⟩, ⟨pfo, x ′⟩<b

M,PB,B
τ :(FL,x)
−−−−−→ M,PB,B[τ 7→ b.⟨fl, x⟩]

(M-FL)

B(τ)=b1.⟨pfl, x⟩.b2 x ∈X ⟨psf⟩<b1
∀x ′∈X . ⟨pfo,x ′⟩<b1 ∀y. ⟨pfl,y⟩<b1
M,PB,B

τ :(FL,x)
−−−−−→ M,PB,B[τ 7→ b1.b2]

(M-FL2)

B(τ)=b1.⟨x,v⟩.b2
∀y,v ′. ⟨sf⟩, ⟨y,v ′⟩, ⟨fl, y⟩<b1

M,PB,B
τ :ϵ
−→ M,PB.⟨x,v⟩,B[τ 7→ b1.b2]

(M-BPropW)

B(τ)=⟨sf⟩.b

M,PB,B
τ :ϵ
−→ M,PB,B[τ 7→ b]

(M-BPropSF)

B(τ)=b1.⟨fo, x⟩.b2 x ∈ X ∀v . ∀x ′ ∈ X . ⟨sf⟩, ⟨x ′,v⟩, ⟨fl, x ′⟩ < b1

M,PB,B
τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b1.b2]

(M-BPropFO)

B(τ)=b1.⟨fl, x⟩.b2 x ∈ X ∀y,v . ∀x ′ ∈ X . ⟨sf⟩, ⟨y,v⟩,⟨fo, x ′⟩, ⟨fl, y⟩ < b1

M,PB,B
τ :ϵ
−→ M,PB.⟨per, x⟩,B[τ 7→ b1.b2]

(M-BPropFL)

PB=PB1.⟨x,v⟩.PB2 ∀y,v ′. ⟨x,v ′⟩, ⟨per, y⟩ < PB1

M,PB,B
τ :ϵ
−→ M[x 7→ v],PB1.PB2,B

(M-PropW)

PB=PB1.⟨per,x⟩.PB2 x ∈ X ∀x ′ ∈X .∀y,v . ⟨x ′,v⟩, ⟨per, y⟩<PB1
M,PB,B

τ :ϵ
−→ M,PB1.PB2,B

(M-PropP)

Fig. 9. Storage transitions in Px86man, where the highlighted sections denote extensions from Px86sim

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:18 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

upon adding it to the buffer, we can then add an associated ⟨per, x⟩ entry to the persistent buffer,

which when eventually debuffered, carries out the persist of the associated flushopt.

The (M-ProFL) and (M-ProSF) rules analogously describe the promoted execution of flush x
and sfence, respectively. The (M-Drop) rule describes the discarding of promoted entries at will to

ensure that transitions do not get stuck.

As in Px86sim, when a thread writesv to x, this is recorded in its buffer as the delayed ⟨x,v⟩ entry,
as described by (M-Write). Under Px86man we must additionally check the ordering constraints

between ⟨x,v⟩ and existing promoted entries. This is captured by the last premise of (M-Write),

ensuring that later flushopt on the same cache line as well as later sfence and flush cannot be

ordered before ⟨x,v⟩, as prescribed in Fig. 3. The (M-Read), (M-RMW) and (M-MF) rules remain

unchanged from their Px86sim counterparts in Fig. 7.

As in Px86sim, the (M-SF) rule describes the delayed sfence execution by adding ⟨sf⟩ to b. Under
Px86man we must also check the constraints between the promoted entries in b and ⟨sf⟩, as captured
by the last premise. The premises of (M-FO) and (M-FL) are analogously extended to check the

constraints between the promoted entries in b and the newly added ⟨fo, x⟩ and ⟨fl, x⟩, respectively.
The (M-SF2) rule describes the justification of a promoted sfence execution by debuffering its

entry. Let p=⟨psf⟩ denote the promoted sfence entry to be removed by (M-SF2). As discussed, we

must check the constraints between p and other promoted entries. Let p ′ be a promoted entry

preceding p in the buffer; i.e. p ′ is store-ordered before p. Note that since no instruction can be

reordered with respect to sfence (except reads), the store order and program order between p and

p ′ must agree: p ′ must be debuffered before p. That is, when p is debuffered, no promoted entry may

precede it in b. As such, since by construction no delayed entry may precede p in b (see (M-ProSF)),

p must be at the head of b when debuffered, as stipulated by b=⟨psf⟩.b′. Analogously, (M-FO2) and

(M-FL2) justify the promoted execution of flushopt and flush, respectively.
The (M-BPropW), (M-BPropSF), (M-BPropFO), (M-BPropFL), (M-PropW) and (M-PropP) rules

remain unchanged from their Px86sim counterparts.

5 THE DECLARATIVE Px86man AND Px86sim MODELS
We develop our declarative Px86sim and Px86man models as instances of the declarative persistency

framework proposed by Raad et al. [2019b]. We then prove that the two Px86sim (resp. Px86man)

characterisations are equivalent, with the full proof given in the accompanying technical appendix.

Executions and Events. In the literature of declarative models, the traces of shared memory

accesses generated by a program are commonly represented as a set of executions, where each
executionG is a graph comprising: (i) a set of events (graph nodes); and (ii) a number of relations on

events (graph edges). Each event corresponds to the execution of a primitive command (c ∈ PCom in

Fig. 5) and is a tuple of the form e=⟨n,τ , l⟩, where n ∈ N is the event identifier uniquely identifying

e ; τ ∈ TId is the thread identifier of the executing thread; and l ∈ Lab is the event label, as defined
in Fig. 6. The functions loc, valr and valw respectively project the location, the read value and the

written value of a label, where applicable. For instance, loc(l)=x and valw(l)=v for l=(W, x,v).

Definition 1 (Events). An event is a tuple ⟨n,τ , l⟩, where n ∈ N is an event identifier, τ ∈ TId is a

thread identifier, and l ∈ Lab is an event label.

We typically use a, b and e to range over events. The functions tid and lab respectively project

the thread identifier and the label of an event. We lift the label functions loc, valr and valw to
events, and given an event e , we write e.g. loc(e) for loc(lab(e)).

Notation. Given a relation r on a set A, we write r?, r+ and r∗ for the reflexive, transitive and
reflexive-transitive closures of r, respectively. We write r−1 for the inverse of r; r|A for r ∩ (A ×A);

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:19

[A] for the identity relation on A, i.e. {(a,a) | a ∈ A}; irreflexive(r) for ∄a. (a,a) ∈ r ; and acyclic(r)
for irreflexive(r+). We write r1; r2 for the relational composition of r1 and r2, i.e. {(a,b) | ∃c . (a, c) ∈
r1 ∧ (c,b) ∈ r2}. When A is a set of events, we write Ax for {a ∈ A | loc(a)=x}, and write AX for

{a ∈ A | loc(a) ∈X }. Similarly, we write rx for r ∩ (Ax ×Ax), and write rX for r ∩ (AX ×AX).

Definition 2 (Executions). An execution, G ∈ Exec, is a tuple (E, I , P, po, rf,mo, nvo), where:

• E denotes a set of events. The set of read events in E is: R ≜
{
e ∈ E ∃x,v . lab(e)=(R, x,v)}; the

sets of write (W), RMW (U), memory fence (MF), store fence (SF), optimised flush (FO) and flush
(FL) events are defined analogously. The set of durable events in E is: D ≜ W ∪ U ∪ FO ∪ FL.

• I is a set of initialisation events, comprising a single write eventw ∈ W x for each location x.
• P is a set of persisted events such that I ⊆ P ⊆ D.
• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union of strict total orders,

each ordering the events of one thread, with I × (E \ I) ⊆ po.
• rf ⊆ (W ∪ U) × (R ∪ U) denotes the ‘reads-from’ relation between events of the same location

with matching values; i.e. (a,b) ∈ rf ⇒ loc(a)=loc(b) ∧ valw(a)=valr(b). Moreover, rf is total
and functional on its range, i.e. every read or update is related to exactly one write or update.

• mo ⊆ E × E is the ‘modification-order’, defined as the disjoint union of relations {mox}x∈Loc,
such that each mox is a strict total order onW x ∪ U x , and I x × ((W x ∪ U x) \ I x) ⊆ mox .

• nvo ⊆ D×D is the ‘non-volatile-order’, defined as a strict total order on D, such that I ×(D \ I) ⊆
nvo and dom(nvo; [P]) ⊆ P .

In the context of an execution graphG (we often use the “G .” prefix to make this explicit), durable

events are those whose effects may be observed when recovering from a crash. For instance, the

effects of x:=v may be observed upon recovery if the write of v on x has persisted before the

crash. As such, write events are durable. Note that durability does not reflect whether the effects

of the instruction do persist; rather that its effect could persist. That is, regardless of whether the
effects of x:=v persist, its associated label is deemed durable. By contrast, mfence, sfence and
read instructions have no durable effects and their events are thus not durable.

Intuitively, the persisted events P include those durable events (P ⊆ D) whose effects have

reached the persistent memory, and thus persisted events include initialisation writes (I ⊆ P).
The ‘modification-order’ mo describes the store order on the writes and updates of each location.

Analogously, the ‘non-volatile-order’ nvo prescribes the persist order. As such, we require that

the persisted events in P be downward-closed with respect to nvo: dom(nvo; [P]) ⊆ P . That is, let
e1 · · · en denote the enumeration of D according to nvo (nvo is total on D); as P is downward-closed

with respect to nvo, we know there exists 0 ≤ i ≤ n such that e1, · · · , ei ∈ P and ei+1, · · · , en ∈ D\P .
Note that in this initial stage, executions are unrestricted in that there are few constraints on rf,

mo and nvo. Such restrictions are determined by the set of model-specific consistent executions.
We shortly define execution consistency for the Px86sim and Px86man models.

Chains. The traces of shared memory accesses generated by a program are commonly rep-

resented as a set of complete executions, i.e. those that do not crash. However, this assumption

renders this model unsuitable for capturing the crashing behaviour of executions in the presence of

persistent memory. Instead, Raad et al. [2019b] model an execution chain C as a sequenceG1, · · · ,Gn ,

with each Gi describing an execution era between two adjacent crashes. More concretely, when

an execution of program P crashes n−1 times, this is modelled as the chain C=G1, · · · ,Gn , where

(1) G1 describes the initial era between the start of execution up to the first crash; (2) for all

i ∈ {2, · · · ,n−1}, Gi denotes the i
th
execution era, recovering from the (i−1)st crash; and (3) Gn

describes the final execution era terminating successfully.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:20 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

Definition 3 (Chains). A chain C is a sequence G1, · · · ,Gn of executions such that for 1 ≤ i < n
and Gi=(Ei , I i , Pi , poi , rfi ,moi , nvoi):
• ∀x ∈ Loc. ∃w . w ∈ I 1 ∧ loc(w)=x ∧ valw(w)=0;

• ∀x ∈ Loc. ∃w, e . w ∈ I i+1 ∧ loc(w)=x ∧ e=max
(
nvoi |Pi∩(W x∪U x)

)
∧ valw(w)=valw(e);

• Pn = Dn .

Given a memory model M, a chain C=G1, · · · ,Gn is M-valid if each Gi is M-consistent.

The first axiom ensures that in the first era all locations are initialised with 0. The second axiom

ensures that in each subsequent (i+1)st era all locations are initialised with a value persisted by a

write (or update) in the previous (ith) era maximally (in nvoi). The last axiom ensures that the final

era executes completely (does not crash) by stipulating that all its durable events be persisted. That

is, in the absence of a crash, all durable events are eventually persisted.

Persistent Programs. In the persistent setting each program P is associated with a recovery
mechanism describing the code executed upon recovery from a crash. Raad et al. [2019b] thus model

a persistent program, P ∈ PProg, as a pair ⟨P, rec⟩, where P ∈ Prog denotes the original program,

and rec denotes its recovery mechanism. A recovery mechanism is analogous to a recovery program

(see §4), except that a recovery mechanism operates on an execution G ∈ Exec, rather than a

memoryM ∈ Mem. That is, a recovery mechanism is a function rec : Prog×Exec → Prog, where

rec(P,G) describes the recovery mechanism associated with P when the memory upon recovery is

that obtained after execution G. Intuitively, G corresponds to the previous execution era and thus

the state of memory upon recovery can be ascertained by inspecting G.

From Programs to Chains. The semantics of a program P is typically defined as a set of con-

sistent executions associated with P and is defined by straightforward induction on the structure

of P. Analogously, Raad et al. [2019b] define the semantics of a persistent program P as a set of
valid chains associated with P. More concretely, a persistent program P=⟨P, rec⟩ is associated with
a valid chain C=G1, · · · ,Gn if: (1) G1 is a partial execution of P; (2) Gi is a partial execution of

rec(P,Gi−1), for all 2 ≤ i ≤ n−1; and (3)Gn is an execution of rec(P,Gn−1). Note that executions of

all but the last era are partial in that they have failed to run to completion due to a crash. We refer

the reader to [Raad et al. 2019b] for the formal definition of the semantics of persistent programs.

Definition 4 (Px86sim and Px86man consistency). An execution (E, I , P, po, rf,mo, nvo) is Px86sim-
consistent iff there exists a strict order, tso ⊆ E × E, such that the Px86sim axioms in Fig. 10 hold.

An execution (E, I , P, po, rf,mo, nvo) is Px86man-consistent iff there exists a strict order, tso ⊆ E×E,
such that the Px86man axioms in Fig. 10 hold.

The Px86-consistency axioms are given in Fig. 10, where the right column describes how each

axiom corresponds to the ordering constraints in Fig. 3. The (tso-mo)–(tso-mf) axioms are those of

the original x86-TSO model defined by Sewell et al. [2010], which requires the existence of a strict

order tso (‘total store order’) on events. Intuitively, tso describes the store order, i.e. the order in
which events are made visible to other threads, which corresponds the order in which events reach

the persistent buffer in the operational Px86 model. As such, tso subsumes the modification order

mo (tso-mo). The (tso-po) and (tso-mf) axioms capture the ordering constraint in the original

x86-TSO model, as illustrated in the top-left corner of Fig. 3. For instance, the [E]; po; [MF] ⊆ tso
requirement of (tso-mf) describes column 4 of Fig. 3, while [MF]; po; [E] ⊆ tso describes row D.

Note that these original axioms do not account for store fences or persists (highlighted in Fig. 3);

nor have they any bearing on the Px86 persistency semantics as they impose no constraints on

nvo. We capture the constraints of store fences and persists via (tso-sf)–(tso-w-fo). We describe

the Px86 persistency semantics via (nvo-loc)–(nvo-fofl-d).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:21

Px86sim/Px86man Axiom Label ✓ in Fig. 3
mo ⊆ tso (tso-mo)

tso is total on E \ R (tso-total)

rf ⊆ tso ∪ po (tso-rf1)

∀x ∈Loc.∀(w, r) ∈ rfx .∀w ′∈W x∪U x . (w
′, r) ∈ tso ∪ po ⇒ (w,w ′)< tso (tso-rf2)

([W ∪ U ∪ R]; po; [W ∪ U ∪ R]) \ (W × R) ⊆ tso (tso-po) A1–C4

([E]; po; [MF]) ∪ ([MF]; po; [E]) ⊆ tso (tso-mf) Col. 4, Row D

([E \ R]; po; [SF]) ∪ ([SF]; po; [E \ R]) ⊆ tso (tso-sf) Col. 5, Row E

([W ∪ U ∪ FL]; po; [FL]) ∪ ([FL]; po; [W ∪ U ∪ FL]) ⊆ tso (tso-fl-wufl) B7,C7,G2,G3,G7

∀X ∈ CL. ([FLX]; po; [FOX]) ∪ ([FOX]; po; [FLX]) ⊆ tso (tso-fl-fo) G6, F7

([U]; po; [FO]) ∪ ([FO]; po; [U]) ⊆ tso (tso-fo-u) C6, F3

∀X ∈ CL. ([WX]; po; [FOX]) ⊆ tso (tso-w-fo) B6

∀x ∈ Loc. tso|Dx ⊆ nvo (nvo-loc)

∀X ∈ CL. [WX ∪ UX]; tso; [FOX ∪ FLX] ⊆ nvo (nvo-wu-fofl)

[FO ∪ FL]; tso; [D] ⊆ nvo (nvo-fofl-d)

Px86sim Axiom Label ✓ in Fig. 3
[R]; po; [SF] ⊆ tso (tso-r-sf) A5

[R]; po; [FO ∪ FL] ⊆ tso (tso-sim) A6, A7

Fig. 10. Declarative Px86sim and Px86man axioms

Axiom (tso-sf) states that store fences are ordered (in both directions) with respect to all events

but reads. Similarly, (tso-fl-wufl)–(tso-fl-fo) ensure that flush is ordered (in both directions)

with respect to writes, RMWs, flushes, as well as flushopt on the same cache line. Analogously,

(tso-fo-u) states that flushopt is ordered (in both directions) with respect to RMWs; (tso-w-fo)

ensures that flushopt is ordered with respect to po-earlier writes on the same cache line.

Recall from §2 that for each location x, its store and persist orders coincide. This is captured by

(nvo-loc). Moreover, as discussed in §2, given x ∈X and C=flushopt x or C=flush x, all writes on
X (store-) ordered before C persist before all instructions (store-) ordered after C, regardless of
their cache line. This is captured by (nvo-wu-fofl) and (nvo-fofl-d).

Lastly, recall that in addition to the Px86man constraints, Px86sim further requires that the fol-

lowing orders be preserved: (1) the order between earlier reads and later sfence instructions; and
(2) the order between earlier reads and later flushopt/flush instructions as stipulated by (sim). This

is captured by the (tso-r-sf) and (tso-sim) axioms at the bottom of Fig. 10.

x86-TSO and sfence. Observe that the original x86-TSO model by Sewell et al. [2010] does not

include the (tso-sf) axiom. This is because: (1) the x86-TSOmodel simply does not model sfence in-
structions; and (2) extending x86-TSO with sfence is trivial in that in the absence of flushopt/flush
operations, sfence instructions behave as no-ops. This is because as stated in (tso-sf), sfence
instructions enforce a tso order between po-earlier and po-later non-read instructions. As such, in

the absence of flushopt/flush (i.e. only considering read, write, RMW,mfence and sfence instruc-
tions), this enforces a tso order between po-earlier and po-later write/RMW/mfence instructions.
However, this constraint is already captured by (tso-po) and (tso-mf); i.e. sfence instructions intro-
duce no additional ordering constraints. This is no longer the case when considering flushopt/flush
instructions, and we thus explicitly capture the sfence constraints in (tso-sf).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:22 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

5.1 Equivalence of the Px86 Operational and Declarative Semantics
The Px86sim and Px86man operational models are equivalent to their counterpart declarative models,

as stated in Thm. 1 and Thm. 2 below. We proceed with an intuitive account of the equivalence

proofs; we refer the reader to the accompanying technical appendix for the full proof.

Px86sim Equivalence. Let Pskip ≜ λτ .v ∈ Val denote a terminated program. To establish the

equivalence of the two Px86sim models, we must show that for all programs P, if P,M0,PB0,B0 ⇒
∗

Pskip,M,PB,B, then we can construct a corresponding Px86sim-valid chain; and vice versa.

To this end, we develop an intermediate Px86sim semantics as an event-annotated transition

system. More concretely, we describe the intermediate semantics by separating the transitions of

its program and storage subsystems, as before. The transitions of the annotated program subsystem

are of the form P
λ
−→ P′

, where λ is an annotated label, recording the memory event e ∈ E (Def. 1)

making the transition. For instance, when executing an sfence instruction the annotated label is

λ=SF⟨sf ⟩, where sf ∈ SF is a store fence event. Such explicit tracking of events in the operational

semantics allows for a simple construction of the constituent events in the corresponding Px86sim

executions. Similarly, when executing a read instruction a:= x, the annotated label is λ=R⟨r , e⟩,
where r ∈ R is a read event, and e ∈ W ∪ U is a write/update event, denoting the event responsible

for writing the value read by r . That is, e denotes the write/update event that r reads from. Tracking

the write/update events this way allows us to construct the rf relation when constructing the

corresponding Px86sim executions. Moreover, when P
λ1
−→ · · ·

λ2
−→ −, we can determine the program

order between the events associated with λ1 and λ2. For instance, when λ1=SF⟨sf ⟩, λ2=R⟨r ,−⟩ and
tid(sf)=tid(r), then sf is po-before r in the corresponding Px86sim execution.

Similarly, the transitions of the storage subsystem are of the form M, PB, B
λ
−→ M ′, PB′, B′

, where

M,M ′
are the event-annotated memory; PB, PB′

are the event-annotated persistent buffer ; and B, B′
are

the event-annotated buffer maps. An annotated memory M is a map from locations to write/update
events. That is, for each location x, rather than recording its value, we record the write/update

event responsible for setting x to its current value. An annotated persistent buffer PB is analogously

augmented to record the write/update/flushopt/flush events to be propagated; similarly for B.
Additionally, when a delayed event e is debuffered from a thread buffer in B, we mark this transition

with the label λ=B⟨e⟩. Recall that the order in which delayed entries are debuffered amounts to their

store order (the order they become visible to other threads). As such, we can track the debuffering

order via B⟨.⟩ transitions, allowing us to construct the tso relation of the corresponding Px86sim

execution. That is, when M, PB,B
λ1
−→ · · ·

λ2
−→ − with λ1=B⟨e1⟩ and λ2=B⟨e2⟩, then e1 is tso-before

e2 in the corresponding execution. Analogously, when an event e is debuffered from PB, we mark

this transition with λ=PB⟨e⟩. This in turn allows us to construct the nvo relation of the execution.

The intermediate semantics is obtained by combining its program and storage transitions. The

combined transitions are of the form: P, M , PB, B,H , π ⇒ P′
, M ′

, PB′
, B′

,H ′
, π ′

. The π denotes

the execution path in the current execution era, modelled as a sequence of annotated labels of the

form λ1. · · · .λn . That is, each time the combined system takes a λ step, the current execution path

is extended by appending λ at the end. Recording the execution path in π allows us to construct the

po, tso and nvo relations of the current execution era, as discussed above. The execution history,H ,

tracks the execution paths of the previous eras. That is, if the execution has encountered n crashes

thus far, then H contains n entries, π1, · · · ,πn , with each πi tracking the execution path in the ith

era. Recording the history H allows us to construct the execution graphs of the previous eras.

To prove the equivalence of our two Px86sim semantics we show: (i) the Px86sim operational

semantics is equivalent to the Px86sim intermediate semantics; and (ii) the Px86sim intermediate

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:23

semantics is equivalent to the Px86sim declarative semantics. Proof of part (i) is by straightforward

induction on the structure of⇒ transitions. Proof of part (ii) is more involved. As discussed above, to

construct Px86sim-valid execution chains from the intermediate semantics, we appeal to the events

in the storage subsystem, as well as the order of annotated labels in execution paths and histories.

Dually, to construct the intermediate transitions given a Px86sim-valid chain C, we construct the

relevant execution path and histories from the executions in C and their sundry relations.

Theorem 1 (Px86sim Equivalence). The declarative and operational Px86sim models are equivalent.

Px86man Equivalence. As with Px86sim, the Px86man equivalence proof is done in two steps via

an intermediate event-annotated operational semantics. The Px86man intermediate semantics is an

extension of Px86sim where the annotated thread buffers may additionally contain promoted events.

For instance, upon promoted execution of a flush instruction, the intermediate semantics executes

a transition with the annotated label λ=PFL⟨fl⟩, where fl ∈ FL is a flush event. Analogously, when

a promoted event e is debuffered, the transition is labelled with λ=J⟨e⟩, justifying the promoted

execution of e (see §4). Recall that the order in which promoted entries are added (resp. removed)

amounts to their store (resp. program) order. As such, we can construct the tso/po of promoted events

by tracking their addition/removal orders. For instance, when M, PB,B
λ1
−→ · · ·

λ2
−→ −, then in the

corresponding execution: (1) e1 is tso-before e2 when e.g. λ1=PFL⟨e1⟩ and λ2 ∈ {PFL⟨e2⟩,B⟨e2⟩}; and
(2) e1 is po-before e2 when e.g. λ1=J⟨e1⟩, λ2 ∈ {J⟨e2⟩, SF⟨e2⟩} and tid(e1)=tid(e2). The construction
of the remaining relations (i.e. nvo and rf), as well as execution chains is as in Px86sim.

Theorem 2 (Px86man Equivalence). The declarative and operational Px86man models are equivalent.

6 PERSISTENT LIBRARIES IN Px86
As discussed thus far, correct persistent programming is difficult as it requires accounting for the

crashing behaviour of programs. This difficulty is further compounded when programming on top

of low-level models such as Px86. This is because developing at this low-level does not afford high-

level abstractions such as concurrency control, and requires an understanding of hardware-specific

guarantees. In an effort to make persistent programming accessible to the uninitiated programmer,

recent NVM literature explores simpler notions of persistency via high-level persistent libraries,
which may be implemented over existing hardware models (e.g. Px86), while shielding their clients

from low-level hardware details. In what follows we present two such libraries we implement over

Px86: a persistent transactional library, and a persistent variant of the Michael–Scott queue.

6.1 A Persistent Transactional Library in Px86
Transactions are a concurrency control mechanism used widely to ensure the consistency of shared

data, both in the distributed setting (in databases), and the shared-memory concurrency setting (as

transactional memory, e.g. [Raad et al. 2018, 2019a]). Transactions ensure that a given block of code

executes atomically: at all times during the execution of a transaction Tx either all or none of the

writes in Tx are visible to other threads. This coarse-grained atomicity abstraction simplifies correct

concurrent programming. As such, NVM researchers have sought to extend atomicity guarantees

of transactions to persistency: upon recovery, either all or none of the writes of a transactions may

have persisted [Avni et al. 2015; Intel 2015; Kolli et al. 2016a; Shu et al. 2018; Tavakkol et al. 2018].

To formalise the semantics of such persistent transactions, Raad et al. [2019b] proposed the PSER

(persistent serialisability) model by extending the well-known transactional model, serialisability, to

the NVM setting. PSER is a simple model with strong and intuitive guarantees. As such, we present

an implementation of PSER and its recovery mechanism in Px86. We show that our implementation

is sound, i.e. it provides PSER guarantees, thereby demonstrating correct Px86-to-PSER compilation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:24 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

We proceed with a brief account of PSER, and then describe our PSER implementation. We refer

the reader to the technical appendix for the details of our implementation and its correctness proof.

The PSER Model. A transaction typically describes a block of code that executes atomically,
ensuring that the transactional writes exhibit an all-or-nothing behaviour. For instance, consider

the transaction: Tx [x:= 1; y:= 1]. If initially x=y=0, at all points during the execution of Tx either

x=y=0 or x=y=1. Under serialisability (SER), all concurrent transactions appear to execute one

after another in a total sequential order. Consider the transactional program (PTx) below (left):

Tx1:

[
x:= 1;
b:= y; Tx2:

[
y:= 1;
a:= x; (PTx) Tx3:

[
x:= 1;
y:= 1; Tx4:

[
a:= x;
if a > 0 then z:= 1; (PTx2)

Assuming x=y=0 initially, under SER either Tx1 executes before Tx2 and thus a=1,b=0; or Tx2
executes before Tx1 and thus a=0,b=1. Serialisability is the gold standard of transactional models

as it provides strong guarantees with simple intuitive semantics. Raad et al. [2019b] develop PSER

by extending the atomicity and ordering guarantees of SER to persistency. That is, PSER provides

(1) persist atomicity, ensuring that the persists in a transaction exhibit an all-or-nothing behaviour.

For instance, if a crash occurs during the execution of Tx in the example above, upon recovery either

x=y=0 or x=y=1. Moreover, PSER guarantees (2) strict, buffered persistency in that all concurrent

transactions appear to persist one after another in the same total sequential order in which they

(appear to) have executed. As such, upon recovery a prefix of the transactions in the total order may

have persisted. For example, consider the (PTx2) program above and assume that Tx3 executes

before Tx4. If the execution of (PTx2) crashes, under PSER z=1 ⇒ x=y=1 upon recovery. That is,

if Tx4 has persisted (z=1), then the earlier transaction Tx3 must have also persisted (x=y=1).

Our PSER Implementation in Px86. A transactional implementation in the NVM context

comprises two orthogonal components: persistency control and concurrency control. The former

choice is tied to the hardware platform over which transactions are implemented. As we implement

PSER over Px86, we thus use the Px86 persistency primitives (flushopt and sfence).
For the latter we can use either (1) hardware concurrency control, e.g. hardware transactional

memory (HTM); or (2) software concurrency control, e.g. locks. The Intel-x86 architecture provides

HTM support via Transactional Synchronization Extensions (TSX), and can thus be used to implement

persistent transactions. However, a well-known HTM limitation in general is that transactions

may arbitrarily abort: HTM systems can only commit transactions whose memory footprint do

not exceed the cache capacity. Moreover, even if the cache capacity is not exceeded, HTM systems

typically provide no guarantee that transactions will commit. As such, applications using HTMmust

rely on a (software) fallback mechanism in cases of transactional aborts. One such mechanism is to

rerun the aborted transaction by acquiring a designated single global lock (SGL). In the Intel-x86

hardware the likelihood of aborts is further increased when using persistency primitives:

‘The flushopt [resp. flush [Intel 2019, p. 3-142]] instruction may always cause transactional

abort with Transactional Synchronization Extensions (TSX). The flushopt instruction is not

expected to be commonly used inside typical transactional regions.’ [Intel 2019, p. 3-144]

As we need to use flush/flushopt within transactional regions to ensure persist atomicity, our

implementation must account for the high probability of aborts by providing a software contingency

(e.g. SGL). As such, we forgo the Intel-x86 HTM (TSX) altogether, and instead resort to software

concurrency control via locks. In particular, as serialisability allows concurrent transactions to read

the same memory location simultaneously, for better performance we use multiple-readers-single-

writer locks implemented using Intel-x86 atomic primitives (FAA and CAS).
Intuitively, given a transaction T of thread τ , our PSER implementation of T adheres to the

following pattern: (1) it updates and persists (using flushopt) the metadata tracking the progress

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:25

of τ in a designated log; (2) executes an sfence; (3) executes and persists T; and (4) executes an

sfence. The first two steps ensure that the recovery metadata of τ does not lag behind its progress;

conversely, the last two steps ensure that the progress of τ does not lag behind its recovery metadata.

Therefore, in case of a crash, the persisted progress of τ may be at most one step behind its persisted

metadata. Upon a crash, the recovery mechanism can then inspect the τ metadata to infer its

progress and complete the execution of its last transaction, if necessary.

6.2 A Persistent Michael–ScottQueue Library in Px86
Implementing and verifying concurrent libraries is a challenging undertaking. Traditionally, library

implementers are tasked with ensuring the underlying library state (e.g. a queue) remains consistent
(e.g. the queue maintains its FIFO property), when accessed concurrently. Library verifiers are tasked
with identifying the appropriate proof techniques to establish the desired consistency guarantees.

One well-known such technique is that of linearisability proofs by Herlihy and Wing [1990], and

has been used extensively in the verification literature. Both tasks of implementing and verifying

concurrent libraries are exacerbated in the presence of NVM. Library implementers must ensure

the library state remains both consistent and persistent in case of crashes; library verifiers must

accordingly adapt their formal techniques to establish the desired persistence properties. While

persistent libraries have been the subject of recent research [Chatzistergiou et al. 2015; Coburn

et al. 2011; Friedman et al. 2018], few implementations have been formally verified. In order to

verify the correctness of persistent library implementations, Izraelevitz et al. [2016b] introduced

the notion of persistent linearisability as an extension of linearisability in the NVM context.

Our Persistent MSQ Implementation. We implement a persistent variant of the wait-free

Michael–Scott queue (MSQ) [Michael and Scott 1996] and its recovery mechanism over Px86. Our

MSQ implementation is instrumented with additional metadata to track the progress of queue

operations, and follows a similar pattern to that discussed above. That is, when thread τ executes

enq(v) (resp. deq(v)), our MSQ implementation (1) updates and persists themetadata of τ to reflect
its intention to enqueue (resp. dequeue) v ; (2) executes an sfence; (3) enqueues (resp. dequeues) v ;
and (4) executes an sfence. As such, as with our PSER implementation, upon recovering from a

crash the persisted progress of each threadmay be at most one step behind its persistedmetadata and

thus its execution can be resumed accordingly. We prove that our MSQ implementation (together

with its recovery program) is sound in that it is persistently linearisable. We refer the reader to the

accompanying technical appendix for the details of our implementation and its correctness proof.

7 AUTOMATED LITMUS TEST GENERATION
We describe how we use our declarative Px86 axioms in Def. 4 to generate litmus tests such as

those in Fig. 1 automatically. This enables us to explore program behaviours that are forbidden

by our declarative axioms, and indeed guided our process of formalising Px86 by identifying its

corner cases, and subsequently discussing them with research engineers at Intel. We believe that

this is beneficial to those seeking to understand and program over Px86.

Test generation from declarative memory consistency axioms is well understood in the literature

[Chong et al. 2018; Lustig et al. 2017]. The key observation is that one can use a solver such as

Alloy [Jackson 2012] to search for executions that violate the given axioms, and then to construct

from each execution a litmus test that passes only when that particular execution has occurred.

The main challenge is to ensure that every component that appears in the execution is reflected in

the litmus test. To this end, write/read events in the execution become store/load instructions in

the litmus test, the desired rf edges are checked in the postcondition of the litmus test, and the

desired mo edges are checked by polling the relevant memory locations.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:26 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

We extend these techniques to handle memory persistency axioms. Given an execution (E, I , P, po,
rf,mo, nvo), our main challenge is constructing a litmus test that checks for the desired nvo relation.
This is difficult because nvo cannot be observed directly. In the absence of hardware customised for

monitoring the memory system, the only opportunity to observe nvo is in the post-recovery state;

even then, all one can infer is that certain events have persisted (i.e. are in P) and others have not.

To address this, we rewrite our persistency axioms such that they constrain P rather than nvo.
That is, our executions need not mention nvo at all as it cannot be observed. Moreover, excluding

nvo has the added benefit of reducing the number of relations over which our constraints need to

quantify. More concretely, recall from Def. 4 that the (nvo-loc), (nvo-wu-fofl), and (nvo-fofl-d)

axioms constrain nvo, and that nvo and P are related by the dom(nvo; [P]) ⊆ P constraint in Def. 2.

As such, we can rewrite (nvo-loc), (nvo-wu-fofl), and (nvo-fofl-d) as follows:

• dom((r1 ∪ r2 ∪ r3); [P]) ⊆ P (p-tso)

with r1=
⋃

x∈Loc tso|Dx r2=
⋃

X ∈CL[WX ∪UX]; tso; [FOX ∪ FLX] r3=[FO∪ FL]; tso; [D]
The (p-tso) axiom states that if event e has persisted, and e ′ precedes e in r1, r2, or r3 (borrowed

from (nvo-loc), (nvo-wu-fofl) and (nvo-fofl-d), respectively) then e ′ must also have persisted.

However, we must still weaken (p-tso) to make it more suitable for test generation by removing

constraints that are not observable, as follows. First, we cannot observe a (p-tso) violation when

two persist instructions (e.g. two flushes) persist in the wrong order. Second, we cannot observe a

(p-tso) violation when two writes or RMWs on the same location persist in the wrong order: when

observing the post-recovery state we cannot infer whether the first write persisted and was then

overwritten by the second, or that the first write did not persist at all. Therefore, we weaken (p-tso)

so that it only constrains writes and updates (and not flushopt and flush) on different locations:
• dom((r1 ∪ r2 ∪ r3)

+ |W∪U \ sloc); [P]) ⊆ P (p-tso-wu)

where sloc ≜ {(e, e ′) | loc(e)=loc(e ′)} is an equivalence relation between events on the same

location. Note that weakening (p-tso) to (p-tso-wu) compromises completeness in that we may

not generate all litmus tests. However, this is to be expected as our test generation method aims to

be useful (informative) rather than complete (exhaustive). As we discuss in §8, in the future we

intend to investigate complete verification techniques such as model checking.

We can now encode our constraints in Alloy. Our aim is to capture executions that witness the

difference between the original x86-TSO model [Sewell et al. 2010] and our Px86 extensions. To

this end, we define an execution to be indicative if it satisfies all original x86-TSO axioms and

violates at least one Px86 axiom. Recall that both x86-TSO and Px86 models require the existence

of a ‘total-store-order’ relation tso (see Def. 4). Note that quantifying the tso relation correctly

requires additional care: while our first instinct may be to quantify tso existentially, we must rather

quantify it universally to ensure that the result of the litmus test is indicative regardless of how tso
is resolved at runtime. For Px86man we thus define indicative(G) such that for all tso:

if (G, tso) satisfies all of (tso-mo, tso-total, tso-rf1, tso-rf2, tso-po, tso-mf)
then (G, tso) violates some of (tso-sf, tso-fl-wufl, tso-fl-fo, tso-fo-u, tso-w-fo, p-tso-wu)

We then ask Alloy to find executions G such that:

• indicative(G) holds; and
• for all G ′

, if G ′
is obtained from G by either (1) removing an event (and all its incident edges),

or (2) weakening an RMW to a write, or (3) weakening a flush to a flushopt, or (4) weakening

an mfence to an sfence, then indicative(G ′) does not hold.

The second constraint above captures a notion ofminimality: if Alloy reportsG as indicative then

no smaller or weaker execution G ′
is indicative. We encode minimality in Alloy using the ‘relation

perturbations’ method of Lustig et al. [2017]. The universal quantification over tso necessitates the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:27

(W, x, 1)

(FO, x ′)

(U, y, 0, 1)

(a)

(W, x, 1)

(FL, x ′)

(W, y, 1)

(b)

(W, x, 1)

(FO, x ′)

SF

(W, y, 1)

(c)

(W, x, 1)

(FO, x ′)

(U, z, 0, 1)

(W, y, 1)

(d)

Fig. 11. Example indicative executions found by Alloy where ↓
denote po edges, highlighted events denote persisted events
(in P), and the forbidden post-recovery state is y=1 ∧ x=0.

#Events #Generated Execs. Time Taken

2 0 3 seconds

3 20 45 minutes

4 118 > 2 hours

5 1143 > 2 hours

6 1173 > 2 hours

Table 1. Execution generation statistics

higher-order solver Alloy* [Milicevic et al. 2015], which is only feasible for very small executions;

we explored executions with up to six events.

Fig. 11 presents several indicative executions discovered by Alloy. Observe that there are no

executions with two events. This is in line with our examples in Fig. 1; in particular, note that the

program in Fig. 1a has no indicative executions. With an upper bound of three events, Alloy reports

executions such as those in Fig. 11a and Fig. 11b. These executions correspond precisely to the

litmus tests of Fig. 1b and Fig. 1d. The only other three-event executions reported by Alloy are

stronger variants of the above, in which x and y are the same location or are in the same cache

line—we considered imposing further minimality constraints to exclude these executions, but doing

so hampers Alloy’s performance. With an upper bound of four events, Alloy reports executions

such as those in Fig. 11c, and Fig. 11d. Fig. 11c corresponds to the litmus test in Fig. 1e, and Fig. 11d

demonstrates that RMWs can replace store fences.

Results and Experimental Setup. Table 1 shows the results of generating indicative executions
with event bounds between two and six. We used the Glucose SAT solver as the backend of Alloy,

on a machine with a 3.1 GHz Intel Core processor and 8 GB of RAM. Execution generation timed out

at two hours; i.e. for event bounds of four or higher we could generate only a sample of executions.

The generated executions were useful for validating our Px86 axioms, and we believe they will

prove even more valuable as a conformance suite once a systematic way is developed to execute

persistent litmus tests on NVM technology (see §8).

8 RELATED AND FUTUREWORK
Although the existing literature on non-volatile memory has grown rapidly in the recent years,

formalising persistency models has largely remained unexplored.

Hardware Persistency Models. Existing literature includes several hardware persistency mod-

els. Pelley et al. [2014] describe epoch persistency under sequential consistency [Lamport 1979],

whilst Condit et al. [2009]; Joshi et al. [2015] describe epoch persistency under x86-TSO [Sewell et al.

2010]. However, neither work provides a formal description of the studied persistency semantics.

Liu et al. [2019] develop the PMTest testing framework for finding persistency bugs in software

running over hardware models. However, they do not formalise the persistency semantics of the un-

derlying hardware. Izraelevitz et al. [2016b] give a formal declarative semantics of epoch persistency

under release consistency[Gharachorloo et al. 1990]; Raad and Vafeiadis [2018] propose the PTSO

model by formalising epoch persistency under x86-TSO (see below); Raad et al. [2019b] develop

the PARMv8 model, formalising the persistency semantics of the ARMv8 architecture. However,

neither work formalises the persistency semantics of the ubiquitous Intel-x86 architecture.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

11:28 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

The PTSO Model. The PTSO model of Raad and Vafeiadis [2018] is a persistency proposal for
Intel-x86, and is rather different from the existing Intel-x86 model described by Intel [2019]. More

concretely, PTSO does not support the fine-grained primitives of Intel-x86 for selectively persisting

cache lines (wb, flushopt and flush), and instead proposes two coarse-grained instructions for

persisting all locations (pfence and psync) which do not exist in Intel-x86. Moreover, all Intel-x86

persistence primitives are asynchronous, while the psync primitive of PTSO is synchronous.

That is, executing an Intel-x86 wb/flushopt/flush primitive does not block execution until the

corresponding cache line is persisted, and merely guarantees that it will be persisted at a future

time. By contrast, executing a psync blocks until all pending writes on all locations have persisted.

The PARMv8 Model. The work of Raad et al. [2019b] on the PARMv8 model differs from ours in

two ways. First, PARMv8 is described only declaratively and not operationally. Second, persistency
support in ARMv8 is more limited than in Intel-x86: ARMv8 provides a single persistence primitive,

DCCVAP, which persists a given cache line to memory, whilst Intel-x86 provides three persistence

primitives, wb, flushopt and flush, varying both in performance and in strength (their ordering

constraints). As such, the Px86 persistency axioms are more sophisticated than those of PARMv8.

Software Persistency Models. The existing literature on software persistency is more limited.

Kolli et al. [2017] propose acquire-release persistency (ARP), an analogue to release-acquire con-

sistency in C/C++. Gogte et al. [2018] propose synchronisation-free regions (regions delimited by

synchronisation operations or system calls). Both approaches enjoy good performance and can

be efficiently used by seasoned persistent programmers. Nevertheless, their semantic models are

low-level, rendering them too complex for the inexperienced developers. The NVM community

has thus moved towards high-level transactional approaches [Avni et al. 2015; Intel 2015; Kolli et al.

2016a; Raad et al. 2019b; Shu et al. 2018; Tavakkol et al. 2018], such as our PSER library in Px86.

Future Work. We plan to build on top of this work in several ways. First, we plan to explore

language-level persistency by researching persistency extensions of high-level languages such as

C/C++. This would make persistent programming more accessible as it liberates developers from

understanding hardware-specific persistency guarantees. Second, we plan to specify and verify

existing persistent libraries, including more elaborate variants of our implementations in §6 (e.g.

PMDK transactions of Intel [2015]), as well as other persistent data structures (e.g. sets in [Cooper

2008; PCJ 2016; Zuriel et al. 2019]). Recall from §7 that a key challenge of testing persistency is that

nvo (the persist order) is not directly observable. To address this, as a third direction of future work

we intend to build custom hardware that allows us to monitor the traffic to persistent memory, and

thus to observe nvo directly. This can be achieved when the processor under test is a component of

a system-on-chip (SoC) FPGA [Jain et al. 2018]. We can then use our Alloy-generated litmus tests

as a conformance suite to test for nvo violations. Lastly, we plan to develop complete verification
techniques, such as stateless model checking (SMC), for NVM. We plan to do this by extending

our existing SMC techniques [Kokologiannakis et al. 2019a,b] for verifying concurrent libraries

under weak consistency [Raad et al. 2019]. This would allow us to verify a persistent program by

exhaustively generating its executions and inspecting them for persistency violations.

ACKNOWLEDGMENTS
We thank Nathan Chong, Stephen Dolan, William Wang, and the POPL 2020 reviewers for helpful

discussions and valuable feedback. The first author was supported in part by a European Research

Council (ERC) Consolidator Grant for the project “RustBelt”, under the European Union Horizon

2020 Framework Programme (grant agreement number 683289). The second author was supported

in part by the EPSRC grant EP/R006865/1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

Persistency Semantics of the Intel-x86 Architecture 11:29

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. 2015. The Best of Both Worlds: Trading Efficiency and

Optimality in Fence Insertion for TSO. In Proceedings of the 24th European Symposium on Programming on Programming
Languages and Systems - Volume 9032. Springer-Verlag New York, Inc., New York, NY, USA, 308–332. https://doi.org/10.

1007/978-3-662-46669-8_13

Hillel Avni, Eliezer Levy, and Avi Mendelson. 2015. Hardware Transactions in Nonvolatile Memory. In Proceedings of the
29th International Symposium on Distributed Computing - Volume 9363 (DISC 2015). Springer-Verlag, Berlin, Heidelberg,
617–630. https://doi.org/10.1007/978-3-662-48653-5_41

Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Programming Models for Non-volatile Memory. In Proceedings
of the 2016 ACM SIGPLAN International Symposium on Memory Management (ISMM 2016). ACM, New York, NY, USA,

55–67. https://doi.org/10.1145/2926697.2926704

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas: Leveraging Locks for Non-volatile Memory

Consistency. SIGPLAN Not. 49, 10 (Oct. 2014), 433–452. https://doi.org/10.1145/2714064.2660224
Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND: Recovery Write-ahead system for In-memory

Non-volatile Data-structures. Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508. https://doi.org/10.14778/2735479.2735483
Nathan Chong, Tyler Sorensen, and John Wickerson. 2018. The Semantics of Transactions and Weak Memory in x86, Power,

ARM, and C++. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2018). ACM, New York, NY, USA, 211–225. https://doi.org/10.1145/3192366.3192373

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011.

NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation, Non-volatile Memories. SIGPLAN Not. 46, 3
(March 2011), 105–118. https://doi.org/10.1145/1961296.1950380

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.

2009. Better I/O Through Byte-addressable, Persistent Memory. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA, 133–146. https://doi.org/10.1145/1629575.1629589

Harold Cooper. 2008. Persistent Collections. (2008). https://pcollections.org/

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A Persistent Lock-free Queue for Non-volatile

Memory. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
’18). ACM, New York, NY, USA, 28–40. https://doi.org/10.1145/3178487.3178490

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy. 1990. Memory

Consistency and Event Ordering in Scalable Shared-memory Multiprocessors. SIGARCH Comput. Archit. News 18, 2SI
(May 1990), 15–26. https://doi.org/10.1145/325096.325102

Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018.

Persistency for Synchronization-free Regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 46–61. https://doi.org/10.1145/3192366.

3192367

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

Intel. 2014. Intel architecture instruction set extensions programming reference. (2014). https://software.intel.com/sites/

default/files/managed/07/b7/319433-023.pdf

Intel. 2015. Persistent Memory Programming. (2015). http://pmem.io/

Intel. 2019. 3D XPoint. (2019). https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-

technology.html

Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). (May 2019). https://

software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf Order Number: 325462-069US.

ITRS. 2011. Process Integration, devices, and structures. (2011). http://www.maltiel-consulting.com/ITRS_2011-Process-

Integration-Devices-Structures.pdf International technology roadmap for semiconductors.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016a. Failure-Atomic Persistent Memory Updates via JUSTDO

Logging. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 427–442. https://doi.org/10.1145/2872362.2872410

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016b. Linearizability of Persistent Memory Objects Under a

Full-System-Crash Failure Model. In Distributed Computing, Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 313–327.

Daniel Jackson. 2012. Software Abstractions – Logic, Language, and Analysis (revised edition ed.). MIT Press.

Abhishek Kumar Jain, Scott Lloyd, and Maya Gokhale. 2018. Microscope on Memory: MPSoC-Enabled Computer Memory

System Assessments. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 173–180. https://doi.org/10.1109/FCCM.2018.00035

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1007/978-3-662-48653-5_41
https://doi.org/10.1145/2926697.2926704
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.14778/2735479.2735483
https://doi.org/10.1145/3192366.3192373
https://doi.org/10.1145/1961296.1950380
https://doi.org/10.1145/1629575.1629589
https://pcollections.org/
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/325096.325102
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/78969.78972
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
http://pmem.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://www.maltiel-consulting.com/ITRS_2011-Process-Integration-Devices-Structures.pdf
http://www.maltiel-consulting.com/ITRS_2011-Process-Integration-Devices-Structures.pdf
https://doi.org/10.1145/2872362.2872410
https://doi.org/10.1109/FCCM.2018.00035

11:30 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient Persist Barriers for Multicores. In Proceedings
of the 48th International Symposium on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 660–671. https:

//doi.org/10.1145/2830772.2830805

T. Kawahara, K. Ito, R. Takemura, and H. Ohno. 2012. Spin-transfer torque RAM technology: Review and prospect.

Microelectronics Reliability 52, 4 (2012), 613 – 627. https://doi.org/10.1016/j.microrel.2011.09.028 Advances in non-volatile

memory technology.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019a. Effective Lock Handling in Stateless Model Checking.

Proc. ACM Program. Lang. 3, OOPSLA, Article 173 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360599
Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019b. Model Checking for Weakly Consistent Libraries. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019).
ACM, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.3314609

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.

2017. Language-level Persistency. In Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA ’17). ACM, New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229

Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. 2016a. High-Performance Transactions for

Persistent Memories. SIGPLAN Not. 51, 4 (March 2016), 399–411. https://doi.org/10.1145/2954679.2872381

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and Thomas F.

Wenisch. 2016b. Delegated Persist Ordering. In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 58, 13 pages. http://dl.acm.org/citation.cfm?id=3195638.3195709

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting Phase Change Memory As a Scalable Dram

Alternative. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA ’09). ACM, New

York, NY, USA, 2–13. https://doi.org/10.1145/1555754.1555758

Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. 2019. PMTest: A Fast and Flexible Testing Framework

for Persistent Memory Programs. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19).

Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and Olivier Giroux. 2017. Automated Synthesis of Compre-

hensive Memory Model Litmus Test Suites. In Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’17). https://doi.org/10.1145/3037697.3037723

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-blocking and Blocking Concurrent Queue

Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing (PODC ’96).
ACM, New York, NY, USA, 267–275. https://doi.org/10.1145/248052.248106

Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. 2015. Alloy*: A General-Purpose Higher-Order

Relational Constraint Solver. In International Conference on Software Engineering (ICSE).
Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey, Dhruva R. Chakrabarti, and Michael James Scott. 2017.

Dalí: A Periodically Persistent Hash Map. In DISC.
Scott Owens. 2010. Reasoning About the Implementation of Concurrency Abstractions on x86-TSO. In Proceedings of the

24th European Conference on Object-oriented Programming (ECOOP’10). Springer-Verlag, Berlin, Heidelberg, 478–503.
http://dl.acm.org/citation.cfm?id=1883978.1884011

PCJ. 2016. Persistent Collections for Java. (2016). https://github.com/pmem/pcj

Steven Pelley, PeterM. Chen, and Thomas F.Wenisch. 2014. Memory Persistency. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 265–276. http://dl.acm.org/citation.

cfm?id=2665671.2665712

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness Under Weak Memory

Consistency: Specifying and Verifying Concurrent Libraries Under Declarative Consistency Models. Proc. ACM Program.
Lang. 3, POPL, Article 68 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290381

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isolation and Release/Acquire Consistency. In

Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 940–967.

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2019a. On the Semantics of Snapshot Isolation. In Verification, Model Checking,
and Abstract Interpretation, Constantin Enea and Ruzica Piskac (Eds.). Springer International Publishing, Cham, 1–23.

Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics forWeakMemory: Integrating Epoch Persistencywith the TSO

Memory Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276507
Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019b. Weak Persistency Semantics from the Ground Up: Formalising

the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. 3, OOPSLA, Article 135 (Oct.
2019), 27 pages. https://doi.org/10.1145/3360561

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1016/j.microrel.2011.09.028
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/2954679.2872381
http://dl.acm.org/citation.cfm?id=3195638.3195709
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/3037697.3037723
https://doi.org/10.1145/248052.248106
http://dl.acm.org/citation.cfm?id=1883978.1884011
https://github.com/pmem/pcj
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1145/3290381
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3360561

Persistency Semantics of the Intel-x86 Architecture 11:31

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. X86-TSO: A Rigorous

and Usable Programmer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https://doi.org/10.

1145/1785414.1785443

Hongping Shu, Hongyu Chen, Hao Liu, Youyou Lu, Qingda Hu, and Jiwu Shu. 2018. Empirical Study of Transactional

Management for Persistent Memory. 61–66. https://doi.org/10.1109/NVMSA.2018.00015

SPARC. 1992. The SPARC Architecture Manual: Version 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. 2008. The missing memristor found. Nature 453 (2008), 80 – 83.

Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic, Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan, Claude Barthels,

Yaohua Wang, Mohammad Sadrosadati, Saugata Ghose, Ankit Singla, Pratap Subrahmanyam, and Onur Mutlu. 2018.

Enabling Efficient RDMA-based Synchronous Mirroring of Persistent Memory Transactions. CoRR abs/1810.09360 (2018).

arXiv:1810.09360 http://arxiv.org/abs/1810.09360

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight Persistent Memory. SIGPLAN Not. 47,
4 (March 2011), 91–104. https://doi.org/10.1145/2248487.1950379

Xiaojian Wu and A. L. Narasimha Reddy. 2011. SCMFS: A File System for Storage Class Memory. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM, New York,

NY, USA, Article 39, 11 pages. https://doi.org/10.1145/2063384.2063436

Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013. Kiln: Closing the Performance Gap Between

Systems with and Without Persistence Support. In Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421–432. https://doi.org/10.1145/2540708.2540744

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. 2019. Efficient Lock-free Durable Sets. Proc.
ACM Program. Lang. 3, OOPSLA, Article 128 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360554

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 11. Publication date: January 2020.

https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1109/NVMSA.2018.00015
http://arxiv.org/abs/1810.09360
http://arxiv.org/abs/1810.09360
https://doi.org/10.1145/2248487.1950379
https://doi.org/10.1145/2063384.2063436
https://doi.org/10.1145/2540708.2540744
https://doi.org/10.1145/3360554

	Abstract
	1 Introduction
	2 Overview
	2.1 Persistency Semantics
	2.2 The Px86 Model: An Intuitive Account
	2.3 Px86man vs. Px86sim: Read and flushopt/flush Ordering Constraints
	2.4 The Operational Px86sim and Px86man Models

	3 The Operational Px86sim Model
	3.1 The Operational Px86sim Model

	4 The Operational Px86man Model
	5 The Declarative Px86man and Px86sim Models
	5.1 Equivalence of the Px86 Operational and Declarative Semantics

	6 Persistent Libraries in Px86
	6.1 A Persistent Transactional Library in Px86
	6.2 A Persistent Michael–Scott Queue Library in Px86

	7 Automated Litmus Test Generation
	8 Related and Future Work
	Acknowledgments
	References

