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ABSTRACT
The correct compilation of atomic-action concurrency is vital now

that multicore processors are ubiquitous. Despite much recent work

on automated compiler testing, little existing tooling can test how

real-world compilers handle compilation of atomic-action code. We

demonstrate C4, a tool for exploring the concurrency behaviour of

real-world C compilers such as GCC and LLVM. C4 automates a

workflow based on generating, fuzzing, and executing litmus tests.

So far, C4 has found two new control-flow bugs in GCC and IBM

XL, and reproduced two historic concurrency bugs in GCC 4.

CCS CONCEPTS
• Software and its engineering → Compilers; Software test-
ing and debugging; Concurrent programming structures; • Com-
puting methodologies→ Concurrent programming languages.
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1 INTRODUCTION
C is ubiquitous as a systems language, despite attempts to replace

it [14]. Along with the widespread use of multicore processors in

modern computing, this makes the presence of bugs in the way C

compilers support concurrency primitives, such as atomic actions (a

language feature that expose the ability to load, store, and otherwise

modify memory in an atomic way) a key concern. Worse, such bugs

may be hard to detect due to the inherent nondeterminism and

architectural sensitivity of concurrency. We demonstrate C4, a tool
for checking the behaviour of compilers against the C11 memory

model, which describes ordering constraints on memory actions.
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1.1 Problem Specification
The problem C4 addresses is the effective randomised testing of

the compilation of atomic-action concurrency for C programs that

use the C11 weak memory model [12].

As with any randomised compiler testing technique, C4 must

handle the oracle problem — how to determine what constitutes

a ‘correct’ behaviour of a system under test over a test input [3].

Unlike approaches that focus on sequential compilation, C4 cannot
rely on differential testing to circumvent the oracle problem, i.e.

comparing the output of a program after compilation via several

different compilers, and identifying bugs via result mismatches.

First, a concurrent program is inherently nondeterministic, so

that a concurrent test case may have multiple valid final states.

Result mismatches may be due to this nondeterminism rather than

due to compiler bugs. Second, this problem is exacerbated by weak

memory: modern processors, by default, provide weak guarantees

as to when atomic writes in one thread can be observed by atomic

reads in another thread. This is because writes can be held in caches

before propagating to main memory, reads can observe stale cache

entries, and processors and compilers can move instructions around

for efficiency. Weak memory increases potential nondeterminism

by expanding the number of possible orders for actions, and adds

differences in behaviour between processor architectures (e.g. x86

machines have a stronger memory model than Arm machines).

1.2 Prior Work
Compiler testing is an active research area (see [8] for a recent

survey), but no method currently exists to check automatically that

concurrency constructs (including atomics) are compiled correctly

by mainstream compilers. Random testing has considered concur-

rency to only a limited degree in the context of OpenCL and CUDA

compilers [13, 19]: the concurrent test-cases used in those works

are deterministic by construction; our work involves testing com-

pilers on more general concurrent code. Morriset et al. [21] have

used random testing to check that GCC preserves C’s concurrency

semantics, but they cannot handle atomics. Chakraborty et al. [7]

check whether LLVM transformations preserve C’s concurrency

semantics, but they do not check the entire compilation process.

The CompCert verified C compiler [18] has been formally proven

to handle some concurrency correctly [6, 24], but similar proofs

about mainstream compilers remain infeasible; our work treats the

compiler as an opaque box, and the concurrency semantics as a pa-

rameter, and hence will be able to keep up with evolving compilers

and language standards [17, 22]. The correctness of several compiler

mappings has been proven [4, 5] or automatically checked [23, 25],

but these mappings are only an abstraction of the full compiler.

https://doi.org/10.1145/3460319.3469079
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Figure 1: Our compiler-testing workflow.

1.3 Our Approach
Our approach to solving the problems is to automate the testing

workflow shown in Figure 1. This workflow consists of these steps:

1 We generate a small test-case containing a multi-threaded C

program and a postcondition over its final states. Following

Wickerson et al [25] and Lustig et al. [20], these test-cases

are generated by using a SAT solver to search for execu-

tions that are forbidden by the C memory model, and so the

postcondition describes precisely one unwanted outcome.

2 We amplify [10] the test-case: changing its postcondition

so that rather than detecting one forbidden outcome, it de-

tects all forbidden outcomes of that program. To do so, we

simulate the test withHerd [2] to produce the exhaustive set

of outcomes that are allowed by the memory model, setting

the postcondition to require all outcomes to inhabit that set.

3 We fuzz the test-case: applyingmutations (such as dead-code

introduction [19]) in the hope of coaxing the compiler-under-

test into revealing bugs. In the spirit of EMI testing [16], we

design these mutations so as not to introduce new states

over the variables in the original test-case, and so the post-

condition generated by step 2 remains valid.

4 We compile the test-case using the compiler-under-test. If

compilation fails, e.g. due to a crash or an internal compiler

error, we may have found a compiler bug.

5 We execute the compiled object code on a real machine.

This is done in a ‘stressful’ environment: leveraging the

Litmus tool of Alglave et al. [1], the compiled program is

run many times, in the presence of extra concurrent threads

that hammer on the memory system in various ways.

6 We check that the amplified postcondition holds for all out-

comes produced by step 5 ; if not, they are disallowed by

C11, and we may have found a compiler bug.

Our approach elegantly addresses the oracle problem: it uses ex-

haustive simulation to find all valid executions of a test-case small

enough to simulate efficiently, then applies semantics-refining trans-

formations to make the test-case sufficiently complicated to explore

a good proportion of the compiler. It explores interesting interac-

tions in weak-memory, atomic-action concurrency by appealing to

the underlying test-case generator. By using the C11 memorymodel

to generate and simulate test-cases, our testing campaigns can ex-

plore the relationship between behaviours of compiled test-cases

and the expectations we have given their source code.

1.4 Our Tool — C4
C4 is a tool for checking the behaviour of compilers as they en-

counter C11 atomic-action concurrency. Its key components are:

• C4f, a fuzzer that adds random nontrivial control flow and

redundant atomic actions to existing concurrent test-cases;

• C4t, a tester that runs unattended testing campaigns against

multiple compilers on multiple machines.

C4 implements the approach in Figure 1 by leveraging existing

technologies for exploring weak memory behaviour (based on the

‘litmus test’ format popularised by Alglave et al.), and implement-

ing a scheme of program mutation similar to that of tools such as

GraphicsFuzz [11]. The novel contribution of our tool is to com-

bine these approaches into a fully automated workflow specifically

focused on exercising atomic-action compilation.

Target audience. We intend C4 to be useful to implementers of

atomic-action concurrency in C compilers. Their work may include:

adding a new architecture to an existing compiler, improving the op-

timisations performed by a compiler, safeguarding from regressions

in existing functionality, or creating an entirely new C compiler.

Getting C4. C4 is free and open-source software, with source

available at https://c4-project.github.io. We have also prepared a

Docker image
1
that bundles C4, stock Debian GCC and LLVM

compilers, and a sample corpus and initial configuration.

2 C4f: LITMUS TEST FUZZER
This section discusses C4f, the part of C4 that randomly transforms

C litmus tests. It does so in a way that refines the observational se-

mantics of the input test-case, with respect to its original variables.

2.1 Installation
C4f is an OCaml program, and should work on most POSIX operat-

ing systems. It is not available on OPAM, but can be installed into

an OPAM switch using opam install . in a source working copy.

2.2 Usage
C4f contains two binaries: c4f, which performs fuzzing, and c4f-c,
which provides helper functionality relating to C litmus tests. Both

are self-describing: use c4f help and c4f-c help respectively.
To fuzz a C litmus test named x.litmus, use c4f run x.litmus.

This chooses a random seed, and outputs the fuzzed test-case to

standard output. Subsequent runs of c4f use different seeds, unless
one is provided using -seed.

C4f optionally accepts (argument -config) a file with overrides

for parameters such as action weights and thread caps. See c4f
list-actions -v and c4f list-params -v for information on

what can be tweaked, and c4f.conf.example in theC4f repository.

1
https://hub.docker.com/r/captainhayashi/c4

https://c4-project.github.io
https://hub.docker.com/r/captainhayashi/c4
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Getting initial test-cases. C4f depends on having initial test-cases

to mutate. Such test-cases (which can be generated once and re-

used for each testing campaign) should be in the C subset C4f
understands, contain interesting concurrency patterns that would

benefit from C4f’s ability to insert unusual control flow, and have

strong (ideally exhaustive) postconditions over allowed final states.

Our recommended approach to test-case generation is that men-

tioned in Figure 1: run Memalloy [25] over a representation of the

C11 memory model to generate minimal test-cases with known

possible disallowed states, then use Herd [2] to simulate those

test-cases exhaustively, finding all states allowed by said model.

We maintain a repository of test-cases generated in this way at

https://github.com/c4-project/c4-corpora.

2.3 Implementation
The structure, and some features, of C4f take inspiration from

tools such as GraphicsFuzz. The main unit of structure in C4f is
actions—modules that perform a single transformation on a test-

case, subject to a precondition over both the current test-case and

the set of facts C4f holds over the test-case. Actions can accept

randomised payloads as parameters.

Two runners select actions and apply them to the test-case. One

randomises the number, choice, and payload details of actions; an-

other replays a recorded action trace (useful for test-case reduction

and regression testing).

The design and implementation of actions generally follows that

of metamorphic relations in metamorphic testing tools. Lascu et

al. [15] discusses the processes by which we chose actions for C4f.

3 C4t: AUTOMATED TEST RUNNER
This section discusses C4t, the part of C4 that runs testing cam-

paigns. C4t implements the overall workflow shown in Figure 1.

3.1 Installation
C4t is a cross-platform Go module containing several binaries.

To install all of them into an existing Go setup, run go install
github.com/c4-project/c4t/cmd/....

3.2 Usage
The c4t binary is the main test runner. When properly configured,

running c4t in a terminal will start a test campaign, opening a dash-

board that monitors the progress (number of tests run, proportion

of outcomes, current actions, and so on) across each configured

machine. The campaign continues until a critical error occurs, the

campaign reaches a deadline (configurable on the command line),

or the user presses Ctrl-C in the terminal.

Configuration. C4t expects a configuration file listing the ma-

chines it can access, the execution backend to use (currently Litmus

only), and the compilers on each machine. The c4t-config tool

can generate basic configuration for the local machine, probing for

existing compilers and the machine specification.

Remote machines. Some of our testing campaigns exercised com-

pilers on an architecture (Arm) for which we only had a low-

specification machine (a Raspberry Pi). Running the full testing

cycle in Figure 1 on such machines harms throughput: only a small

part of it is machine-dependent, and fuzzing in particular is CPU in-

tensive. To remedy this, C4t supports multi-machine testing where

one machine delegates compilation and execution to other ma-

chines but performs all other tasks. To do this, one puts a machine
node binary, c4t-mach, in the PATH of the remote machine, and

configures c4t appropriately. In this scenario, C4t uses SFTP to

copy any C code to compile to the remote machine, runs the ma-

chine node over SSH to orchestrate compilation and execution, and

retrieves the results over standard output.

Other binaries. C4t also comes with several helper binaries be-

sides c4t and c4t-mach. Binaries exist that run one stage of the

tester (c4t-plan, c4t-perturb, c4t-fuzz, c4t-lift, c4t-invoke,
c4t-analyse), for use in scripting tester workflows that differ from

that implemented in c4t. C4t also contains utilities like c4t-stat,
which permits probing of C4’s statistics logging; c4t-backend,
which permits access to C4’s underlying backends (such as Lit-

mus); c4t-config, which assists with configuration; and so on.

3.3 Implementation
C4t consists of several separate stages that manipulate a JSON test

plan: initial planning from an input corpus; perturbance to introduce
random sampling and compiler configuration; fuzzing using C4t;
lifting of test-cases to compilable code using Litmus; and invocation
(compilation and execution). This setup facilitates combining and

rearranging parts of the testing workflow, as well as validating

such parts in isolation. The c4t binary runs loops of a standard

progression of stages, one per machine.

C4t makes heavy use of the observer pattern in its architec-

ture: most tester stages can accept any number of observers that

receive progress updates on stage progress. This lets us support

rich progress reports such as the dashboard, as well as lightweight

progress bars, verbose logging, statistics logging, and forwarding

of progress information from the machine node to the main tester.

While C4t does not yet expose any of the tester logic as a public

library, there are few barriers to us doing so in future.

4 VALIDATION
This section discusses the validation we have done so far for C4.
This validation includes bug-finding campaigns, code coverage com-

parisons with existing tools, and initial work on mutation testing.

Bug finding. We have run C4t, using C4f to produce fuzzed test-

cases, on and off for the past two years. These bug-finding cam-

paigns have used multi-machine C4t to target x86-64, 32-bit Arm8,

and POWER9. We have discovered four bugs: two historic concur-

rency bugs in GCC 4.9; and two previously-unreported control-flow

bugs: one in a prerelease version of GCC 11 (now fixed),
2
and one

in IBM XL (fix pending as of Oct 2020).
3
By constantly folding any

new features in C4f and C4t into the bug-finding campaign, we

have quickly detected any regressions and semantic corner-cases.

Differential coverage. We have measured the differential code

coverage thatC4 achieves on a version of the LLVM compiler, versus

bothCsmith [26] (a leading C program generator that focuses on se-

quential C) and the LLVM test suite. Our results are thatC4 achieves
2
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97501

3
https://bit.ly/XLcompilerbug

https://github.com/c4-project/c4-corpora
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97501
https://bit.ly/XLcompilerbug
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interesting deltas on coverage against both (1054 unique lines not

covered by either Csmith or the test suite), and that the use of C4f
increases this coverage. While the deltas are small in terms of the

whole compiler, this is because concurrency support is inherently a

small and highly focused part of the compiler. Indeed, the coverage

hits code that implements (such as AtomicExpandPass, where we
covered 151 lines not covered by Csmith and 63 lines not covered

by the test suite) and optimises (such as InstCombineAtomicRMW,
with 57 and 27 lines respectively) atomic actions.

Mutation testing. Recently, we have started using mutation test-
ing [9] to validate C4. This lets us validate the ability for C4 to

discover faults in the concurrency support of recent compilers with-

out relying on the presence of such faults in practice, and to do so

in a controlled manner. We have a fork of the LLVM 11 compiler

(https://github.com/c4-project/mutated-llvm) that contains man-

ually inserted branches, selectable at run-time, that induce faults

in the compiler’s concurrency support. Such mutations include

swapping leading and trailing fences, omitting fence emission, and

inverting bits in memory order comparison truth tables. Our initial

experiments (across the same architectures as used in bug finding)

show that C4 is reasonably able to detect such faults, but this is

quite sensitive to the architecture on which tests are being run.

5 CONCLUSIONS AND FUTUREWORK
We have demonstrated C4, a tool exploring how real-world C com-

pilers compile C11 atomic-action concurrency. We discussed the

usage, audience, and implementation of C4 and its components

(C4f and C4t). We also outlined our validation work so far.

While C4 can already detect some forms of concurrency bug,

more work on both C4 and its validation will provide a clearer

effectiveness argument. We now outline some future work avenues.

For C4f, we intend to add more actions: for instance, producing

more inter-thread interactions that use atomic actions but do not

affect observational semantics. Wemay also add support for C types

other than boolean and integer primitives; explore other languages

such as C++11 and OpenCL; and add test-case reduction support.

For C4t, we intend to improve test throughput (by enhancing

parallelism and scheduling, reducing network round-tripping, and

so on). We would also like to improve statistics collection (perhaps

by adding a SQL database to allow complex queries on past results).

Whilemutation testing gave promisingmetrics, we need a broader

campaign for strong validation. Our manual, curated approach

means that adding and justifying more mutants requires work.

We intend to spend more time validating C4 using existing bug

reports. One approach would be to set up a experiment containing

multiple compiler versions known to have particular concurrency

bugs, and show that C4 can detect them in reasonable time. If not,

we can use the bugs as stimuli for C4f development.
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