
Combining Dynamic & Static Scheduling in High-level Synthesis
Jianyi Cheng

Imperial College London
London, UK

jianyi.cheng17@imperial.ac.uk

Lana Josipović
EPFL

Lausanne, Switzerland
lana.josipovic@epfl.ch

George A. Constantinides
Imperial College London

London, UK
g.constantinides@ic.ac.uk

Paolo Ienne
EPFL

Lausanne, Switzerland
paolo.ienne@epfl.ch

John Wickerson
Imperial College London

London, UK
j.wickerson@imperial.ac.uk

ABSTRACT
A central task in high-level synthesis is scheduling: the allocation
of operations to clock cycles. The classic approach to scheduling
is static, in which each operation is mapped to a clock cycle at
compile-time, but recent years have seen the emergence of dynamic
scheduling, in which an operation’s clock cycle is only determined
at run-time. Both approaches have their merits: static scheduling
can lead to simpler circuitry and more resource sharing, while dy-
namic scheduling can lead to faster hardwarewhen the computation
has non-trivial control flow.

In this work, we seek a scheduling approach that combines the
best of both worlds. Our idea is to identify the parts of the input
program where dynamic scheduling does not bring any perfor-
mance advantage and to use static scheduling on those parts. These
statically-scheduled parts are then treated as black boxes when
creating a dataflow circuit for the remainder of the program which
can benefit from the flexibility of dynamic scheduling.

An empirical evaluation on a range of applications suggests that
by using this approach, we can obtain 74% of the area savings that
would be made by switching from dynamic to static scheduling, and
135% of the performance benefits that would be made by switching
from static to dynamic scheduling.

CCS CONCEPTS
•Hardware→High-level and register-transfer level synthe-
sis; Logic synthesis; Modeling and parameter extraction.

KEYWORDS
High-Level Synthesis, Static Analysis, Dynamic Scheduling

ACM Reference Format:
Jianyi Cheng, Lana Josipović, GeorgeA. Constantinides, Paolo Ienne, and John
Wickerson. 2020. Combining Dynamic & Static Scheduling in High-level
Synthesis. In 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA’20), February 23–25, 2020, Seaside, CA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3373087.3375297

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
FPGA ’20, February 23–25, 2020, Seaside, CA, USA.
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7099-8/20/02.
https://doi.org/10.1145/3373087.3375297

static
scheduling

dynamic
scheduling

aim of
our work

Latency

A
re
a

Figure 1: A sketch comparing the design quality of different
scheduling approaches.

1 INTRODUCTION
High-level synthesis (HLS) is the process of automatically translat-
ing a program in a high-level language, such as C, into a hardware
description. It promises to bring the benefits of custom hardware
to software engineers. Such design flows significantly reduce the
design effort compared to manual register transfer level (RTL) im-
plementations. Various HLS tools have been developed in both
academia [3, 6] and industry [20, 28].

The Challenge of Scheduling. One of the most important
tasks for an HLS tool is scheduling: allocating operations to clock cy-
cles. Scheduling decisions can be made either during the synthesis
process (static scheduling) or at run-time (dynamic scheduling).

The advantage of static scheduling (SS) is that since the hardware
is not yet online, the scheduler has an abundance of time available to
make good decisions. It can seek operations that can be performed
simultaneously, thereby reducing the latency of the computation.
It can also adjust the start times of operations so that resources
can be shared between them, thereby reducing the area of the final
hardware. However, a static scheduler must make conservative
decisions about which control-flow paths will be taken, or how
long variable-latency operations will take, because this information
is not available until run-time.

Dynamic scheduling (DS), on the other hand, can take advantage
of this run-time information. Dynamically scheduled hardware
consists of various components that communicate with each other
using handshaking signals. This means that operations are carried
out as soon as the inputs are valid. In the presence of variable-
latency operations, a dynamically scheduled circuit can achieve

https://doi.org/10.1145/3373087.3375297
https://doi.org/10.1145/3373087.3375297


better performance than a statically scheduled one in terms of
clock cycles. However, these handshaking signals may also cause
a longer critical path, resulting in a lower operating frequency. In
addition, because scheduling decisions are not made until run-time,
it is difficult to enable resource sharing. Because of this, and also
because of the overhead of the handshaking circuitry, a dynamically
scheduled circuit usually consumes more area than a statically
scheduled one.

Our Solution: Dynamic & Static Scheduling. In this paper,
we propose dynamic and static scheduling (DSS): a marriage of SS
and DS that aims for minimal area and maximal performance, as
sketched in Fig. 1. The basic idea is to identify the parts of an input
program that may benefit from SS—typically parts that have simple
control flow and fixed latency—and to use SS on those parts. In
the current incarnation of this work, it is the user’s responsibility
to annotate these parts of the program using pragmas, but in the
future we envisage these parts being automatically detected. The
statically-scheduled parts are then treated as black boxes when
applying DS on the remainder of the program.

Several challenges must be overcome to make this marriage
work. These include: (1) How should one pick suitable loop initi-
ation intervals (IIs) when scheduling the SS parts of the circuit?
(2) How should statically scheduled parts be correctly and efficiently
integrated into their dynamically scheduled surroundings?

In this paper, we show how these challenges can be overcome,
and that, once we have done so, it is possible to obtain 74% of the
area savings that would be made by switching from DS to SS and
135% of the performance benefits that would be made by switching
from SS to DS. Over several benchmarks, we show that by using
DS we can obtain hardware that is 23% faster than SS but uses 182%
more area, and by using DSS we can obtain hardware that is 75%
faster than SS and only uses 40% more area.

Paper outline. In Section 2, we give a working example to moti-
vate the combined scheduling approach in which some scheduling
decisions are taken dynamically at run-time and the others are
determined offline using traditional HLS techniques. Section 3 pro-
vides a primer on existing SS and DS techniques. In Section 4, we
describe how our proposal overcomes challenges related to II se-
lection and component integration. Section 5 details a prototype
implementation of DSS that uses Xilinx Vivado HLS [28] for SS and
Dynamatic [22] for DS. In Section 6, we evaluate the effectiveness
of DSS on a set of benchmarks and compare the results with the
corresponding SS-only circuits and DS-only circuits.

Auxiliary material. All of the source code of benchmarks and
the raw data from our experiments are publicly available [9, 11].
Our prototype tool, which relies on the Vivado HLS and Dynamatic
HLS tools, is also open-sourced [10].

2 OVERVIEW
We now demonstrate our approach via a worked example.

Fig. 2(a) shows a simple loop that operates on an array A of
doubles. It calculates the value of g(d) for each non-negative d
in the array, and returns the sum of these values. The g function
represents the kind of high order polynomial that arises when
approximating complex non-linear functions such as tanh or log.

If the values in A are provided at run-time as shown at the top of
Fig. 2(a), then function g is only called on odd-numbered iterations.

To synthesise this program into hardware, we consider three
scheduling techniques: SS, DS, and our approach, DSS.

SS can lead to small area but low performance. The hard-
ware resulting from SS is shown in Fig. 2(b). It consists of three
main parts. On the left are the registers and memory blocks that
store the data. On the right are several operators that perform the
computation described in the code. At the bottom is an FSM that
monitors and controls these data operations in accordance with the
schedule determined by the static scheduler at compile time. The
SS circuit achieves good area efficiency through the use of resource
sharing; that is, using multiplexers to share a single operator among
different sets of inputs.

The timing diagram of the SS circuit is shown in Fig. 2(d). It is
a pipelined schedule with II = 5. The II cannot be reduced further
because of the loop-carried dependency on s in line 11. Since the if
decision is only made at run-time, the scheduler cannot determine
whether function g and the addition are performed in a particular
iteration. It therefore conservatively reserves their time slots in
each iteration, keeping II constant at 5. This results in empty slots
in the second and fourth iteration (shown with dashed outlines in
the figure), which cause the operations in the next iteration to be
unnecessarily delayed.

DS can lead to large area but high performance. The DS
hardware is a dataflow circuit with a distributed control system
containing several small components representing instruction-level
operations [22], as shown on the left of Fig. 2(c). Each component is
connected to its predecessors and successors using a handshaking
interface. This handshaking, together with the inability to perform
resource sharing on operators, causes the area of the DS hardware
to be larger than the corresponding SS hardware.

The timing diagram of the DS circuit is shown in Fig. 2(e). It has
the property that each operator executes as soon as its inputs are
valid, so the throughput can be higher than that for SS hardware. For
instance, it can be seen that the read of A[i] in the second iteration
starts immediately after the read in the first iteration completes.
Most stalls in a DS circuit are due to data dependencies. For instance,
the execution of function g and the addition in the second iteration
are skipped as d = -0.1 < 0, leading to s = s_old. The operation
is not carried out immediately after the condition check but stalled
until s += t in the first iteration completes, since it requires the
output from the previous operation as input. Then it is immediately
followed by s += t in the third iteration.

DSS can lead to small area and high performance. The DSS
hardware combines the previous two scheduling techniques. It is
based on the observation that although the overall circuit’s per-
formance benefits from DS, the function g does not because it has
a fixed latency. Therefore, we replace the dataflow implementa-
tion of g with a functionally equivalent SS implementation. The
SS implementation uses resource sharing to reduce six adders and
five multipliers down to just one of each. The rest of the circuit
outside g is the same as the DS circuit. Because g represents a sub-
stantial fraction of the overall hardware, this transformation leads



1 double A[N]; // initialised at
run -time to {1.0, -1.0,
1.0, -1.0, ...}

2 double g(double d) {
3 return (((((d+0.2)*d+0.3)*d

+0.6)*d+0.2)*d+0.7)*d+0.2;
4 }
5 double filterSum () {
6 double s = 0.0;
7 for (int i = 0; i < N; i++) {
8 double d = A[i];
9 if (d >= 0) {
10 double t = g(d);
11 s += t;
12 }
13 }
14 return s;
15 }

+
+

≥
FSM for the 

whole hardware

×

A[]

s
t

0.2
0.3
0.6
0.7
d

…

Read A[i]

call_g

Buff

start
i = 0

d

≥

0

+

+

1

<

N

sink

sink

A[]

t

Buff

start
s = 0

old s

return s

0.2

×+

0.3

×+

0.6

×+

0.2

×+

d

t

0.7

×+

0.2

+

× FSM 
for g

+d
t

t 0.2 0.3 0.6 0.7 d …

function g (DS)

function g (SS)

Our work

(a) Motivation code (b) SS circuit (c) DS circuit and its transformation into a DSS circuit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? t = g(d) s += t
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? t = g(d) s += t

(d) The schedule of the SS circuit (the loop II = 5).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? s=s
rd A[i] d≥0? t = g(d) s += t

rd A[i] d≥0? s=s 0 10 20 30 40 50
0

2,000

4,000

6,000

SS

DS

DSS

Wall Clock Time (ms)

LU
T
Co

un
t

(e) The DS circuit and the DSS circuit have the same schedule
(IIд in DSS = 1).

(f) LUT usage of different scheduling approaches
over the performance.

Figure 2: Motivating example of dynamic and static schedules. DS has better performance but larger area when comparing
with SS. Our work propose a DSS solution having comparable performance and area to DS and SS respectively. The latency of
function g is 59 cycles but is represented as 5 cycles in the figure to save space.

to the area of the DSS hardware being close to that of the pure SS
hardware, as shown in Fig. 2(f).

The timing diagram of the DSS circuit is the same as that of the
DS circuit, as shown in Fig. 2(e).1 In the DS circuit, g’s schedule is
determined at run-time, while in the DSS circuit it is determined
by the static scheduler; in both cases, the timing diagram is the
same. The data-dependent if condition in the loop remains part of
the DS circuit to maximise throughput. Hence the DSS hardware
and the DS hardware have the same throughput in terms of clock
cycles. However, since the SS implementation of g optimises the
critical path of the system, the DSS hardware can actually run at a
higher clock frequency. Therefore, in this example, DSS hardware
achieves not merely the ‘best of both worlds’, but actually achieves
better performance than DS hardware (in terms of wall clock time),
and comparable area to SS hardware, as shown in Fig. 2(f).

1Actually, the latency of function g varies slightly between DS and SS for technical
reasons, as explained in Section 6.

In the rest of the paper, we give the details of how to configure
the constraints of the static parts for maximising resource sharing
and preserving performance, and the methodology for integrating
the static parts into the dataflow circuit.

3 BACKGROUND
In this section, we review the basics of HLS scheduling. We dis-
cuss related work in static and dynamic scheduling techniques and
contrast them with the approach we present in this work.

3.1 Scheduling in HLS
In most HLS tools like LegUp [3] and Vivado HLS [28], the tool flow
is divided into two steps: frontend and backend. In the frontend, the
input source code is compiled into an intermediate representation
(IR) for program analysis and transformation. In the backend, the
IR is transformed into an RTL description of a circuit, during which
static scheduling is carried out, as well as allocation and binding.



The scheduling process in most HLS tools starts by converting
the IR into a control/data flow graph (CDFG) [13]. A CDFG is a two-
level directed graph consisting of a number of vertices connected
by edges. At the top level, the graph is represented as a control-flow
graph (CFG), where each vertex corresponds to a basic block (BB)
in the transformed IR, while edges represent the control flow. At
a lower level, a vertex corresponding to a BB is itself a data-flow
graph (DFG) that contains a number of sub-vertices and sub-edges.
Each sub-vertex represents an operation in the BB and each sub-
edge indicates a data dependency.

3.2 Static Scheduling
In HLS tools, scheduling is the task of translating the CDFG de-
scribed in the previous section, with no notion of a clock, into a
timed schedule [19]. The static scheduler determines the start and
end clock cycles of each operation in the CDFG, under which the
control flow, data dependencies, and constraints on latency and
hardware resources, are all satisfied. One of the most common static
scheduling techniques, used by Vivado HLS [28] and LegUp [3],
expresses a CDFG schedule as a solution to a system of difference
constraints (SDC) [12]. Specifically, it formulates scheduling as a
linear programming (LP) problem, where the data dependencies and
resource constraints are represented as inequalities. By changing
these constraints, various scheduling objectives can be customised
for the user’s timing requirements.

Besides achieving high performance, static scheduling also takes
resource allocation into account, such as modulo scheduling for
loop pipelining [29]. It aims to satisfy the given time constraints
with minimum possible hardware resources or achieve the best
possible performance under the given hardware resource require-
ments. If the hardware resource constraints are not specified, the
binder automatically shares some hardware resources among the
operations that are not executed in parallel. This maintains the
performance but results in smaller area. In addition, typical HLS
tools like Vivado HLS allow users to specify resource constraints
via pragmas. In this case, the binder statically fits all operations
into a given number of operators or functions based on the given
schedule. This may slow down execution if hardware resource is
limited.

In summary, static scheduling results in efficient hardware utilisa-
tion by relying on the knowledge of the start times of the operations
to share resources while preserving high performance. However,
when the source code has variable-latency operations or statically
indeterminable data and control dependencies, static scheduling
conservatively schedules the start times of certain operations to ac-
count for the worst-case timing scenario, hence limiting the overall
throughput and achievable performance.

3.3 Dynamic Scheduling
Dynamic scheduling is a process that schedules operations at run-
time. It overcomes the conservatism of traditional static scheduling
to achieve higher throughput in irregular and control-dominated
applications, as we saw in Fig. 2. Similarly, dynamic scheduling
can handle applications with memory accesses which cannot be
determined at compile time. For instance, given a statement like
x[h1[i]] = g(x[h2[i]]), the next read of x can begin as soon as

it has been determined that there is no read-after-write dependency
with any pending store from any of the previous loop iterations, i.e.
h2 is not equal to any prior/pending store address h1. A dynamically
scheduled circuit will allow the next operation to begin as soon as
this inequality has been determined; otherwise, it will appropriately
stall the conflicting memory access.

Initial work on dynamically scheduled hardware synthesis from
a high-level language proposed a framework for automatically map-
ping a program in occam into a synchronous hardware netlist [18].
This work was later extended to a commercial language named
Handel-C [7]. However, it still required the designer to select the
constraints to achieve hardware optimisation such as pipelining
and parallelism. Venkataramani et al. [26] proposed a framework
that automatically transforms a C program into an asynchronous
circuit. They implement each node in a DFG of Pegasus [2] into a
pipeline stage. Each node represents a hardware component in the
netlist, containing its own controlling trigger. This dataflow design
methodology was then brought into synchronous design. Recent
work [22] proposes a toolflow named Dynamatic that generates
synchronous dataflow circuits from C code. It can take arbitrary
input code, automatically exploits the parallelism of the hardware
and uses handshaking signals for dynamic scheduling to achieve
high throughput. In this work, we use Dynamatic to generate dy-
namically scheduled HLS hardware.

As formalised by Carloni et al. [5], dynamic scheduling is typi-
cally implemented by dataflow circuits which consist of components
communicating using handshake signals. Apart from all common
hardware operators, a dynamically scheduled dataflow circuit con-
tains a number of dataflow components shown in Tab. 1 to control
the flow of data.

One difficulty for dynamic scheduling is scheduling the memory
accesses. In static scheduling, all thememory accesses are scheduled
at compile-time, such that there is no memory conflict during the
execution. In dynamic scheduling, the untimed memory accesses
may affect correctness and performance if the memory arbitration
or the memory conflicting accesses are not correctly solved. Hence,
dynamically scheduled circuits use load-store queues (LSQs) [21] to
resolve data dependencies and appropriately schedule the arbitrary
memory accesses at run-time. In our work, the memory architecture
may contain partially-scheduled memory accesses in the static part
and unscheduled memory accesses in the dynamic part. We will
detail our approach to handle this issue in Section 4.3.

3.4 Combining Dynamic & Static Approaches
Several works have explored the integration of certain aspects
of dynamic scheduling into static HLS. Alle et al. [1] and Liu et
al. [23] propose source-to-source transformations to enablemultiple
schedules selected at run-time after all the required values are
known. Tan et al. [25] propose an approach named ElasticFlow to
optimise pipelining of irregular loop nests that contain dynamically-
bound inner loops. Dai et al. [14, 15] propose pipeline flushing for
high throughput of the pipeline and dynamic hazard detection
circuitry for speculation in specific applications. These works are
still based on static scheduling and work only under stringent
constraints, which limits the performance improvements for general
cases, such as complex memory accesses. In contrast, our approach



in1 in2

out

Merge: receives an input data from one of its
multiple predecessors and forwards it to its
single successor.

in

out1 out2

Fork: receives a piece of data at its only input
and replicates it to send a copy to each of its
multiple successors.

in1 in2

out

Join: triggers its output only once both of its
inputs are available.

in1

out1 out2

in2

Branch: is a control-flow component that
passes a piece of data to one of its two
successors, depending on the input condition.

Table 1: Dataflow components in DS circuits.

adds existing hardware optimisation techniques into dynamically
scheduled circuits and supports arbitrary code input.

Carloni [4] describes how to encapsulate static modules into a
latency-insensitive system, and we use a similar integration philos-
ophy. We utilise this approach within our tool, which automates
the generation of circuits from high-level code, resulting in the mix
of two HLS paradigms in a single synthesis tool.

4 METHODOLOGY
In this section, we show how to partition and synthesise some
functions into SS hardware and the rest of the program into a
DS circuit. We first discuss which programs are amenable to our
approach. We then explain the selection of II for the SS hardware.
Finally, we detail the integration of the SS hardware into the DS
circuit using a dedicated wrapper, which ensures that the data is
correctly propagated between these two architectures.

4.1 Applicability of Our Approach
Our approach is generally applicable, in the sense that it can be
used wherever SS or DS can be used. The following conditions
indicate scenarios where our approach is likely to yield the most
substantial benefits over DS and SS:

(1) There is an opportunity to improve throughput using infor-
mation that only appears at run-time,

(2) at least one region of the code has a constant (or low vari-
ability) latency, and

(3) this code region has an opportunity for resource sharing.
The first condition indicates that the design may be amenable to
DS, as explained in Section 3.3. The second and third reflect the
fact that SS determines a fixed schedule and can take advantage of
resource sharing. We emphasise that not all of the conditions above
need to hold for an input program to benefit from our approach; it
is simply that each condition listed above is desirable.

4.2 II Selection for SS Hardware
When using SS, there are often several options for the II of a function
or a loop. In this subsection, we discuss some principles that guide
how to select an appropriate II for the SS portion of a DSS circuit.

0 20 40 60 80 100
0

2,000

4,000

6,000

8,000

5 6 7 8 9 10

1

2

35

10

1

5

8

1

5

6

1

5

6

L=0 L=0.25 L=0.5 L=1

Wall Clock Time (ms)

LU
T
Co

un
t

SS
DS
DSS

Figure 3: LUT usage of different scheduling approaches over
the performance for the example from Fig. 2. Each data
point on DSS is labelled with the II of function g. Each data
point on SS is labelled with the loop II. L indicates the frac-
tions of long latency operations.

Function f

IIf

Successor 1
IIs1

Predecessor 1
IIp1

rate rp1 rate rs1

Predecessor N
IIpN

rate rpN

… …

Successor M
IIsM

rate rsM

Figure 4: Rate balancing of components in a DS circuit by
selecting proper II for function f.

Let us consider the case when the entire circuit is generated
using SS first. As an example, in Fig. 2 the minimum II of the loop
in function filterSum is 5, because of a loop-carried dependency
on s that takes 5 cycles. However, a user can also choose a larger
II. This can lead to smaller area (because of more opportunities
for resource sharing) but higher latency, as shown in Fig. 3 (blue
circles). In this case, if the II is increased from 5 to 7, the LUT count
is reduced by 28%, at the cost of increasing the latency by 39%.

Now let us consider the DSS case. For the example in Fig. 2, there
are various choices of II for function g. The most aggressive solution
is to set II = 1 for the highest possible throughput. However, due to
the aforementioned loop-carried dependency on s, there is actually
no performance benefit if the II is set to anything below 5—the
loop-carried dependency dictates that the time between two calls
of g is at least 5 cycles (when g is called from two consecutive loop
iterations). The time between calls of g will only increase if the
iterations that call it are further apart. Hence, if the user’s primary
objective is to maximise performance, an II of 5 cycles is sensible.

However, if the user knows more about the expected data dis-
tribution of the input, they can choose an even better II for g. Let
us explore these effects on the motivating example. We define the
fraction of the loop iterations where d >= 0 as to be L, since these
have long latency through function g and the summation to s, and



call_g

+

sink

start
s = 0

return s

d

II0 ≥ 3

II1 ≥ 1

II2 ≥ 5II5 ≥ 3

II7 ≥ 3

II6 ≥ 5

II8 ≥ 3

II3 ≥ 3
r0=1/3

r1=1/6

r2=1/6

r6=1/6
r5=1/6

r8=1/6
r7=1/6

r9=1/3

r10=1/3

r3=1/3

Buff

r4=1/3

II4 ≥ 3

Figure 5: Rate analysis for the motivating example.

the fraction of the iterations where d < 0 as 1 - L. The data distri-
bution affects L over all the loop iterations. Fig. 3 shows the LUT
usage and wall clock time of the hardware by three scheduling
approaches over several input data distributions. We assume the
circuit is ideally buffered so the data is fed in a uniform distribution.
In the figure, it can be seen that the best II for function g varies
in terms of the input data distribution. For example, in Section 2,
where only the odd loop iterations are long and the rest are short,
L is 0.5 and the optimal II for function g is 6.

More generally, a suitable II can be selected for a function f,
where 1/II of a component can be considered as its maximum rate
of processing data (also known as maximum throughput). The
maximum II of function f that does not affect the overall program
execution time is defined as its DSS optimal II (IIopt). It depends
on two constraints, the maximum producing rate allowed from its
predecessors, 1/IIp , and the maximum consuming rate allowed by
its successors, 1/IIs .

Fig. 4 shows function f as a component in a DS circuit like
Fig. 2(e). It has N predecessors to produce data to the function and
M successors to take data from the function. Let the actual data
rate between function g and its ith predecessor be rpi , the actual
data rate between function g and its ith successor be rsi , and the II
of function f be II f . Then we can see from the figure that:

∀i ∈ [1,N ], rpi ≤ min(1/IIpi , 1/II f ) (1)
∀j ∈ [1,M], rs j ≤ min(1/IIs j , 1/II f ) (2)

∀i ∈ [1,N ], roverall ≤ rpi (3)
∀j ∈ [1,M], roverall ≤ rs j (4)

Assuming no other component in the system limits the overall rate
of function f, shown as roverall, this rate can be expressed as the
minimum value of all rp and rs . Tomaximise hardware performance,
we want roverall to be high. The external II coefficient IIext refers to
the maximum II among all the IIs in the graph except function f:

IIext = max(IIp1, . . . , IIpN , IIs1, . . . , IIsM ) (5)

When 1/II f > 1/IIext, function f is overperforming and it con-
sumes unnecessary hardware resources. In contrast, when 1/II f <

IIext, although function f has small area, it also becomes the per-
formance bottleneck, limiting the overall rate. Knowing such a
trade-off between area and performance, the DSS optimal II of
function f, IIopt = 1/IIext. This results in the actual overall rate
roverall = 1/IIopt for the example in Fig. 4. Similar analysis can be
extended to the whole dataflow graph.

The processing rates of dataflow components depend on the
topology of the circuit and the input data distribution. Other works
have investigated these effects [17, 24] and their formal definition
is therefore out of the scope of this work. Here, we only give an
example of the rate analysis for the motivating example in Fig. 2.

The rate analysis of a portion of the dataflow circuit from Fig. 2(c)
is shown in Fig. 5. The green labels show the II constraints of each
component and the blue labels represent the actual rate along each
edge between two components. The rate changes when the data
goes through the dataflow components shown in Section 3.3, as
detailed below:

Merge: rout = rin1 + rin2 (6)
Fork: rin = rout1 = rout2 (7)
Join: rout = rin1 = rin2 (8)

Branch: rin1 = rin2 = rout1 + rout2 (9)

Due to the loop-carried dependency on the adder, where the
output s is sent back to the input, the II of the circuit is limited by
the latency of the feedback loop containing an adder and a buffer.
That latency is 5 cycles, hence any value of the II of that adder that
is no greater than 5 does not affect the performance. In this case,
the input and output rate of the adder is limited: II6 ≥ 5. Since
there is no dataflow component in the path, II2 = II6 ≥ 5. The top
component consuming d is a branch component, which sends data
to one of two outputs according to the if condition. The II of a
branch component can be determined by:

IIbranch ≥ max(II in, IIout1 × p1 + IIout2 × (1 − p1)) (10)

where II in is the II of its predecessor, IIout1 is the II of its first succes-
sor, p1 is the fraction of the data going into its first successor, and
IIout2 is the II of its second successor. In the figure, the predecessor
is known not to be the bottleneck as the upper loop in Fig. 2(c) can
feed d every clock cycle. In addition, one of the successors, sink,
has II1 ≥ 1 as it can take data every clock cycle, and the other is
function g with II2 ≥ 5. With half of the iterations being long, that
is p1 = 0.5, we have II0 ≥ 0.5 × 1 + 0.5 × 5 = 3. This means the
highest overall rate is r0 = 1/3, where the component consumes 1
set of data every 3 cycles on average. This agrees with the schedule
in Fig. 2(e) that the hardware consumes 2 sets of data every 6 cycles
and repeats. At the highest rate, the rate of the input is split into
two edges through the branch component in terms of the fraction
of the data going into the corresponding successor:

rout1 = p1 × rin, (11)
rout2 = (1 − p1) × rin (12)

In this case, r2 = r0/2 = 1/6. Similar analysis can be performed
on other branch components in the circuit, resulting in the rate of
each edge shown in Fig. 5. In conclusion, the rate to the function g
is 1/6 at the highest overall rate, and the DSS optimal II of function



g is IIopt = 6. Smaller IIs may cause less area saving and larger IIs
may cause performance degrading.

For all input data distributions in Fig. 3, the SS approach appears
as a single line. The DS solution is always the same hardware
architecture (i.e. constant LUT count) but with performance varying
with the changing input data distribution. Our approach is shown
as multiple green lines, one for each input data distribution. The
designwithDSS optimal II, shown as the elbows in the DSS lines, can
have better performance than the DS hardware by improving the
maximum clock frequency with SS implementation. In addition, the
DSS hardware can also have comparable area efficiency compared
to the SS hardware in terms of LUT and DSP usage.

By performing the rate analysis above, we have the DSS optimal
II of function g equal to IIopt2 = 1/L + 4:

Knowing IId = 1, II0 = (1 − L) × II1 + L × II2 (13)
Knowing II1 ≥ 1 and II2 ≥ 5, II0 (14)

For best performance, II0 = 1 + 4L (15)
r0 = 1/II0, r2 = r0 ∗ L, r2 = 1/II2opt ⇒ IIopt2 = 1/L + 4 (16)

For instance, at L = 1, the DSS optimal II is 5, the same as the
minimum loop II from SS. When L = 0, function g and the adder
for += are never used, so the II of the function does not affect the
latency of the whole program. In this case, the DSS optimal II is
infinity, i.e. function g is no longer needed.

In this work, we let users manually determine the optimal II
for the SS function in the DSS hardware. In general, finding the
optimal II for an SS function can be difficult as it depends on both
the topology of the circuit and the input data distribution. However,
even if users have only some information on the circuit, such as the
minimum II achievable due to loop-carried dependencies, the hard-
ware optimisation is still promising. In the figure, the DSS hardware
with II = 5 for the SS function does not have minimum area but still
achieves significant area reduction compared to the DS hardware.
Although the hardware is underperforming, the difference in area
reduction by switching from II = 5 to II = 6 is significantly smaller
than that by switching from II = 1 to II = 2.

4.3 Integrating SS Hardware into DS Hardware
A DS circuit is constructed as a dataflow circuit, containing a num-
ber of small components, while an SS circuit has a centralised
FSM for control. We regard each SS circuit as a component in the
dataflow circuit, indicated in Fig. 2(c). In this subsection, we explain
how to make an SS circuit behave like a DS component so that
it can be integrated into the overall DS hardware. Let us look at
function g in Section 2 for example, which is a single-input and
single-output function. The multiple-input and multiple-output
cases are discussed shortly.

In the DS circuit part, each component communicates with its
predecessors and successors using a set of handshaking signals
as shown in Fig. 6(a). Each DS component uses the bundled data
protocol [8] for communication, where each data connection has
request and acknowledgement signals. For instance, the following
is the control interface of a component from Dynamatic [22]:

• pValid: an input signal indicating that the data from the
predecessor is valid,

DS Component

Predecessor

Successor

pValid ready

valid nReady

dataIn

dataOut

ap_ready

ap_done

dout

din

pValid readydataIn

dataOut

0
1
0
1
…
1

ap_ce
SSC_g

valid nReady

1

2

3

(a) Handshaking
interface in a DS circuit (b) SS function g as a DS component

Figure 6: The statically scheduled (SS) circuit of function g
is wrapped with additional control circuitry for interfacing
to the DS circuit.

• valid: an output signal informing the successor that the data
from the current component is valid,

• nReady: an input signal indicating that the successor is ready
to take a new input, and

• ready: an output signal informing the predecessor that the
current component is ready to take a new input.

On the other hand, the traditional SS hardware has a different in-
terface only to monitor and control the states of the centralised FSM.
An example of an HLS tool that generates SS hardware is Vivado
HLS [28]. For a function named g synthesised into SS hardware, its
control interface is as follows:

• ap_ce: The clock enable signal controls all the sequential
operations driven by the clock.

• ap_ready: The ready signal from the SS hardware indicates
that it is ready for new inputs.

• ap_done: The done signal indicates the output from SS hard-
ware at the current clock cycle is valid.

The interface synthesis of an SS circuit is not compatible with
the above handshaking signals in a DS circuit. To overcome this
issue, we add a wrapper around each SS circuit, ensuring that the
data propagates correctly between the SS circuit and the DS circuit.
This wrapper is generated in two steps: 1) In an SS circuit, any
output is only valid for one clock cycle. A valid signal is designed
to correctly send the data to the successor and preserve the output
when backpressure from the successor occurs; 2) Since there may be
a pipeline stall caused by this component, a ready signal is designed
to send the backpressure to the predecessor, ensuring any valid
input is not lost.

We now discuss those two steps in more detail.

Constructing the valid signal. In an SS-only circuit, where
the entire schedule is determined at compile-time, the arrival time
of each input can be predicted. However, this is not the case in DS as
the behaviour of the rest of the DS circuit is unknown. Two choices
are available: 1) stalling the SS function until valid input data is
available, or 2) letting the SS function continue to process data



actively in its pipeline, marking and ignoring any invalid outputs.
Since the SS function does not have the knowledge of the rest of the
DS circuit, the first approach may cause unnecessary stalls. Hence,
for performance reasons, we take the second choice.

An invalid input read and processed by the SS hardware is named
a bubble. We use a shift register to tag the validity of the data and
propagate only the valid data to the successor, as shown in Fig. 6(b).
The shifting operation of the shift register is controlled by the state
of the SS hardware to synchronise the data operations in the SS
circuit. It shifts to the right by one bit every time the SS hardware
takes a new input, as indicated by the ap_ready signal. The new
bit represents whether the newly taken input data is valid or not.
A zero represents a bubble and a one represents a valid input. The
length of the shift register is determined by the latency and the II of
function g: ⌈latency/II⌉, where these time constraints are obtained
from the scheduling report by the static scheduler. This ensures
that when the output is available from the SS hardware, as indicated
by the ap_done signal, its validity is indicated by the oldest bit of
the shift register. By checking the oldest bit value, only the valid
data is propagated to the successor with the valid signal high. In
summary, we use the shift register to monitor and control the state
of the SS hardware, such that the data can be synchronised between
the SS and DS hardware, filtering out the bubbles to ensure the
correctness of the function. Similarly, only the memory operations
with valid data are carried out.

Constructing the ready signal. The valid signal for the suc-
cessor and the shift register allow data to propagate from the pre-
decessor, through the SS function, to the successor. However, the
component is not able to deal with any backpressure from the func-
tion or its successor. Backpressure happens when a component
is unable to read an input even though it is valid, resulting in its
predecessor stalling. In a DS circuit, this issue is solved using hand-
shake signals—the hardware stalls when its output is valid but the
successor is not ready, as indicated by its nReady signal or the ready
signal from the successor. We design a control circuit to handle the
backpressure between a DS circuit and an SS circuit. Backpressure
can arise between a DS circuit and an SS circuit in two ways, which
we now discuss.

Backpressure from SS function to its predecessor. In this case, the
ready signal indicates whether the SS hardware is ready to take an
input so ap_ready is directly connected to the ready signal of the
wrapper. It sends feedback to the predecessor such that the prede-
cessor can be stalled, holding the valid input to the SS hardware
until the SS hardware is ready.

Backpressure to SS function from its successor. Since the SS hard-
ware only holds the output for one cycle when running, we stall
the process in the SS hardware to preserve the output data. This is
achieved by disabling the clock signal, ap_ce = 0, so the SS hard-
ware stops all the sequential processes, preserving the output. The
condition for such a stall to occur is that the next output from the
SS hardware is valid (valid = 1) but the successor is not ready
(nReady = 0). The SS hardware continues running after the nReady
signal is set to high, indicating that the successor is ready to ac-
cept the output data of the SS hardware. This additional circuitry
ensures that the data exchanged between an SS circuit and a DS
circuit is not lost when any stall occurs.

Handlingmultiple inputs andmultiple outputs. The exam-
ple above shows the wrapper for a function with a single input and
an output. However, it is also common to have a function with zero
or more than one inputs or outputs. If there is no input and output,
the external DS circuit would have no corresponding data port
for the component, hence no corresponding handshaking signal is
needed. Here we focus on the cases of multiple inputs and outputs.

For multiple inputs, we apply similar methodology from the
dataflow circuit [22] to synchronise data with the help of join com-
ponents. A join component is used for preserving the valid inputs
to the SS circuit until all the inputs are valid. This is similar to a DS
component with multiple inputs.

For multiple outputs in the SS function, each component has
its own handshaking signals. The output handshaking signals are
implemented in two parts, the valid and nReady signals. Firstly,
each data has its own valid signal. The SS circuit with multiple
outputs has the same number of ap_vld signals, where each ap_vld
signal indicates whether the corresponding data is valid. Instead of
forwarding the ap_done signal to the AND gate at the bottom left
of Fig. 6(b), each ap_vld signal is ANDed with the oldest bit of the
shift register and forwarded to the corresponding valid signal. The
number of nReady signals is the same as the number of successors.
All the nReady signals of the wrapper are inversed and connected
to the NAND gate in Fig. 6(b), such that the backpressure from any
successor can stall the SS hardware.

Handling memory accesses. The SS hardware has its sched-
uled memory accesses and can directly interact with the memory,
while the DS hardware requires an LSQ [21] to schedule the mem-
ory accesses at run-time before accessing the data. In DSS hardware,
a combination of two memory architectures needs to be handled.
An LSQ is beneficial for programs that have irregular memory ac-
cesses and can have high performance using dynamic scheduling
as explained in Section 3.3. It does not bring performance improve-
ments when implementing regular computation in the form of an
SS circuit. Therefore, in this work, we only allow conflict-free mem-
ory accesses between the SS part and the DS part; that is, LSQs are
not needed, or are only responsible for the DS part, while the SS
part has its own memory ports.

Summary. We identify code that is amenable for DSS, where
the design quality of the resulting hardware can be improved. In
addition, we show that rate analysis can further improve area ef-
ficiency and performance of the DSS hardware. With optimal II
of the internal SS function, the DSS hardware can not only have
comparable performance to the DS hardware but comparable area
efficiency to the SS hardware. With our wrapper, the SS hardware
can work correctly in a DS circuit.

5 IMPLEMENTATION
Our approach is generic and can be usedwith various SS andDSHLS
tools. For our work, we choose Vivado HLS [28] and Dynamatic [22]
to synthesise the SS and DS hardware respectively. Our toolflow
is shown in Fig. 7. The user-defined scheduling constraints are
configured using pragmas. Our tool takes the input C++ code and
splits the functions into two groups, representing the SS and the DS
functions, as specified by the user. We synthesise a function without



1 g(...){
2 #pragma SS II=N
3 ...
4 }
5 f(...){
6 #pragma DS
7 ...
8 call g;
9 ...
10 }

Added 
by us

DS Frontend

.cpp

.dot

SS Design Tool

Frontend 
Analyser

Wrapper 
Generator

DS Backend

RTL

.dot

.cpp
(SS)

.cpp
(DS)

.rpt

.rpt
.vhd

Schedule 
merger

(a) Source (b) DSS toolflow

Figure 7: With user-specified constraints in pragmas, our
tool automatically generates a combined dynamically and
statically scheduled circuit.

any scheduling constraints to DS hardware by default. Our tool
supports the integration of multiple SS functions into a DS function.
The SS functions are synthesised by Vivado HLSwith a user-defined
II. Any SS function without an II specification is synthesised with
the optimal II determined by VivadoHLS. The resultant SS hardware
is then automatically wrapped up to ensure compatibility with the
DS circuit interface, as described in Section 4.3. Each input variable
or output variable of the function is constructed as a data port with
a set of handshaking signals. Any memory port for array accesses
from the SS function is directly forwarded to the memory block.

In the DS function that contains SS functions, each SS function
appears as a single component in the DS hardware netlist. We
access the dataflow graph in Dynamatic that contains the timing
constraints of all these DS components and update the II and latency
of each SS function in terms of the corresponding scheduling report
from Vivado HLS. This ensures correct hardware optimisation in
the backend of Dynamatic. Finally, the resultant RTL files represent
the final DSS hardware of the top function.

6 EXPERIMENTS
We evaluate our work on DSS on a set of benchmarks, comparing
with the corresponding SS-only and DS-only designs. We assess
the impact of DSS on both the circuit area and the wall clock time.

We evaluate our approach on the latency and the area of the
whole hardware compared to existing scheduling approaches. Specif-
ically, we select a number of benchmarks, where the DS approach
generates hardware with lower latency than the SS approach, and
show how the area overhead can be reduced while preserving low
latency. To ensure fairness, we present the best SS solution from
Vivado HLS and the best DS solution from Dynamatic for each
benchmark as a baseline. In addition, we assume that the designer
has no knowledge of the input data distribution for the DSS hard-
ware and show that the area and execution time can still be reduced.
This means we use the conservative II automatically obtained from
Vivado HLS, i.e. the smallest possible II determined by only the
topology of the circuit like loop carried dependency. The timing
results of our work are shown as a range of values that depends on
the input data distribution. We obtain the total clock cycles from
ModelSim 10.6c and the area results from Post & Synthesis report

0.1 1
1

2

3

4

1a,1b2a,2b,2c

3b 4b

5a

6a,6b,6c

7a,7b,7c

3c 4c
1c

5c

3a

4a

5b
SS

Wall clock time (normalised to SS)

LU
T
co
un

t(
no

rm
al
is
ed

to
SS
)

Figure 8: The overall effects of our approach over seven
benchmarks in three certain data distributions: all long (a),
half long-half short (b) and all short (c). The arrows show
the improvements by switching from DS to DSS. Each label
corresponds to a benchmark in Tab. 2 and its distribution.

in Vivado. The FPGA family we used for result measurements is
xc7z020clg484 and the version of Vivado software is 2018.3. All
our designs are functionally verified in ModelSim on a set of test
vectors representing different input data distributions

6.1 Benchmarks
We apply our approach to seven benchmarks:

(1) sparseMatrixPower performs dot product of two matrices,
which skips the operation when the weight is zero.

(2) histogram sums various weight onto the corresponding fea-
tures but also in a sparse form.

(3) gSum sums a number of polynomial results from the array
elements that meet the given conditions where the difference
between two elements from the arrays is non-negative.

(4) gSumIf is similar but the SS function returns one of two
polynomial expressions based on the value of the difference.

(5) getTanh performs the approximated function tanh(x) onto
an array of integers using the CORDIC algorithm [16] and a
polynomial function.

(6) getTanh(double) is similar but uses an array of doubles.
(7) BNNKernel is a small binarised neural network [27].
The benchmark programs are selected based on the features

where DS can bring the performance benefits, indicated in Sec-
tion 4.1. The first two benchmarks are made artificially to demon-
strate simple examples. The third and fourth benchmarks are the
sparse form of the corresponding benchmarks from the paper by
Josipović et al. [22]. The two getTanh benchmarks apply the existing
approximation algorithms on sparse data arrays. These benchmarks
are all made publicly available [11].

6.2 Overall Experimental Results
In most benchmarks, our approach has less area and execution
time than the corresponding DS hardware. Fig. 8 shows the overall
design quality of our approach compared to the SS and DS solu-
tions, complementing the detailed results in Tab. 2. In the figure,
we show three arrows for each benchmark: the best case (all inputs



Table 2: Evaluation of design quality of DSS over seven benchmarks. Assuming the data distribution is unknown, the II of the
static function in DSS is selected as the II in the worst case (L = 1).

Benchmarks DSS II LUT DSP Registers Total Cycles Fmax/MHz Wall Clock Time/us
SS DS DSS SS DS DSS SS DS DSS SS DS DSS SS DS DSS SS DS DSS

1 sparseMatrixPower 299 206 465 317 3 6 3 191 489 198 306-30706 141-30005 141-29704 64.9 60.2 67.8 4.7-473.1 2.3-498.3 2.1-437.8
2 histogram 1 902 1002 990 3 3 3 639 637 809 9008 1008-1015 1008-1013 111.4 111.4 111.4 80.9 9.0-9.1 9.0-9.1
3 gSum 5 2209 7874 4514 17 79 23 2592 5552 3960 5075 1017-5067 1017-5079 111.4 77.3 84.9 45.6 13.2-65.6 12-59.8
4 gSumIf 5 3352 12068 5222 31 152 37 3903 9440 5188 5075 1017-5069 1017-5081 111.4 73.2 85.0 45.6 13.9-69.3 12-59.8
5 getTanh 11 3768 6154 4072 6 12 6 2172 6418 2422 55007 2508-65989 2508-10993 42.4 64.7 45.2 1298.7 38.8-1020.4 55.5-243.2
6 getTanh(double) 1 2272 2453 2579 50 50 50 2236 2154 2797 38007 1010-1035 1010-1042 111.4 111.4 111.4 341.2 9.1-9.3 9.1-9.4
7 BNNKernel 303 & 402 306 1250 664 3 9 3 142 1606 519 30908 30407 30412 143.3 61.1 112.8 215.7 498 270
Normalised
geometric mean - 1 2.48 1.52 1 2.65 1.08 1 3.34 1.6 1 0.29-0.76 0.29-0.61 1 0.89 0.92 1 0.51-1.04 0.34-0.73

take the short path), the worst case (all long), and a middle case
(half short, half long)2. The axes are normalised to the correspond-
ing SS solutions at (1,1). The starting point of an arrow represents
the LUT usage and execution time of the DS hardware, while the
corresponding result of the DSS hardware is at the end of the ar-
row. The II of the SS function in the DSS hardware is chosen only
considering the worst case of the execution patterns, where all the
iterations are long, that is L = 1, assuming the user does not know
the input data distribution. With fixed hardware architecture, we
show the results of all seven benchmarks with different input data
distributions. Generally, our DSS designs sit at the top left of the
corresponding SS hardware. In addition, for the same benchmark,
most DSS hardware designs are on the bottom left of the DS hard-
ware. It shows that the DSS hardware can be smaller than the DS
hardware and have better performance.

Detailed results of these benchmarks are shown in Tab. 2, con-
sidering all the cases of possible input distribution (from all long to
all short). In general, the “Total Cycles” column is a range because
the control decisions taken in the code depend on input values.
For the SS case, the number of total cycles is often independent of
the input due to pipelining worst-case assumptions made by the
SS scheduler. However, in the case of sparseMatrixPower, the SS
scheduler decides to implement the outer loop of the circuit with-
out pipelining, resulting in sequential execution of iteration and
hence also variable execution time. There is also a small difference
between the total clock cycles of the DS hardware and the DSS
hardware. One of the reasons is that the existence of bubbles causes
pipeline stalls at startup and then the throughput is stabilised. The
cycle count of the SS hardware in the DSS hardware may also be
different from the corresponding DS hardware, which also affects
the critical path (like function g in Section 2). In some of the bench-
marks like gSum, the II of the top function is high limited by the
topology of the circuit, leading to more area saving. For the bench-
marks that contain sparse data operations like sparseMatrixPower,
although the memory is shared, it can be proved that there is no
memory conflict between the SS part and the DS part. Therefore
the design quality of the hardware can still be improved by DSS.
The DS pipelining capabilities are not always as powerful as those
of SS when pipelining more complex loops (i.e. the DS hardware
sometimes contains more restrictive synchronisation logic which

2In the figure, 2{a, b, c} are overlapped and shown as one arrow, so are 6{a, b, c} and
7{a, b, c}; also, 1a and 1b are overlapped as the SS hardware is unpipelined.

may prevent complete loop pipelining). Hence, in getTanh, the DSS
design benefits in cycle count by introducing the fully pipelined
SS function. The benchmark BNNKernel shows that multiple SS
functions can be synthesised using our tool. Ideally, all the regular
operations in the input code can be synthesised as SS hardware to
maximise area efficiency and performance. If the input data distri-
bution is known, the design quality of the DSS hardware for all
these benchmarks can be further improved (as in Section 4.2).

7 CONCLUSION
In high-level synthesis, dynamic scheduling is useful for handling
irregular and control-dominated applications. On the other hand,
static scheduling can benefit from powerful optimisations to min-
imise the critical path and resource requirements of the resulting
circuit. In this work, we combine existing dynamic and static HLS
approaches to strategically replace regions of a dynamically sched-
uled circuit with their statically scheduled equivalents: we benefit
from the flexibility of dynamic scheduling to achieve high through-
put as well as the frequency and resource optimisation capabilities
of static scheduling to achieve fast and area-efficient designs.

Across a range of benchmark programs that are amenable to
DSS, our approach on average saves 43% of area in comparison
to the corresponding dynamically scheduled design, and results
in 1.75× execution time speedup over the corresponding statically
scheduled design. In certain cases, the knowledge of the input data
distribution allows us to further increase the design quality and
may result in additional performance and area improvements. Our
current approach relies on the user to annotate via pragmas parts
of the code which do not benefit from dynamic scheduling and can,
therefore, be replaced with static functions. Our future work will
explore the automated recognition of such code and these pragmas.

ACKNOWLEDGEMENTS
This work is supported by the EPSRC (EP/P010040/1, EP/R006865/1),
the Royal Academy of Engineering, and Imagination Technologies.
Lana Josipović is supported by a Google PhD Fellowship in Systems
and Networking.



REFERENCES
[1] Mythri Alle, Antoine Morvan, and Steven Derrien. 2013. Runtime dependency

analysis for loop pipelining inHigh-Level Synthesis. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, Austin, TX, 51:1–51:10.

[2] Mihai Budiu and Seth Copen Goldstein. 2002. Pegasus: An Efficient Intermediate
Representation. Technical Report CMU-CS-02-107. Carnegie Mellon University.
20 pages.

[3] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
level Synthesis for FPGA-based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’11). ACM, Monterey, CA, USA, 33–36.

[4] Luca P. Carloni. 2015. From Latency-Insensitive Design to Communication-
Based System-Level Design. Proc. IEEE 103, 11 (Nov 2015), 2133–2151. https:
//doi.org/10.1109/JPROC.2015.2480849

[5] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.
2001. Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 20, 9 (Sep. 2001), 1059–1076.
https://doi.org/10.1109/43.945302

[6] Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. 2014. High-
level synthesis of memory bound and irregular parallel applications with Bambu.
In 2014 IEEE Hot Chips 26 Symposium (HCS). IEEE, Cupertino, CA, 1–1.

[7] Celoxica. 2005. Handel-C. http://www.celoxica.com
[8] Charles Seitz. 1980. System Timing.
[9] Jianyi Cheng. 2019. Datasets for Combining Dynamic & Static Scheduling in

High-level Synthesis. http://doi.org/10.5281/zenodo.3406553
[10] Jianyi Cheng. 2019. DSS: Combining Dynamic & Static Scheduling in High-level

Synthesis. https://github.com/JianyiCheng/DSS
[11] Jianyi Cheng. 2019. HLS-benchmarks. https://doi.org/10.5281/zenodo.3561115
[12] Jason Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling al-

gorithm based on SDC formulation. In 2006 43rd ACM/IEEE Design Automation
Conference. IEEE, San Francisco, CA, 433–438.

[13] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009.
An Introduction to High-Level Synthesis. IEEE Design Test of Computers 26, 4
(July 2009), 8–17.

[14] Steve Dai, Mingxing Tan, Kecheng Hao, and Zhiru Zhang. 2014. Flushing-enabled
loop pipelining for high-level synthesis. In 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, San Francisco, CA, 1–6.

[15] Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher
Batten, and Zhiru Zhang. 2017. Dynamic Hazard Resolution for Pipelining
Irregular Loops in High-Level Synthesis. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’17). ACM,
Monterey, CA, 189–194.

[16] Jean Duprat and Jean-Michel Muller. 1993. The CORDIC Algorithm: New Results
for Fast VLSI Implementation. IEEE Trans. Comput. 42, 2 (Feb. 1993), 168–178.

[17] Amir H. Ghamarian, Marc C. W. Geilen, Sander Stuijk, Twan Basten, Bart D.
Theelen, Mohammad R. Mousavi, Arno J. M. Moonen, and Marco J. G. Bekooij.
2006. Throughput Analysis of Synchronous Data Flow Graphs. In Sixth Inter-
national Conference on Application of Concurrency to System Design (ACSD’06).
IEEE, Turku, Finland, 25–36.

[18] Ian Page and Wayne Luk. 1991. Compiling occam into Field-Programmable Gate
Arrays. In FPGAs, W. Moore and W. Luk, Eds., Abingdon EE&CS Books.

[19] Vincent John Mooney III and Giovanni De Micheli. 2000. Hardware/Software
Co-Design of Run-Time Schedulers for Real-Time Systems. Design Automation
for Embedded Systems 6, 1 (01 Sep 2000), 89–144.

[20] Intel HLS Compiler. 2017. https://www.altera.com/
[21] Lana Josipović, Philip Brisk, and Paolo Ienne. 2017. An Out-of-Order Load-Store

Queue for Spatial Computing. ACM Trans. Embed. Comput. Syst. 16, 5s, Article
125 (Sept. 2017), 19 pages.

[22] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Sched-
uled High-level Synthesis. In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’18). ACM, Monterey, CA,
127–136.

[23] Junyi Liu, Samuel Bayliss, and George A. Constantinides. 2015. Offline Synthesis
of Online Dependence Testing: Parametric Loop Pipelining for HLS. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines. IEEE, Vancouver, BC, 159–162.

[24] Sander Stuijk, Marc Geilen, Bart Theelen, and Twan Basten. 2011. Scenario-
aware dataflow: Modeling, analysis and implementation of dynamic applications.
In 2011 International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation. IEEE, Samos, Greece, 404–411.

[25] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. 2015. Elas-
ticFlow: A complexity-effective approach for pipelining irregular loop nests.
In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, Austin, TX, 78–85.

[26] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth Copen Goldstein.
2004. C to Asynchronous Dataflow Circuits: An End-to-End Toolflow. In IEEE
13th International Workshop on Logic Synthesis (IWLS). IEEE, Temecula, CA.

[27] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides.
2019. LUTNet: Rethinking Inference in FPGA Soft Logic. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, San Diego, CA, 26–34.

[28] Xilinx Vivado HLS. 2017. https://www.xilinx.com/
[29] Zhiru Zhang and Bin Liu. 2013. SDC-based modulo scheduling for pipeline

synthesis. In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, San Jose, CA, 211–218.

https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1109/43.945302
http://www.celoxica.com
http://doi.org/10.5281/zenodo.3406553
https://github.com/JianyiCheng/DSS
https://doi.org/10.5281/zenodo.3561115
https://www.altera.com/
https://www.xilinx.com/

	Abstract
	1 Introduction
	2 Overview
	3 Background
	3.1 Scheduling in HLS
	3.2 Static Scheduling
	3.3 Dynamic Scheduling
	3.4 Combining Dynamic & Static Approaches

	4 Methodology
	4.1 Applicability of Our Approach
	4.2 II Selection for SS Hardware
	4.3 Integrating SS Hardware into DS Hardware

	5 Implementation
	6 Experiments
	6.1 Benchmarks
	6.2 Overall Experimental Results

	7 Conclusion
	References

