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Abstract—High-level synthesis (HLS) is becoming an increas-
ingly important part of the computing landscape, even in safety-
critical domains where correctness is key. As such, HLS tools are
increasingly relied upon. But are they trustworthy?

We have subjected four widely used HLS tools – LegUp, Xilinx
Vivado HLS, the Intel HLS Compiler and Bambu – to a rigorous
fuzzing campaign using thousands of random, valid C programs
that we generated using a modified version of the Csmith tool. For
each C program, we compiled it to a hardware design using the
HLS tool under test and checked whether that hardware design
generates the same output as an executable generated by the GCC
compiler. When discrepancies arose between GCC and the HLS
tool under test, we reduced the C program to a minimal example
in order to zero in on the potential bug. Our testing campaign
has revealed that all four HLS tools can be made either to crash
or to generate wrong code when given valid C programs, and
thereby underlines the need for these increasingly trusted tools to
be more rigorously engineered. Out of 6700 test-cases, we found
1191 programs that failed in at least one tool, out of which we
were able to discern at least 8 unique bugs.

I. INTRODUCTION

High-level synthesis (HLS), which refers to the automatic
translation of software into hardware, is becoming an in-
creasingly important part of the computing landscape, even in
such high-assurance settings as financial services [1], control
systems [2], and real-time object detection [3]. The appeal of
HLS is twofold: it promises hardware engineers an increase in
productivity by raising the abstraction level of their designs,
and it promises software engineers the ability to produce
application-specific hardware accelerators without having to
understand Verilog or VHDL.

As such, we are increasingly reliant on HLS tools. But are
these tools reliable? Questions have been raised about the relia-
bility of HLS before; for example, Andrew Canis, co-creator of
the LegUp HLS tool, wrote that “high-level synthesis research
and development is inherently prone to introducing bugs or
regressions in the final circuit functionality” [4, Section 3.4.6].
In this paper, we investigate whether there is substance to
this concern by conducting an empirical evaluation of the
reliability of several widely used HLS tools.

The approach we take is fuzzing. This is an automated
testing method in which randomly generated programs are
given to compilers to test their robustness [5], [6], [7], [8],
[9], [10]. The generated programs are typically large and rather
complex, and they often combine language features in ways
that are legal but counter-intuitive; hence they can be effective
at exercising corner cases missed by human-designed test

1 unsigned int x = 0x1194D7FF;
2 int arr[6] = {1, 1, 1, 1, 1, 1};
3

4 int main() {
5 for (int i = 0; i < 2; i++)
6 x = x >> arr[i];
7 return x;
8 }

Figure 1. Miscompilation bug in Xilinx Vivado HLS. The generated RTL
returns 0x006535FF but the correct result is 0x046535FF.

suites. Fuzzing has been used extensively to test conventional
compilers; for example, Yang et al. [9] used it to reveal more
than three hundred bugs in GCC and LLVM. In this paper, we
bring fuzzing to the HLS context.

Example 1 (A miscompilation bug in Vivado HLS). Fig-
ure 1 shows a program that produces the wrong result during
RTL simulation in Xilinx Vivado HLS v2018.3, v2019.1 and
v2019.2.1 The program repeatedly shifts a large integer value
x right by the values stored in array arr. Vivado HLS
returns 0x006535FF, but the result returned by GCC (and
subsequently confirmed manually to be the correct one) is
0x046535FF. The bug was initially revealed by a randomly
generated program of around 113 lines, which we were able
to reduce to the minimal example shown in the figure. We
reported this issue to Xilinx, who confirmed it to be a bug.2

The example above demonstrates the effectiveness of
fuzzing. It seems unlikely that a human-written test-suite
would discover this particular bug, given that it requires several
components all to coincide before the bug is revealed!

Yet this example also begs the question: do bugs found
by fuzzers really matter, given that they are usually found
by combining language features in ways that are vanishingly
unlikely to happen ‘in the real world’ [11]. This question is
especially pertinent for our particular context of HLS tools,
which are well-known to have restrictions on the language
features they support. Nevertheless, although the test-cases we
generated do not resemble the programs that humans write, the
bugs that we exposed using those test-cases are real, and could
also be exposed by realistic programs. Ultimately, we believe

1This program, like all the others in this paper, includes a main function,
which means that it compiles straightforwardly with GCC. To compile it with
an HLS tool, we rename main to result, synthesise that function, and then
add a new main function as a testbench that calls result.

2https://bit.ly/3mzfzgA

https://bit.ly/3mzfzgA


that any errors in an HLS tool are worth identifying because
they have the potential to cause problems – either now or in
the future. And problems caused by HLS tools going wrong
(or indeed any sort of compiler for that matter) are particularly
egregious, because it is so difficult for end-users to identify
whether the fault lies with their design or the HLS tool.

A. Our approach and results
Our approach to fuzzing HLS tools comprises three steps.

First, we use Csmith [9] to generate thousands of valid C
programs within the subset of the C language that is supported
by all the HLS tools we test. We also augment each program
with a random selection of HLS-specific directives. Second,
we give these programs to four widely used HLS tools: Xilinx
Vivado HLS [12], LegUp HLS [13], the Intel HLS Compiler,
also known as i++ [14], and finally Bambu [15]. Third, if we
find a program that causes an HLS tool to crash or to generate
hardware that produces a different result from GCC, we reduce
it to a minimal example with the help of C-Reduce [16].

Our testing campaign revealed that all four tools could be
made to generate an incorrect design. In total, 6700 test-cases
were run through each tool, of which 1191 failed in at least
one of the tools. Test-case reduction was then performed on
some of these failing test-cases to obtain at least 8 unique
failing test-cases, detailed on our companion webpage:

https://ymherklotz.github.io/fuzzing-hls/

To investigate whether HLS tools are getting more or less
reliable, we also tested three different versions of Vivado HLS
(v2018.3, v2019.1, and v2019.2). We found fewer failures in
v2019.1 and v2019.2 compared to v2018.3, but also identified
a few test-cases that only failed in v2019.1 and v2019.2; this
suggests that new features may have introduced bugs.

In summary, the overall aim of our paper is to raise
awareness about the reliability (or lack thereof) of current HLS
tools, and to serve as a call-to-arms for investment in better-
engineered tools. We hope that future work on developing
more reliable HLS tools will find our empirical study a
valuable source of motivation.

II. RELATED WORK

The only other work of which we are aware on fuzzing
HLS tools is that by Lidbury et al. [10], who tested several
OpenCL compilers, including an HLS compiler from Altera
(now Intel). They were only able to subject that compiler
to superficial testing because so many of the test-cases they
generated led to it crashing. In comparison to our work: where
Lidbury et al. generated target-independent OpenCL programs
for testing HLS tools and conventional compilers alike, we
generate programs that are tailored for HLS (e.g. with HLS-
specific pragmas and only including supported constructs)
with the aim of testing the HLS tools more deeply. Another
difference is that where we test using sequential C programs,
they test using highly concurrent OpenCL programs, and thus
have to go to great lengths to ensure that any discrepancies ob-
served between compilers cannot be attributed to the inherent
nondeterminism of concurrency.
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Figure 2. The overall flow of our approach to fuzzing HLS tools.

Other stages of the FPGA toolchain have been subjected
to fuzzing. In previous work [17], we tested several FPGA
synthesis tools using randomly generated Verilog programs.
Where that work concentrated on the RTL-to-netlist stage of
hardware design, this work focuses on the C-to-RTL stage.

Several authors have taken steps toward more rigorously
engineered HLS tools that may be more resilient to testing
campaigns such as ours. The Handel-C compiler by Perna and
Woodcock [18] has been mechanically proven correct, at least
in part, using the HOL theorem prover; however, the tool does
not support C as input directly, so is not amenable to fuzzing.
Ramanathan et al. [19] proved their implementation of C
atomic operations in LegUp correct up to a bound using model
checking; however, our testing campaign is not applicable to
their implementation because we do not generate concurrent
C programs. In the SPARK HLS tool [20], some compiler
passes, such as scheduling, are mechanically validated during
compilation [21]; unfortunately, this tool is no longer available.
Finally, the Catapult C HLS tool [22] is designed only to
produce an output netlist if it can mechanically prove it
equivalent to the input program; it should therefore never
produce wrong RTL. In future work, we intend to test Catapult
C alongside Vivado HLS, LegUp, Intel i++, and Bambu.

III. METHOD

The overall flow of our testing approach is shown in
Figure 2. This section describes how test-cases are generated
(§III-A), executed (§III-B), and reduced (§III-C).

A. Generating test-cases

Csmith exposes several parameters through which the user
can adjust how often various C constructs appear in the
randomly generated programs. Table I describes how we
configure these parameters. Our overarching aim is to make the
programs tricky for the tools to handle correctly (to maximise
our chance of exposing bugs), while keeping the synthesis
and simulation times low (to maximise the rate at which
tests can be run). For instance, we increase the probability
of generating if statements to increase the number of control
paths, but we reduce the probability of generating for loops
and array operations since they generally increase run times
but not hardware complexity. We disable various features that
are not supported by HLS tools such as assignments inside
expressions, pointers, and union types. We avoid floating-point

https://ymherklotz.github.io/fuzzing-hls/


Table I
SUMMARY OF CHANGES TO CSMITH’S PROBABILITIES AND PARAMETERS.

Property/Parameter Change

statement_ifelse_prob Increased
statement_for_prob Reduced
statement_arrayop_prob Reduced
statement_break/goto/continue_prob Reduced
float_as_ltype_prob Disabled
pointer_as_ltype_prob Disabled
union_as_ltype_prob Disabled
more_struct_union_type_prob Disabled
safe_ops_signed_prob Disabled
binary_bit_and/or_prob Disabled
--no-packed-struct Enabled
--no-embedded-assigns Enabled
--no-argc Enabled
--max-funcs 5
--max-block-depth 2
--max-array-dim 3
--max-expr-complexity 2

numbers since these often involve external libraries or IPs on
FPGAs, which make it hard to reduce bugs to a minimal form.

To prepare the programs generated by Csmith for HLS
testing, we modify them in two ways. First, we inject random
HLS directives, which instruct the HLS tool to perform cer-
tain optimisations, including: loop pipelining, loop unrolling,
loop flattening, loop merging, expression balancing, function
pipelining, function-level loop merging, function inlining, ar-
ray mapping, array partitioning, and array reshaping. Some
directives can be applied via a separate configuration file
(.tcl), some require us to add labels to the C program (e.g. to
identify loops), and some require placing pragmas at particular
locations in the C program.

The second modification has to do with the top-level func-
tion. Each program generated by Csmith ends its execution by
printing a hash of all its variables’ values, hoping that mis-
compilations will be exposed through this hash value. Csmith’s
built-in hash function leads to infeasibly long synthesis times,
so we replace it with a simple XOR-based one.

Finally, we generate a synthesisable testbench that executes
the main function of the original C program, and a tool-specific
script that instructs the HLS tool to create a design project and
then build and simulate the design.

B. Compiling the test-cases using the HLS tools

For each HLS tool in turn, we compile the C program
to RTL and then simulate the RTL. We also compile the C
program using GCC and execute it. Although each HLS tool
has its own built-in C compiler that could be used to obtain
the reference output, we prefer to obtain the reference output
ourselves in order to rely less on the tool being tested.

To ensure that our testing scales to large programs, we
enforce several time-outs: we set a 5-minute time-out for C
execution and a 2-hour time-out for C-to-RTL synthesis and
RTL simulation. Time-outs are not counted as bugs.

Xilinx Vivado HLS v2019.1Intel i++ 18.1

LegUp 4.0 Bambu 0.9.7

Bambu
0.9.7-dev

159

26

1 4

3 902

9
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4 13
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Figure 3. The number of failures per tool out of 6700 test-cases. Overlapping
regions mean that the same test-cases failed in multiple tools.

C. Reducing buggy programs

Once we discover a program that crashes the HLS tool or
whose C/RTL simulations do not match, we systematically
reduce it to its minimal form using the C-Reduce tool [16],
in the hope of identifying the root cause. This is done by
successively removing or simplifying parts of the program,
checking that the bug remains at each step.

We also check at each stage of the reduction process that
the reduced program remains within the subset of the language
that is supported by the HLS tools; without this check, we
found that C-Reduce kept zeroing in on programs that were
outside this subset and hence did not represent real bugs.

IV. EVALUATION

We generate 6700 test-cases and provide them to four HLS
tools: Vivado HLS, LegUp HLS, Intel i++, and Bambu. We
use the same test-cases across all tools for fair comparison
(except the HLS directives, which have tool-specific syntax).
We were able to test three different versions of Vivado HLS
(v2018.3, v2019.1 and v2019.2). We tested one version of Intel
i++ (included in Quartus Lite 18.1), LegUp (4.0) and Bambu
(v0.9.7). We tested any reduced LegUp test-cases on LegUp
9.2 before reporting them.

A. Results across different HLS tools

Figure 3 shows an Euler diagram of our results. We see that
918 (13.7%), 167 (2.5%), 83 (1.2%) and 26 (0.4%) test-cases
fail in Bambu, LegUp, Vivado HLS and Intel i++ respectively.
One of the bugs we reported to the Bambu developers was
fixed during our testing campaign, so we also tested the
development branch of Bambu (0.9.7-dev) with the bug fix,
and found only 17 (0.25%) failing test-cases. Although i++
has a low failure rate, it has the highest time-out rate (540
test-cases) due to its remarkably long compilation time. No
other tool had more than 20 time-outs. Note that the absolute
numbers here do not necessarily correspond to the number
of bugs in the tools, because a single bug in a language
feature that appears frequently in our test suite could cause
many failures. Moreover, we are reluctant to draw conclusions
about the relative reliability of each tool by comparing the
number of failures, because these numbers are so sensitive to
the parameters of the randomly generated test suite we used. In



1 int a[2][2][1] = {{{0},{1}},{{0},{0}}};
2 int main() { a[0][1][0] = 1; }

Figure 4. This program leads to an internal compiler error (an unhandled
assertion in this case) in LegUp 4.0. It initialises a 3D array with zeroes and
then assigns to one element. The bug only appears when function inlining is
disabled (NO_INLINE).

1 static volatile int a[9][1][7];
2 int main() {
3 int tmp = 1;
4 for (int b = 0; b < 2; b++) {
5 a[0][0][0] = 3;
6 a[0][0][0] = a[0][0][0];
7 }
8 for (int i = 0; i < 9; i++)
9 for (int k = 0; k < 7; k++)

10 tmp ˆ= a[i][0][k];
11 return tmp;
12 }

Figure 5. This program miscompiles in Intel i++. It should return 2 because
3 ˆ 1 = 2, but Intel i++ generates a design that returns 0 instead. Perhaps
the assignment to 3 in the first for-loop is being overlooked.

other words, we can confirm the presence of bugs, but cannot
deduce the number of them (nor their importance).

We have reduced several of the failing test-cases in an effort
to identify particular bugs, and our findings are summarised
in Table II. We emphasise that the bug counts here are lower
bounds – we did not have time to go through the arduous test-
case reduction process for every failure. Figures 4, 5, and 6
present three of the bugs we found. As in Example 1, each
bug was first reduced automatically using C-Reduce, and then
further reduced manually to achieve the minimal test-case.

B. Results across versions of an HLS tool

Besides studying the reliability of different HLS tools, we
also studied the reliability of Vivado HLS over time. Figure 7
shows the results of giving 3645 test-cases to Vivado HLS
v2018.3, v2019.1 and v2019.2. Test-cases that pass and fail in
the same tools are grouped together into a ribbon. For instance,
the topmost ribbon represents the 31 test-cases that fail in
all three versions of Vivado HLS. Other ribbons can be seen
weaving in and out; these indicate that bugs were fixed or
reintroduced in the various versions. We see that Vivado HLS
v2018.3 had the most test-case failures (62). Interestingly, the
blue ribbon shows that there are test-cases that fail in v2018.3,
pass in v2019.1, and then fail again in v2019.2! As in our

1 static int b = 0x10000;
2 static volatile short a = 0;
3

4 int main() {
5 a++;
6 b = (b >> 8) & 0x100;
7 return b;
8 }

Figure 6. This program miscompiles in Bambu. As the value of b is shifted to
the right by 8, the output should be 0x100, but Bambu generates a design that
returns 0. The increment operation on a appears unrelated, but is necessary
to trigger the bug.

Table II
A SUMMARY OF THE BUGS WE FOUND.

Tool Bug type Details Status

Vivado HLS miscompile Fig. 1 reported, confirmed
Vivado HLS miscompile online* reported
LegUp HLS crash Fig. 4 reported
LegUp HLS crash online* reported
LegUp HLS miscompile online* reported, confirmed
Intel i++ miscompile Fig. 5 reported
Bambu HLS miscompile Fig. 6 reported, confirmed, fixed
Bambu HLS miscompile online* reported, confirmed

*See https://ymherklotz.github.io/fuzzing-hls/ for detailed bug reports

v2018.3 v2019.1 v2019.2

31

26

6

62

36
41

Figure 7. A Sankey diagram that tracks 3645 test-cases through three different
versions of Vivado HLS. The ribbons collect the test-cases that pass and fail
together. The black bars are labelled with the total number of test-case failures
per version. The 3573 test-cases that pass in all three versions are not depicted.

Euler diagram, the numbers do not necessary correspond to
the number of actual bugs, though we can observe that there
must be at least six unique bugs in Vivado HLS, given that
each ribbon corresponds to at least one unique bug.

V. CONCLUSION

We have shown how an existing fuzzing tool can be
modified so that its output is suitable for HLS, and then used
it in a campaign to test the reliability of four modern HLS
tools. In total, we found at least 8 unique bugs across all
the tools, including both crashes and miscompilations. Further
work could be done on supporting more HLS tools, especially
those that claim to prove that their output is correct before
terminating, such as Catapult-C [22].

Conventional compilers have become quite resilient to
fuzzing over the last decade, so recent work on fuzzing com-
pilers has had to employ increasingly imaginative techniques
to keep finding new bugs [23]. In contrast, we have found that
HLS tools – at least, as they currently stand – can be made to
exhibit bugs even using the relatively basic fuzzing techniques
that we employed in this project.

As HLS is becoming increasingly relied upon, it is impor-
tant to make sure that HLS tools are also reliable. We hope that
this work further motivates the need for rigorous engineering
of HLS tools, whether that is by validating that each output
the tool produces is correct or by proving the HLS tool itself
correct once and for all.

https://ymherklotz.github.io/fuzzing-hls/
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