
Dynamic C-Slow Pipelining for HLS
Jianyi Cheng, John Wickerson and George A. Constantinides

Department of Electrical and Electronic Engineering
Imperial College London, UK

Email: {jianyi.cheng17, j.wickerson, g.constantinides}@imperial.ac.uk

Abstract—In high-level synthesis (HLS), loop pipelining allows
multiple iterations of a loop to be executed concurrently. The
start time of the operations in each iteration can be determined
either at compile time (static pipelining) or at run time (dynamic
pipelining). There has been recent interest in dynamic pipelining,
as it can overcome the conservatism of static analysis, potentially
achieving better performance.

In order to ensure correctness in the presence of memory
dependences, existing state-of-the-art dynamic pipelining algo-
rithms schedule control flow between basic blocks in the original
program order even if they allow pipelining of data flow. This
allows source code to be compiled compositionally, ‘stitching
together’ the resulting hardware components to produce the
final hardware design. However, this approach can result in
suboptimal throughput.

In this paper we propose a technique to statically determine
a set of possible memory-legal control flows for nested loops,
together with a scheduler component able to select from that
set efficiently at run time, enabling dynamic execution of control
as a C-slow pipeline. An empirical evaluation on a range of
applications suggests that by using this approach, we can obtain
2.9× speedup with 7% area overhead compared to a dynamic
scheduling approach with sequential control flow.

I. INTRODUCTION

High-level synthesis (HLS) tools use loop pipelining to
enable parallelism between loop iterations. The same operation
in two consecutive iterations has a time difference in clock
cycles, known as the initiation interval (II). Traditional loop
pipelining techniques use static scheduling, which determines
the start time of each operation at compile time [1, 2]. This
results in a constant II for each synthesized loop. Recently
there has been interest in dynamic loop pipelining [3], which
determines the start time of each operation at run time. The
II of a dynamically pipelined loop can vary depending on the
data being computed.

Static pipelining enables efficient resource sharing thanks
to its predictable execution timing. However, it also causes
conservatism in input-dependent dependence analysis which
may result in suboptimal throughput. Dynamic pipelining
uses a handshake interface between operations which allows
immediate execution when an operation has all its required
data. However, this also leads to input-dependent hardware
behaviour, making resource sharing challenging.

In dynamic pipelining, each operation is synthesized as a
single component. These components are stitched together to
form the top-level hardware design. Each data dependence
between two operations is presented as a handshake connec-
tion between them. The memory dependences, however, are
handled either by sequentialising all the memory accesses [4],

… …

… …

demuxmux

The second input is stalled until the first
input starts the last iteration.

…

Fig. 1: An example of a dynamically pipelined loop. The red
token is the first input and the green token is the second input.
Assume the second input has no dependence with the first
input and the loop computes with an II of 3. The restriction of
sequential control flow forces the second input to stall until the
control flow of the first input finishes. Our approach enables
C-slow pipelining and allows the second input to start right
after the first input, leading to a doubled throughput.

or by using load-store queues (LSQs) to schedule the memory
accesses at run time [5]. The former keeps the conservatism
in static analysis, which can lead to poor performance. The
latter checks the dependence between every pair of memory
operations in the original program order and allows the later
memory operation to execute earlier if dependences allow.
Using LSQs enables out-of-order memory accesses at run time,
achieving better performance.

The LSQ used in Dynamatic [3], a leading dynamically
scheduled HLS tool, reduces the conservatism in static pipelin-
ing. However, it still has a restriction that the hardware
must preserve the original program order of memory accesses
when it checks dependences at run time. Dynamatic chooses
to statically schedule the memory accesses in each basic
block (BB), and dynamically allocates these memory accesses
into the LSQs when the corresponding BB starts to execute [5].
That means that there is always at most one BB starting
at each clock cycle, even if multiple BBs can be in flight
simultaneously. Otherwise, the LSQ cannot determine which
memory accesses among multiple simultaneously executing
BBs should be allocated first. In order to support LSQs,
Dynamatic conservatively keeps control flow sequential.

But sequential control flow can cause suboptimal perfor-
mance. Fig. 1 shows an example of a dynamically pipelined
loop. The LSQ needs to allocate all the memory accesses
triggered by the first input before starting executing the second
input. For this example, the allocation for the first input
completes when the first input starts its last iteration. The
second input can only enter the loop and start its first iteration

1 float a[N], b[N][M];
2 void triangleVecAccum() {
3 int i, j;
4 loop_0:
5 for (i = 0; i < N; i++) {
6 int s = a[f(i)];
7 loop_1:
8 for (j = 0; j < N-i; j++)
9 s = g(s, b[i][j]);

10 a[h(i)] = s;
11 }
12 }

(a) Source

0 1 2 3 4 5 6 7 8 9 10 11 12 … … … … … … … … … … … … … … …
init s(0) s(0) = f(s(0), b[0][0]);

s(0) = f(s(0), b[0][1]);

s(0) = f(s(0), b[0][2]);

…
s(0) = f(s(0), b[0][g(0)-1]);

init s(1) s(1) = f(s(1), b[1][0]);

s(1) = f(s(1), b[1][1]);

…

(b) Default pipeline schedule.
0 1 2 3 4 5 6 7 8 9 10 11 12 … … … … … … … … … … … … … … …

init s(0) s(0) = f(s(0), b[0][0]);

s(0) = f(s(0), b[0][1]);

s(0) = f(s(0), b[0][2]);

…
s(0) = f(s(0), b[0][g(0)-1]);

init s(1) s(1) = f(s(1), b[1][0]);

s(1) = f(s(1), b[1][1]);

…
s(1) = f(s(1), b[1][g(1)-1]);

init s(2) s(2) = f(s(2), b[2][0]);

s(2) = f(s(2), b[2][1]);

…
s(2) = f(s(2), b[2][g(2)-1]);

init s(3) s(3) = f(s(3), b[3][0]);

s(3) = f(s(3), b[3][1]);

…

(c) Proposed pipeline schedule.

Fig. 2: A motivating example of computing a triangle matrix. Assume there is no inter-iteration dependence in loop_0, and
each instance of loop_1 has a minimum II of 3. The default pipeline schedule only starts the second iteration of loop_0
after the last iteration of loop_1 in the first iteration of loop_0 starts. Our approach inserts the following iterations of
loop_0 into the empty slots of its first iteration.

after that time, even when there are no dependences between
the inputs to the loop.

In this paper, we show how to lift this restriction and
enable C-slow pipelining in HLS for a better throughput.
C-Slow pipelining was first proposed by Leiserson et al. in
1983 [6]. It is a technique that enables multiple sets of data
to be computed in the same hardware in the form of multiple
threads. Compared to traditional pipelining, C-slow pipelined
hardware executes in an out-of-order control flow.

We tackle two problems in dynamically pipelining nested
loops: 1) How can the restriction to sequential control flow be
lifted to enable C-slow pipelining? 2) How can the memory
correctness of C-slow pipelined hardware be preserved? Our
main contributions are:

• a technique that statically determines a set of possible
parallel memory-legal control flows for nested loops;

• a transformation pass that enables C-slow pipelining,
which executes loop iterations early by inserting their
schedules into empty pipeline slots of previous iterations;
and

• analysis and results showing that over a set of benchmarks
from Cheng et al. [7], our approach on average achieves
a 2.9× speedup with only a 7% area overhead.

The rest of the paper is organised as follows: Sec. II
provides a motivating example of C-slow pipelining. Sec. III
introduces existing works in dynamically scheduled HLS, C-
slow pipelining and static loop analysis for HLS. Sec. IV
explains our formulation and proposed approach in detail.
Sec. V evaluates the effectiveness of our tool on a set of
applicable benchmarks.

II. MOTIVATING EXAMPLE

In this section, we use a motivating example to demonstrate
the problem of pipelining a nested loop. In Fig. 2a, a loop nest
updates the elements in an array a. The outer loop loop_0
loads an element at address f(i). The inner loop loop_1,
bounded by N-i, computes s with a row in an array b, shown
as function g. The result is then stored back to array a at
address h(i) at the end of outer-loop iteration.

For simplicity, assume there is no inter-iteration dependence
in the outer loop loop_0. Assume the latency of function g
is 3 cycles. An inter-iteration dependence of the inner loop
loop_1 on s causes a minimum II of 3. The pipeline schedule
of the hardware from vanilla Dynamatic is shown in Fig. 2b.
The first iteration of loop_0 is optimally pipelined with an
II of 3 shown as the green bars. However, the second iteration,
shown as blue bars, can only start after the the last iteration
of loop_1 in the first iteration of loop_0 starts.

The schedule shown in Fig. 2c is also correct and achieves
better performance. Since the loop II of loop_0 is 3, the two
empty slots between every two consecutive iterations allows
the next two iterations of loop_0 start earlier. The second
iteration of loop_0 now starts one cycle after the start of
the first iteration of loop_0, followed by the third iteration
shown as orange bars. After a last iteration of loop_1 starts,
the current inner-loop instance leaves new empty pipeline slots
spare. This triggers the start of the fourth iteration, shown as
yellow bars, filling into the new empty slot.

The reason that Dynamatic cannot achieve the schedule in
Fig. 2c is that the control flow in the latter schedule is out-
of-order. The LSQ cannot retain the original program order of
memory accesses and cannot verify the correctness of memory
order from the out-of-order control flow, which may lead to
wrong results. In this paper, we use static analysis to prove

such control flow will still maintain a legal memory access
order for a given program, so the LSQ still works correctly
for this new program order.

This is an example for which traditional techniques such as
loop interchange and loop unrolling do not help, because they
only work under stringent constraints. In this example, loop
interchanging cannot be applied because the bound of the inner
loop depends on its outer loop. Also, loop unrolling does not
change the control flow and cannot improve the performance.
In this paper, we propose a general approach that works for
arbitrary nested loops.

III. BACKGROUND

This section first reviews related work on existing HLS tools
that use dynamic scheduling. Next, we review related work on
C-slow pipelining on FPGAs. Finally, we compare existing
works on static analysis for HLS loops with our work.

A. Dynamically Scheduled High-Level Synthesis
Dynamically scheduled hardware synthesis from a high-

level language was initially proposed as a framework that auto-
matically maps a occam program into a synchronous hardware
netlist [8]. This framework was later extended to a commercial
language named Handel-C [9]. However, it still requires user
effort for hardware optimisation such as pipelining and paral-
lelism. Venkataramani et al. [10] propose a dynamically sched-
uled hardware synthesis framework that takes a C program
as input and translates it into an asynchronous circuit. In the
framework, the C program is translated into a data flow graph
as an intermediate representation. Each node in the data flow
represents a pre-defined hardware component that contains its
own controlling trigger. Josipović et al. [3] bring this dataflow
design methodology into synchronous designs. They propose
an HLS tool named ‘Dynamatic’ that automatically generates
synchronous dataflow circuits from a C program. Dynamatic
automatically exploits the parallelism of the hardware by
translating each data dependence into a handshake interface.
The handshake interface enables immediate computation when
the required data is valid at run time, which can achieve high
throughput. This approach was later adopted by an HLS tool
named CIRCT [4].

Dynamatic uses a set of components with handshake in-
terface formalised by Carloni et al. [11]. These components
can be ‘stitched together’ to form a netlist that represents
arbitrary programs. A challenge in dynamically scheduled
HLS tools is scheduling memory accesses. CIRCT forces
memory accesses to execute in the original program order
regardless of their dependences, which may lead to significant
performance overhead. Dynamatic uses LSQs [5] to monitor
and re-order memory accesses at run time. Using LSQs brings
significant performance boost at the price of circuit area. This
paper tackles the problem of sequential control flow caused
by LSQs to achieve better performance.

B. C-Slow Pipelining
C-slow pipelining is a technique that replaces each register

in the circuit with C registers to construct C independent

…

… …

demuxmux … …

(a) Initial version of a loop.

… …

… …

demuxmux …

(b) A 3-slowed loop.

Fig. 3: An example of 3-slowing a loop. The 3-slowed loop
has tripled latency, the same throughput and one-third critical
path compared to the initial version.

threads [12]. The circuit then operates as C-thread hardware
while keeping one copy of resources. For instance, a stream
of data enters a pipelined loop in Fig. 3a. The loop computes
with an II of 1, as illustrated by the presence of one register in
the cycle. Assume the loop trip count is N, then the latency of
the loop is approximately N cycles for a large N. The overall
throughput of the hardware is 1/N and the critical path is the
delay of the cycle. Assume that each set of data is independent
from other sets. Fig. 3b demonstrates a 3-slowed loop that
is functionally equivalent to the one in Fig. 3a. There are
three registers in the cycle, evenly distributed in the path. This
increases the latency of the hardware to 3N cycles. The loop
can iterate with three sets of data in the cycle concurrently.
Then the overall throughput of the hardware is approximately
3/(3N) = 1/N, and the critical path is nearly 1/3 of the one in
Fig. 3a. A C-slowed loop can either have a better throughput or
the better maximum clock frequency to achieve approximately
C times speedup.

C-slow pipelining was firstly proposed by Leiserson et al.
for optimising the critical path of synchronous circuits [6].
Markovskiy and Patel [12] propose a C-slow based-approach
to improve the throughput of a microprocessor. Weaver et
al. [13] propose an automated tool that applies C-slow retiming
on a class of applications for certain FPGA families. Our work
brings the idea of C-slow pipelining into the dynamic HLS
world. We analyse nested loops at code level to determine C
for each loop by checking the dependence between inputs to
the loop and then apply hardware transformations to achieve
C-slow pipelining.

C. Static Loop Analysis in HLS

Analysis for loop pipelining in HLS has been well-studied
in the past decades. Zhang and Liu [1] propose a memory-
dependence and resource model in their scheduling algorithms.
This is further extended by Canis et al. [2] by restructuring
recurrence for reducing IIs. Polyhedral analysis is also popular
for dependence analysis [14] for affine memory accesses.
Initial work by Liu et al. uses polyhedral analysis for memory
optimization [15]. Morvan et al. use polyhedral analysis and
propose a method to improve pipelining of nested loops [14].

Their work first flattens the nested loop and insert pipeline
stalls to resolve the memory conflicts. Their work also re-
quires no inter-iteration dependence in the innermost loop.
There are also other polyhedral analysis-based techniques used
for optimizing static loop pipelines [16, 17, 18] or adding
dynamic mechanisms into static loop pipelining for better
performance [3, 19, 20, 21].

Formal verification has been commonly used in both soft-
ware and hardware. There has been recent interest in using
formal verification for loop optimisation. Cheng et al. propose
a Boogie-based approach to capture the correlation between
the dependence distance and iteration latency to reduce the II
of a loop [22]. Boogie [23] is an automated program verifier on
top of satisfiability modulo theories (SMT) solvers. has its own
intermediate verification language to describe the behaviour of
a program to be verified, which can be automatically translated
into SMT queries. An SMT solver then reasons about program
behaviour including the values that its variables may take.

All these works use static analysis to optimise static
loop pipelining, while our approach optimises dynamic loop
pipelining. Unlike static pipelining, our analysis does not
include resource constraints. We also neglect the iteration
latency of the operations as they are well-handled by the
dynamically scheduled hardware.

IV. METHODOLOGY

In this section, we first formalise the restriction caused by
LSQs in dynamic pipelining. Second, we show how to generate
a Boogie program for safely parallelizing the control flow of a
nested loop. Then we illustrate the design of our proposed loop
scheduler. Finally, we demonstrate our tool flow integrated into
the open-sourced HLS tool Dynamatic as a prototype.

A. Problem Formulation

We first formalise the behaviour of a sequential control flow.
Let x ≺ y denote that x begins execution at a time less than the
time y begins execution. An intermediate representation (IR)
of a program, such as LLVM IR, usually contains data flow
and control flow. A data flow graph indicates the dependences
between operations. A control flow graph indicates the depen-
dences between BBs. Since we only consider control flow, our
analysis targets the execution of BBs. For a given program and
its inputs, we define the following terms:

• B = {b1, b2, b3, ...}: The set of all the BBs in the
program.

• O : b1,1 ≺ b2,1 ≺ b1,2 ≺ ...: The original program order
of BB execution. bi,j represents the jth iteration of bi.

• Mb = {mb,1,mb,2, ...}: The set of all the memory
operations within a BB b.

• ob : mb,1 ≺ mb,2 ≺ mb,3 ≺ ...: The original program
order of memory operation execution within a BB b.

Combining these O and ob lexicographically, we can obtain
the original program order of memory operations.

If a memory operation is executed outside the program
order, it must not break a dependence. A LSQ retains the
original order of BB execution for the start time of each

BB while allowing statements inside the BBs to execute
concurrently once started, while reordering memory operations
by checking dependences with preceding operations within
any currently executing BB at run time.

Let x ⪯ y denote that x begins execution at a time no
greater than the time y begins execution. For a O : ... ≺
b ≺ b′ ≺ ..., if it is proven that any memory access in a BB
execution b cannot have dependence with any memory access
in its successor BB execution b′, then the order O′ : ... ≺ b′ ⪯
b ≺ ... is memory-legal. This means that the LSQ can allocate
either b or b′ first without breaking any dependence, and b′

does not need to be stalled by b to satisfy O.
Let T be the set of all the memory-legal orders of BBs,

where the original program order O ∈ T . The hardware
generated by vanilla Dynamatic always executes in O. The
problems solved in this paper are: 1) how to determine a set of
memory-legal orders of BBs, F ⊆ T , that execute with high
performance, and 2) how to efficiently synthesize hardware
that execute in an dynamic order of BBs, O′, where O′ ∈ F .

B. Determining C-Slow Depth

C-slow pipelining is amenable for improving the throughput
when 1) a hardware design that has an II of greater than 1; and
2) it allows out-of-order execution of control flow. To simplify
the problem, we restrict the scope of our work to nested loops.
First, IIs of greater than 1 are commonly seen in HLS loops.
Second, the behaviour of the outer loop of an inner loop helps
static dependence analysis between inputs to the inner loop.

For example, a nested loop has a outer loop and an inner
loop. Let the execution of the jth iteration of its inner loop
in the ith iteration of its outer loop be ei,j . Let trip count of
the inner loop and outer loop be Ni and M , where Ni may
vary in each outer-loop iteration. The original program order
of the iterations in the nested loop is shown as follows:

E : e0,0 ≺ e0,1 ≺ e0,2 ≺ ... ≺ e0,Ni−1 ≺ e1,0 ≺ ... (1)

The execution order of a C-slowed loop starts as follows:

E′ : e0,0 ≺ e1,0 ≺ ... ≺ eC−1,0 ≺ e0,1 ≺ ... (2)
C = min(P,M) (3)

P is the maximum number of outer-loop iterations that can
execute in parallel while satisfying both resource constraints
and dependence constraints. The constraint for a C-slowed
nested loop is that there are always at most C outer-loop
iterations executing concurrently.

The dependence constraint must not break under the C-slow
condition. At the same loop level, E′ still holds the same
dependence constraints as E:

∀0≤i<M−1.∀0≤j<Ni
.ei,j ≺ ei+1,j (4)

∀0≤i<M .∀0≤j<Ni−1.ei,j ≺ ei,j+1 (5)

The above means that each level of the inner loop still has its
iterations starting in strict program order. This means that the
memory dependences inside each inner loop instance are still
captured by the LSQ. Let D(ei,j0 , ei+c,j1) be the dependence

1 procedure pickOneMemoryAccessFromLoop() returns (
2 valid: bool, stmt: int, addr: Index, array: Array,
3 iteration:Index, type: MemoryType) {
4 loop_0: for (int i = 0; i < N; i++) {
5 // s = a[f(i)];
6 if (*) {
7 valid := true; stmt := 0; addr := (f(i));
8 array := a; iteration := (i); type := LOAD;
9 return; }

10 loop_1: for (int j = 0; j < g(i); j++)
11 // s = f(s, b[i][j]);
12 if (*) {
13 valid := true; stmt := 1; addr := (i, j);
14 array := b; iteration := (i); type := LOAD;
15 return; }
16 // a[h(i)] = s;
17 if (*) {
18 valid := true; stmt := 2; addr := (h(i));
19 array := a; iteration := (i); type := STORE;
20 return; }
21 }
22 valid := false;
23 return;
24 }

(a) Procedure that arbitrarily picks a memory access.

1 // C : Given dependence distance
2 procedure main(C: int) {
3 // assume that all the arrays have arbitrary values
4 havoc a, b;
5
6 // valid: whether the returned memory access is valid
7 // stmt: which statement that executes the memory access
8 // addr: which address the memory access touches
9 // array: which array the memory access touches

10 // iteration: the iteration index of the current outer-loops
11 // type: the type of the memory access, either load or store
12 call valid_0, stmt_0, addr_0, array_0, iteration_0, type_0 :=

pickOneMemoryAccessFromLoop();
13 call valid_1, stmt_1, addr_1, array_1, iteration_1, type_1 :=

pickOneMemoryAccessFromLoop();
14
15 assert !valid_0 || !valid_1 ||
16 array_0 != array_1 ||
17 stmt_0 == stmt_1 ||
18 (type_0 == LOAD && type_1 == LOAD) ||
19 iteration_0 >= iteration_1 ||
20 getDistance(iteration_0, iteration_1) >= C ||
21 addr_0 != addr_1;
22 }

(b) Main procedure that describes absent dependence for a given C.

Fig. 4: A Boogie program generated for the example in Fig. 2. It tries to prove the absence of memory dependence between
any two outer-loop iterations with a distance less than C.

set between two loop iterations. The dependence condition that
needs to be proved is that:

∀0≤i<M−C .∀0≤j0,j1<Ni
.∀0<c<C .D(ei,j0 , ei+c,j1) = ∅ (6)

In C-slow pipelining, any two concurrently executing inputs of
the innermost loop must be independent. With a constraint C,
that means any two outer-loop iterations that have a distance
less than C must have no dependence.

The dependence constraint above is equivalent to that the
minimum dependence distance of the outer loop is less than
C. A loop-carried data dependence always has a dependence
distance of 1, therefore, we only need to analyse memory de-
pendences. Our tool automatically generates a Boogie program
to describe the memory behaviour of the nested loop and calls
Boogie verifier to prove the absence of memory dependence
within a given distance. Boogie is a verification language,
which has its own structs [23]. The ones used in this paper
are as follows:

1) if (*) {A} else {B} arbitrarily does A or B.
2) havoc x assigns an arbitrary values to a variable or an

array x. It tells the verifier to prove the condition under
all the possible values of x.

3) assert c proves the condition c for all the values that
the variables in c may take.

For example, Fig. 4 illustrates the Boogie program generated
for the motivating example in Fig. 2. It tries to prove the
absence of memory dependence between any two outer-loop
iterations with a distance less than C, which mainly includes
two parts. The Boogie procedure in Fig. 4a arbitrarily picks
a memory access from the nested loop during the whole
execution and returns its parameters. The returned parameters
include the label of the statement being executed, the array
and address of the accessed memory, the iteration index of

the outer loop and the type of the memory access. Detailed
definitions of these parameters are listed at line 6-11 in Fig. 4b.

In Fig. 4a, the for loop structures in Boogie are directly
generated by the automated tool named EASY [24]. In the
loop body, each memory access is replaced with an if(*)
statement. The if(*) statement arbitrarily chooses to return
the parameters of the current memory access or continue. The
procedure is then able to capture all the memory access that
may execute during the whole execution. If all these memory
accesses are skipped, the procedure exits at line 23 with a false
valid bit, indicating that the returned parameters are invalid.

Fig. 4b describes the main Boogie procedure for dependence
analysis. It takes a given C as an input. At line 4, it assumes
that arrays a and b hold arbitrary values. This makes the
verification results independent from the program inputs. Lines
12 and 13 arbitrarily pick two memory accesses from the
nested loop using the procedure in Fig. 4a.

The assertion at line 15 proves the dependence constraint as
shown in Eq. 6 for a given C. First, the picked two memory
accesses from line 12 and 13 must hold valid parameters (line
15). Second, two accesses touching different arrays cannot
have dependence (line 16). Two accesses executed by the same
statement is safe (line 17), where the dependence is captured
by the LSQ as proved in Eq. 4 and Eq. 5. Two loads cannot
have dependence (line 18). Two returned memory accesses are
arbitrary and have no difference. Here we assume the memory
access with index 0 executes in an earlier outer-loop iteration
than the one with index 1 (line 19). In the C-slow pipelining
formulation, only the outer-loop iterations with an iteration
distance less than C can execute concurrently (line 20). Any
two memory accesses that exclude the cases at line 15-20
cannot access the same address. The assertion must hold for
any two memory accesses for any input values. The Boogie

…

loop_0
entry

loop_1

…

loop_0
exit

start

…

end

(a) Default CFG.

…

loop_0
entry

loop_1

…

loop_0
exit

start

…

lo
op

 sc
he

du
le

r

end

empty

add an
order tagenable

absorbed by
the scheduler

parallel token for
early execution

(b) Transformed CFG.
validvalid

ready

valid

ready

empty

in-order tags

counter

ready

current tag

− C+

≠

en

−
out-of-
order tags

store 1

+

index

tr

1

=

+

valid
ready

sh
ift

 re
g

+1

1

2

3

(c) Loop Scheduler

Merge

Fork

Branch

Fig. 5: Our tool considers each instance of the innermost
loop as a thread and achieves the schedule in Fig. 2c. The
dashed arrows represent the token transition in control flow.
The scheduler tags the control tokens in the innermost loop to
reorder them at the output after out-of-order execution.

verifier automatically verifies whether the assertion always
holds for a given C. If the assertion always holds, then it
is safe to parallelize C iterations of the outer loop.

Our tool checks C from 2 and increments C if the assertion
holds. For nested loops with a larger depth, our tool starts from
the innermost loop, taking the second innermost loop as the
outer loop, and repeats for the upper level of the loop until the
outermost loop is reached. Our experiment results show that
only C-slowing the innermost loop with a C less than 10 is
effective enough for improving the throughput, where most of
empty pipeline slots can be filled. Our tool sets the maximum
C to 10 and only analyses each innermost loop by default,
providing these parameters as user options. Overall the search
time is neglectable compared to the total compilation time of
the whole HLS tool flow.

Besides the dependence constraint, a resource constraint of

C-slow pipelining is that each path must be able to hold at
least C sets of data. The hardware transformation pass in our
tool inserts a FIFO with a depth of C in each cycle of the
inner loop to enable holding at least C tokens.

C. Inserting Loop Scheduler

Once the value of C for a loop is determined, our tool
inserts a component named loop scheduler between the entry
and exit of each loop. Each C is used as a parameter of the
corresponding loop scheduler. The loop scheduler dynamically
schedules the control flow and ensures that at most C iterations
can execute concurrently. Any outermost loop or unverified
loop has its loop scheduler holding C = 1 and executes control
flow sequentially.

Fig. 5 shows the proposed loop scheduler integrated into
a dynamically scheduled control flow graph. Dynamatic uses
three kinds of components for control flow, as listed at the
bottom right of Fig. 5: a merge arbitrarily takes one of its
inputs and sends to the output; a fork replicates its single
input and sends to all the outputs; and a branch sends the data
input to one of its outputs based on its select input.

For example, the control flow graph of the code in Fig. 2
from vanilla Dynamatic is shown in Fig. 5a. Each dotted block
represents a BB. The top BB represents the entry control of
the outer loop, which starts the outer-iteration and decides
whether to execute the inner loop. The middle BB represents
the control of the inner loop. The bottom BB represents the
exit control of the outer loop, which decides whether to exit
the outer loop.

In each BB, a merge is used to accept a control token that
triggers the start of current BB execution. Then a fork is used
to produce other tokens to trigger all the data operation inside
this BB, hidden in the ellipsis. The control token flows through
the fork to a branch. The branch decides the next BB to trigger
based on the BB condition. The control flow in Fig. 2 follows
the following steps:

1) A control token enters the top BB to start;
2) The token goes through the top BB and enters the middle

BB to start the inner loop.
3) The token circulates in the middle BB through the back

edge until the exit condition met.
4) The token exits the middle BB and enters the bottom

BB. It either goes back to the top BB to repeat 2) or exit,
depending on the exit condition.

The control flow is sequential as there is always at most one
control token in the control path. Fig. 5b shows the control
flow graph with the proposed loop scheduler integrated into
the inner loop. The loop scheduler for the outer loop has C
of 1 and is neglected for simplicity. The control flow is then:

1) A control token t1 enters the top BB to start.
2) t1 goes through the top BB and enters the middle BB with

a tag added by the loop scheduler. The loop scheduler
checks if there are fewer than C(=3 in this example)
tokens in the inner loop. If yes, it immediately produces
another token t2 and sends it to the bottom BB to execute
the control flow early (indicated as the red dashed arrow).

C/C++ LLVM IR
Clang

LLVM IR

Analyse nested loops
Boogie program

Boogie verifier
Verification results

dot graph

Dynamatic front end

dot graph

Insert loop schedulers

RTL

Dynamatic
back end

Fig. 6: Our work integrated into Dynamatic. Our contributions
are highlighted in bold blue text.

3) t1 circulates in the middle BB. t2 goes to the top BB
and enters the middle BB with another tag. The loop
scheduler produces another token t3 and sends it to the
bottom BB.

4) The above repeats and t4 is produced. t1, t2 and t3 are
all circulating in the middle BB.

5) t4 reaches the branch in the top BB but blocked by the
loop scheduler until one token exits the middle BB and
consumed by the loop scheduler.

6) The above repeats until the last token exits the bottom
BB. An AND gate is inserted at the exit of the bottom
BB to synchronise the control flow. It requires a token
from the exit of the nested loop and there is no token
remained in the inner loop.

The design of the loop scheduler is shown in Fig. 5c. It
guards the entry and exit of the inner loop. In the scheduler,
a counter is used to count the number of executing control
tokens in the inner loop. Based on the value of the counter
and the specified C, it decides whether to accept the token
from the outer loop and replicates a token to the output to the
outer loop for early execution of the next outer-loop iteration.
The input token from the exit of the inner loop decrements the
counter value by one, allowing the next token from the outer
loop to enter the inner loop. An empty bit is used to indicate
whether there is no control token in the inner loop.

D. Tool Flow

We integrate our work into Dynamatic for prototyping, as
shown in Fig. 6. First, the input C/C++ program is lowered
into LLVM IR. Our analysis in LLVM passes searches for C
for each innermost loop using Boogie verifier. A control data
flow graph is then generated in the form of a dot graph by
the front-end of Dynamatic. Our transformation pass inserts
loop schedulers and FIFOs into the dot graph. Finally, the
transformed graph is translated to RTL code by the back-end of
Dynamatic as the final design. Our work can also be integrated
into other HLS tools, such as CIRCT [4].

V. EXPERIMENTS

We evaluate our work on a set of benchmarks, comparing
with the designs using Xilinx Vivado HLS and Dynamatic
in total circuit area and wall clock time. The total clock
cycles were obtained using Vivado XSIM simulator, and the

1 2 3 4 5 6

33.1
41.1
54.1

79.5

162
1×

2.0×

3.0×
3.9×

4.9×

4.9×

C

To
ta

l
cl

oc
k

cy
cl

es
-

k

Fig. 7: Speedup by varying C. C > 6 breaks the memory
dependence in the outer loop. Increasing C initial improves
the throughput. However, once all the empty slots are filled,
further increasing C has less affect on the throughput.

area results were obtained from the post P&R report in
Vivado. The FPGA device we used for result measurements
is xc7z020clg484. The version of Xilinx software is 2019.2.

A. Benchmarks

Most HLS benchmarks such as Polybench [25] and CH-
Stone [26], tend to be tailored to what HLS tools already
comfortably handle. In order to show how our work pushes
the limits of HLS, we use an open-sourced benchmark set
from [7], which have been used to evaluate dynamic sched-
uled HLS. We use our motivating example and select seven
benchmarks in the benchmark set that are applicable to our
approach for experiments, listed as follows.
triangleVecAccum is the motivating example which uses
f(i) = i, g(a, b) = a+b and h(i) = i*i+7.

doitgenTriple is a weighted version of multi-resolution anal-
ysis kernel (MADNESS).

correlation computes the correlation matrix.
covariance computes the covariance matrix.
syr2k is a symmetric rank-2k update for two matrices.
gemver is vector multiplication and matrix addition.
gesummv is scalar, vector and matrix multiplication.
gramSchmidt is a Gram-Schmidt decomposition.

B. Results

We first take the motivating example as a case study and
then discuss the overall results for all the benchmarks. Fig. 7
shows the total clock cycles of the hardware for the motivating
example with different C. Only C < 6 for this example does
not break memory dependence. When C increases initially,
more outer-loop iterations are parallelized, significantly im-
proving the throughput. However, when C reaches 5, further
increasing C does not affect the throughput. That is because
almost all the empty pipeline slots have been filled. The
overhead caused by C = 6 only adds additional one depth
into the FIFOs. With a small C, the area overhead caused by
the FIFO depths is neglectable for most of applications.

The speedups of our designs compared to the baselines
over all the benchmarks are shown in Fig. 8, and the detailed

condVecAccum doitgenTriple correlation covariance syr2k gemver gesummv gramSchmidt

300

500

1,000

3,000

5,000

8,000

0.7×

0.8×

0.8×

0.1×

0.7×

0.7×

0.8×
0.8×

Benchmarks

W
al

l
cl

oc
k

tim
e

-
µ

s
Vivado HLS
Dynamatic
our work

3.6×
4.9×

3.4×
4.2× 1.5×

1.8×

0.4×
2.7×

1.7×
2.4×

2×
2.7×

3×
3.9×

1.7×
2.1×

Fig. 8: Performance comparison of the designs from our tool with the designs from Vivado HLS and Dynamatic. The speedups
shown in blue and red take the design from Vivado HLS and Dynamatic as the baselines respectively.

TABLE I: Evaluation of our approach on a set of benchmarks. vhls = Vivado HLS. base = vanilla Dynamatic. ours = our work.

LUTs - k DSPs Registers - k Cycles - k Fmax - MHz Wall clock time - ms
Benchmarks vhls base ours × vhls base ours × vhls base ours × vhls base ours × vhls base ours × vhls base ours ×

triangleVecAccum 0.311 18.8 19.4 1.03 5 5 5 1 0.295 4.92 5.57 1.13 165 162 33.2 0.20 121 88.2 88.3 1 1.37 1.84 0.376 0.20
doitgenTriple 0.728 21.8 22 1.01 5 20 20 1 0.715 8.18 8.47 1.04 335 297 67.3 0.23 121 87.6 83.3 0.95 2.77 3.39 0.808 0.24
correlation 1.94 14.6 14.8 1.01 5 36 36 1 1.78 11.8 11.8 1 97.2 90.1 41.7 0.46 121 94.4 76.5 0.81 0.805 0.955 0.545 0.57
covariance 1.55 7.44 8.96 1.20 5 9 9 1 1.25 6.83 9.4 1.38 105 89.8 33.6 0.37 121 14.5 14.5 1 0.872 6.2 2.32 0.37
syr2k 0.603 4.04 4.57 1.13 5 19 19 1 0.693 3.97 4.44 1.12 99.3 82.4 34.3 0.42 121 73.6 72.9 0.99 0.822 1.12 0.471 0.42
gemver 1.44 8.33 8.72 1.05 5 28 28 1 1.24 8.4 8.29 0.99 730 719 227 0.32 121 87.7 75.3 0.86 6.04 8.2 3.01 0.37
gesummv 0.612 3.48 3.76 1.08 5 18 18 1 0.701 3.66 4.18 1.14 333 327 81.9 0.25 121 93.5 90.6 0.97 2.75 3.5 0.903 0.26
gramSchmidt 1.66 47.4 47.9 1.01 5 30 30 1 1.58 16.3 16.9 1.04 238 142 57.9 0.41 114 53.6 46.6 0.87 2.08 2.65 1.24 0.47

Geom. mean 1.07 1 1.1 0.32 0.94 0.35

results are shown in Tab. I. Overall, the circuits from vanilla
Dynamatic are slightly slower than Vivado HLS even though
they have better throughput. It is because that the academic
buffering tool in Dynamatic cannot perform retiming as good
as the commercialised Vivado HLS. This leads to a lower
maximum clock frequency, especially for covariance and
gramSchmidt. C-slow pipelining significantly improves the
throughput of dynamically scheduled circuits, leading to the
best performance in the figure for most benchmarks.

The actual speedup is less than the expected speedup based
on the value C due to resource constraints. For instance,
there are multiple memory accesses to the same array in one
iteration, and the memory blocks have limited bandwidth.
These memory accesses are then stalled and serialised by the
internal memory arbiter, resulting in additional pipeline stalls.
Such performance overhead could be reduced when array
partitioning is applied. Even though, our tool achieves at least
1.75× speedup from vanilla Dynamatic. Additionally, bench-
marks such as correlation and gramSchmidt contain
a only small region of code that can be C-slow pipelined,
resulting in less performance improvement. The maximum
clock frequency decreases slightly after C-slow pipelining
because the insertion of non-transparent FIFOs (latency = 0
cycle) increases the critical path of the circuit.

The average area overhead of 7% in LUTs and 10% in
registers is caused by the additional loop schedulers and
FIFOs. DSPs are not changed as they are used for floating-
point operators. The area overhead caused by our approach is
relatively small compared to the performance gain.

VI. CONCLUSIONS

The existing dynamically scheduled HLS tool that requires
sequential execution of control flow to retain memory depen-
dence for high performance out-of-order memory accesses.
This causes significant performance overhead when pipelining
nested loops that contain deeply pipelined inner loops.

We propose an automated approach to lift the restriction and
efficiently improve the performance of the hardware. We show
how to statically prove the absence of dependence between
iterations of the outer loop, and apply C-slow pipelining to the
inner loop. We treat each instance of the inner loop as a thread
and efficiently parallelize them at run time. The performance
gain is significant with little area overhead. Our future work
is to explore C-slow retiming in this framework.

ACKNOWLEDGEMENTS

This work is supported by the EPSRC (EP/P010040/1,
EP/R006865/1). The authors wish to thank Lana Josipović for
helpful comments.

REFERENCES

[1] Z. Zhang and B. Liu, “Sdc-based modulo scheduling
for pipeline synthesis,” in 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2013,
pp. 211–218.

[2] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo
sdc scheduling with recurrence minimization in high-
level synthesis,” in 2014 24th International Conference
on Field Programmable Logic and Applications (FPL),
2014, pp. 1–8.

[3] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically
scheduled high-level synthesis,” in Proceedings of the
2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’18. Monterey,
CA: ACM, 2018, pp. 127–136.

[4] C. contributors, “Circt: Circuit ir compilers and tools,”
https://github.com/llvm/circt/tree/main/, 2021.

[5] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order
load-store queue for spatial computing,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5s, pp. 125:1–125:19,
Sep. 2017.

[6] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing
synchronous circuitry by retiming (preliminary version),”
in Third Caltech conference on very large scale integra-
tion. Springer, 1983, pp. 87–116.

[7] J. Cheng, J. Wickerson, and G. A. Constantinides, “Find-
ing and finessing static islands in dynamically scheduled
circuits,” in Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3490422.3502362

[8] Ian Page and Wayne Luk, “Compiling occam into Field-
Programmable Gate Arrays,” in FPGAs, W. Moore and
W. Luk, Eds., Abingdon EE&CS Books, 1991.

[9] Celoxica, “Handel-C,” 2005. [Online]. Available: http:
//www.celoxica.com

[10] G. Venkataramani, M. Budiu, T. Chelcea, and S. C.
Goldstein, “C to asynchronous dataflow circuits: An end-
to-end toolflow,” in IEEE 13th International Workshop
on Logic Synthesis (IWLS). Temecula, CA: IEEE, Jun
2004.

[11] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli, “Theory of latency-insensitive design,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 9, pp. 1059–1076, Sep.
2001.

[12] Y. Markovskiy and Y. Patel, “Simple symmetric multi-
threading in xilinx fpgas,” 2002.

[13] N. Weaver, Y. Markovskiy, Y. Patel, and
J. Wawrzynek, “Post-placement c-slow retiming for
the xilinx virtex fpga,” in Proceedings of the 2003
ACM/SIGDA Eleventh International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’03.
New York, NY, USA: Association for Computing

Machinery, 2003, p. 185–194. [Online]. Available:
https://doi.org/10.1145/611817.611845

[14] A. Morvan, S. Derrien, and P. Quinton, “Polyhedral
bubble insertion: A method to improve nested loop
pipelining for high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 3, pp. 339–352, 2013.

[15] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K.
Cheung, “Automatic On-chip Memory Minimization for
Data Reuse,” in 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM
2007). Napa, CA, USA: IEEE, April 2007, pp. 251–260.

[16] S. Dai, Mingxing Tan, Kecheng Hao, and Z. Zhang,
“Flushing-enabled loop pipelining for high-level synthe-
sis,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), 2014, pp. 1–6.

[17] G. Dimitriou, M. Dossis, and G. Stamoulis, “Operation
dependencies in loop pipelining for high-level synthesis,”
in 2018 South-Eastern European Design Automation,
Computer Engineering, Computer Networks and Society
Media Conference (SEEDA CECNSM), 2018, pp. 1–6.

[18] M. Smelyanskiy, S. A. Mahlke, E. S. Davidson, and
H. . S. Lee, “Predicate-aware scheduling: a technique for
reducing resource constraints,” in International Sympo-
sium on Code Generation and Optimization, 2003. CGO
2003., 2003, pp. 169–178.

[19] M. Alle, A. Morvan, and S. Derrien, “Runtime depen-
dency analysis for loop pipelining in high-level synthe-
sis,” in 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2013, pp. 1–10.

[20] S. Dai, G. Liu, R. Zhao, and Z. Zhang, “Enabling
adaptive loop pipelining in high-level synthesis,” in 2017
51st Asilomar Conference on Signals, Systems, and Com-
puters, 2017, pp. 131–135.

[21] J. Liu, J. Wickerson, S. Bayliss, and G. A. Constan-
tinides, “Polyhedral-based dynamic loop pipelining for
high-level synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37,
no. 9, pp. 1802–1815, 2018.

[22] J. Cheng, J. Wickerson, and G. A. Constantinides, “Ex-
ploiting the correlation between dependence distance
and latency in loop pipelining for hls,” in 2021 31st
International Conference on Field-Programmable Logic
and Applications (FPL), 2021, pp. 341–346.

[23] K. R. M. Leino, “This is boogie 2,” June 2008.
[Online]. Available: https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

[24] J. Cheng, S. T. Fleming, Y. T. Chen, J. Anderson,
J. Wickerson, and G. A. Constantinides, “Efficient
memory arbitration in high-level synthesis from multi-
threaded code,” IEEE Transactions on Computers, pp.
1–1, 2021.

[25] L.-N. Pouchet et al., “Polybench: The polyhedral bench-
mark suite,” URL: http://www. cs. ucla. edu/pouchet/soft-
ware/polybench, vol. 437, 2012.

[26] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and

https://github.com/llvm/circt/tree/main/
https://doi.org/10.1145/3490422.3502362
http://www.celoxica.com
http://www.celoxica.com
https://doi.org/10.1145/611817.611845
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

K. Ishii, “Chstone: A benchmark program suite for
practical c-based high-level synthesis,” in 2008 IEEE
International Symposium on Circuits and Systems, 2008,
pp. 1192–1195.

	Introduction
	Motivating Example
	Background
	Dynamically Scheduled High-Level Synthesis
	C-Slow Pipelining
	Static Loop Analysis in HLS

	Methodology
	Problem Formulation
	Determining C-Slow Depth
	Inserting Loop Scheduler
	Tool Flow

	Experiments
	Benchmarks
	Results

	Conclusions

