
1

Polyhedral-based Dynamic Loop Pipelining for
High-Level Synthesis

Junyi Liu∗, John Wickerson∗, Samuel Bayliss∗†, and George A. Constantinides∗
∗Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom

{junyi.liu13, j.wickerson, g.constantinides}@imperial.ac.uk
†Research Labs, Xilinx, San Jose, CA 95124, USA

samuel.bayliss@xilinx.com

Abstract—Loop pipelining is one of the most important op-
timization methods in high-level synthesis (HLS) for increasing
loop parallelism. There has been considerable work on improv-
ing loop pipelining, which mainly focuses on optimizing static
operation scheduling and parallel memory accesses. Nonetheless,
when loops contain complex memory dependencies, current
techniques cannot generate high performance pipelines. In this
work, we extend the capability of loop pipelining in HLS to
handle loops with uncertain dependencies (i.e., parameterised
by an undetermined variable) and/or non-uniform dependencies
(i.e., varying between loop iterations). Our optimization allows
a pipeline to be statically scheduled without the aforementioned
memory dependencies, but an associated controller will change
the execution speed of loop iterations at runtime. This allows
the augmented pipeline to process each loop iteration as fast
as possible without violating memory dependencies. We use a
parametric polyhedral analysis to generate the control logic for
when to safely run all loop iterations in the pipeline and when to
break the pipeline execution to resolve memory conflicts. Our
techniques have been prototyped in an automated source-to-
source code transformation framework, with Xilinx Vivado HLS,
a leading HLS tool, as the RTL generation backend. Over a
suite of benchmarks, experiments show that our optimization
can implement optimised pipelines at almost the same clock speed
as without our transformations, running approximately 3.7-10×
faster, with a reasonable resource overhead.

Index Terms—High-level synthesis, loop pipelining, polyhedral
model, FPGA, reconfigurable computing

I. INTRODUCTION

The continual improvement of field-programmable gate
array (FPGA) technology has led to an increasing desire to
use such devices for compute. High-level synthesis (HLS)
tools have recently reached commercial maturity, and are
now a stable technology, enabling high hardware design
productivity. State-of-the-art HLS tools like Xilinx Vivado
HLS [1], Intel FPGA SDK for OpenCL [2] and LegUp [3]
are able to synthesize programs written in high-level lan-
guages like C/C++/OpenCL into hardware designs described
in VHDL/Verilog. Hardware architectures are automatically
optimized and synthesized in the process.

For many applications, there is still a considerable gap
between the quality of results produced by HLS tools and those
obtained through manual optimization of an RTL hardware
design. Computational bottlenecks are typically located in
some critical loops of high-level programs, and hence loop
pipelining has emerged as one of the preeminent optimiza-
tion techniques in HLS. Loop-pipelining techniques work

by automatically detecting when a loop iteration does not
depend on its predecessors, and hence can begin executing
before its predecessors have completed. However, complex
inter-iteration dependencies can hinder this process, and cause
existing HLS tools to take an overly conservative approach to
scheduling. The optimization method presented in this paper
aims to make high-performance loop pipelining possible for
the loops having uncertain dependencies (i.e., parameterised
by an undetermined variable) and/or non-uniform dependen-
cies (i.e., varying between loop iterations).
for (i=0; i<N; i++)
A[i+m] = A[i] + 0.5f;

Listing 1: Motivational loop with uncertain dependency.

The motivational loop shown in Listing 1 contains a pa-
rameterised affine recurrence equation [4]. In this loop, there
is an undetermined variable m in the write access pattern
of array A. The loop iterator i ranges from zero to N − 1,
where N is constant. The value of m is not known at compile
time. Therefore, the sequence of write accesses to elements
of array A cannot be completely determined. Indeed, whether
the loop can be pipelined actually depends on the value of
the parameter m, as illustrated in Fig. 1. When m = 0,
there is no memory dependency in the loop execution as
shown in Fig. 1(a). When m = 1, the result of each iteration
has to be generated before the start of the next iteration,
which implies an inter-iteration dependency (also known as
a recurrence). As shown in Fig. 1(b), loop pipelining with
an initiation interval of one cycle would violate the read-
after-write (RAW) dependency. When m ≥ 3, there will be
no recurrence violation in the pipeline as shown in Fig. 1(c).
This uncertain data dependency prevents existing HLS tools
from exploiting loop pipelining by default, because they only
support a fixed initiation interval. As a result, a sequential
pipeline schedule will be synthesised for this loop.

Our optimization presented in this paper enables the stati-
cally scheduled pipeline to run at dynamic speed. This is the
basic idea of our approach: implement the pipeline scheduled
for the smallest initiation interval and throttle the execution
of loop iterations according to a compile-time dependency
analysis. To understand when the pipeline needs to slow down,
we use parametric polyhedral analysis to firstly synthesise a
lightweight runtime check, such as 1 ≤ m ≤ 2 for Listing 1
according to Fig. 1. The demonstration of this analysis is

2

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9
read
write
one loop iteration
violated dependency
respected dependency

Clock cycle

A
rr

ay
in

de
x

(a) m = 0

1 2 3 4 5 6 7 8

Clock cycle

(b) m = 1

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

Clock cycle

(c) m = 3

Fig. 1: The impact of the undetermined variable m on fully pipelining the loop shown in Listing 1. We assume that N = 6,
and the iteration latency is 3 cycles.

0
1

m− 1
m

m+ 1

2m− 1
2m

2m+ 1

3m− 1

br
ea

k

br
ea

k. .
.

. .
.

read
write
respected dependency

Clock cycle

A
rr

ay
in

de
x

Fig. 2: Breaking the pipeline execution at (m+1)th and (2m+
1)th iterations, when the loop shown in Listing 1 is running
at initiation interval of one cycle.

preliminarily presented in [5] as parametric loop pipelining.
When there exist memory conflicts that have to be resolved,
the polyhedral analysis is further used to synthesise the
pipeline break points. As demonstrated in Fig. 2, we can break
the pipeline execution at the (m + 1)th iteration (i = m)
to resolve the RAW conflict like those shown in Fig. 1b;
nevertheless, the next potential conflict will happen at the
(2m+1)th iteration (i = 2m). To keep the pipeline of Listing 1
as busy as possible, we need to halt its execution after every
m iterations when the memory conflicts appear. The strategy
of breaking the pipeline execution can also optimize loops
with non-uniform memory dependencies, which can appear in
many applications such as matrix decomposition and triangular
matrix computation. In these applications, the critical loops
have memory dependencies that are statically analysable but
vary with the value of the induction variable. An example
of such a loop is shown in Listing 2. These loops can be
optimized by loop splitting, first proposed in [6].

We implement the proposed optimization as a source-to-
source code transformation applied before invoking a com-
mercial HLS tool. The lightweight runtime throttle check and
the pipeline breaks can be introduced, alongside appropriate
loop-pipelining directives, to guide HLS to implement the
desired pipeline architecture. Therefore, our transformation is

for (i=0; i<N; i++)
A[2*i] = A[i] + 0.5f;

Listing 2: Motivational loop with non-uniform dependency.

also flexible enough to be applied to different HLS tools. The
rest of this paper explains how our optimization approach can
be generalized and automated in a prototype flow.

In particular, we make the following contributions:
• We formulate the problem with a general parametric poly-

hedral model, allowing us to precisely characterize the inter-
iteration dependencies from both uncertain and non-uniform
memory access patterns.

• We develop an algorithm that can generate the conflict
region of parameters which is used as the runtime check to
decide when a high-throughput pipelined schedule (i.e. loop
pipelining with a low initiation interval) can be achieved
without violating memory conflicts.

• We develop a polyhedral transformation that realises the
efficient insertion of pipeline breaks for HLS.

• We implement our entire optimization as a fully automated
source-to-source code transformation framework, which is
compatible with, and builds on top of Vivado HLS. This
tool is open-source in a public Github repository.1

The remainder of this paper is organized as follows. Sec-
tion II presents related work in HLS. Section III gives a
motivational example and its analysis for loop pipelining with
uncertain variables. Section IV describes the formulation of
our parametric polyhedral analysis, transformation and its im-
plementation details. Section V presents the benchmarks and
experimental results, and conclusions are drawn in Section VI.

II. RELATED WORK

Loop pipelining, known in software compilers as ‘software
pipelining’, was originally designed for Very Long Instruc-

1https://github.com/Junyi-Liu/Potholes

3

tion Word (VLIW) processor architectures [7]. When loops
can be shown to be free of inter-iteration dependencies,
the instructions from several iterations can be unrolled and
interleaved to mitigate the impact of long intra-iteration de-
pendencies between instructions. The technique can ensure
memory bandwidth is effectively utilized by keeping multiple
memory operations inflight at once. For VLIW machines,
independent operations can be scheduled on a fixed number of
parallel computational units. Classical compilation techniques
like Iterative Modulo Scheduling [8] can find an effective
time-space mapping to the fixed computational units within
a processor.

A. Static Scheduling for Loop Pipelining

Where loop pipelining is applied in the context of an
HLS tool, we have the additional freedom to select how
many computational units we wish to implement. A trade-
off can be made between the number of dependent operations
chained within a single clock cycle, and the minimum clock-
period of an implementation. Zhang et al. [9] propose a
sophisticated approach to exploit this, which captures the
dependent operations and their associated latency, and models
resource and clock frequency requirements. The ‘System of
Difference Constraints’ that they establish can be solved
efficiently to explore a range of schedules achieving different
area-time trade-offs. The approach by Canis et al. [10] further
improves the method by trying to reduce the latency between
inter-iteration dependent memory accesses. Their recurrence
minimization helps to increase the likelihood of achieving
higher parallelism. In both of these works, the authors rely on
knowing, at compile time, all the dependencies that exist be-
tween operations. Where parameters are uncertain and there is
the possibility of loop-carried dependencies, their approaches
must adopt a conservative schedule that assumes iterations
contain recurrences. Our work overcomes this conservatism
by selecting from different schedules at runtime, when the
values of all parameters are known.

B. Polyhedral-based Transformation for Loop Pipelining

Among other recent efforts to optimize loop pipelining for
HLS, polyhedral analysis has frequently been used. Morvan et
al. [11] propose a method using polyhedral analysis to improve
nested loop pipelining. To overcome conflicts of memory
dependencies in a pipeline, their approach firstly flattens the
nested loop and then inserts wait states (‘bubbles’) to resolve
memory conflicts. However, their bubble insertion requires that
there is no conflict of memory dependencies in the innermost
loop. Unlike their approach, our optimization can be applied
at the innermost loop level, and it is developed for the nested
loops with uncertain and/or non-uniform memory dependen-
cies. Li et al. [12] introduced an index-set splitting technique
on top of classical affine loop transformations [13] to improve
inner-loop parallelism. The index-set splitting is used for non-
uniform memory dependencies and limited memory ports. In
the first case, their approach directly separates the innermost
loop into several sub-loops according its dependence patterns.
Then, fast pipelining is applied on those sub-loops without

any dependency. Similarly, in the second case, the parallel
innermost loop is split into sub-loops according to different
memory port conflict properties. The generated sub-loops can
be pipelined at the inner loop with the best possible paral-
lelism, so that the execution speed of the entire loop will not be
limited by the worst property. However, our splitting technique
is different from separating out loop iterations with irregular
memory dependencies, because the purpose of our splitting is
to insert the pipeline breaks for resolving memory conflicts
when necessary. After our fine-grained transformation, we
could apply fast pipelining on all the sub-loops split from the
original loop.

C. Irregular Loop Pipelining

Besides regular loop structures, there are active HLS re-
search efforts investigating pipelining for loops with irregular
Tan et al. [14] describe an approach called ElasticFlow to
apply loop pipelining on a class of irregular loop nests. In their
proposed pipeline architecture, multiple pipeline instances of
dynamic-bound inner loop are scheduled to execute in parallel,
so that this approach prefers no inter-iteration dependencies in
the outer loops. Our work is targeted to a different set of irreg-
ular loops from those of ElasticFlow, where we improve the
pipeline parallelism by analysing inter-iteration dependencies.
Alle et al. [15] implement a compilation method that trans-
forms loops with dynamic data dependencies into specialized
pipeline architectures. They add disambiguation logic in the
hardware pipelines that can fully analyse the inter-iteration
dependency at runtime. Dai et al. [16] propose the integration
of a template hazard resolution unit in HLS to resolve runtime
conflicts on memory ports and data dependencies caused
by indirect or conditional memory accesses. The pipeline is
executed speculatively with a small initiation interval, and
it will replay some iterations when a memory conflict is
detected. For both [15], [16], the hardware complexity of
the runtime detection circuits is proportional to the number
of dependent memory accesses and the depth of the pipeline
stages. Although these techniques are also able to optimize our
target loops, we apply more comprehensive static analysis to
generate efficient and lightweight logic to control the pipeline
execution at runtime.

D. Polyhedral Model for Memory Optimisation

Polyhedral optimization has been widely studied as an
optimization tool for modern software compilers [17], [18].
In recent years, it has also been applied for optimizing
custom memory systems of loop programs in HLS research.
Liu et al. [19] proposed a mathematical formalization and
an algorithm to implement minimized on-chip data reuse
buffers in FPGA designs. Considering SDRAM as the off-chip
memory in a common FPGA system, Bayliss et al. [20] im-
plemented a polyhedral tool to produce address sequencers for
an SDRAM interface to optimize off-chip memory bandwidth.
Pouchet et al. [21] proposed another automated polyhedral
HLS framework for better data reuse that combines loop
transformations. Wang et al. [22] introduced a polyhedral
theory and algorithm for generalized memory partitioning.

4

These previous works apply polyhedral analysis to study
memory reuse or partitioning problems for improving loop
latency and parallelism. In this work, we focus on developing
a new parametric polyhedral analysis for both uncertain and
non-uniform memory dependencies, enabling us to pursue
aggressive loop pipelining that is not yet possible in modern
HLS tools.

E. Extending the Polyhedral Model for Software Compilation

Polyhedral analysis and transformations can realize pow-
erful optimizations because the underlying loop manipula-
tion can be precisely expressed by algebraic representations.
Unfortunately, using the polyhedral model also restricts the
input program to be statically analysable. To overcome the
limitation of static analysis, there are several ways to ex-
tend the applicability of polyhedral model. In [23], Ben-
abderrahmane et al. developed an approach that extends
polyhedral expressibility by over approximation. Predication
statements are used to handle non-affine conditionals and
loop bounds, so that general programs can be converted into
the polyhedral model for analysis and transformations. To
eliminate pessimistic conservatism, some approaches leverage
runtime information to enable dynamic exploitation of loop
parallelism. Jimborean et al. [24] and Sukumaran-Rajam et
al. [25] have developed comprehensive speculative execution
frameworks, where polyhedral transformations are used to
promote parallelism at runtime. Alternatively, Venka et al. [26]
proposed to use a dedicated inspector to support non-affine
transformations at runtime. Index arrays in loop bounds and
memory accesses are represented by uninterpreted functions
in static analysis, and both affine and non-affine loop transfor-
mations are composed to increase loop parallelism effectively.
More recently, loop versioning using polyhedral techniques is
shown to improve compiler-based loop transformations with
low overhead. Doerfert et al. [27] have developed a framework
to derive a minimized set of preconditions, so that a variety
of complex loop transformations can be enabled at runtime
according to the validation of these preconditions. Similarly,
Sampaio et al. [28] proposed a quantifier elimination scheme
that combines static test generation and runtime evaluation to
trigger appropriate loop transformations.

III. MOTIVATION

A. Loop Pipelining

Loop pipelining is implemented by overlapping the execu-
tion of loop iterations. The logical operations within succes-
sive loops are mapped to hardware resources. The mapping
must ensure that each hardware resource only executes one
operation in each clock cycle. Where read-after-write loop-
dependencies exist in the original code (a value is written
in one iteration and read in a subsequent iteration), a static
pipeline schedule must be constrained to preserve these depen-
dencies. The constant interval between the start of successive
iterations is called the initiation interval (II), and reflects the
degree of parallelism, in the sense that for the same latency, a
pipeline with smaller II has more iterations running in parallel
at any given clock cycle.

If we denote the latencies of the operations executed before
the loop body and of a single loop iteration by Lpre and Liter
respectively, and the loop trip count is N , then the latency of
the entire loop is equal to

Lpre + Liter + (N − 1)× II. (1)

When N is large enough, this latency is approximately equal
to N × II . Therefore, the performance of a loop is mainly
determined by its II .

To achieve a small II for loop pipelining, HLS tools need to
solve complex scheduling problems [9], [10]. Unlike resource
constraints that may vary with the requirements of different
hardware implementations, iteration-dependency constraints
are quite intrinsic. A complex dependency constraint could
significantly constrain our ability to reduce the II of a loop
pipeline.

As an example, Fig. 3(a) and Fig. 3(b) illustrate two
potential loop pipelining strategies with fixed IIs for the
motivational loop shown in Listing 1. We still assume that
the latency of each iteration is 3 clock cycles. Since there is
an uncertain variable in the memory access pattern, the write
reference of array A in the current iteration may be the same as
the read reference of array A in a future overlapped iteration,
which happens in Fig. 1(b). Due to this uncertain memory
dependency, the best case of loop pipelining shown in Fig. 3(a)
cannot be achieved with modern HLS tools. Current HLS
tools will choose a conservative solution, in order to ensure
correctness for all cases. We show this conservative solution
in Fig. 3(b). Here, the possibility of a memory dependency
between successive iterations prevents any loop pipelining
with a fixed II .

B. Memory Dependence Analysis

With our parametric polyhedral analysis in Section IV, we
wish to formally describe the memory dependencies in a
nested loop so that we can determine when and in which
pattern memory conflicts may happen. Here, we present an
intuitive illustration of the analysis process with the one-
dimensional loop shown in Listing 1. This process will be
generalised and formalised in Section IV.

To analyse the memory dependencies of a loop, we need to
formally model the memory access sequence. These patterns
are described by array indexing functions and loop bounds,
in which parameter (uncertain) variables may participate. We
denote the vector of parameter variables by p. The loop bounds
determine an iteration space for all memory accesses inside
the loop. The dimension of the iteration space is equal to the
number of loop iterators. Affine indexing functions map the
iteration vectors v from the iteration space to the elements of
each array in the loop. For example, p = [m] and v = [i]
in Listing 1.

For each separate array from the source code, we can form
two sets of indexing functions, one containing all the read
accesses and the other all the write accesses. The Cartesian
product of these two sets is a set of paired indexing functions.
Two paired accesses are dependent if and only if the address
written in the current iteration will be read in a future iteration.

5

i

t

iteration

cycle
Read
A[i]

Write
A[i+m]ADD

t+1 t+2

i+1
Read
A[i+1]

Write
A[i+1+m]

Read
A[i+2] ADDi+2

t+3

ADD

(a) Unsafe II .

i

t

iteration

cycle
Read
A[i]

Write
A[i+m]ADD

t+1 t+2

i+1
Read
A[i+1]

t+3

(b) Conservative and safe II .

Read
A[i+...]

i

t

iteration

cycle
Read
A[i]

Write
A[i+m]. . .

t+L-1

i+d(m,i)

Read
A[i+2]

II Read
A[i+1]

L Read
A[i+d(m,i)]

(c) The conflict region of d(m, i).

Fig. 3: Pipelining strategy for the loop shown in Listing 1.

The dependence iteration distance d(p, v) is the smallest num-
ber of iterations between the execution of two such dependent
data accesses, which can be derived from their affine indexing
functions. Since the dependence iteration distance may vary in
our target loops, we can evaluate the conflict region of d(p, v),
which will lead a read access to run before the completion of
its dependent write access during the pipeline execution.

As shown in Fig. 3(c), we have d(m, i) as the dependence
iteration distance for the loop shown in Listing 1. The red
dashed arrow indicates that the write access A[i+m] from
iteration i has its first dependent read access A[i+d(m, i)]
running at iteration i + d(m, i). To analyse this memory
dependency, we can obtain d(m, i) = m. According to the
given loop scheduling, the latency L is the period when the
execution of the dependent read access will violate the inter-
iteration memory dependency. In other words, A[i+d(m, i)]
cannot be any grey read access shown in Fig. 3(c). If the target
initiation interval is equal to II , there will be d LII e iterations
being processed in the pipeline during the latency L. Thus, we
could derive the cases in which the dependent read access will
be executed in this period under the current pipeline schedule.
In these cases, d(m, i) will satisfy the conditions in (2), which
denotes its conflict region.

1 ≤ d(m, i) ≤
⌈
L

II

⌉
− 1 (2)

Intuitively, when d(m, i) does not satisfy these conditions, no
memory conflicts will happen in the given pipeline schedule.
There will be either no memory dependency between a write
and a future read (such as Fig. 1a) or enough iterations
between them (such as Fig. 1c). According to Fig. 3(c), we
obtain the conflict region as 1 ≤ m ≤ 2 based on (2), where
L = 3 and II = 1.

C. Proposed Loop Transformation

In current HLS tools, only the worst case of uncertain
and non-uniform memory dependencies is considered for loop
pipelining. This leads a static pipeline schedule to have a large
and conservative II . As illustrated in Listing 3, we propose a
source-to-source code transformation, which will guide HLS
tools to implement the pipeline as shown in Fig. 4.

Before the loop starts, the conflict region is firstly evaluated
by the if-condition derived from (2). These conditions will

// Conflict region detection
if (m >= 1 && m <= 2) {
// Split execution
for (k=0; k<N; k=k+m)
// inner loop: force pipelining with II=1
for (i=k; i<=min(N-1,k+m-1); i++)

A[i+m] = A[i] + 0.5f;
}
else {
// Fast execution
// force pipelining with II=1
for (i=0; i<N; i++)
A[i+m] = A[i] + 0.5f;

}

Listing 3: Source-to-source code transformation of the moti-
vational loop shown in Listing 1.

be synthesised into lightweight detection logic by HLS. The
output of this detector will enable different pipeline execution
modes. When the conflict region is not satisfied, the loop
will be executed in the else-branch which is realised as a
pipeline with II = 1. Otherwise, the loop will be executed
with pipeline breaks in the then-branch. The pipeline breaks
are realised by inserting a loop dimension outside the original
loop. The step size of the new outer loop is determined by the
dependence iteration distance d(m, i) = m. The inner loop,
which is the original loop, is also forced to be scheduled with
II = 1. Like the runtime execution shown in Fig. 2, the split
controller will still run the loop in a fast speed but pause the
pipeline input after every m iterations are issued. The analysis
can prove that there will be no memory conflict because the
data written within the inner loop will be read only after the
pipeline break.

In Fig. 4, the data paths of both execution modes are all
statically scheduled with the smallest II . The related HLS
directives (pragmas in Vivado HLS) are inserted in the real
code. Their associated address generators (Addr Gen) are in
charge of calculating array indices. Although the hardware
logic appears to be duplicated in the pipeline body, they are in
different branches of an if-condition. We therefore let the HLS
tools decide how to exploit resource sharing for better timing
or less resource overhead in the physical implementation. This
also makes the transformation unrelated to any specific code
tuning for resource sharing but flexible to support different
HLS tools.

6

Conflict Region
Detector

Fast Controller

Split Controller

FSM

Memory

Data Path

Pipeline Body

Data Path

Addr Gen

Addr Gen

Fig. 4: Conceptual pipeline architecture.

IV. POLYHEDRAL OPTIMIZATION

In this section, we firstly give an introduction to our polyhe-
dral model formulation in Section IV-A. After the introduction,
we further formulate the parametric polyhedral analysis of the
memory dependences in Section IV-B. To generate the conflict
region, we present an algorithm based on the analysis in Sec-
tion IV-C. Then in Section IV-D, we propose a polyhedral
transformation for loop splitting. Finally, a source-to-source
code transformation framework is introduced in Section IV-E,
which is created to integrate our optimization method into
existing HLS tools.

A. Preliminaries

The input of our analysis is a nested loop with dI dimen-
sions. In previous sections, we use the one-dimensional loop
shown in Listing 1 to illustrate the idea of our analysis and
transformation. In modern HLS tools like Vivado HLS, loop
flattening (also known as loop coalescing) is enabled before
the pipeline scheduling by default [1]. This transforms a multi-
dimensional loop into a single-dimensional loop, so that the
entire nested loop can be pipelined to achieve better throughput
than just pipelining the innermost loop. Therefore, we aim
to optimize the pipelining of the entire nested loop that will
be flattened in the HLS backend. The theoretical background
of our parametric polyhedral analysis can be found in [29].
Beyond the previous work, our optimizations in this paper are
developed with the specific use of parameter properties in the
polyhedral model.

In a given nested loop, there are Npair pairs of memory
accesses visiting the same arrays. Our analysis is described be-
low as capturing RAW memory conflicts, but can also support
other memory dependencies. The undetermined variables in
the memory accesses can be represented by a parameter vector
p ∈ P, where P ⊆ ZdP represents potentially known ranges
of these variables and dP is the number of undetermined
variables. It is noteworthy that a parameter can also be
an indirect array access whose index is not related to any
induction variable of the given loop nest. If such indirect array
access can be profiled statically, we can obtain its P to have
a more accurate analysis. In this paper, we use the superscript
p to indicate a dependence on parameters.

for (i = 0; i < 100; i++)
for (j = 0; j < 2; j++)
A[2*i+m][j] = A[i][j] + 0.5f;

Listing 4: The nested loop used as a walk-through example

Definition 1 (Iteration Domain). Given a dI -dimensional loop
nest, the iteration domain Dp is a parametric set of vectors
of the form:

Dp =
{
v ∈ ZdI

∣∣ Ax ≤ b where x = [vT , pT]T
}
,

where v is the iteration vector of dI induction variables. The
inequality system represents the bounds for all loop levels,
where A is a rational matrix and b is a rational vector.

The nested loop shown in Listing 4 is a walk-through
example, where m is the undetermined variable appearing in
write access of array A. This loop has an uncertain and non-
uniform memory dependency. We have x = [i,j,m]T , and
the inequality constraint defining its Dp is shown below.

−1 0 0

1 0 0

0 −1 0

0 1 0

︸ ︷︷ ︸

A

ij
m

︸︷︷︸
x

≤

0

99

0

1

︸ ︷︷ ︸
b

.

Definition 2 (Lexicographic Order). Given two iteration vec-
tors v = [v0, v1, . . . , vdI−1]T and v′ = [v′0, v

′
1, . . . , v

′
dI−1]T in

Dp, v′ � v holds if and only if

∃0 ≤ i < dI ,∀0 ≤ j < i, v′i > vi ∧ v′j = vj .

This lexicographic order on v represents the execution order
of loop iterations, which means that v′ is executed after v in
the pipeline.

For example, we have [0, 1]T � [0, 0]T and also [1, 0]T �
[0, 1]T in the two-dimensional loop shown in Listing 4.

Definition 3 (Array Indexing Expression). An array indexing
expression f(v, p) is an affine function that transforms the
vectors from an iteration domain into the dD-dimensional
index of a data array. In this paper, f(v, p) is assumed to
take the general affine form:

y = f(v, p) = Afv +Bfp+ cf ,

where y ∈ ZdD is a vector of data array indices, and
v ∈ Dp. Af ∈ ZdD×dI and Bf ∈ ZdD×dP are rational
coefficient matrices, and cf ∈ ZdD is a rational constant
vector. This expression indicates which element of the data
array is accessed at a given iteration.

For example, the memory write access A[2*i+m][j]
in Listing 4 has an affine function of the array index vector
y = [2i + m,j]T , where[

2i + m

j

]
︸ ︷︷ ︸

y

=

[
2 0

0 1

]
︸ ︷︷ ︸
Af

[
i

j

]
︸︷︷︸
v

+

[
1

0

]
︸︷︷︸
Bf

[
m
]

︸︷︷︸
p

.

7

Definition 4 (Iteration Dependency Map). Given the kth pair
of write and read accesses to the same array, the iteration
dependency map Qpk links write and read iterations in Dp
such that

Qpk =

{ (
v

v′

)
wk(v, p) = rk(v′, p)

∧ v′ � v ∧ v ∈ Dp ∧ v′ ∈ Dp

}
,

where v and v′ represent the source and sink iteration vectors
respectively. wk(v, p) and rk(v′, p) are the array indexing
expressions of the dependent write and read accesses. The
equality constraint, wk(v, p) = rk(v′, p), can be expanded
into the form:

Awv +Bwp+ cw = Arv
′ +Brp+ cr. (3)

An element in Qp indicates that two iterations access the same
data element in Dp, i.e. signifies the possible presence of a
read-after-write memory dependence.

For example, the equality constraint of the iteration depen-
dency map in Listing 4 is[

2 0

0 1

]
︸ ︷︷ ︸
Aw

[
i

j

]
︸︷︷︸
v

+

[
1

0

]
︸︷︷︸
Bw

[
m
]

︸︷︷︸
p

=

[
1 0

0 1

]
︸ ︷︷ ︸

Ar

[
i’

j’

]
︸ ︷︷ ︸
v′

.

In practice, the equality constraint in Qpk may be piece-
wise affine when there are conditions in loop bounds or
around memory accesses. For space reasons, we assume the
equality constraint is always affine in this paper, but our
implementation also supports the piece-wise case.

B. Parametric Polyhedral Analysis

1) Memory conflicts in loop pipelining: As mentioned
in Section III, the loop transformation is affected by both
inter-iteration memory dependencies and pipeline scheduling.
The information about pipeline scheduling is assumed to
be available for our analysis. To formally evaluate memory
conflicts in loop pipelining, we need to determine which
iterations will violate memory dependencies.

Definition 5 (Conflict Domain). Given an iteration depen-
dency map Qpk, target initiation interval II and scheduled la-
tency Lk between the kth pair of dependent memory accesses,
the conflict domain Spk is a parametric set of iteration vectors
in Dp such that

Spk =

{
v

(∃v′, (v, v′) ∈ Qpk)

∧ Ip (Zpk(v))− Ip(v) ≤
⌈
Lk
II

⌉
− 1

}
,

where
Zpk(v) = lexmin

({
v′
∣∣ (v, v′) ∈ Qpk

})
, (4)

which generates the lexicographically minimum point of v′

linked to v based on the equality constraint (3) in Qpk, and

Ip(v) = #
{
u
∣∣ u ∈ Dp ∧ v � u} , (5)

which counts the number of iterations that are executed
before the iteration v. In general, Ip(v) can be expressed
as a parametric pseudo-polynomial, as known as an Ehrhart

polynomial, that counts the integer points of a parametric
polytope [30]. Similar to (2), the inequality condition checks
the existence of memory conflicts based on given pipeline
scheduling.

As shown in Def. 5, the conflict domain Spk includes the
iterations that will violate memory dependencies when the
nested loop is flattened and pipelined with the target II . To
include the dependencies implied from all pairs of dependent
accesses, the global conflict domain, Spconf =

⋃Npair

k=1 S
p
k , is

the union of all Spk .
2) Constructing the conflict domain: In this work, we use

the Integer Set Library (isl) [31] to construct and analyse the
parametric polyhedral models. The general form of Ip(v) is a
parametric pseudo-polynomial, which are representable with
isl. However, sophisticated analysis of parametric pseudo-
polynomial is limited in isl. Intuitively, Ip (Zpk(v))− Ip(v)
calculates the smallest number of iterations between v and v′.
Morvan et al.[11] estimated the lower bound of counting
iterations between v and Zpk(v) to check pipeline legality for
nested loops, but this bound was mentioned to be not always
tight and is not parametric. As a compromise, we limit the
form of Ip (Zpk(v)) − Ip(v) to be an affine expression so
that isl can be used to count iterations parametrically for
sophisticated integer set analysis.

In our following implementation, the memory dependencies
incurred by (v, v′) ∈ Dp leads (5) to count the integer points
in a rectangular subset of Dp, such that

dk(v) = Ip (Zpk(v))− Ip(v) = sT (Zpk(v)− v).

For a given value of v, sT v can be interpreted as the “time
stamp” within the sequence of all loop iterations, at which
the iteration v begins processing. To obtain dk(v), we firstly
generate the difference of iteration vectors, which is Zpk(v)−v,
with Qpk.

Definition 6 (Dependence Difference). Given an iteration
dependency map Qp, the dependence difference δpk(v) is an
affine expression indicating the vector difference from v to
Zpk(v) with the following form.

δpk(v) = Zpk(v)− v = Aδv +Bδp+ cδ, (6)

where Aδ ∈ ZdI×dI and Bδ ∈ ZdI×dP are rational coefficient
matrices, and cδ ∈ ZdI is a constant vector. It is noteworthy
that δpk(v) is always single-valued due to the lexicographic
optimization applied to obtain Zpk(v).

For example, we can derive the following dependence
difference from the write and read accesses in Listing 4.[

i’− i

j’− j

]
︸ ︷︷ ︸
Zp(v)−v

=

[
i + m

0

]
︸ ︷︷ ︸
δp(v)

=

[
1 0

0 0

]
︸ ︷︷ ︸

Aδ

[
i

j

]
︸︷︷︸
v

+

[
1

0

]
︸︷︷︸
Bδ

[
m
]

︸︷︷︸
p

.

In general, s = [s0, s1, . . . , sdI−2, 1]
T and sj represents the

number of iterations of the inner loops under the jth dimension
of the nested loop. Given a rectangular loop nest, we can
calculate sj = ΠdI−1

i=j+1ti, where ti represents the trip count of
the ith loop dimension. For the nested loop in Listing 4, we

8

1

j

2 5 99. . .3 40 i

v Z
p(v)

Fig. 5: The calculation of d(v) for the example loop shown
in Listing 4. Each dot is one integer point and represents
one iteration. If we count after iteration v, there are 6 points
including Zp(v) in the blue area when v = [2, 1]T and m = 1.

have s = [2×1, 1]T , so that its d(v) = sT δp(v) = 2i+2m. An
example of counting integer points is shown in Fig. 5. When
v = [2, 1]T and m = 1, we have d(v) = 2 × 2 + 2 × 1 = 6,
which gives the same counting result as illustrated in Fig. 5.

3) Supported cases: In this paper, we aim to analyse the
nested loop with the iteration domain as defined in Def. 1.
However, as mentioned before, our analysis requires that
dk(v) needs to be an affine expression due to the limitation
of isl. Since dk(v) is the dot product of s and δpk(v) =[
δpk,0, δ

p
k,1, . . . , δ

p
k,dI−1

]T
, we need to ensure that the product

of ΠdI−1
i=j+1ti and δpk,j is also affine, where 0 ≤ j < dI . The

nested loops supported by our analysis can have undetermined
bounds (i.e. trip count ti can be parametric) or non-rectangular
iteration space (i.e. trip count ti can vary with outer loop
iterators). Here, we provide a summary of the supported cases
of calculating dk(v).

• Rectangular case. If every loop level has a uniform trip
count (which means that

dk(v) =
[
ΠdI−1
i=1 ti, ΠdI−1

i=2 ti, . . . , tdI−1, 1
]
δpk(v)

holds), then there must be at most one dimension (say, j)
with a parametric trip count, and the dependence differ-
ence at every dimension outside j must be constant (i.e.,
∀0 ≤ i < j, δpk,i is constant). An example is shown in the
following loop,

for (i=0; i<10; i++)
for (j=a; j<b; i++)

A[i+2][j+m] = A[i][j] + 0.5f;

where d(v) = [b− a, 1][2,m]T = 2b− 2a + m.
• Non-rectangular case. Otherwise, let j be the innermost

level with a trip count varying with some outer loops. Then
every level inside j must have a constant trip count (which
means

dk(v) =
[
. . . ,ΠdI−1

i=j ti, ΠdI−1
i=j+1ti, . . . , tdI−1, 1

]
δpk(v)

holds), the dependence difference at level j−1 must be 0 or
1 (i.e., δpk,j−1 ≤ 1), and the dependence difference at every
level outside j−1 must be 0 (i.e., ∀0 ≤ i < j−1, δpk,i = 0).
An example is shown in the following loop,

for (i=0; i<10; i++)
for (j=a; j<i; i++)

A[i+1][j+m] = A[i][j] + 0.5f;

Algorithm 1 Generate the conflict region
1: Input: loop iteration domain Dp, dependent memory

access pairs, pipeline schedule information, and target II
2: Output: Pconf

3: Psafe ← ZdP
4: for each dependent memory access pair k do
5: Qpk ← ComputeFlow(wk, rk, Dp)
6: Q′p ← LexMin(Qpk)
7: MAffsnk ← TakeMultiAff(Q′p)
8: MAffsrc ← CreateMultiAff(v)
9: MAffδ ← SubMultiAff(MAffsnk , MAffsrc)

10: Affd ← ComputeIterDist(MAffδ , Dp)
11: Spk ← CreateConflictSet(Lk, II, Affd)
12: Pk ← LexOpt(Spk = ∅)
13: Psafe ← Psafe ∩ Pk
14: end for
15: Pconf ← ZdP \ Psafe

where d(v) = [i− a, 1][1,m]T = i− a + m.
For unsupported cases, we can alternatively analyse the

inner loops of the given nested loop. In the worst case, the
innermost loop can always be analysed by our approach,
because we have dk(v) = δpk(v) in a one-dimensional iteration
domain.

C. Conflict Region Generation

Following the analysis in Section III-B, we generate the
conflict region by constructing its complement set in ZdP , i.e.
the safe region. The safe region of the kth pair of dependent
memory accesses is a set of parameter vectors Pk ⊆ P such
that

Pk =
{
p ∈ P

∣∣ Spk = ∅
}
,

which includes all possible parameter values that make the
conflict domain empty. The global safe region Psafe =⋂Npair

k=1 Pk, is the intersection of all local safe regions, and
allows conflict-free pipelining of the entire loop nest.

The main algorithm for generating the conflict region for
a given nested loop is described in Algorithm 1, where we
simplify many operations of the isl library into abstract
functions. This algorithm requires a given pipeline scheduling
and a target II that is relatively small for the short execution
time of the input loop. The iteration domain Dp is also
extracted from the loop beforehand. First, the global safe
region Psafe is initialized as ZdP and further constrained as
the algorithm progresses. Next, in the for-loop (lines 4-14),
we analyse all pairs of possible dependent memory accesses
labelled with k.

In lines 5-6, the iteration dependency map Qpk is generated
and simplified. Function ComputeFlow(wk, rk, Dp) is to create
the equality constraint in (3), which will map the write
access (source) to the read accesses (sink) visiting the same
data point. Both write and read iterations should satisfy that
v ∈ Dp ∧ v′ ∈ Dp. We only need to check the dependency
of the read access in the earliest sink iterations. Therefore,
function LexMin is applied to filter out the lexicographically

9

minimal sink iteration, which is equivalent to Zpk(v) in (4), so
that a simplified dependency map is assigned to Q′p.

The dependence difference δpk(v) is generated in lines 7-
9. From Q′p, a multi-affine function MAffsnk is extracted
in line 7 to represent the multi-dimensional sink iteration
corresponding to Zpk(v), which is a function of source iteration
v and parameter vector p. With the multi-affine function
MAffsrc created for v in line 8, MAffδ is the subtraction
in line 9 between MAffsnk and MAffsrc, which produces the
lexicographically smallest vector difference as the form shown
in (6). In line 10, Affd is computed as the affine expression
sT δpk(v), which is equivalent to (5) counting the integer points
in a rectangular space. At this step, the trip counts of all loop
dimensions are also derived according to the shape and size
of Dp. Then in line 11, we construct the conflict domain Spk
where Lk is the scheduled latency between two dependent
memory accesses in each iteration, similar to the latency L
in Fig. 3(c).

To derive the safe region Pk, we use isl to apply a
lexicographic optimization over Spk . In line 12, the function
LexOpt(Cpk,l = ∅) can efficiently generate the constraints that
specify which parameter values make Spk always empty. The
global safe region Psafe of the input loop is its intersection
with all Pk as shown in line 13. Finally, the global conflict
region Pconf is obtained by ZdP minus Psafe. Similar to (2),
the constraints in Pconf will be used as a if-condition and
synthesised into the lightweight detection logic in Fig. 4.

D. Polyhedral Transformation for Loop Splitting
According to the memory dependency analysis, the iteration

domain Dp is partitioned based on the conflict domain and
dependence difference, when p ∈ Pconf . In general, our
transformation modifies the model of static control parts
(SCoP) [32] that represents the loop programs.

1) Determining the conflict dimension: In order to deter-
mine which dimension of a given nested loop should be split,
each non-zero dependence difference δpk is assessed to locate
the conflict dimension, denoted q, as follows. For each pair of
dependent memory accesses, we firstly locate its local conflict
dimension i. This is the outermost loop level causing memory
dependency through this pair of accesses, that is:

δpk,i 6= 0 and 0 ≤ ∀j < i, δpk,j = 0.

Then, the conflict dimension q is calculated as the largest local
conflict dimension for all 1 ≤ k ≤ Npair. Therefore, when the
loop nest is split at the qth level, all potential memory conflicts
should be resolved.

2) Splitting by conflict domain: The first stage is to apply
fast pipelining on the iterations outside the conflict domain
when p ∈ Pconf . This is realised by partitioning the iteration
domain into three sub-domains at the conflict dimension.
We use lexicographic optimizations to generate the first and
last iterations that have the write accesses initiating memory
conflicts:

lp = lexmin(Spconf), and up = lexmax(Spconf).

In particular, we take the qth elements of lp and up as the
split points at the conflict dimension. These two parametric

for (k=0; k<N; k++){
for (i=k; i<=min(N-1,k+m-1); i++)
A[i+m] = A[i] + 0.5f;

k=k+m-1; }

Listing 5: Alternative form of block-wise splitting

elements are represented as lpq and upq , whose expressions may
be piece-wise affine. The iteration domain Dp is partitioned
along lpq and upq such that

Dp =
⋃

Dp1 =
{
v
∣∣ v ∈ Dp ∧ vq ≤ lpq}

Dp2 =
{
v
∣∣ v ∈ Dp ∧ lpq < vq ≤ upq

}
Dp3 =

{
v
∣∣ v ∈ Dp ∧ upq < vq

} . (7)

These three sub-domains correspond to three sub-loops ex-
ecuted in sequential order. The pipeline break points are
introduced during the transitions between sub-loops, so that the
sub-loops with Dp1 and Dp3 can be fully pipelined by ignoring
loop-carried dependencies.

3) Splitting by dependence difference: The second stage is
to insert pipeline break points in the sub-loop with Dp2 , so
that the pipeline can execute as many iterations in parallel
as possible. These break points are created by splitting the
qth loop level block-wise, and fast pipelining is applied on
the loop blocks. Correspondingly in Dp2 , a new dimension is
inserted between the (q− 1)th and qth dimensions to create a
new iteration domain of the second sub-loop such that

D′p2 =

 v′

v′ = [v0, . . . , vq−1, vblk, vq, . . . , vdI−1]T

∧ [v0, . . . , vq−1, vq, . . . , vdI−1]T ∈ Dp2
∧ lpq < vblk ≤ upq ∧ tblk | (vblk − lpq − 1)

∧ vblk ≤ vq < vblk + tblk

 ,

(8)
where vblk is the induction variable of the inserted dimension,
and tblk represents the trip count of the conflict dimension.
In general, tblk is a piece-wise affine expression with the
following form: tblk = αpvblk + βpp + γp, where αp,
βp and γp are piece-wise constant coefficients. We have
Pconf =

⋃Npiece

i=1 Piconf , and Npiece represents the number of
disjoint parameter sets (i.e. pieces) in the conflict region. In
different Piconf , αp, βp and γp have different values. Thus,
tblk represents a union of minimum positive δpk,q in all disjoint
parameter sets, and for each Piconf , it is derived by

min
{
δpk,q

∣∣ δpk,q > 0 ∧ p ∈ Piconf ∧ 1 ≤ k ≤ Npair

}
.

The divisibility constraint, tblk | (vblk − lpq − 1), can be
represented by existential quantification in isl only when tblk
is a constant. To avoid this limitation, we insert one additional
statement in our SCoP model to explicitly define the stride of
the inserted loop level, which is equivalent to the divisibility
constraint of vblk. With this approach, the alternative form of
the split execution shown in Listing 3 is illustrated in Listing 5,
where induction variable k is incremented by tblk = m after
the execution of the inner loop dimension.

E. Source-to-source Code Transformation

To prototype our new loop optimization and make it com-
patible with an HLS tool, we integrated our analysis algo-

10

Clang
Front-end Parser

Loop Analysis Loop
Transformation

PoThoLeS

Code
Generation

HLS Tool

Integer Set
Library

Clang AST

static control part

RTL code

HLS Tool

C Input Code

Scheduling
InformationPolyhedral

Extraction Tool

Fig. 6: Tool flow for code transformation framework.

rithm into a source-to-source code transformation framework
shown in Fig. 6. In this paper, we select Xilinx Vivado
HLS, which generates hardware architectures from original
and transformed C code, as the RTL generation back-end in
our flow. The HLS tool is firstly used to synthesize the original
loop without considering inter-iteration memory dependencies.
The scheduling information for this pipeline is used for further
analysis. Since Vivado HLS is a commercial tool, we can
only use the tool as a black box without internal detailed
scheduling information. This also means that our approach can
be applied to other RTL generation back-ends. Currently, the
achieved II is extracted from the first synthesis as the target II
in Algorithm 1. We also extract the pipeline latency achieved
from the first synthesis, and assign it to all Lk in Algorithm 1
instead of the scheduled latency between the kth pair of write
and read. This leads Lk to be an upper bound value, which
has the potential to tighten the conflict region.

As shown in Fig. 6, the loop information is captured
by two open-source tools. The Clang front-end parser [33]
generates an abstract syntax tree (AST) from the input C
code. The Polyhedral Extraction Tool (pet) [34] uses isl to
extract the loops as the static control parts (SCoPs) from the
Clang AST. Finally, the transformed C code is generated by
PoTHoLeS [35]. PoTHoLeS is a polyhedral compilation tool
developed by us, which conducts user-specified loop analysis,
transformation and code generation based on isl. This tool
is available in a public Github repository.1

In Fig. 7, we demonstrate the code transformation produced
by our tool. The detection of the conflict region is realised by
the outermost if-condition, which is generated by Algorithm 1.
The fast loop in the else-case is same as the fast execution
shown in Listing 3. The then-case includes three sub-loops
split from the original loop according to (7), which will be

// Original:
for (i = 0; i < 100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 A[2*i+m][j] = A[i][j] + 0.5f;

// Transformed:
if (m >= -97 && m <= 8){
 for (i = 0; i < -m + 1; i++)
 for (j = 0; j <= 1; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
 for (k = max(0, -m + 2); k <= -m + 8; k++){
 for (i = k; i < min(-m + 8, m + 2 * k - 1); i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
 k = k + (m + k - 1);
 }
 for (i = -m + 9; i < 100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;
} else
 for (i = 0; i<100; i++)
 for (j = 0; j < 2; j++)
 #pragma HLS PIPELINE
 #pragma HLS DEPENDENCE variable=A array inter false
 A[2*i+m][j] = A[i][j] + 0.5f;

sub-loop 1

sub-loop 2

sub-loop 3

fast loop

Fig. 7: Demonstration of code transformation.

synthesised into a split controller as shown in Fig. 4. Because
the conflict domain of the original loop is parametrised,
bounds of sub-loops contain m and code macros like min()
and max(). From the original loop, the dependence difference
is correctly recognised as m+i. Memory conflicts are only
related to the iterator i, and thus our tool splits the original
loop at the outer loop dimension. According to (8), a new
loop level is inserted in sub-loop 2 with an induction variable
k, which realises block-wise loop splitting. Since Vivado
HLS cannot apply flattened pipelining on a nested loop with
variable bounds, only the loop dimension inside the inserted
one in sub-loop 2 can be pipelined. Therefore, we leverage
this feature to implement block-wise loop pipelining.

In Vivado HLS, forcing resource sharing can be realised by
replacing the duplicated loop bodies with the same function
call and disabling the feature of function inlining. Such
complementary transformation could be effective to reduce
some resource overhead, but this may also sacrifice the sharing
opportunities across the boundary of function calls. The design
trade-off of resource sharing is both application and tool
specific, which is out of the scope of this paper, and we leave
it for future investigation.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this work, our code transformation framework uses Xilinx
Vivado HLS 2017.2 as the RTL generation backend. The target
FPGA device is a Virtex 7 XC7VX485T. In all experiments,
the target clock period is set to 3ns, which is expected to
produce a balanced trade-off between clock speed and resource
usage. We export generated RTL codes to Xilinx Vivado
Design Suite 2017.2 to collect clock and resource usage
results after RTL synthesis, place and route. Furthermore, all
generated pipelines are tested by C/RTL co-simulation with
dedicated testbenches to confirm functional equivalence with
the original code.

11

TABLE I. The details of the benchmark loops.

Benchmark dI dP
Non-uniform ∃Pconf

Splitting stage Trip Count
dependency by Spconf by δpk(v) in Pconf

dist param 1 1 - X - X 100
dist itr 1 0 X - X X 100

dist itr param 2 1 X X X X 200
row col 2 2 - X - X 6 ∼ 256

pivot 2 2 - - - - -
tri sp slv 1 3 X X X - 2 ∼ 91

adi int 2 3 - X - - ≥ 3

floyd warshall 3 0 X - X - 2097152

B. Benchmarks

We choose eight benchmark loops used in our previous
works [5], [6] for our experimental study. These benchmarks
reflect some typical uncertain and non-uniform memory de-
pendencies, which are usually not covered in a full benchmark
suite like Polybench [36]. All memory arrays contain single
precision floating point numbers. All uncertain variables are
int values, i.e. lie between INT_MIN and INT_MAX as
defined in <limits.h>. The source code of benchmarks,
testbenches, and their transformation used in the experiments
are available in a public Github repository.2

The details of the benchmark loops are summarised in Ta-
ble I. The motivational loops shown in Listings 1, 2 and 4 are
named dist param, dist itr and dist itr param respectively.
The remaining benchmarks are derived from real applica-
tions and other publicly available benchmarks. row col is
a 2D loop having the same inter-iteration dependency as
the example loop shown on page 151 of the user guide of
Xilinx Vivado HLS 2017.2 [1]. pivot is a 2D loop extracted
from the forward reduction step (line 208) in the Gaussian
elimination with pivoting code [37]. tri sp slv is a 1D loop
obtained from a triangular sparse matrix solver, which has
one undetermined iteration causing a memory conflict. adi int
is a 2D loop from Kernel 8 in the Livermore benchmark
suite [38]. floyd warshall is a 3D loop for finding shortest
paths from Polybench [36], which has one fixed iteration
causing a memory conflict in its innermost loop.

C. Performance Improvement

As shown in Table I, various memory dependence patterns
of the benchmarks lead to different optimisation strategies
applied in the transformation. One special case is found in
pivot, where the analysis guarantees that the loop can be
always executed in the fast pipeline. In addition, the conflict
dimension q of adi int is at the innermost loop where δpk,q is
found to be 1, and thus it is not necessary to split this loop in
its conflict region.

Table II provides the detailed results of pipeline perfor-
mance. In this table, columns with the title “Orig” indicate
characteristics of the original pipeline and columns with the
title “Tran” indicate characteristics of the transformed pipeline
implementation. Columns with the title “Fast” indicate the
pipeline performance achieved when the generated lightweight
checks determine lower initiation intervals are safe. Columns

2https://github.com/Junyi-Liu/benchmarks-HLS/tree/master/PolyDLP. The
corresponding commit hash is 40e7e91.

0 2 4 6 8 10 12 14 16 18 20
Dependence difference (= m)

0

5

10

15

20

Cy
cle

s/
Ite

ra
tio

n

Original code
Transformed by PolyDLP
Maximal performance

Fig. 8: The runtime performance evaluation of the transformed
pipeline of dist param as shown in Listing 1.

with the title “Split” indicate the performance when the
pipeline breaks have to be inserted to avoid memory conflict.
Furthermore, “Pre-Loop Cycles” represents the number of
cycles executed before the start of loop body (Lpre) and
“Iteration Cycles” represents the number of cycles for one
loop iteration (Liter).

Following the architecture of the transformed pipeline
shown in Fig. 4, the detector logic should be executed before
the start of the loop body. These additional operations are
observed to double Lpre on average, but they only cost a
few cycles to finish. This indicates that the complexity of the
detector logic is lightweight. Liter is also slightly increased
to support higher parallelism during the pipeline scheduling.
Since the latency of executing the entire loop is calculated
by (1), the impact of Lpre and Liter is often negligible,
especially when the loop body has a large trip count N .

After our proposed transformation, almost all the nested
loops or sub-loops can be safely pipelined by the HLS back-
end tool without considering any inter-iteration dependency.
Across our benchmarks, this allows HLS scheduling to achieve
much smaller II ranging from just 1 to 3 cycles in the
fast mode. These achieved IIs lead to 10× higher peak
performance of the transformed pipelines. To evaluate runtime
performance of the benchmark loops in their conflict region,
we measured loop execution latency with further experiments
in RTL co-simulation. For each loop with uncertain memory
accesses, we generated 100 test cases with random values
of parameters that were ensured to be within the conflict
region. The random tests already cover all combinations of
the parameters in the conflict region. For each test with each
benchmark, we also collected the corresponding loop trip
count and execution latency in clock cycles. Their tested trip
counts are also summarized in Table I. The average cycles per
iteration in Table II shows a 3.7× speed-up of the pipeline
throughput in the conflict region.

D. Analysis of runtime performance

According to Table I, when the loops are split by conflict
domain (Spconf), the transformed loops have an average cy-
cles/iteration close to II , as shown in Table II. In particular,
the second sub-loops of tri sp slv and floyd warshall are
empty, so that there is no further splitting by dependence

12

TABLE II. The improvement of pipeline performance.

Orig Tran ratio Orig Split Fast Orig Split Fast ratio Orig Tran ratio
dist_param 1 2 2.00 12 14 14 12 1 1 0.08 12.0 5.7 0.48

dist_itr 1 1 1.00 14 14 - 14 1 - - 14.0 1.8 0.13

dist_itr_param 1 8 8.00 15 17 17 6 1 1 0.17 6.1 1.7 0.29

row_col 8 9 1.13 15 15 17 12 2 2 0.17 12.2 5.5 0.45

pivot 4 7 1.75 49 - 55 47 - 3 0.06 - - -

tri_sp_slv 1 3 3.00 22 31 30 18 2 2 0.11 18.4 5.2 0.28

adi_int 3 9 3.00 63 65 68 52 52 3 0.06 - - -

floyd_warshall 1 1 1.00 18 20 - 14 2 - - 14.0 2.3 0.16

Geomean 2.03 0.10 0.27

Benchmark
Initiation IntervalIteration CyclesPre-Loop Cycles Avg. Cycles/Iter

TABLE III. Timing and resource overheads of the proposed transformation.

Orig HP Tran ratio Orig HP Tran ratio Orig HP Tran ratio Orig HP Tran ratio Orig Tran ratio
dist_param 2.02 2.02 2.32 1.15 239 268 487 2.04 340 425 595 1.75 2 2 2 1.00 5.80 6.46 1.11

dist_itr 2.02 2.02 2.33 1.15 230 242 400 1.74 405 417 623 1.54 2 2 2 1.00 6.51 1.68 0.26

dist_itr_param 2.72 2.72 2.72 1.00 401 382 1214 3.03 454 538 1209 2.66 3 3 4 1.33 6.59 5.75 0.87

row_col 2.39 2.42 2.59 1.09 809 827 988 1.22 1108 1255 1392 1.26 8 8 8 1.00 23.59 14.19 0.60

pivot 2.32 2.27 2.32 1.00 1409 1441 1435 1.02 2324 2495 2582 1.11 7 7 8 1.14 - - -

tri_sp_slv 3.02 3.01 3.04 1.01 479 501 892 1.86 705 803 1106 1.57 6 6 6 1.00 26.66 14.03 0.53

adi_int 3.35 3.03 2.64 0.79 1202 2691 4328 3.60 1603 4336 5301 3.31 11 23 21 1.91 - - -

floyd_warshall 2.28 2.28 2.90 1.28 477 542 787 1.65 713 862 1092 1.53 2 2 2 1.00 15.20 5.25 0.35

Geomean 1.05 1.87 1.73 1.14 0.55
* Area-Time Product = LUT number × Clock (us) × Avg. Cycles/Iter

Benchmark
LUTClock (ns) FF DSP48E1 Area-Time Product*

difference (δpk(v)) in these loops. The transformed tri sp slv
has a relatively larger cycles/iteration due to its undetermined
loop bounds. When the trip count is too small, the runtime
performance of the transformed pipeline cannot benefit from
the improved parallelism.

For dist param and row col, the entire loop can be
treated as sub-loop 2. In these benchmarks, only splitting by
dependence difference is applied, and pipeline performance
changes with the parameters determined at runtime. We further
evaluated the runtime performance of dist param to illustrate
the speed-up of this splitting stage. Fig. 8 compares two types
of pipeline architectures, where our polyhedral-based dynamic
loop pipeline is denoted by PolyDLP. We also collected the
maximal performance of dist param at different values of m,
which is plotted as a dash line. Each point of the maximal per-
formance is collected from the pipeline synthesised from the
loop whose m is replaced by a constant value. The behaviour
of these pipelines is only correct for their specific values of
m, so that their performance represents the upper bound of
the runtime parallelism. The conflict region of dist param is
1 ≤ m ≤ 13, where the transformed pipeline have the dynamic
breaks inserted at runtime. When m is 1, all iterations have to
be executed sequentially. Due to extra operations added to
support PolyDLP, the transformed pipeline is slower than the
original one only in this case. When m becomes larger, there
are fewer break points inserted in the pipeline execution, and
its runtime performance becomes much closer to the maximal
one. When the loop is executed in the fast mode (where m = 0
or m ≥ 14), the transformed pipeline can achieve the maximal
performance as expected. Therefore, our static analysis and

transformation allows the pipeline to dynamically adjust its
throughput to avoid any memory conflict.

E. Timing and Resource Overhead

As shown in Table III, our transformation has very little im-
pact on the achievable clock period, but it generally increases
the hardware resource usage to achieve higher parallelism.
We also evaluate the design choice of the highest pipeline
parallelism, which is obtained by synthesising the original
loop without considering any inter-iteration dependency. Its
results are shown under the columns with the title “HP”, which
helps us to better understand the effect of resource sharing.
After our transformation, the average increase of Look-up
Tables (LUTs), Flip-Flops (FFs) and DSP blocks is 87%, 73%
and 14% respectively. However, resource overhead is still less
significant than performance improvement even in the conflict
region, as witnessed by a 45% average reduction of the area-
time product.

Due to higher parallelism achieved after the transformation,
more operations are required to work at the same time in
the pipeline bodies shown in Fig. 4. Firstly, besides the
detector logic and the more complex finite state machine, the
increase of LUTs and FFs is mainly caused by the unshared
address generators. These addressing logic mainly consists of
integer arithmetic operators such as adders and multipliers.
Their implementation in our relatively small benchmarks will
cause little resource pressure for modern high-density FPGAs.
Thus, the HLS backend tends to duplicate these operators
across mutually exclusive conditionals in favour of using fewer

13

multiplexers for less routing complexity. In order to eliminate
some unnecessary duplication, resource constraints on integer
multipliers have been added in dist itr param and tri sp slv,
which does not affect other resources or timing. Secondly, the
resource sharing between the floating-point data paths is well
supported by the HLS backend. This can be observed by the
small difference of DSP usages between “HP” and “Tran”, and
thus the increase of DSP blocks is mainly due to the higher
parallelism of the data path.

VI. CONCLUSION

In this paper, we proposed a new optimization method for
a class of loops with uncertain and non-uniform memory
dependencies. The method combines compiler-based analysis
and runtime optimization. The optimized pipelines can execute
the loop iterations as fast as possible, when specific conditions
are detected, or pipeline breaks are inserted at runtime. We
formulate a general parametric polyhedral analysis and trans-
formation for resolving complex memory conflicts in these
pipelines. A source-to-source code transformation framework
is prototyped for evaluating our propose optimisations. With
experiments over a suite of benchmarks, we show that the
transformed pipelines can achieve a 3.7-10× speed-up with a
reasonable resource overhead. In future work, we intend to lift
the restriction of affine expressions in the analysis, allowing for
the better support of indirect memory accesses. Furthermore,
the static pipeline scheduling for HLS can be co-optimised
with our techniques to minimise the resource overhead and
further improve the performance.

ACKNOWLEDGMENTS

The support of the EPSRC grants EP/P010040/1,
EP/I020357/1 and EP/K034448/1, the Royal Academy
of Engineering, and Imagination Technologies is gratefully
acknowledged. The data sets published in this article are
available at http://dx.doi.org/10.5281/zenodo.1069695.

REFERENCES

[1] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis.
[2] Intel, Intel FPGA SDK for OpenCL Programming Guide.
[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Ander-

son, S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for
FPGA-based processor/accelerator systems,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 33–36.

[4] P. Quinton and V. Dongen, “The mapping of linear recurrence equations
on regular arrays,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 1, no. 2, pp. 95–113, 1989.

[5] J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for HLS,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), May 2015, pp. 159–162.

[6] J. Liu, J. Wickerson, and G. A. Constantinides, “Loop splitting for
efficient pipelining in high-level synthesis,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 72–79.

[7] M. Lam, “Software pipelining: An effective scheduling technique for
vliw machines,” SIGPLAN Not., vol. 23, no. 7, pp. 318–328, Jun. 1988.

[8] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th Annual International
Symposium on Microarchitecture, ser. MICRO 27. New York, NY,
USA: ACM, 1994, pp. 63–74.

[9] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in Proceedings of the International Conference on Computer-
Aided Design, ser. ICCAD ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 211–218.

[10] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo SDC schedul-
ing with recurrence minimization in high-level synthesis,” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1–8.

[11] A. Morvan, S. Derrien, and P. Quinton, “Polyhedral bubble insertion:
A method to improve nested loop pipelining for high-level synthesis,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 32, no. 3, 2013.

[12] P. Li and L.-N. Pouchet, “Throughput optimization for high-level
synthesis using resource constraints,” in Int. Workshop on Polyhedral
Compilation Techniques (IMPACT ’14), 2014.

[13] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A prac-
tical automatic polyhedral parallelizer and locality optimizer,” SIGPLAN
Not., vol. 43, no. 6, pp. 101–113, Jun. 2008.

[14] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “Elasticflow: A
complexity-effective approach for pipelining irregular loop nests,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, ser. ICCAD ’15. Piscataway, NJ, USA: IEEE Press,
2015, pp. 78–85.

[15] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis
for loop pipelining in high-level synthesis,” in Proceedings of the 50th
Annual Design Automation Conference, ser. DAC ’13. New York, NY,
USA: ACM, 2013, pp. 51:1–51:10.

[16] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic hazard resolution for pipelining irregular loops in high-
level synthesis,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: ACM, 2017, pp. 189–194.

[17] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly—performing
polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 04, p. 1250010, 2012.

[18] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache,
“Graphite: Polyhedral analyses and optimizations for gcc,” in Proceed-
ings of the 2006 GCC Developers Summit, 2006, p. 2006.

[19] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung,
“Automatic on-chip memory minimization for data reuse,” in Field-
Programmable Custom Computing Machines, 2007. FCCM 2007. 15th
Annual IEEE Symposium on, April 2007, pp. 251–260.

[20] S. Bayliss and G. A. Constantinides, “Optimizing SDRAM bandwidth
for custom FPGA loop accelerators,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’12. New York, NY, USA: ACM, 2012, pp. 195–204.

[21] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’13. New York, NY, USA: ACM, 2013, pp. 29–38.

[22] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in Proceedings of the
2014 ACM/SIGDA International Symposium on Field-programmable
Gate Arrays, ser. FPGA ’14. New York, NY, USA: ACM, 2014, pp.
199–208.

[23] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul,
“The polyhedral model is more widely applicable than you think,”
in Proceedings of the 19th Joint European Conference on Theory
and Practice of Software, International Conference on Compiler
Construction, ser. CC’10/ETAPS’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 283–303. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-11970-5 16

[24] A. Jimborean, P. Clauss, J.-F. Dollinger, V. Loechner, and J. M.
Martinez Caamaño, “Dynamic and speculative polyhedral parallelization
using compiler-generated skeletons,” Int. J. Parallel Program.,
vol. 42, no. 4, pp. 529–545, Aug. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10766-013-0259-4

[25] A. Sukumaran-Rajam and P. Clauss, “The polyhedral model of nonlinear
loops,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 48:1–48:27,
Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/2838734

[26] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout, “Non-
affine extensions to polyhedral code generation,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’14. New York, NY, USA: ACM, 2014,
pp. 185:185–185:194. [Online]. Available: http://doi.acm.org/10.1145/
2544137.2544141

14

[27] J. Doerfert, T. Grosser, and S. Hack, “Optimistic loop optimization,” in
Proceedings of the 2017 International Symposium on Code Generation
and Optimization, ser. CGO ’17. Piscataway, NJ, USA: IEEE Press,
2017, pp. 292–304.

[28] D. N. Sampaio, L.-N. Pouchet, and F. Rastello, “Simplification and run-
time resolution of data dependence constraints for loop transformations,”
in Proceedings of the International Conference on Supercomputing, ser.
ICS ’17. New York, NY, USA: ACM, 2017, pp. 10:1–10:11.

[29] P. Feautrier, “Dataflow analysis of array and scalar references,” Inter-
national Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53,
1991.

[30] P. Clauss and V. Loechner, “Parametric analysis of polyhedral iteration
spaces,” Journal of VLSI signal processing systems for signal, image
and video technology, vol. 19, no. 2, 1998.

[31] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in Proc. Int. Conf. on Mathematical Software (ICMS ’10), 2010.

[32] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam, “Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies,” Int. J. Parallel Programming,
vol. 34, no. 3, Jun. 2006.

[33] “Clang.” [Online]. Available: http://clang.llvm.org
[34] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Int.

Workshop on Polyhedral Compilation Techniques (IMPACT ’12), 2012.
[35] “PoTHoLeS: Polyhedral Compilation Tool for High Level Synthesis.”

[Online]. Available: https://github.com/SamuelBayliss/Potholes
[36] “Polybench.” [Online]. Available: http://web.cse.ohio-state.edu/

∼pouchet/software/polybench/
[37] “Gaussian elimination with pivoting.” [Online]. Available: http:

//web.mit.edu/10.001/Web/Course Notes/Gauss Pivoting.c
[38] “Livermore loops coded in c.” [Online]. Available: http://www.netlib.

org/benchmark/livermorec

Junyi Liu Junyi Liu (S’14) received Bachelor’s
degree from Fudan University, China, in 2011, and
Master’s degree from cole Polytechnique Fdrale de
Lausanne (EPFL), Switzerland, in 2013. He is finish-
ing his PhD degree at Imperial College London. He
has recently joined Microsoft Research Cambridge
as a post-doc researcher working on FPGA acceler-
ation for distributed systems.

John Wickerson John Wickerson (M’17) received
a Ph.D. in Computer Science from the University of
Cambridge in 2013. He currently holds an Imperial
College Research Fellowship in the Department of
Electrical and Electronic Engineering at Imperial
College London. His research interests include high-
level synthesis, the semantics of programming lan-
guages, and software verification.

Samuel Bayliss Samuel Bayliss was awarded the
Ph.D. degree in Electronic Engineering from Impe-
rial College London in 2012. His principal research
interest is the application of polyhedral analysis
techniques to high level synthesis tools for FPGAs.
Since 2015, he has worked in the Xilinx Research
Labs in San Jose, California.

George Constantinides George A. Constantinides
(S96-M01-SM08) received the Ph.D. degree from
Imperial College London in 2001. Since 2002, he
has been with the faculty at Imperial College Lon-
don, where he is currently the Royal Academy of
Engineering / Imagination Technologies Research
Chair, Professor of Digital Computation, and Head
of the Circuits and Systems research group. He
has served as chair of the FPGA, FPL and FPT
conferences. He currently serves on several program
committees and has published over 150 research

papers in peer refereed journals and international conferences. Prof Constan-
tinides is a Senior Member of the IEEE and a Fellow of the British Computer
Society.

