
An Efficient Implementation of Online Arithmetic
Yiren Zhao ∗, John Wickerson †, George A. Constantinides ‡

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom
yiren.zhao13, j.wickerson, g.constantinides@imperial.ac.uk

Abstract—We propose the first hardware implementation of
standard arithmetic operators – addition, multiplication, and
division – that utilises constant compute resource but allows
numerical precision to be adjusted arbitrarily at run-time.
Traditionally, precision must be set at design-time so that addition
and multiplication, which calculate the least significant digit
(LSD) of their results first, and division, which calculates the
most significant digit (MSD) first, can be chained together. To
get around this, we employ online operators, which are always
MSD-first, and thus allow successive operations to be pipelined.
Even online operators require precision to be fixed at design-time
because multiplication and division traditionally involve parallel
adders. To avoid this, we propose an architecture, which we have
implemented on an FPGA, that reuses a fixed-precision adder and
stores residues in on-chip RAM. As such, we can use a single piece
of hardware to perform calculations to any precision, limited only
by the availability of on-chip RAM. For instance, we obtain an
8x speed-up, compared to the parallel-in-serial-out (PISO) fixed-
point method, when executing 100 iterations of Newton’s method
at a precision of 64 digits, while the product of circuit area and
latency stays comparable.

I. INTRODUCTION
Traditional fixed-point arithmetic operators, both parallel

and serial, require precision to be specified at design-time.
These operations fall into two categories; some, such as
addition and multiplication, proceed from the least significant
digit (LSD) to the most significant digit (MSD), while others,
such as division, compute from the MSD to the LSD. As a
result of this difference, fixed-point arithmetic is sometimes
forced to perform word-by-word computations: operators may
need to stall until all digits in a word have been calculated. For
example, if a 32-bit multiplication feeds a 32-bit division for
serial fixed-point arithmetic, the divider would only be able
to take the input once all 64 bits of the intermediate product
have been calculated by the multiplier.

Online arithmetic unifies all arithmetic operations in an
MSD-first fashion [2]. Existing implementations of parallel
and serial online arithmetic require precision to be confirmed
at design-time [3]. Nonetheless, as illustrated in Figure 1,
serial online arithmetic supports pipelining: an output digit
can be streamed into the next operator before all the digits in
that word have been generated.

In our work, we focus on serial online operators. Inher-
iting from classic online arithmetic, we employ the MSD-
first computation order to reduce the number of computation
clock cycles compared to serial fixed-point arithmetic [3]. On
top of this, our novel hardware design can provide results
with arbitrary precision at run-time. The algorithms of classic
online multiplication and division compute residue terms using
parallel online adders and produce a digit of product/quotient
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Fig. 1: Datapath of chained online operators; δ represents online
delay; input x is used to produce a product p, which is then used to
produce a quotient q; y is the final result.

based on these partial sums [13]. Classic architectures for
serial online operators, although producing results in a digit-
by-digit fashion, require precisions to be specified at design-
time because they use parallel online adders on these residue
terms. Our new design reuses a fixed-precision parallel adder
and stores residues in on-chip RAM. This hardware reuse
enables results to be produced with arbitrary precision but
consumes only a fixed amount of computational hardware.
For any given iterative algorithm with a known number of
iterations, we could connect online operators and generate
results to any precision at run-time with constant hardware
costs, and the maximum achievable precision is only limited
by the availability of on-chip RAM.

In Section III, we give an overview of online arithmetic, and
discuss our optimized hardware architecture. In Section V,
we summarize online arithmetic’s performance on Newton’s
method both empirically and analytically to demonstrate its
advantages on iterative operations with many iterations and
high precision requirements. At a low iteration count and a
precision of 64 digits, empirical results suggest our imple-
mentation of online arithmetic is 2.95x faster than parallel-in-
serial-out (PISO) arithmetic. On the other hand, we demon-
strate analytically that our design is also preferable if iteration
count is large: we obtain a 1.7x speed increase at an iteration
count of 100 but only 8 digits precision.

We make the following contributions in this paper:

• The first architecture of online arithmetic where the
compute resource utilization does not grow with precision
even for multiplication and division, opening the door to
run-time tuning of arithmetic precision.

• A quantitative analysis of the overhead of online arith-
metic on a modern FPGA device.

• A demonstration that for high precision or high iteration
counts, online arithmetic is superior to standard fixed-
point arithmetic.



II. RELATED WORK

In the past, ASIC designs of parallel online operators have
proven to be advantageous in speed but to consume more
hardware [4]. An example is the PasteUp system, which is a
VLSI implementation of radix-4 online arithmetic [5]. Online
arithmetic can be viewed as a method for trading an increase
in circuitry for a reduction in latency.

Recently, Shi et al. have shown parallel online arithmetic to
have an additional advantage due to overclocking [11]. Tradi-
tional fixed-point arithmetic is vulnerable to timing violations
since errors always accumulate from LSD to MSD. Shi et al.
have shown that online arithmetic is generally more resistant
to timing errors at overcloking. The accumulation of timing
error is circumvented because of the MSD-first computation
pattern. There is also work focusing on optimizing architec-
tures of parallel online operators on FPGAs to reduce their
area overhead [10]. Researchers have demonstrated methods
of mapping an online adder block to a four 6-input LUTs’
slice on Xilinx Virtex-6 FPGAs utilizing the built-in carry
resources. In addition, there is an efficient implementation
of online multiplication between a digit and a digit-vector
on FPGAs using only one logic element. These low-level
hardware optimizations significantly reduce the area overhead
of parallel online arithmetic [10].

Parallel online arithmetic requires more hardware resources
compared to the traditional fixed-point approach [10]. To
mitigate this area overhead of parallel online arithmetic, one
practical solution is to use serial online arithmetic instead.
Serial online arithmetic consumes more computational clock
cycles than parallel online arithmetic but requires less circuitry.
Serial online arithmetic has been exploited in control and
signal processing, and has shown promising performance in
scenarios requiring high-speed computations [1], [8]. Serial
online arithmetic has been found to satisfy the needs of
real-time control systems, where small circuitry, low power
consumption and high computation speed are required [1].
In signal processing, analog-to-digital and digital-to-analog
converters consume digits in a MSD-first fashion, and Natter et
al. have shown the potential to embed online arithmetic behind
these converters to increase processing speed [8]. However,
these implementations are all application-specific and follow
the classic online architecture requiring a priori determination
of precision.

III. AN OVERVIEW OF ONLINE ARITHMETIC

Online arithmetic has two unique features. Firstly, the digits
are taken from the MSDs of input operands and the resulting
output always contains an initial delay, named the online
delay and denoted by δ. Secondly, online arithmetic employs a
redundant number representation system. To simplify matters,
in this paper, all implementations of online operators only
involve signed digit (SD) representation on a redundant digit
set of {−1, 0, 1}. Using SD representation, we write xj to
represent the jth digit of a number, and xj = x+j −x

−
j , where

x+j and x−j are both single bits.
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Fig. 2: Accumulation register for storing upper half of a single digit-
vector x+[j].
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Fig. 3: Online adders, both serial and parallel.

In classic online arithmetic, all operands have a fixed width.
For each given P -digit operand, we apply a left-to-right
indexing system for its serial computation to the jth iteration.
We apply this indexing on inputs (x[j] and y[j]) and output
(z[j]) of online operators. Since we applied a radix-2 system
in this paper, r = 2 in Equation (1). Letting P be the required
full precision, at current computational precision j, where
−δ ≤ j ≤ P − 1, we have:

x[j] =

j+δ∑
i=1

xir
−i, y[j] =

j+δ∑
i=1

yir
−i, z[j] =

j+δ∑
i=1

zir
−i (1)

A number, for example x[j], is represented as a digit-vector
as defined in Equation (1). This digit-vector consists of two bit-
vectors, namely x+[j] and x−[j]. In classic online arithmetic
architectures, two accumulation registers are employed to store
these two bit-vectors. In Figure 2, we show how one accumula-
tion register stores a bit-vector x+[j]. At each iteration j, a new
digit is pushed in and the registers start to fill from the MSDs.
The widths of these accumulation registers are pre-defined at
design-time [2]. In Section IV-A, we present a new method of
storing digit-vectors that avoids specifying the precision P at
design-time.

A. Online addition

Addition is an important basic arithmetic element and par-
allel online adders are used for constructing online multipliers
and online dividers. Serial online addition makes use of
full adders as well as registers to add two redundant digits
(Figure 3(b)). A serial online adder contributes two cycles
of online delay (δadd = 2) [3]. If we duplicate this serial
adder n times and take out the registers, we obtain an n-
digit parallel online adder without any online delays [3]. As
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shown in Figure 3(a), this parallel online adder is expected
to have a critical path crossing two full adders [14]. The
fixed critical path indicates a ripple-carry free addition, and
therefore the main advantage of a parallel online adder is that
its maximum running frequency is independent of its precision
requirements [10]. This unique feature enables our designs of
online multiplication and division to have a constant fmax
that is independent of precision. In this paper, the width of a
parallel adder is defined as the unrolling width, denoted by U ,
and is decoupled from the run-time precision requirement P .
In our implementation of online multiplication and division,
this unrolling width is determined to be 64 digits (U = 64).

B. Online multiplication

Algorithm 1 defines the entire multiplication process. On-
line multiplication is an iterative operation, and produces
two intermediate residues, respectively named v[j] and w[j].
Meanwhile, for each iteration, a corresponding product digit,
pj+1, is produced by a selection function. We implement this
selection process as a 4-digit hardware multiplexer, including 2
integer digits and 2 fractional digits. The selection boundaries
are based on the SELM function (Equation 2) [3].

Algorithm 1 Online Multiplication
1: Initialize:
x[−δmul] = y[−δmul] = v[−δmul] = w[−δmul] = 0

2: for j in {−δmul,−δmul + 1, . . . ,P − 1} do
3: v[j] = 2w[j] + (x[j]yj+1 + y[j + 1]xj)× 2−3

4: pj+1 = SELM(v[j])
5: w[j + 1] = v[j]− pj+1

6: end for

SELM (v[j]) =


1 if v[j] ≥ 1/2

0 if −1/2 ≤ v[j] ≤ 1/4

−1 if v[j] ≤ −3/4
(2)

In the classic hardware architecture of online multiplication
(Figure 4), we represented a digit-vector using two bit-vectors.

For example, we used w+[j] and w−[j] to represent digit-
vector w[j]. For producing digit-vector x[j] and y[j], the
classic design uses accumulation registers (Figure 2) to store
serial input digits (xj+1 and yj+1) and transfer them into
digit-vectors (x[j] and y[j]). In Figure 4, the Next Iteration
Logic block is clocked: it holds the v[j] value in a register and
computes new w[j] at every positive clock edge. Meanwhile,
a combinational logic follows the SELM equation (Equa-
tion (2)) to compute the product digit from v[j].

The addition in Algorithm 1 Line 3 is implemented as a
parallel online addition (Figure 3(a)) following the classic
approach [12]. Figure 4 describes the classic approach of
designing an online multiplier. Because of the pre-defined
widths of the parallel adder and registers, this classic multiplier
is able to achieve multiplication to a precision of at most P ,
and this precision has to be declared at design-time.

C. Online division

In division, we use x and d to denote numerator and divisor
respectively. The algorithm for online division (Algorithm 2)
is similar to multiplication, however, there are inherent differ-
ences in terms of selection function (SELD and SELM ) and
recurrence paths.

Algorithm 2 Online Division
1: Initialize:
n[−δdiv] = d[−δdiv] = v[−δdiv] = w[−δdiv] = 0

2: for j in {−δdiv,−δdiv + 1, . . . ,P − 1} do
3: v[j] = 2w[j] + (xj+1 − q[j]dj+1)× 2−4

4: qj+1 = SELD(v[j])
5: w[j + 1] = v[j]− qj+1d[j + 1]
6: end for

SELD(v[j]) =


1 if v[j] ≥ 1/4

0 if −1/4 ≤ v[j] ≤ 1/8

−1 if v[j] < −1/2
(3)

The selection process requires more precise threshold values
down to 1/8, so that five digits (two integer digits and three
fractional digits) need to be the input of SELD multiplexer
to produce one quotient digit qj+1. There is an additional
recurrence path in online division – the quotient vector joins
the calculations that produce v[j]. In order to achieve this,
we employ two additional accumulation registers for storing
q[j] so that the produced quotient digit is immediately stored.
Again, the classic online divider has precision P to be defined
at design-time, and the maximum achievable precision of the
quotient is P .

IV. OPTIMIZED MULTIPLICATION AND DIVISION

In order to construct a class of online operators computing
results to any precision at run-time, we firstly need to con-
sider two constraints imposed by the classic online operators.
Firstly, the accumulation registers holding digit-vectors have
limited storage. Secondly, the parallel online adders in both
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Fig. 5: Different storage mechanisms. Classic implementation stores
digit-vectors in fixed-width registers, whereas our implementation
reshapes these vectors and stores them into on-chip RAM.

multiplication and division have fixed lengths pre-defined at
design-time. In order to overcome the first issue, we store
digit-vectors in on-chip RAM of FPGAs (Section IV-A). We
introduce a new notation for the remapped digit-vectors, and
in Section IV-B, we propose a new hardware architecture to
solve the second constraint.

A. Storing digit-vectors
In Section III, a digit-vector is defined as a combination of

two bit-vectors. At the top of Figure 5, we illustrate two accu-
mulation registers used for storing x[j]. The first constraint of
a classic online architecture is that all digit-vectors require pre-
defined widths. To avoid overflow in accumulation registers.
we can iterate serial online operators at most P times, because
this efficiently produces P digits and fills up the registers.

We propose an alternative storage mechanism using on-chip
RAM. This storage mechanism exploits the large size of on-
chip RAM on modern FPGAs, and the maximum precision
is determined by the amount of on-chip RAM available. We
define U to be the unrolling width and N = bP/Uc to be
the depth. The unrolling width is a parameter that designers
could control to fit the width of any given block RAMs. At
the bottom of Figure 5, we define N to be the depth of
on-chip RAM. Mathematically, we define the following new
representation of x+[j]:

x+new[j][0 : N ][0 : (U − 1)] = x+classic[j][0 : (P − 1)] (4)

In the classic design, a bit-vector of x+classic[j][0 : (P − 1)] is
two dimensional: it has time index j and also physical width
of P . We add another dimension to this bit-vector to make
x+new[j][0 : N ][0 : (U−1)] – a three dimensional vector with a
time index j, a physical width U and a physical depth of N+1.
In the following sections, all digit-vectors are rearranged to fit
into this new representation.
B. Reuse of parallel adder

1) MSD logic: A novel hardware architecture with efficient
reuse of a parallel online adder is illustrated in Figure 6.
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Fig. 6: Optimized online multiplier with reuse of adder; in adder
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for computing the jth output at the nth iterative addition, this is
the new representation introduced in Equation (4). In MSD logic,
v MSD+[j] represents a 5-bit-vector for computing the jth output.

The underlying logic is to compute the parallel summation
iteratively, if the width of digit-vectors P is larger than the
unrolling width of parallel online adders U . The example
shown is an online multiplier, and the architecture can be
broken down into two parts (Figure 6): MSD logic (red,
bottom) and Adder logic (blue, top).

The MSD logic links tightly with the algorithm of online
multiplication. The algorithm indicates that the upper 5 MSDs
of v[j] remain unchanged unless a valid carry is propagated
from the LSDs. Intuitively, we break down the residues of
classic online multiplier into two parts to avoid unnecessary
additions. In this case, the upper part, named v MSD [j], stays
constant until the iterated additions of LSDs propagate a valid
carry that affects the MSDs. Notice we denoted v MSD [j]
in terms of v+ MSD [j] and v− MSD [j], because the digit-
vector consists of two 5-bit bit-vectors. The Next Iter logic
is a combinational logic computing the next cycle input to
the MSD register. At the end, following the same procedure
in classic online architecture, we compute pj+1 based on the
SELM function. Division employs the same MSD logic. In
division, the separated MSDs have a width of 6 digits due to
the multiplication by 2−4 in Algorithm 2.

2) Adder logic: In order to introduce the iterative addition
logic, we firstly need to define a few parameters. The adder
logic works consistently with the vector storage methodology.
To add U -digit wide data, with respect to Figure 6, we define
U to be the width of the online parallel adder. At a particular



computation time, we define the run-time width of x[j], y[j],
v[j] and w[j] to be P , but in a departure from the classic
architecture, we allow this P to increase at run-time if the
user requires a larger precision. We thus define P = NU +u,
where u ∈ [0 : (U − 1)]. Similarly, we use n to denote the
current writing address of on-chip RAM, mathematically, and
we have n ∈ [0 : N ].

In Equation (4), we introduced a new representation of digit-
vectors, and thus write x[j][0 : N ][0 : (U − 1)] to denote
a digit-vector. At a particular clock cycle, n and j are well-
defined, and thus we only process computation with respect to
x[j][n][0 : (U−1)]. This is a one-dimensional digit-vector with
width U and it consists of two bit-vectors, namely x+[j][0 :
N ][0 : (U − 1)] and x−[j][0 : N ][0 : (U − 1)]. In the adder
logic, we perform U -digit wide iterative additions on these
one-dimensional vectors.

The underlying logic of adder reuse is summarized in the
flowchart of Figure 7, consistently, we have Figure 6 to
illustrate the hardware architecture. We then introduce each
hardware block illustrated in Figure 6.

The first block is the Next Iter logic block, it computes
values of w[j][n][0 : (U − 1)] from v[j][n][0 : (U − 1)] in
a similar fashion to the MSD logic obeying Algorithm 1,
however, this Next Iter logic for adder logic is clocked,
because it involves storing digit-vector v[j][0 : N ][0 : (U−1)]
in on-chip memory.

The second hardware block, Parallel [6 : 2] adder, is a key
hardware unit. The control flow of utilizing this fixed-width
parallel adder follows Figure 7. We compute the total number
of addition iterations: N = bP/Uc. The value of N has
two underlying meanings. Firstly, N corresponds to the depth
of on-chip RAM used for storing digit-vectors, as defined
in Section IV-A. Secondly, it serves as a control logic. We
initially assign n = N , this n serves both as an address pointer
for on-chip RAM and a control signal for parallel adder. If n
is non-zero, we keep adding vectors starting from LSDs. In
other words, if using x[j][n][0 : U ] as an example again, we
start addition from x[j][N ][0 : U ] to x[j][0][0 : U ] at every
clock cycle. As shown in Figure 7, we decrease the value of
n at every iteration (n = n− 1). This iterative procedure will
terminate once n reaches zero.

The classic online architecture computes internal parallel
addition consuming only one clock cycle when it is fully
pipelined, however, our suggested hardware computes the
same addition using N + 1 cycles. Intuitively, in order to
obtain a constant hardware utilization and be able to track
to arbitrary precisions at run-time, our proposed architecture
spends multiple clock cycles in parallel online addition if the
required run-time precision is wider than the width of parallel
online adders U .

The third hardware block introduced is the Carry control
block. During this iterative addition, the Carry control block
in Figure 6 stores carry outs and outputs carry ins. When we
are in the iterative process, by setting an enable signal, the
carry out of the online parallel adder is stored in a register and
carry in would take this stored value at the next clock cycle

...X0 X1 X2 X3 ...

 N bit 

Operate on vector[j][n][0:(U-1)]

n = n -1, cin = cout

n  > 0 ?

Propagate to MSD,
carry_MSD = cout

N = floor(P/U), n = N

Output p  from SELM
j+1

Yes

NO

XjXj-
1

Xj-
2

Fig. 7: Adder logic flow chart.

× 

-

÷ 

-

X_in X_in

3

2X_in

X_in

X_out

Critical path

Fig. 8: Datapath of a single
iteration of Newton’s method.

(cin = cout). At the same time, the value of carry MSD is kept
to be zero, because the carry propagation has not reached the
MSDs yet. When the process exits from the iterative loop, it
states that a valid carry could be propagated to the upper 5
MSDs. We enable the carry to update the MSDs by setting
carry MSD = cout but keep cin = 0. This control logic is
summarized as a flow chart in Figure 7.

After describing all important hardware blocks, we notice
the iteration count j grows with the required run-time precision
P . When entering a new jth iteration, we store new digits into
the on-chip RAM, and P grows by one. This indicates the
unique advantage of our system – it is able to compute results
to arbitrary precision at run-time.

In division, the process of adder reuse is the same, but we
have to take care of an extra recurrence path (Algorithm 2). Di-
vision uses two [4 : 2] parallel addition units and these adders
employ the same adder reuse technique as multiplication.

C. Analysis of clock cycles

To fully visualize the consumption of clock cycles by
our online operators, we construct a relationship between
number of computation clock cycles and run-time precision
requirements. In order to characterize the analytic expressions
of clock cycles, we recall definitions of following parameters:
• Unrolling width : U
• Required precision at output: P
• Computation clock cycles: C
• Online delay: δ
In addition, using existing parameters, we compute N =
bP/Uc. N+1 is the number of iterations required for finishing
the iterative addition, and is also the depth of on-chip RAM
used for storing digit-vectors. The expression for online adder
is straightforward, we use subscript OA for the online adder:

COA = δOA + P (5)

For the multiplier, the number of clock cycles spent in com-
puting each digit varies depending on the unrolling width U .
Similarly, we use OM to denote online multiplication:

COM = δOM + (P −NU)(N + 1) +

N∑
i=1

iU (6)



We use OD to denote online division:

COD = δOD + (P −NU)(N + 1) +

N∑
i=0

iU (7)

As explained in Section IV-B2, the number of iterative addi-
tions required increases segmentally with run-time precision
P , and we characterize this using

∑N
i=0 iU .

Using equations developed in this section, given any nu-
merical precision at run-time, we are able to tune operators
to reach that precision by controlling the number of computa-
tional clock cycles. The maximum precision is limited only by
the amount of on-chip RAM available. This effectively opens
the door to tuning arithmetic precision at run-time.

V. EVALUATION

To experimentally explore how pipelining behaves when
online operators are chained together, we implement an it-
erative algorithm using online operators. Algorithm 3 recalls
Newton’s method for finding

√
3.

Algorithm 3 Newton’s method with five iterations
1: Initialize: x0 = 2, f(x) = x2 − 3, f ′(x) = 2x
2: for j in {0, . . . , 4} do
3: xj+1 = xj − f(xj)

f ′(xj)

4: end for

This is a class of iterative algorithm where we expect online
operators to have better performance than traditional fixed-
point, because it involves chained division and multiplication
(Figure 8). We expect carries to travel in non-unified directions
for fixed-point arithmetic, and calculations are stalled in tradi-
tional fixed-point if the carry propagation direction reverses. In
online arithmetic, the uniform carry propagation avoids such
stalls. In this case, we unrolled the Newton’s method to its
5th iteration to examine the behavior of different arithmetics
when the precision required increases.

A. Empirical evaluation

For an implementation of Newton’s method, we use the
Altera Cyclone IV FPGA (EP4CGX150DF31l7AD) as the
hardware platform and collect results after place and route
in Quartus II. Both serial fixed-point arithmetic and serial
online arithmetic are implemented. The correctness of results
has been verified by co-simulation in Matlab.

The fixed-point multiplier and divider normally require a
trade-off between speed and circuitry when choosing them
to be parallel or serial. Parallel-in-serial-out (PISO) fixed-
point operators sit at the intermediate point between fully
serial and fully parallel. In this case study, we decided to
implement PISO fixed-point multiplier and divider for two
reasons. Firstly, with an increasing precision requirement,
PISO fixed-point arithmetic suffers less from area growth and
fmax degradation compared to parallel-in-parallel-out (PIPO)
multiplication and division [7], but is significantly faster than
serial-in-serial-out (SISO) arithmetic at moderate sampling
rate [7]. Secondly, multiplication and division’s serial outputs
can be pipelined by successive SISO fixed-point adders.
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Fig. 9: Comparison between online and fixed-point arithmetics on
Newtons Method in terms of fmax, latency and number of LEs used.

Our experimental results are illustrated in Figure 9. PISO
fixed-point’s running frequency is higher at low precision but
becomes comparable to online arithmetic at high precisions.
Also, online arithmetic has a constant fmax for all precisions.

In terms of latency, the initial latency of online arithmetic is
higher due to the accumulation of online delays, but it grows
less dramatically compared to fixed-point. In the second plot
of Figure 9, at a precision of 30 digits, online has a similar
latency to fixed-point, but has 2.95x and 5.16x speed increases
when the precision is at 64 digits and 128 digits respectively.

With respect to hardware utilization, the complex circuitry
of online arithmetic makes use of more circuit area than
fixed-point. However, comparing our design with the classic
approach, this area overhead is restricted for two main reasons.
Firstly, the hardware usage stays constant for our design and
it displays a comparable Logic elements (LEs) usage to PISO
fixed-point arithmetic at high precisions. Secondly, we are able
to trade-off the hardware usage with latency for our proposed
design by varying the parameter U . This effectively varies the
length of the parallel online adder – a design with smaller
parallel online adder takes more clock cycles to produce the
same output but consumes less circuitry. In addition, in the
third plot of Figure 9, we observe a trend that online arithmetic
is closing the gap of hardware overhead compared to PISO
fixed-point by consuming only constant circuitry. It should be
noted that PISO fixed-point multipliers and dividers contain
internal parallel fixed-point adders, and these adders cause an
increase of hardware utilization when precision grows.



Finally, we compute the product of the number of LEs
and the latency. For computing the Newton’s method to its
fifth iteration, online arithmetic outperforms PISO fixed-point
arithmetic by 1.66x at a precision of 128 digits in terms of
LEs × Latency. This case study demonstrates that, for a low
number of iterations but at high precision, our implementation
of online arithmetic is superior to fixed-point.
B. Analytical evaluation

In the previous section, we compared performance of online
arithmetic with fixed-point arithmetic on an algorithm with
a fixed number of unrolled iterations. The complexity of
arithmetic operations is proportional to the number of unrolled
iterations – there are more chained arithmetic operations with
more unrolled iterations. We are thus interested in the per-
formance of online arithmetic at various numbers of unrolled
iterations. For the implementation of Newton’s method, it is
possible to characterize the consumed clock cycles analytically
using expressions in Section IV-C. We adapt the symbols
defined in previous sections, and also define additional param-
eters. Subscript ON represents Newton’s method implemented
by online arithmetic, and K represents the number of iterations
that we choose to compute for Newton’s method.
CON = (δOM + δOA + δOA + δOD)K + 4NK+

(P −NU)(N + 1) +

N∑
i=0

iU

= 21K + 4NK + (P −NU)(N + 1) +

N∑
i=0

iU (8)

In our analytic formula, based on the design of online
arithmetic operators, specific values of online delays are
defined: δOA = 3, δOM = 7 and δOD = 8. The online
delays of multiplication and division are larger than classic
implementation, because reads and writes of on-chip RAM
cost extra cycles. In this expression, an extra term 4NK is
introduced. This is because the increment of N stalls all
4K operators on the critical path (Figure 8). For example,
operators take one cycle to compute a result when N = 1;
if N = 2, this effectively breaks previous pipelining and all
successive operators have to wait for one extra clock cycle.
Using the same unrolling width (U = 64) as before, these
4NK increments are notable when precisions are at multiples
of U in Figure 10 and Figure 11, because N is defined as
bP/Uc in Section IV-C.

Similarly, we can consider an analytical expression for our
design of fixed-point arithmetic. This design includes PISO
multipliers and dividers but SISO adders. It takes advantage
of pipelined multiplication and subtraction, however, digits are
stalled before and after division because of the reverse of the
carry propagation direction.

CPISO = (2 + 2P )K = 2PK + 2K (9)

For SISO arithmetic, we characterize its clock cycles in
a similar fashion. Classic design of SISO multipliers and
dividers costs P 2 cycles for inputs with a precision of P [6]:

CSISO = (2 + 2P 2)K = 2P 2K + 2K (10)
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Fig. 10: Number of clock cycles for computing Newton’s method
with 10 iterations, 50 iterations and 100 iterations, comparing online
arithmetic with SISO fixed-point.

In Equation (9) and Equation (10), there exist two sub-
tractions for each unrolled iteration of Newton’s method. We
spend one clock cycle on each of the subtractions illustrated
in Figure 8, because we can stream multiplication results into
successive SISO adders.

These three analytic expressions fully characterize how
different arithmetic would perform when solving Newton’s
method. The number of computational clock cycles is de-
termined by both the required precision and the number of
unrolling iterations of Newton’s method.

SISO operators normally run at high frequencies [8], how-
ever, the clock cycle advantage of our implementation of on-
line operators offsets SISO operators’ high running frequency.
In Figure 10, we compare serial online arithmetic with SISO
fixed-point arithmetic. For iterating 100 times, at a precision of
16 digits, the number of clock cycles of online is one order of
magnitude lower, but this difference increases to three orders
of magnitude when precision is at 64 digits. With an increasing
number of unrolling iterations, the difference in clock cycles
between online and SISO fixed-point increases. Although our
FPGA implementation of online arithmetic only runs at a
relatively low frequency (Figure 9), a constant difference in
running frequencies would not offset the increasing difference
in clock cycles. In addition, SISO fixed-point is merely used
for computations at moderate frequency, we thus give a more
in-depth comparison between online and PISO fixed-point.

Figure 11 compares PISO fixed-point with online arithmetic
in terms of computation clock cycles and latency at various
high numbers of iterations. The first plot indicates that, at high
number of iterations, serial online operators compute results
with the same precision by using fewer computational clock
cycles. The second plot takes into account the fmax disad-
vantage of online arithmetic, but still shows that online has a
better performance than fixed-point if the required precision
is more than 20 digits. At the same time, from the second
plot, we observe online arithmetic is more advantageous at
high iteration numbers. In this case, at the 10th iteration,
online arithmetic outperforms PISO fixed-point at a precision
of 20, but it outperforms fixed-point at a precision of 16 when
number of iteration is 100. Both plots have online arithmetic
showing an upward stepping trend, this is because of the
4NK term in Equation (8). The analytical results suggest
that, benefiting from the MSD-first computation pattern, online
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Fig. 11: Number of clock cycles and latency for computing Newton’s
method with 10 iterations, 50 iterations and 100 iterations, comparing
online arithmetic with PISO fixed-point.

Fig. 12: Difference in clock cycles for computing Newton’s method to
different iterations and different precision. The number of computed
iterations of Newton’s method is on the x axis, and the number of
digits produced is on the y axis. The color of this heatmap indicates
the performance in terms of difference in number of computation
clock cycles. CON represents the number of clock cycles needed
by online arithmetic, and CFN represents clock cycles consumed
by PISO fixed-point. ‘Hotter’ region indicates online arithmetic is
having a worse performance, in contrast, a ‘colder’ regions means
online arithmetic outperforms PISO fixed-point arithmetic.

arithmetic is preferable for algorithms with many iterations.
To fully analyze how online arithmetic performs at high

number of iterations and high precision requirement, we plot a
heatmap in Figure 12. The heatmap suggests online arithmetic
is preferable for iterative algorithms requiring high precision
or a high number of iterations. In this case, we only consider
the clock cycles, because online operators in our design have a
constant fmax, and researchers have demonstrated possibilities
for classic online operators to run at higher clock frequency
than fixed-point arithmetic [9].

Online arithmetic has similar performance to fixed-point
at a precision requirement of 8 digits for all numbers of
unrolling iterations. At an iteration number of 100, online
arithmetic outperforms fixed-point by 1.7x, 3x and 8x if
required precisions are at 16 digits, 32 digits and 64 digits.

VI. CONCLUSION

In this paper, we exploit a novel method of computing
numerical results to an arbitrary precision at run-time. Using

this method, we are able to tune the precision of numerical
solutions of iterative algorithms at run-time with only constant
hardware cost.

This method relies on new hardware architectures for on-
line multiplication and online division. Our optimized online
multiplier and divider efficiently reuse their internal parallel
addition logic. They store digit-vectors in on-chip memory
and thus the maximum run-time precision is limited only by
the size of on-chip RAM on FPGAs. Besides, our hardware
architecture also allows the user to trade-off hardware con-
sumption with computational clock cycles, where the fmax
and hardware utilization of optimized operators stays constant
with increasing precision requirements. By comparing our
design with PISO fixed-point arithmetic, we demonstrated both
empirically and analytically that online arithmetic is superior
to fixed-point arithmetic in solving iterative algorithms with a
high precision requirement or a large number of iterations.
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