
Probabilistic Scheduling in High-Level Synthesis
Jianyi Cheng, John Wickerson and George A. Constantinides

Department of Electrical and Electronic Engineering
Imperial College London, UK

Email: {jianyi.cheng17, j.wickerson, g.constantinides}@imperial.ac.uk

Abstract—High-level synthesis (HLS) tools automatically trans-
form a high-level program, for example in C/C++, into a low-
level hardware description. A key challenge in HLS tools is
scheduling, i.e. determining the start time of all the operations in
the untimed program. There are three approaches to scheduling:
static, dynamic and hybrid. A major shortcoming of existing
approaches to scheduling is that the tools either assume the worst-
case timing behaviour, which can cause significant performance
loss or area overhead, or use simulation-based approaches, which
take a long time to explore enough program traces.

In this paper, we propose a probabilistic model that allows
HLS tools to efficiently explore the timing behaviour of hardware
generated from all these scheduling approaches. We capture
the performance of the hardware using Petri nets, allowing us
to leverage off-the-shelf Petri net analysis tools to make HLS
decisions.

We demonstrate the utility of our approach by using it
to automatically infer the optimal initiation interval (II) for
statically scheduled components that form part of a larger
dynamically scheduled circuit. An empirical evaluation on a
range of benchmarks suggests that by using this approach, on
average we incur a 2% overhead in area-delay product (ADP)
compared to optimal designs. In contrast, the static analysis in
Vitis HLS incurs a 112% ADP overhead, while the throughput
analysis in the dynamically scheduled Dynamatic tool incurs a
17% ADP overhead.

Index Terms—High-Level Synthesis, Probabilistic Analysis,
Petri Nets, Dynamic Scheduling.

I. INTRODUCTION

High-level synthesis (HLS) tools automatically transform
programs in a high-level language, like C/C++, into low-
level hardware descriptions, such as designs in Verilog. They
promise software engineers without a hardware background
the ability to design custom hardware, and they promise hard-
ware engineers improved productivity compared to manual
register transfer level (RTL) implementation. Various HLS
tools have been developed in both academia [1], [2], [3] and
industry [4], [5].

High-level languages are typically untimed, which means
that while they specify an order of execution, they do not
specify the precise clock cycle at which each operation takes
place. The start time of each operation in an untimed program
is determined by a process called scheduling. The scheduling
approach can either be static [4] or dynamic [3]. Static
scheduling determines the schedule at compile time, while
dynamic scheduling determines the schedule at run time.

Recently, we proposed a combined scheduling approach,
generating both dynamic and static scheduling (DASS) in
the same hardware design [6]. Each statically scheduled (SS)

component is synthesised independently in a wrapper for
compatible data interfacing and treated as a black box in
dynamically scheduled hardware (DS) surroundings. However,
that work left open the question of how to determine timing
parameters of the SS components, such as their initiation
intervals as user input. The model presented in this paper
allows these decisions to be taken automatically by the HLS
tool.

Static analysis for DS hardware is challenging, because
in most cases a program could exhibit many possible state
traces. Existing simulation-based approach either require an
application-specific search algorithm or construct a large de-
sign space, which scales exponentially with the computation
complexity. This paper proposes a probabilistic approach. The
key advantage of using a probabilistic model for scheduling
is that it allows the capture of a large number of possible
executions within a very compact representation that can be
efficiently explored by existing tools [7]. By modelling this
program using the probabilistic graphical representation, we
are able to implicitly capture a probability distribution over
these traces.

We therefore have two problems: 1) how to adequately
model program behaviour in this way, and 2) how to use
such a description to optimise the resulting hardware. In this
paper, we explain how we tackle these problems. Our main
contributions are as follows:

• We introduce a generic technique to formally describe the
scheduling behaviour of HLS-generated hardware in the
presence of uncertainty caused by input dependence.

• We formalise dynamic scheduling into a Petri net model
and explain how static scheduling is integrated into the
model.

• We propose a probabilistic analysis to estimate the per-
formance of hardware that has unpredictable behaviours,
like data-dependent choices and unpredictable memory
accesses.

• We implement an application of our model to automati-
cally choose the IIs of SS components in DS hardware.
Over a set of benchmarks, on average this loses just 2%
in area-delay product compared to an exhaustive search
over all possible II combinations.

The rest of this paper is organised as follows. In Section II,
we work through a simple motivating example, illustrating
the challenges in choosing the optimal II for SS hardware
components within DS hardware. Section III provides back-

1 int A[N], B[N];
2 int ss_func (int x) { return (((((((x+112)*x+23)

*x+36)*x+82)*x+127)*x+2)*x+20)*x+100; }
3 int g(int i) { return cond(B[i]) ? i+d : i; }
4 void vecTrans() {
5 for (int i = 0; i < N; i++)
6 A[g(i)] = ss_func(A[i]);
7 }
8

Fig. 1: Motivating example. The unpredictable dependence be-
tween A[i] and A[g(i)] makes it challenging to determine
the optimal II for ss_func.

ground on scheduling in HLS, performance modelling in HLS
and Petri nets. Section IV presents our Petri net formulation.
Section V shows the proposed tool flow. Section VI evaluates
the effectiveness of our approach on a set of benchmarks.

II. OVERVIEW

In this section, we use a motivating example to show
the challenge in II selection of an SS component within a
DS system. Fig. 1 shows a code example to be scheduled
both statically and dynamically. In the code, a loop loads
an array element A[i] and then writes ss_func(x) into
A[g(i)], where g is an external function depending on
the loop iterator i and an array B. Since the store address
g(i) is unpredictable at compile time, the loop can often
be dynamically scheduled to achieve a higher throughput
than would be attainable statically. However, the function
ss_func is a polynomial expression, which has predictable
timing behaviour. Therefore, function ss_func can be stat-
ically scheduled to enable hardware optimisations such as
resource sharing.

A reasonable design objective is to achieve minimum area,
subject to the static function ss_func not being the perfor-
mance bottleneck. A larger II may cause performance loss,
while a smaller II may cause area overhead. A question
arises: How do we estimate the throughput required of a static
function like ss_func in order for it not to be the bottleneck,
and hence select its II?

Support from existing tools is limited. For instance, the
static scheduler in Vitis HLS can only approximate the un-
predictable behaviour to the worst case and suggests that the
loop should be executed sequentially, corresponding to an
II of 15. Meanwhile, Dynamatic has throughput analysis for
buffering [8], but the analyser approximates the control flow
decisions and ignores memory dependences in the code, result-
ing in potentially suboptimal II. For example, the throughput
analysis in Dynamatic returns a value corresponding to a
minimum II of 1 for the example code but this may be unduly
optimistic in the presence of memory-carried dependencies.

The above approaches both give a constant II regardless
of the input data. In reality, the optimal II of ss_func can
vary in terms of two constraints: 1) how often load A[i] or

2
4

6
8

10 0

0.5

1

1

15

d
P (cond)

In
fe

rr
ed

II
s

of
s
s
_
f
u
n
c

Vitis HLS gives II = 15

Dynamatic’s throughput
analysis [8] gives II = 1

Fig. 2: The optimal II of function ss_func depends on
both the probability of cond being true and the dependence
distance of d. The smaller probability when the memory
dependence exists or the longer dependence distance the code
has, the larger optimal II ss_func can have.

store A[g(i)] in an iteration depends on other memory
accesses in previous iterations and 2) if a memory depen-
dence exists, what the dependence distance is in terms of
iterations. By varying these two constraints, Fig. 2 illustrates
the distribution of the optimal II over different cases. However,
exploring all the design spaces for every hardware design
is time-consuming. This paper presents a more efficient and
accurate solution for finding the optimal II using probabilistic
analysis.

Why Petri nets?

Petri nets are a widely used formalism for the modelling and
analysis of concurrent processes. When an appropriate time
interpretation is considered, they are used for probabilistic
analysis, with well studied techniques in the last decades.
Analysis techniques for Petri nets have been well studied in
past decades [9], [10]. By translating our problem into the
formal framework of Petri nets, we can rely on existing tools
like PRISM [7] to efficiently analyse the resulting Petri nets.
For instance, when the probability that cond evaluates to
true in Fig. 2, P (cond) = 0.4, d = 5, our approach obtains
the following results considering the optimal design as the
baseline:

Comparison Area Performance

Optimal design 1× 1×
Analyser in Vitis HLS 0.33× 0.26×
Analyser in Dynamatic 2.33× 1×
Our approach 1× 1×

The search time for exhaustive search to get an optimal II
scales with the number of statically scheduled components and
their II search space. The analysis time for our probabilistic
analysis does scale with these constraints and our tool infers all
the IIs for statically scheduled components in a single analysis.

As a result, for the example above, the time for our process
achieves 0.36× compared to exhaustive search.

Probabilistic analysis can cause inaccuracy in performance
modelling, which only affects the performance of the synth-
sized hardware. However, the correctness of the hardware only
depends on the correctness of synthesis tools themselves. Our
analysis suggests an II which will only change the performance
or area, while correctness is always preserved.

III. BACKGROUND

This section first reviews scheduling in HLS tools. Existing
performance modelling techniques for HLS hardware are then
compared to our work. Finally, Petri nets and work applying
them to hardware behaviour modelling are reviewed.

A. Scheduling in HLS

There are three scheduling approaches in HLS: static
scheduling, dynamic scheduling and hybrid. Traditional HLS
tools, like Vitis HLS [4] and LegUp [1], use static schedul-
ing [11], [12]. The scheduler uses static analysis to parallelize
independent operations to improve performance at compile
time.

Dynamic scheduling in HLS was initially proposed by Page
and Luk [13], and later extended to a commercial language
named Handel-C [14]. Recently, there has been renewed
interest in HLS tools using dynamic scheduling, such as
Dynamatic [3]. The hardware generated by dynamic HLS tools
consists of a set of pre-defined components communicating via
a handshaking interface formalised by Carloni et al. [15]. In
order to achieve a high performance, Dynamatic makes ex-
tensive use of load-store queues (LSQs) for memory accesses
that may have dependence [16].

The third approach is a hybrid. Carloni [17] describes the
theory of how to encapsulate static modules into a latency-
insensitive system. Cheng et al. [6] realise this approach within
an HLS tool flow named DASS that supports SS circuits
inside a DS circuit. DASS supports arbitrary code input but
requires manual selection of the scheduling constraints for the
SS components.

In this work, we formalise the circuit model of DASS [6].
Based on our formalisation, our tool can estimate the perfor-
mance of DS hardware, and use such estimates to automat-
ically optimise the SS hardware thus addressing one of the
main shortcomings of the original DASS paper.

B. Module Selection in HLS

Module selection is to select an optimal module design
among a set of choices with the same functionality to improve
performance or area. Our work is also a form of module
selection by slowing down certain nodes in a dataflow net-
work. Module selection in HLS has been widely studied.
Ishikawa and Micheli propose a module selection algorithm
that schedules the hardware with a finite set of predefined
components [18]. Ahmad et al. present a problem-space ge-
netic algorithm for static scheduling [19]. Ito et al. propose an
integer linear-programming (ILP) based model for data flow

place

timed transition

immediate transition
…

…

M

N

Fig. 3: An example of a Petri net. The transition on the left
has a time delay, and the one on the right has no delay.

architecture [20]. Sun et al. combine the module selection
and resource sharing in design exploration [21]. Cong et al.
propose an ILP-based scheduling including module selection
for streaming applications. However, these approaches all
target SS hardware only. The behaviour of DS hardware can
be unpredictable, and these methods cannot be applied without
assuming the worst-case computation.

In dynamic scheduling, latency insensitive system
graphs (lis-graphs) are used for hardware optimisation, such
as loop pipelining, retiming and buffering [22], [23], [24],
[25]. This is extended to marked graph in HLS tools like
Dynamatic [3]. These graph-based theories make the analysis
independent from the input data, while our model performs
throughput analysis correlated to the input data.

C. Petri Nets

Petri nets are a common mathematical model for the de-
scription of distributed systems. A Petri net is a directed
bipartite graph, consisting of two types of node: transitions
and places. A transition, usually represented by a bar or a
rectangle, is a process. A place, usually represented by a circle,
is a resource. Places may contain ‘tokens’, indicated by dots,
which represents the state of a resource. The state of a Petri
net, known as its ‘marking’, consists of the overall allocation
of tokens to places. Often, places are bounded, meaning that
they can only contain at most a certain number of tokens.

In a Petri net, an edge always connects a transition and a
place. For each transition, the input places indicate its precon-
ditions, and the output places indicate its postconditions. The
transition can only fire when all the preconditions are met,
i.e. all the input places have tokens and all the output places
can take the newly generated tokens without exceeding place
bounds.

To model scheduling in dynamic HLS, we work with a
known extension to classical Petri nets, known as Generalised
Stochastic Petri nets (GSPN) [10]. In order to adequately
model the complex interaction of combinational and sequential
behaviour present in modern dynamic HLS tools, we specify
two types of transitions, timed transitions and immediate
transitions. A timed transition always fires with a single cycle
delay, and an immediate transition always fires with no delay.
Fig. 3 shows an example of a Petri net containing three places,
a timed transition and an immediate transition. The place on
the left holds a token that can enable the timed transition in
the next clock cycle. At that point, the immediate transition

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

Fork Join Mergefork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

Branch Mux Source/Sink

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N
N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N
N N

Buffer FIFO Transparent Buffer

place

timed transition

immediate transition
…

…

!!"#

…

…
II

"

!$%

General Component/
Static Hardware

Fig. 4: Component Formalisation of HLS Hardware.

would be enabled and it will immediately fire, so the token
will immediately reach the place on the right.

Circuit modelling using Petri nets has been investigated
for decades [9], [26], [27], [28], [29]. These works model
the circuit behaviours in Petri nets, and we use a similar
integration philosophy but only for performance analysis.
We formalise each component from the chosen HLS tools,
which automates performance analysis from high-level code.
There are also works on performance analysis using Petri
nets [30], [31], [32]. These models are for application specific
asynchronous hardware, while we model for arbitrary code.

IV. SCHEDULING MODEL

This section presents the Petri net formalism for this work.
We show how to formalise both dynamically and statically
scheduled hardware components. Then we model the circuit
back pressure in the model. At the end of this process, we have
a Petri net model, capable of being analysed by existing tools,
which models the cycle-level behaviour of a part-statically,
part-dynamically scheduled circuit.

A. Model Specification

To model the timing behaviour of the circuit, we extend
the formulation by Murata [33]. Our Petri net is an 8-tuple,
N = (P,C, T,E,W,M0, In,Out) where:

• P = {p1, p2, p3, ..., pm} is a finite set of places,
• C : P → N ∪ {∞} is the capacity of the places,
• TI = {i1, i2, ..., ih} is a finite set of immediate transitions,
• TT = {t1, t2, ..., tk} is a finite set of timed transitions,
• P , TI and TT are pairwise disjoint,
• T = TI ∪ TT,
• E ⊆ (P × T) ∪ (T × P) is a set of edges,
• W : E → {x ∈ R | 0 ≤ x ≤ 1} is an edge weight

function,
• M0 : P → N is the initial marking,
• In ⊆ P is the set of the input places to N , and
• Out ⊆ P is the set of the output places from N .

The Petri net formulation above allows modular analysis
of a sub net with given inputs and outputs. We approximate
program behaviour by only considering the presence/absence
of data at a particular place – as indicated by a token – rather
than its value, approximating data-dependent operations by
probabilistic execution. In our model, a place with tokens
indicates the presence of data held by a component. Places
drawn without additional notation have the unit capacity by
default. A transition indicates the computation of a component.
The weight function models the probability of triggering an
edge when its adjacent transition is enabled, so the sum of all
the edges from a place is 1. The initial marking M0 describes
the number of tokens contained in each place at initialisation
of the hardware.

B. Static Scheduling Formalisation

A SS circuit has a predictable hardware behaviour because
it has fixed latency. From the Vitis HLS scheduling report, we
extract the constraints of a SS circuit S shown in Eq. 1, and
use them to transform the circuit into a Petri net N .

S = (nin, nout, II , l) (1)

nin and nout are the numbers of inputs and outputs of the SS
circuit. II and l are the initiation interval and latency.

For instance, the Petri net on the right side of Fig. 4 models
a SS circuit. The yellow places represent the data signals in the
circuit; the purple places represent the back pressure control
signals. A back pressure happens when the consumer cannot
accept the output from the producer, which causes a pipeline
stall. The model has nin yellow places corresponding to the
data input ports and nout yellow places corresponding to the
data output ports of the component. The adjacent connection
to the input places ensures that the SS circuit can only start
to compute when all the inputs hold valid data. Both inputs
and outputs have a purple place guarding the input and output
transitions to model the back pressure. The path between the
inputs and outputs consists of l timed transitions corresponding
to the latency of the SS circuit in clock cycles. In summary,

1

1

A[]
MC
(A)

load A[i]

store A[j]

store A[k]

load A[k]

LSQ
(A)

M(A)

Load A[i]

1

data

addr

Load A[k]
M(A)

addr data

1 1

1

Load A[k] Store A[k]

Store A[k]
Store A[j]

A[]

(a) A memory controller (MC) is used for bal-
ancing the memory bandwidth, and a load-store
queue (LSQ) is used for dependence control.

addr

data

Store A[k]

data

addr

data

Store A[j]

LSQ(A)

M(A)

p1- p

g

addr

Load A[i] d

data

addr

Load A[k]

(b) All the memory nodes are directly connected to MC. The LSQ is modelled as
probabilistic dependence among memory nodes. The latency of a load without an
LSQ is 2, and the latency of a load with an LSQ is 5.

Fig. 5: Modelling the memory architecture of DS hardware using Petri nets.

we have nin = |In|−1 because of an additional place for back
pressure, nout = |Out | and l = |TT|.

Finally, a back edge from the II th timed transition to the
input transition constructs an internal loop for modelling an II.
The initial token in the back edge ensures that there is always
at most one token flowing in the loop, limiting the maximum
throughput of the hardware to 1/II . Such a formulation of S
in Eq. 1 allows the Petri nets to model the time behaviour of
a statically scheduled pipeline.

C. Dynamic Scheduling Formalisation

Dynamically scheduled HLS tools generate a graph con-
sisting of several pre-defined components. These components
can be divided into three types: control components, general
components and memory components. In this section, we show
how to formalise these components using Petri nets.

1) Control Components: Control components parallelize
the computation and determine the control flow of the circuit.
Here we utilise Dynamatic [3] components. In Dynamatic, the
main control components are as follows:
Fork replicates the data into multiple copies to the consumers.
Join stalls until all the inputs hold valid data.
Merge sends the data from one of the inputs to the output.
Branch sends the data to one of the outputs selected by the
condition bit.

Mux selects the data from the input determined by the select
bit to the output.

Source/Sink constantly sends/accepts data.
The Petri net models of these components are shown in

Fig. 4. In the figure, the symbols on the left-hand side of the
red arrows represent the components in the circuit, and the
symbols on the right-hand side of the red arrows represent the
corresponding Petri net models.

Also, there are three types of buffers in DS hardware for
improving the throughput of the circuit. First, a normal buffer,
as shown at the bottom left of Fig. 4, is considered as a
SS component with SBuff = (1, 1, 1, 1). The second buffer

type is a FIFO, which has a depth greater than 1. A FIFO
is modelled by increasing the capacity and initial tokens in
the internal loop, allowing multiple tokens flowing in the
component. Finally, a transparent buffer acts as a FIFO with a
combinational delay, hence all the transitions are immediate.
We consider transparent buffers as synchronous components
as they have memory.

2) Generic Components: The general components in the
DS circuit compute the arithmetic and logic operations. Mod-
elling these components is similar to a SS circuit on the right
of Fig. 4. Each component is modelled based on Eq. 1. If a
component is combinational, there is also no back edge as it
does not have memory.

3) Memory Components: For on-chip memory accesses,
there are three main types of memory components in a DS
circuit: memory controllers (MC), memory nodes and load-
store queues (LSQs). Fig. 5a illustrates an example of the
memory architecture of DS hardware. The yellow nodes are
the memory nodes in hardware. The purple blocks are the MC
and the LSQ. The memory nodes that cannot have conflicts
with others like load A[k] directly connect to MC, while
the other nodes like load A[i] are scheduled by the LSQ
before reaching the MC. Dynamatic automatically performs
aliasing analysis on these nodes to decide whether a node
should connect to an LSQ [34].

The Petri net model of Fig. 5a is shown in Fig. 5b. We first
model each memory component in Petri nets, and then use
them as components to model the whole memory architecture.

An MC serialises the memory requests from memory nodes.
In Dynamatic, each load or store statement in the program
is modelled as a memory node in hardware. Each array is
synthesised into a single memory block that allows at most
one load and one store in every clock cycle. The MC
behaves as two arbiters with a latency of one cycle to handle
multiple loads and stores respectively. The capacity of the
places models the maximum bandwidth of the memory port.

A memory node sends requests to an MC and gets the

… ……

#′

Fig. 6: Modelling the back pressure for handshake interface.

signals back. The Petri net models of loads and stores
are also pre-defined models like those in Fig. 4. For instance,
load A[k] forwards the token to the MC and replicates
a token holding in itself. Once the request is granted by
the MC, the output token can find load A[k] among all
loads based on the presence of the token held in the memory
node. There is always at most one token held among all
loads since the MC serialises the requests. The loads
connected to the MC and LSQs have the same Petri net model
but different latencies represented as the number of timed
transitions in Fig. 5b. For stores, the model is similar to the
loads but has two input places representing address and data,
respectively. The returned token from the MC only represents
an acknowledgement signal.

An LSQ schedules memory accesses in terms of depen-
dence. For every two memory accesses connected to an
LSQ, the LSQ checks at run time whether there is a depen-
dence. For example, in Fig. 5b, load A[i] may depend
on store A[j]. The LSQ for this dependence is modelled
as LSQ(A) which processes the states of store A[j] and
returns a control signal to enable load A[i] to compute. In
Fig. 5b, whenever store A[j] starts to compute, the LSQ
processes a token from the address place. The token can take
one of the two paths that both reach the place g that determines
whether load A[i] can compute. If there is no dependence,
the token takes the left path and immediately arrives at g,
enabling the load A[i]. However, if the dependence exists,
the token takes the right path. It gets stalled by a join until
the completion of store A[j], indicating the existence of
dependence. The dependence distance is modelled by the
capacity of place g and its initial tokens, d. These tokens
allow the load A[i] to run d iterations ahead if a depen-
dence occurs. The probability p of load A[i] depending
on store A[j] is modelled as the weight function of the
edge, and the average dependence distance d is modelled as
the capacity of place g.

For the case where store A[j] also depends on
load A[i], another Petri net like LSQ(A) is added to
process the states of store A[j] for load A[i]. We
analyse every two memory nodes that connect to the same
LSQ to capture all possible memory dependences.

D. Back Pressure Modelling

A circuit can be modelled as a graph by connecting the
input/output places of these components. The connection of

yellow places corresponds to the data path in hardware. The
connection of purple places models the control states of the
circuit including back pressure. The back pressure is modelled
as back edges in our Petri net model, as shown in Fig. 4.

This section explains how to construct back edges in Petri
nets. We define the immediate transitions inside buffer compo-
nents and the timed transitions as synchronous transitions TS,
where TT ⊆ TS ⊆ T , and the other transitions are non-
synchronous. A combinational path is defined as a path
between two synchronous transitions that does not contain
any synchronous transition. The behaviour of a synchronous
circuit is then defined that for any combinational path, there
is at most K tokens in this path. K is the maximum capacity
of the places in the path. Most of the time, K = 1. In order
to model this, we use the following formulation to construct
back edges. Given a Petri net N = (P, T,E,W,M0, , In,Out)
without back edge, the back edges can be added to form a new
Petri net N ′ = (P ′, T ′, E′,W ′,M ′0, In

′,Out ′) where:

P ′ = P × {F, B}
T ′ = TS × {F} ∪ (T \ TS)× {F, B}
E′ = {((p, F), (t, F)) | (p, t) ∈ E} ∪

{((t, F), (p, F)) | (t, p) ∈ E} ∪
{((p, F), (t, F)), ((t, B), (p, B)) | t /∈ TS ∧ (p, t) ∈ E} ∪
{((t, F), (p, F)), ((p, B), (t, B)) | t /∈ TS ∧ (t, p) ∈ E} ∪
{((p, F), (t, F)), ((t, F), (p, B)) | t ∈ TS ∧ (p, t) ∈ E} ∪
{((t, F), (p, F)), ((p, B), (t, F)) | t ∈ TS ∧ (t, p) ∈ E}

The original net has a forward tag F, and the added Petri net
representing back pressure has a backward tag B. Fig. 6 shows
an example of transformation from N to N ′. We mirror all
the places and non-synchronous transitions including the edges
between them. All synchronous transitions are not mirrored
but have mirrored edges with the mirrored places. The weight
function W ′ is a constraint for E′, so it is constructed in the
same way as E′. The same applies for C ′, M ′0, In ′ and Out ′

with respect to P ′. A main advantage of above formulation is
that it constructs back edges at component level and does not
need any path-based analysis which scales with the number of
paths and their length.

E. Probabilistic Modelling

The consequence of approximating exact data values into
presence of data is that all the data-dependent choices are now
arbitrary. We then model the branch conditions and memory
dependences as probabilistic events, and analyse the state
transitions. 1) Branch Conditions: The probability of a branch
condition is obtained by profiling the frequency of control
flow decisions. 2) Memory Dependences: The probabilities of
memory dependence between every two memory statements
are profiled in program order. For each dependence, we
estimate two constraints: the probability of dependence, p, and
the average dependence distance in terms of iterations, d, e.g.
in Fig. 5b.

.cpp
DASS Front End

.dot

.cpp (SS)

.pn
Hardware-to-PN Formulation

.rg
PN Analysis Probabilistic Modelling

.sm
Steady State Analysis

Inferred II

.rpt (profiling)

.cpp with inferred II
Update Vitis HLS

.vhd

Update
.dot

Dynamatic Back End
.vhd.cpp (DS)

Dynamatic Front End

DASS
Back End

.vhd

Dynamatic HLS

Vitis HLS

DASS HLS (our work)

Vitis HLS

.dot

.rpt (scheduling)

DASS Analyser

Fig. 7: The tool flow of our approach.

−10 0 10 20
0

20

40

Percentage difference in ADP

Te
st

ca
se

s

Fig. 8: Area-delay product (ADP) difference between our work
and the optimal designs for vecTrans over a set of input
distributions. Small difference means better design quality.

V. IMPLEMENTATION

This section illustrates the tool flow that uses the Petri net
model to automatically infer the II of the SS component in
DS hardware. Fig. 7 shows the tool flow of the II selec-
tion process. Here we take DASS [6] for prototyping. The
synthesis of DASS is on top of Dynamatic [3] for dynamic
scheduling and Vitis HLS [4] for static scheduling. First,
the dataflow graph of the hardware (.dot) is extracted from
Dynamatic and encoded with the SS constraints by extracting
the scheduling information from Vitis HLS (.rpt). Then our
analyser transforms the graph into a Petri net model (.pn) with
the probabilities encoded from the profiled information (.rpt).
Note Dynamatic has already profiled the control flows, which
can be directly used by our tool. Our tool then only profiles
the memory accesses. Next, the behaviours of the model are
analysed, resulting in a reachability graph (.rg). The graph
is then translated into discrete-time Markov chains (.sm) and
analysed by PRISM, resulting in an inferred optimal II for
each SS function. Finally, the constraints in the design files
are updated with the new IIs both in Dynamatic and Vitis HLS
at the back end of DASS to synthesise the final hardware.

VI. EXPERIMENTS

We evaluate our approach on the latency and the area of
the whole hardware compared to the IIs selected by the static
analysis in Vitis HLS, the throughput analysis in Dynamatic
and exhaustive search. Over a set of benchmarks, we assess
the impact of our analysis on both the circuit area and the
performance. We obtain the total clock cycles from ModelSim
10.6d and the area results from the Post & Synthesis report in
Vitis. The FPGA family we used for result measurements is
xc7z020clg484, and the version of Vitis software is 2020.1.

A. Benchmarks

Specifically, we select six benchmarks that are amenable
for our approach. These benchmarks all have unpredictable
behaviours at run time, such as data-dependent conditions
and unpredictable memory accesses so that the hardware
performance can benefit from dynamic scheduling. Also, the
SS components have the opportunities for resource sharing, so
II> 1 can be beneficial. The benchmarks for the experiments
are as follows and will be open-sourced upon publications:
vecTrans is the motivating example in Fig. 1.
vecTrans2 is similar to the motivating example, however, the
store operation is conditional depending on the array data.

vecTrans3 is also similar to the motivating example but all
the memory accesses are indirectly addressed. The type of
array data is floating-point.

evalPos is an evaluation function for a chess engine, which
evaluates the given position on the board [35].

levmarq is an implementation of the Levenberg-Marquardt
algorithm for solving least-squares problems [36].

chaosNCG is a function for the Naive Czyzewski Generator
in the Chaos engine to pull the data from the buffer [37].

B. Results

We first evaluate our approach on the motivating example
vecTrans. In order to get the most likely optimal II as
references, we exhaustively enumerate all the possible IIs
for each SS component for each input data distribution. The
exhaustively searched II is selected as the largest II with a
latency of no more than 110%1 of the minimum latency among
all the IIs. Then we compare the searched IIs with the inferred
II by our tool for each case.

The distribution of inferred IIs is similar to Fig. 2 with
small variations. Fig. 8 shows a histogram of the comparison
between our inferred IIs and the exhaustively searched IIs
in area-delay product (ADT) for vecTrans. We test 110
cases by varying the input data, resulting in different sets of
probability constraints. A small difference means better design
quality. In 86% of the cases, the designs by our approach
have less than 10% difference compared to the designs by
exhaustive search. The reason for the negative difference is
that the latency noise in the SS component wrapper affects
the selection of the optimal II. There are still 14% cases

1110% is selected due to small latency noise caused by the wrapper around
the SS component [6]

TABLE I: Evaluation of our approach on a set of benchmarks. base 1 = the designs with IIs conservatively chosen by Vitis
HLS, base 2 = the designs with IIs manually inferred from Dynamatic throughput analysis, ours = the designs with IIs inferred
by our model and search = the designs with IIs by exhaustive search.

Benchmark II LUTs1 DSPs Cycles Fmax (MHz)

base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search

vecTrans 15 1 3 3 785 759 922 922 3 21 9 9 101k 58.5k 60.1k 60.1k 112 104 79.6 79.6
vecTrans2 15 6 6 7 150 470 470 434 3 6 6 3 40.7k 24.2k 24.2k 24.5k 58.6 60.0 60.0 62.7
vecTrans3 49 1 2 2 1.22k 2.59k 2.68k 2.68k 5 27 15 15 196k 14.4k 14.2k 14.2k 102 100 97.7 97.7
evalPos 5 10 11 14 3.63k 3.68k 3.63k 3.55k 14 14 14 14 2.31k 2.24k 2.24k 2.24k 80.5 77.0 80.4 80.4
levmarq 59,72 1,2 59,6 59,8 2.86k 7.01k 4.141k 4.141k 26 75 31 31 1.34 928k 936k 969k 63.8 54.2 61.2 61.2
chaosNCG 74 1 8 28 3.61k 5.67k 3.78k 3.44k 0 0 0 0 400k 140k 146k 151k 77.4 93.0 92.5 87.9

Normalised
geom. mean - - - - 0.74× 1.21× 1.03× 1× 0.75× 1.76× 1.17× 1× 3.71× 0.98× 0.99× 1× 1.05× 1.03× 1× 1×

Benchmark Time using
simulations (min)

Time using
our approach (min)

vecTrans 66 24
vecTrans2 58 6
vecTrans3 197 24
evalPos 220 7
levmarq 45015 37
chaosNCG 383 24

Normalised
geom. mean 1× 0.11×

Synthesis, tsyn Co-simulation, tsim Our Analysis, tours

TABLE II: Synthesis time comparison between exhaustive
search and our approach. The colour bar at the bottom
illustrates on average the ratio of synthesis time, simulation
time and our analysis time for a single design with an II.

where the difference in ADP is greater than 10%, because our
tool approximates the memory architecture into probabilities
instead of the exact sequence.

Tab. I shows the results for all the benchmarks. For each
benchmark, we use a set of randomly-generated data that is
not a extreme case. We compare the area and delay of the
designs with the inferred II by our tool to the designs with
the IIs suggested by Vitis HLS (base 1), the IIs manually
calculated from Dynamatic throughput analysis (base 2) and
the optimal IIs by exhaustive search using simulations (search).
On average, the II inferred by our tool loses 2% in ADP
compared to the exhaustively searched II, while the ADP for
the II by Vitis HLS is 112% larger, and the ADP for the II by
the throughput analysis in Dynamatic is 17% larger.

There are certain cases where the II from Vitis HLS or Dy-
namatic has comparable results with the exhaustively searched
II. For instance, evalPos does not have memory dependence
but conditional loop-carried dependence in the code. Such low
complexity enables Vitis HLS to suggest a smaller II smaller
than the optimal II. Since the code size of the benchmark is
small, II of 5 allows the hardware design to share most of the

1The LUT count is for the whole design except the LSQs which do change
with these approaches [3]. Optimising the LSQs is a separate problem.

resources. The same for the designs with the IIs by Dynamatic.
These cases usually happen for designs where the control flow
and memory accesses have low complexity.

The synthesis time of the design by our approach is also
evaluated in Tab. II. The average time of relevant processes
for a single design with an II has been normalised and
shown as the length of the colour bar at the bottom. The
time for exhaustive search depends on both the synthesis and
simulation time, and it scales exponentially with the number
of SS components and the number of possible IIs, such as
levmarq. Our approach reduces the scalability issue by
avoiding enumerating the IIs and on average achieves 9×
speedup for estimating an optimal II.

VII. CONCLUSION

In high-level synthesis, static analysis for scheduling is
usually carried out based on worst-case assumption or exhaus-
tive search. Efficient modelling dynamic mechanism in static
analysis for hardware is challenging. In this work, we present a
technique to translate the uncertainty of hardware behaviours,
such as data-dependent choices and unpredictable memory
accesses, into a probabilistic model. We reply pre-existing
tools based on Petri nets for analysis and optimisation. Our
approach is generic and suitable for HLS hardware produced
from arbitrary code.

We show how to use our model to automatically estimate
the optimal II of the SS hardware in DS surroundings. Across
a range of benchmark programs that are amenable to DASS,
our approach on average achieves 9× speedup compared to
the design by exhaustive search on estimating an optimal II
with 2% overhead in ADP, while the static analysis in Vitis
HLS causes 112% ADP overhead, and the throughput analysis
in Dynamatic causes 17% ADP overhead. Our future work
will explore the fundamental limits of this approach, both
theoretically and practically.

ACKNOWLEDGEMENTS

This work is supported by the EPSRC (EP/P010040/1,
EP/R006865/1). The authors wish to thank Estı́baliz Fraca for
helpful comments.

REFERENCES

[1] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, Sep. 2013. [Online].
Available: https://doi.org/10.1145/2514740

[2] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level synthesis of
memory bound and irregular parallel applications with bambu,” in 2014
IEEE Hot Chips 26 Symposium (HCS). Cupertino, CA: IEEE, Aug
2014, pp. 1–1.

[3] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled high-
level synthesis,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’18. Mon-
terey, CA: ACM, 2018, pp. 127–136.

[4] Xilinx Vitis HLS, 2020. [Online]. Available:
https://www.xilinx.com/html docs/xilinx2020 1/vitis doc/index.html

[5] Intel HLS Compiler, 2020. [Online]. Available: https://www.altera.com/
[6] J. Cheng, L. Josipović, P. Ienne, G. Constantinides, and J. Wickerson,

“Combining dynamic & static scheduling in high-level synthesis,” in
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’20. Monterey, CA: ACM,
2020.

[7] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[8] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow
circuits,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’20. Monterey, CA: Association
for Computing Machinery, 2020, p. 186–196. [Online]. Available:
https://doi.org/10.1145/3373087.3375314

[9] L. Ya. Rosenblum and A.V. Yakovlev, “Signal graphs: from self-timed to
timed ones,” in Proc. of the Int. Workshop on Timed Petri Nets. Torino,
Italy: IEEE Computer Society Press, 1985, pp. 199–207.

[10] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte, “Generalized
stochastic petri nets: a definition at the net level and its implications,”
IEEE Transactions on Software Engineering, vol. 19, no. 2, pp. 89–107,
1993.

[11] Z. Zhang and B. Liu, “Sdc-based modulo scheduling for pipeline
synthesis,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2013, pp. 211–218.

[12] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo sdc scheduling
with recurrence minimization in high-level synthesis,” in 2014 24th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2014, pp. 1–8.

[13] Ian Page and Wayne Luk, “Compiling occam into Field-Programmable
Gate Arrays,” in FPGAs, W. Moore and W. Luk, Eds., Abingdon EE&CS
Books, 1991.

[14] Celoxica, “Handel-C,” 2005. [Online]. Available:
http://www.celoxica.com

[15] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 9, pp.
1059–1076, Sep. 2001.

[16] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store queue for
spatial computing,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s,
pp. 125:1–125:19, Sep. 2017.

[17] L. P. Carloni, “From latency-insensitive design to communication-based
system-level design,” Proceedings of the IEEE, vol. 103, no. 11, pp.
2133–2151, Nov 2015.

[18] M. Ishikawa and G. De Micheli, “A module selection algorithm for high-
level synthesis,” in 1991., IEEE International Sympoisum on Circuits
and Systems, 1991, pp. 1777–1780 vol.3.

[19] I. Ahmad, M. K. Dhodhi, and C. Y. R. Chen, “Integrated scheduling,
allocation and module selection for design-space exploration in high-
level synthesis,” IEE Proceedings - Computers and Digital Techniques,
vol. 142, no. 1, pp. 65–71, 1995.

[20] K. Ito, L. E. Lucke, and K. K. Parhi, “Ilp-based cost-optimal dsp
synthesis with module selection and data format conversion,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6,
no. 4, pp. 582–594, 1998.

[21] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “Fpga pipeline synthesis
design exploration using module selection and resource sharing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 254–265, 2007.

[22] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in Proceedings of the
37th Annual Design Automation Conference, ser. DAC ’00. New York,
NY, USA: Association for Computing Machinery, 2000, p. 361–367.
[Online]. Available: https://doi.org/10.1145/337292.337441

[23] M. R. Casu and L. Macchiarulo, “A new approach to
latency insensitive design,” in Proceedings of the 41st Annual Design
Automation Conference, ser. DAC ’04. New York, NY, USA:
Association for Computing Machinery, 2004, p. 576–581. [Online].
Available: https://doi.org/10.1145/996566.996725

[24] M. Singh and M. Theobald, “Generalized latency-insensitive systems
for single-clock and multi-clock architectures,” in Proceedings Design,
Automation and Test in Europe Conference and Exhibition, vol. 2, 2004,
pp. 1008–1013 Vol.2.

[25] R. L. Collins and L. P. Carloni, “Topology-based performance analysis
and optimization of latency-insensitive systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 12, pp. 2277–2290, 2008.

[26] R. M. Shapiro, “Validation of a vlsi chip using
hierarchical colored petri nets,” Microelectronics Reliability,
vol. 31, no. 4, pp. 607 – 625, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/002627149190006S

[27] K. L. McMillan, “Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits,” in Proceedings of the Fourth
International Workshop on Computer Aided Verification, ser. CAV ’92.
Berlin, Heidelberg: Springer-Verlag, 1992, p. 164–177.

[28] J. Carmona, J. Cortadella, and E. Pastor, “A structural encoding tech-
nique for the synthesis of asynchronous circuits,” vol. 50, 01 2001, pp.
157–166.

[29] J.-I. Rocha, O. Páscoa Dias, and L. Gomes, “Improving synchronous
dataflow analysis supported by petri net mappings,” Electronics,
vol. 7, no. 12, 2018. [Online]. Available: https://www.mdpi.com/2079-
9292/7/12/448

[30] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asyn-
chronous concurrent systems using petri nets,” IEEE Transactions on
Software Engineering, vol. SE-6, no. 5, pp. 440–449, 1980.

[31] A. Xie and P. A. Beerel, Performance Analysis of Asynchronous Circuits
and Systems Using Stochastic Timed Petri Nets. Boston, MA: Springer
US, 2000, pp. 239–268. [Online]. Available: https://doi.org/10.1007/978-
1-4757-3143-9 13

[32] B. R. T. M. Witlox, P. van der Wolf, E. H. L. Aarts, and W. M. P.
van der Aalst, Performance Analysis of Dataflow Architectures Using
Timed Coloured Petri Nets. Boston, MA: Springer US, 2000, pp. 269–
289. [Online]. Available: https://doi.org/10.1007/978-1-4757-3143-9 14

[33] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[34] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink
it or shed it! minimize the use of lsqs in dataflow designs,” in 2019
International Conference on Field-Programmable Technology (ICFPT),
2019, pp. 197–205.

[35] LosAlamosChessEngine, 2020. [Online]. Available:
https://github.com/gfmcknight/LosAlamosChessEngine

[36] levenberg-maquardt-example, 2020. [Online]. Available:
https://github.com/leechwort/levenberg-maquardt-example

[37] Libchaos, 2020. [Online]. Available:
https://github.com/maciejczyzewski/libchaos

