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ABSTRACT

With hardware designs becoming ever more complex, and demand
for custom accelerators ever growing, high-level synthesis (HLS) is
increasingly being relied upon. However, HLS is known to be quite
flaky, with each tool supporting subtly different fragments of the
input language and sometimes even generating incorrect designs.
We argue that a formally verified HLS tool could solve this issue by
dramatically reducing the amount of trusted code, and providing
a formal description of the input language that is supported. To
this end, we are developing Vericert, a formally verified HLS tool,
based on CompCert, a formally verified C compiler.

1 INTRODUCTION

High-level synthesis research and development is
inherently prone to introducing bugs or regressions in the
final circuit functionality.

— Andrew Canis [7]
Co-founder of LegUp Computing

Research in high-level synthesis (HLS) often concentrates on
performance: trying to achieve the lowest area with the shortest
run-time. What is often overlooked is ensuring that the HLS tool
is correct, which means that it outputs hardware designs that are
equivalent to the behavioural input.

When working with HLS tools, it is often assumed that they
transform the behavioural input into a semantically equivalent de-
sign [17]. However, this is not the case, and as with all complex
pieces of software there are bugs in HLS tools as well. For exam-
ple, Vivado HLS was found to incorrectly apply pipelining optimi-
sations! or generate incorrect designs silently when straying out-
side the supported fragment of C.2 These types of bugs are difficult
to identify, and exist because it is not quite clear firstly what input
these tools support, and secondly whether the output design actu-
ally behaves the same as the input.

Our position: We believe that a formally verified HLS tool could
be the solution to these problems. It not only guarantees that the
output is correct, but also brings a formal specification of the in-
put and output language semantics. These are the only parts of the
compiler that need to be trusted, and if these are well-specified,
then the behaviour of the resulting design can be fully trusted. In

!https://bit.ly/vivado-hls-pipeline-bug
Zhttps://bit.ly/vivado-hls-pointer-bug
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addition to that, if the semantics of the input language are taken
from a tool that is widely trusted already, then there should not be
any strange behaviour; the resultant design will either behave ex-
actly like the input specification, or the translation will fail early at
compile time. To this end, we are building a formally verified HLS
tool called Vericert [15].

In what follows, we will argue our position by presenting sev-
eral possible objections to our position, and then responding to
each in turn.

2 ARGUMENTS AGAINST FORMALISED HLS

Objection 1: People should not be designing hardware in C to
begin with. Formally verifying HLS of C is the wrong approach. C
should not be used to design hardware, let alone hardware where re-
liability is crucial. First of all, HLS tools are not unreliable in terms
of correctness, but more so in terms of the quality of the hardware,
which can be quite unpredictable [21]. For example, when writing C
for an HLS tool, small changes in the input could result in large differ-
ences in area and performance of the resulting hardware. On the other
hand, there have been many efforts to formally verify the translation
of high-level hardware description languages like Bluespec with Koi-
ka [5], to formalise the synthesis of Verilog into technology-mapped
net-lists with Lutsig [19], or to formalise circuit design in Coq itself
to ease design verification [8, 23].

Our response: Verifying HLS is also important. First, C is of-
ten the starting point for hardware designs, as initial models are
written in C to produce a quick prototype [13], so it is only nat-
ural to continue using C when designing the hardware. Not only
is HLS from C becoming more popular, but much of that conve-
nience comes from the easy behavioural testing that HLS allows to
ensure correct functionality of the design [17]. This assumes that
HLS tools are correct. Finally, even though unpredictability of the
output of HLS tools might seem like the largest issue, working on a
functionally correct HLS tool provides a good baseline to work on
improving the predictability of the output as well. Reasoning about
correctness could maybe be extended with proofs about the vari-
ability of the generated output hardware, thereby also improving
the quality of the output. In this vein, CompCert [18], an existing
formally verified C compiler, has recently been extended with a
proof of preservation of constant-time [3], and a similar approach
could be taken to to prove properties about the preservation of the
hardware area or performance.

Objection 2: HLS tools are already commonly used in industry,
so they are clearly already reliable enough.

Our response: They are widely used, but they are also widely
acknowledged to be quite flaky. In prior work [14], we have shown
that on average 2.5% of randomly generated C programs, tailored
to the specific HLS tool, end up with incorrect designs. These bugs
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were reported and confirmed to be new bugs in the tools, demon-
strating that existing internal tests did not catch them.

Objection 3: Existing approaches for testing or formally ver-
ifying hardware designs are sufficient for ensuring reliabil-
ity. Besides the use of test-benches to test designs produced by HLS,
there has been research on performing equivalence checks between
the output design and the behavioural input, focusing on creating
translation validators [22] to prove equivalence between the design
and the input code, while supporting various optimisations such as
scheduling [9, 16, 25] or code motion [2, 10].

Our response: Existing verification techniques for checking
the output of HLS tools may not be enough to catch these bugs re-
liably. Checking the final design against the original model using
a test-bench may miss edge cases that produce bugs. In addition
to that, these test-benches need to be kept up to date when new
features are introduced. Translation validation seems like a good
solution, as the tool can be automatically checked as it generates
hardware, and any potential issues in the hardware are reported at
the time the hardware is generated. However, this is not a perfect
solution either, as there is no guarantee that the translation vali-
dation proofs really compose with each other. In response, equiv-
alence checkers are often designed to check the translation from
start to finish, but this is computationally expensive, as well as pos-
sibly being highly incomplete. In addition to that, these translation
validation algorithms have not been validated mechanically by a
theorem prover. Therefore, there is no guarantee that the validator
itself is correct, which would require more testing.

The radical solution to this problem is to formally verify the
whole tool. This proved successful for CompCert [18], for example,
which is a formally verified C compiler written in Coq [12]. The
reliability of this formally verified compiler was demonstrated by
Csmith [24], a random, valid C generator, finding more than 300
bugs in GCC and Clang, but no bugs in the verified parts of Comp-
Cert.

Objection 4: HLS applications don’t require the levels of reli-
ability that a formally verified compiler affords. One might
argue that developing a formally verified tool in a theorem prover
and proving correctness theorems about it might take too long, and
that HLS tools specifically do not need that kind of reliability. Indeed,
in our experience developing a verified HLS tool called Vericert [15]
based on CompCert, we found that it normally takes 5X or 10X longer
to prove a compiler pass correct compared to writing the algorithm.

Our response: However, proving the correctness of the HLS
tool proves the absence of any bugs according to the language se-
mantics, meaning much less time has to be spent on fixing bugs. In
addition to that, verification also forces the algorithm to deal with
many different edge cases that may be hard to identify normally.

Objection 5: Any HLS tool that is simple enough for formal ver-
ification to be feasible won’t produce sufficiently optimised
designs to be useful. If that is the case, then the verification effort
could be seen as useless, as it could not be used.

Our response: We think that even a verified HLS tool can be
comparable in performance to a state-of-the-art unverified HLS
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tool. Taking Vericert as an example, which does not currently in-
clude many optimisations, we found that performing comparisons
between Vericert and LegUp [6], we found that the speed and area
were comparable (1X - 1.5%) to that of LegUp without LLVM op-
timisations and without operation chaining. With those optimisa-
tions fully turned on, Vericert is around 4.5x slower than LegUp,
with half the speed up being due to LLVM.

There are many optimisations that need to be added to Vericert
to turn it into a viable and competitive HLS tool. First of all, a
good scheduling implementation that supports operation chaining
and pipelined operators is critical. Our main focus is implementing
scheduling based on systems of difference constraints [11], which
is the same algorithm LegUp uses. With this optimisation turned
on, Vericert is only 2X to 3X slower than fully optimised LegUp,
with a slightly larger area. The scheduling step is implemented us-
ing verified translation validation, which means that the schedul-
ing algorithm can be tweaked and optimised without ever having
to touch the correctness proof.

Objection 6: Even a formally verified HLS tool can’t give abso-
lute guarantees about the hardware it produces.

Our response: It is true that a verified tool is still allowed to fail
at compile time, which means that no output is produced despite
the valid input. However, this is mostly a matter of putting more
engineering work into the tool to make it more complete. Bugs are
easier to identify as they will induce tool failures at compile time.

In addition to that, specifically for an HLS tool taking C as in-
put, undefined behaviour will allow the HLS tool to behave any
way it wishes. This becomes even more important when passing
the C to a verified HLS tool, because if it is not free of undefined
behaviour, then none of the proofs will hold. Extra steps therefore
need to be performed to ensure that the input is free of any unde-
fined behaviour, by using a tool like VST [1] for example.

Finally, the input and output language semantics need to be
trusted, as the proofs only hold as long as the semantics are a faith-
ful representation of the languages. In Vericert this comes down to
trusting the C semantics developed by CompCert [4] and the Ver-
ilog semantics that we adapted from L66w and Myreen [20].

3 CONCLUSION

In conclusion, we have argued that HLS tools should be formally
verified, and through our Vericert prototype, we have demonstrated
that doing so is feasible. Even though the performance does not
yet match state-of-the-art HLS tools, as more and more optimisa-
tions are implemented and formally verified, similar performance
should be achievable. We believe that Vericert has the potential
to raise the standard of reliability across the HLS field. It also has
the potential to bring HLS to a new domain: designers of security-
or safety-critical hardware, who are currently forced to design at
very low levels of abstraction in order to minimise their trusted
computing base.
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