High-Level Synthesis Tools should be Proven Correct

Yann Herklotz
Imperial College London, UK
yann.herklotz15@imperial.ac.uk

ABSTRACT

With hardware designs becoming ever more complex, and demand
for custom accelerators ever growing, high-level synthesis (HLS) is
increasingly being relied upon. However, HLS is known to be quite
flaky, with each tool supporting subtly different fragments of the
input language and sometimes even generating incorrect designs.
We argue that a formally verified HLS tool could solve this issue by
dramatically reducing the amount of trusted code, and providing
a formal description of the input language that is supported. To
this end, we are developing Vericert, a formally verified HLS tool,
based on CompCert, a formally verified C compiler.

1 INTRODUCTION

High-level synthesis research and development is
inherently prone to introducing bugs or regressions in the
final circuit functionality.

— Andrew Canis [7]
Co-founder of LegUp Computing

Research in high-level synthesis (HLS) often concentrates on
performance: trying to achieve the lowest area with the shortest
run-time. What is often overlooked is ensuring that the HLS tool
is correct, which means that it outputs hardware designs that are
equivalent to the behavioural input.

When working with HLS tools, it is often assumed that they
transform the behavioural input into a semantically equivalent de-
sign [17]. However, this is not the case, and as with all complex
pieces of software there are bugs in HLS tools as well. For exam-
ple, Vivado HLS was found to incorrectly apply pipelining optimi-
sations! or generate incorrect designs silently when straying out-
side the supported fragment of C.2 These types of bugs are difficult
to identify, and exist because it is not quite clear firstly what input
these tools support, and secondly whether the output design actu-
ally behaves the same as the input.

Our position: We believe that a formally verified HLS tool could
be the solution to these problems. It not only guarantees that the
output is correct, but also brings a formal specification of the in-
put and output language semantics. These are the only parts of the
compiler that need to be trusted, and if these are well-specified,
then the behaviour of the resulting design can be fully trusted. In

!https://bit.ly/vivado-hls-pipeline-bug
Zhttps://bit.ly/vivado-hls-pointer-bug

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

LATTE 21, April 15, 2021, Virtual, Earth

© 2021 Copyright held by the owner/author(s).

John Wickerson
Imperial College London, UK
j-wickerson@imperial.ac.uk

addition to that, if the semantics of the input language are taken
from a tool that is widely trusted already, then there should not be
any strange behaviour; the resultant design will either behave ex-
actly like the input specification, or the translation will fail early at
compile time. To this end, we are building a formally verified HLS
tool called Vericert [15].

In what follows, we will argue our position by presenting sev-
eral possible objections to our position, and then responding to
each in turn.

2 ARGUMENTS AGAINST FORMALISED HLS

Objection 1: People should not be designing hardware in C to
begin with. Formally verifying HLS of C is the wrong approach. C
should not be used to design hardware, let alone hardware where re-
liability is crucial. First of all, HLS tools are not unreliable in terms
of correctness, but more so in terms of the quality of the hardware,
which can be quite unpredictable [21]. For example, when writing C
for an HLS tool, small changes in the input could result in large differ-
ences in area and performance of the resulting hardware. On the other
hand, there have been many efforts to formally verify the translation
of high-level hardware description languages like Bluespec with Koi-
ka [5], to formalise the synthesis of Verilog into technology-mapped
net-lists with Lutsig [19], or to formalise circuit design in Coq itself
to ease design verification [8, 23].

Our response: Verifying HLS is also important. First, C is of-
ten the starting point for hardware designs, as initial models are
written in C to produce a quick prototype [13], so it is only nat-
ural to continue using C when designing the hardware. Not only
is HLS from C becoming more popular, but much of that conve-
nience comes from the easy behavioural testing that HLS allows to
ensure correct functionality of the design [17]. This assumes that
HLS tools are correct. Finally, even though unpredictability of the
output of HLS tools might seem like the largest issue, working on a
functionally correct HLS tool provides a good baseline to work on
improving the predictability of the output as well. Reasoning about
correctness could maybe be extended with proofs about the vari-
ability of the generated output hardware, thereby also improving
the quality of the output. In this vein, CompCert [18], an existing
formally verified C compiler, has recently been extended with a
proof of preservation of constant-time [3], and a similar approach
could be taken to to prove properties about the preservation of the
hardware area or performance.

Objection 2: HLS tools are already commonly used in industry,
so they are clearly already reliable enough.

Our response: They are widely used, but they are also widely
acknowledged to be quite flaky. In prior work [14], we have shown
that on average 2.5% of randomly generated C programs, tailored
to the specific HLS tool, end up with incorrect designs. These bugs

LATTE ’21, April 15, 2021, Virtual, Earth

were reported and confirmed to be new bugs in the tools, demon-
strating that existing internal tests did not catch them.

Objection 3: Existing approaches for testing or formally ver-
ifying hardware designs are sufficient for ensuring reliabil-
ity. Besides the use of test-benches to test designs produced by HLS,
there has been research on performing equivalence checks between
the output design and the behavioural input, focusing on creating
translation validators [22] to prove equivalence between the design
and the input code, while supporting various optimisations such as
scheduling [9, 16, 25] or code motion [2, 10].

Our response: Existing verification techniques for checking
the output of HLS tools may not be enough to catch these bugs re-
liably. Checking the final design against the original model using
a test-bench may miss edge cases that produce bugs. In addition
to that, these test-benches need to be kept up to date when new
features are introduced. Translation validation seems like a good
solution, as the tool can be automatically checked as it generates
hardware, and any potential issues in the hardware are reported at
the time the hardware is generated. However, this is not a perfect
solution either, as there is no guarantee that the translation vali-
dation proofs really compose with each other. In response, equiv-
alence checkers are often designed to check the translation from
start to finish, but this is computationally expensive, as well as pos-
sibly being highly incomplete. In addition to that, these translation
validation algorithms have not been validated mechanically by a
theorem prover. Therefore, there is no guarantee that the validator
itself is correct, which would require more testing.

The radical solution to this problem is to formally verify the
whole tool. This proved successful for CompCert [18], for example,
which is a formally verified C compiler written in Coq [12]. The
reliability of this formally verified compiler was demonstrated by
Csmith [24], a random, valid C generator, finding more than 300
bugs in GCC and Clang, but no bugs in the verified parts of Comp-
Cert.

Objection 4: HLS applications don’t require the levels of reli-
ability that a formally verified compiler affords. One might
argue that developing a formally verified tool in a theorem prover
and proving correctness theorems about it might take too long, and
that HLS tools specifically do not need that kind of reliability. Indeed,
in our experience developing a verified HLS tool called Vericert [15]
based on CompCert, we found that it normally takes 5X or 10X longer
to prove a compiler pass correct compared to writing the algorithm.

Our response: However, proving the correctness of the HLS
tool proves the absence of any bugs according to the language se-
mantics, meaning much less time has to be spent on fixing bugs. In
addition to that, verification also forces the algorithm to deal with
many different edge cases that may be hard to identify normally.

Objection 5: Any HLS tool that is simple enough for formal ver-
ification to be feasible won’t produce sufficiently optimised
designs to be useful. If that is the case, then the verification effort
could be seen as useless, as it could not be used.

Our response: We think that even a verified HLS tool can be
comparable in performance to a state-of-the-art unverified HLS

Yann Herklotz and John Wickerson

tool. Taking Vericert as an example, which does not currently in-
clude many optimisations, we found that performing comparisons
between Vericert and LegUp [6], we found that the speed and area
were comparable (1X - 1.5%) to that of LegUp without LLVM op-
timisations and without operation chaining. With those optimisa-
tions fully turned on, Vericert is around 4.5x slower than LegUp,
with half the speed up being due to LLVM.

There are many optimisations that need to be added to Vericert
to turn it into a viable and competitive HLS tool. First of all, a
good scheduling implementation that supports operation chaining
and pipelined operators is critical. Our main focus is implementing
scheduling based on systems of difference constraints [11], which
is the same algorithm LegUp uses. With this optimisation turned
on, Vericert is only 2X to 3X slower than fully optimised LegUp,
with a slightly larger area. The scheduling step is implemented us-
ing verified translation validation, which means that the schedul-
ing algorithm can be tweaked and optimised without ever having
to touch the correctness proof.

Objection 6: Even a formally verified HLS tool can’t give abso-
lute guarantees about the hardware it produces.

Our response: It is true that a verified tool is still allowed to fail
at compile time, which means that no output is produced despite
the valid input. However, this is mostly a matter of putting more
engineering work into the tool to make it more complete. Bugs are
easier to identify as they will induce tool failures at compile time.

In addition to that, specifically for an HLS tool taking C as in-
put, undefined behaviour will allow the HLS tool to behave any
way it wishes. This becomes even more important when passing
the C to a verified HLS tool, because if it is not free of undefined
behaviour, then none of the proofs will hold. Extra steps therefore
need to be performed to ensure that the input is free of any unde-
fined behaviour, by using a tool like VST [1] for example.

Finally, the input and output language semantics need to be
trusted, as the proofs only hold as long as the semantics are a faith-
ful representation of the languages. In Vericert this comes down to
trusting the C semantics developed by CompCert [4] and the Ver-
ilog semantics that we adapted from L66w and Myreen [20].

3 CONCLUSION

In conclusion, we have argued that HLS tools should be formally
verified, and through our Vericert prototype, we have demonstrated
that doing so is feasible. Even though the performance does not
yet match state-of-the-art HLS tools, as more and more optimisa-
tions are implemented and formally verified, similar performance
should be achievable. We believe that Vericert has the potential
to raise the standard of reliability across the HLS field. It also has
the potential to bring HLS to a new domain: designers of security-
or safety-critical hardware, who are currently forced to design at
very low levels of abstraction in order to minimise their trusted
computing base.

ACKNOWLEDGMENTS

We acknowledge financial support from the Research Institute on
Verified Trustworthy Software Systems (VeTSS), which is funded
by the UK National Cyber Security Centre (NCSC).

HLS Tools should be Proven Correct

REFERENCES

[1] Andrew W. Appel. 2011. Verified Software Toolchain. In Programming Lan-

[2

3

[9

[10

[11

[12

]

=

=

]

]

guages and Systems, Gilles Barthe (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1-17.

K. Banerjee, C. Karfa, D. Sarkar, and C. Mandal. 2014. Verification of Code
Motion Techniques Using Value Propagation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 33, 8 (Aug 2014), 1180-1193.
https://doi.org/10.1109/TCAD.2014.2314392

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte,
David Pichardie, and Alix Trieu. 2020. Formal verification of a constant-time
preserving C compiler. Proceedings of the ACM on Programming Languages 4,
POPL (Jan. 2020), 1-30. https://doi.org/10.1145/3371075

Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for the Clight
Subset of the C Language. Journal of Automated Reasoning 43, 3 (01 Oct 2009),
263-288. https://doi.org/10.1007/s10817-009-9148-3

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 243-257. https://doi.org/10.1145/3385412.3385965
Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
Level Synthesis for FPGA-Based Processor/Accelerator Systems. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’11). Association for Computing Machinery,
New York, NY, USA, 33-36. https://doi.org/10.1145/1950413.1950423

Andrew Christopher Canis. 2015. Legup: open-source high-level synthesis research
framework. Ph.D. Dissertation.

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. 2017. Kami: a Platform for High-Level Parametric Hardware
Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP,
Article 24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

R. Chouksey and C. Karfa. 2020. Verification of Scheduling of Conditional Behav-
iors in High-Level Synthesis. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (2020), 1-14. https://doi.org/10.1109/TVLSI.2020.2978242

R. Chouksey, C. Karfa, and P. Bhaduri. 2019. Translation Validation of Code
Motion Transformations Involving Loops. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38, 7 (July 2019), 1378-1382. https:
//doi.org/10.1109/TCAD.2018.2846654

J. Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm
based on SDC formulation. In 43rd ACM/IEEE Design Automation Conference.
433-438. https:/doi.org/10.1145/1146909.1147025

Thierry Coquand and Gérard Huet. 1986. The calculus of constructions. Ph.D.
Dissertation. INRIA.

Dan Gajski, Todd Austin, and Steve Svoboda. 2010. What input-language is the
best choice for high level synthesis (HLS)?. In Design Automation Conference.
857-858. https://doi.org/10.1145/1837274.1837489

[14

[15

[16

[18

[19

[20

[21

[25

LATTE ’21, April 15, 2021, Virtual, Earth

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. 2021. An
Empirical Study of the Reliability of High-Level Synthesis Tools. In 29th IEEE
International Symposium on Field-Programmable Custom Computing Machines.
https://yannherklotz.com/docs/drafts/fuzzing_hls.pdf (to appear).

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson.
2021. Formal Verification of High-Level Synthesis. (2021). https://yannherklotz.
com/docs/drafts/formal_hls.pdf (under review).

C Karfa, C Mandal, D Sarkar, S R. Pentakota, and Chris Reade. 2006. A Formal
Verification Method of Scheduling in High-level Synthesis. In Proceedings of the
7th International Symposium on Quality Electronic Design (ISQED "06). IEEE Com-
puter Society, Washington, DC, USA, 71-78. https://doi.org/10.1109/ISQED.
2006.10

S. Lahti, P. Sjévall, J. Vanne, and T. D. Himéldinen. 2019. Are We There Yet?
a Study on the State of High-Level Synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 38, 5 (May 2019), 898-911. https:
//doi.org/10.1109/TCAD.2018.2834439

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (July 2009), 107-115. https://doi.org/10.1145/1538788.1538814

Andreas Lo6w. 2021. Lutsig: A Verified Verilog Compiler for Verified Circuit
Development. In Proceedings of the 10th ACM SIGPLAN International Conference
on Certified Programs and Proofs (Virtual, Denmark) (CPP 2021). Association for
Computing Machinery, New York, NY, USA, 46-60. https://doi.org/10.1145/
3437992.3439916

Andreas L66w and Magnus O. Myreen. 2019. A Proof-producing Translator for
Verilog Development in HOL. In Proceedings of the 7th International Workshop on
Formal Methods in Software Engineering (Montreal, Quebec, Canada) (FormaliSE
’19). IEEE Press, Piscataway, NJ, USA, 99-108. https://doi.org/10.1109/FormaliSE.
2019.00020

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable
Accelerator Design with Time-Sensitive Affine Types. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 393-407. https://doi.org/10.1145/3385412.3385974

A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. In Tools and
Algorithms for the Construction and Analysis of Systems, Bernhard Steffen (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 151-166.

Satnam Singh. [n.d.]. Silver Oak. https://github.com/project-oak/silveroak
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (San Jose, California,
USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA,
283-294. https://doi.org/10.1145/1993498.1993532

Youngsik Kim, S. Kopuri, and N. Mansouri. 2004. Automated formal verification
of scheduling process using finite state machines with datapath (FSMD). In Inter-
national Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat.
No.03EX720). 110-115. https://doi.org/10.1109/ISQED.2004.1283659

