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Hardware Compilation?
• Also called "high-level synthesis".

• Basic idea: translate C (or OpenCL, or …) to Verilog.

• Custom hardware can be 10x faster and 10x more power-
efficient than running software on a processor.
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(1) S.O. Settle, "High-performance Dynamic Programming on FPGAs with OpenCL", in High 
Performance Extreme Computing (HPEC), 2013.
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Hardware Compilation?
• Use of hardware compilers has grown ~20x since 2011.(2)

• There are ~19x more software engineers than hardware 
engineers.(3)

• A user survey found "Lack of C-to-RTL formal verification" to 
be the biggest problem with hardware compilation.(4)
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(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and 
Applications (FPL), 2015. Keynote.

(3) United States Bureau of Labor Statistics, "Occupational Outlook Handbook, 2016–17 Edition", 2015.
(4) Deep Chip, “Survey on HLS verification issues and power reduction”, 2014.  

http://www.deepchip.com/items/0544-03.html
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Atomic operations
• Atomics must appear to execute instantaneously to 

other threads

• Atomics provide a variety of ordering guarantees

 6

r = atomic_load(&y, 
  memory_order_acquire);
if (r==1) { print(x); }

x = 1;
atomic_store(&y, 1, 
  memory_order_release);

atomic_store(&x, 1, 
  memory_order_relaxed);

r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);
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Weak-memory 
concurrency is tricky!

• x86 proved tricky to formalise correctly.(5,6)

• Bug found in deployed "IBM Power 5" processors.(7)

• C++ specification did not guarantee its own key property.(8)

• Behaviour of NVIDIA's graphics processors contradicted their 
own programming guide.(9)

 7

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.
(8) Batty et al., POPL, 2011.
(9) Alglave et al., ASPLOS, 2015.
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  memory_order_acquire);
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FPGA



John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 9

r = atomic_load(&y, 
  memory_order_acquire);

FPGA



John Wickerson Towards Verified Hardware Compilation

Compiling atomics
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r = atomic_load(&y, 
  memory_order_acquire);

lock();
r = y;
unlock();

FPGA
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Compiling atomics
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FPGA

r = atomic_load(&y, 
  memory_order_acquire);

 
r = y;
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• Atomics must appear to execute instantaneously to 

other threads 

• Atomics provide a variety of ordering guarantees
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x = 1;

 
r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1, 
  memory_order_relaxed);

r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);
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x = 1;

r0 = y+y+y+y+y+y;
r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1, 
  memory_order_relaxed);

r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);
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1 2 3 4 5 … 36

r0 =  
  y+y+y+  
  y+y+y;

load y
load y
load y

load y
load y

load y
r1 = x; load x

r2 = x/a;
load x

divide

 
x = 1;

r0 = y+y+y+y+y+y;
r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1, 
  memory_order_relaxed);

r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);
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Constraints on scheduling
• Two atomic accesses to the same location cannot be reordered.

• An atomic acquire load cannot be reordered with accesses that 
come later in program order

• An atomic release store cannot be reordered with accesses that 
come earlier in program order

• An atomic SC access cannot be reordered with any other 
access.

 17
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(10)Ramanathan et al., "Hardware Synthesis of Weakly Consistent C Concurrency", FPGA, 2017
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Checking correctness
• Ask Memalloy(11) for an execution that is forbidden 

according to the C++ standard but is allowed by our 
scheduling constraints.

• Memalloy uses the Alloy model checker, which in turn uses a 
SAT-solving backend.

 19

(11)Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017
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1
x = 1; store x

atomic_store(&x, 1, 
  memory_order_relaxed);

r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);

1 2
r1 = x; load x
r2 = x; load x
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r1 = atomic_load(&x, 
  memory_order_relaxed);
r2 = atomic_load(&x, 
  memory_order_relaxed);

1 2
r1 = x; load x
r2 = x; load x
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s = atomic_load(&yr, 
  memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr, 
  memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  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Sync-aware scheduling
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s = atomic_load(&yr, 
  memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr, 
  memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1, 
  memory_order_release);  

y = 1;  

atomic_store(&yr, 1, 
  memory_order_release);
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x = 1;  

atomic_store(&y, 1, 
  memory_order_release);  

 
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
}

s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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(12)Ramanathan et al., "Concurrency-Aware Thread Scheduling for High-Level Synthesis", FCCM, 2018
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x = 1;  

atomic_store(&y, 1, 
  memory_order_release);  

 
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
}

s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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Poorly scaling analysis
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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  

• Our solution: enumerate only the "primary" paths.
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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}
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s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}
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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  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s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  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r = atomic_load(&y, 
  memory_order_acquire);  
r = atomic_load(&y, 
  memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
  memory_order_release);
 atomic_store(&z, 1,
  memory_order_release);  
}

s = atomic_load(&z, 
  memory_order_acquire);
s = atomic_load(&z, 
  memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1, 
  memory_order_release);
atomic_store(&y, 1, 
  memory_order_release);  



John Wickerson Towards Verified Hardware Compilation

Checking correctness
• As before, we use Memalloy to check that our constraints are 

strong enough to guarantee C++ semantics.
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FPGA

• Heavyweight: a fully verified hardware compiler (e.g. a 
Verilog backend for CompCert).
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Where next?
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FPGA

• Heavyweight: a fully verified hardware compiler (e.g. a 
Verilog backend for CompCert).

• Lightweight: automatically generate and verify 
SystemVerilog assertions, à la RTLCheck.(13)

(13)Manerkar et al., "RTLCheck: Verifying the Memory Consistency of RTL Designs", MICRO, 2017.
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