
John Wickerson
Imperial College London

FMATS Workshop, Microsoft Research Cambridge, 24 Sep 2018

Towards Verified
Hardware Compilation

FPGA

John Wickerson Towards Verified Hardware Compilation

Collaborators
 2

Nadesh Ramanathan George Constantinides

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
 3

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Also called "high-level synthesis".

 3

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Also called "high-level synthesis".

• Basic idea: translate C (or OpenCL, or …) to Verilog.

 3

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Also called "high-level synthesis".

• Basic idea: translate C (or OpenCL, or …) to Verilog.

• Custom hardware can be 10x faster and 10x more power-
efficient than running software on a processor.

 3

(1) S.O. Settle, "High-performance Dynamic Programming on FPGAs with OpenCL", in High
Performance Extreme Computing (HPEC), 2013.

Th
ro

ug
hp

ut

0
750

1500
2250
3000

CPU GPU FPGA

Th
ro

ug
hp

ut

pe
r W

at
t

0
25
50
75

100

CPU GPU FPGA

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
 4

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Use of hardware compilers has grown ~20x since 2011.(2)

 4

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Use of hardware compilers has grown ~20x since 2011.(2)

• There are ~19x more software engineers than hardware
engineers.(3)

 4

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.

(3) United States Bureau of Labor Statistics, "Occupational Outlook Handbook, 2016–17 Edition", 2015.

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation?
• Use of hardware compilers has grown ~20x since 2011.(2)

• There are ~19x more software engineers than hardware
engineers.(3)

• A user survey found "Lack of C-to-RTL formal verification" to
be the biggest problem with hardware compilation.(4)

 4

(2) S. Raje, "Extending the power of FPGAs to software developers", in Field-Programmable Logic and
Applications (FPL), 2015. Keynote.

(3) United States Bureau of Labor Statistics, "Occupational Outlook Handbook, 2016–17 Edition", 2015.
(4) Deep Chip, “Survey on HLS verification issues and power reduction”, 2014.  

http://www.deepchip.com/items/0544-03.html

John Wickerson Towards Verified Hardware Compilation

Hardware Compilation of
Concurrency

 5

GPU

CPU

FPGA

John Wickerson Towards Verified Hardware Compilation

Atomic operations
 6

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

 6

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 6

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 6

r = atomic_load(&y,
 memory_order_acquire);
if (r==1) { print(x); }

x = 1;
atomic_store(&y, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 6

r = atomic_load(&y,
 memory_order_acquire);
if (r==1) { print(x); }

x = 1;
atomic_store(&y, 1,
 memory_order_release);

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

 7

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

• x86 proved tricky to formalise correctly.(5,6)

 7

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

• x86 proved tricky to formalise correctly.(5,6)

• Bug found in deployed "IBM Power 5" processors.(7)

 7

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

• x86 proved tricky to formalise correctly.(5,6)

• Bug found in deployed "IBM Power 5" processors.(7)

• C++ specification did not guarantee its own key property.(8)

 7

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.
(8) Batty et al., POPL, 2011.

John Wickerson Towards Verified Hardware Compilation

Weak-memory
concurrency is tricky!

• x86 proved tricky to formalise correctly.(5,6)

• Bug found in deployed "IBM Power 5" processors.(7)

• C++ specification did not guarantee its own key property.(8)

• Behaviour of NVIDIA's graphics processors contradicted their
own programming guide.(9)

 7

(5) Sarkar et al., POPL, 2009.
(6) Owens et al., TPHOLs, 2009.
(7) Alglave et al., CAV, 2010.
(8) Batty et al., POPL, 2011.
(9) Alglave et al., ASPLOS, 2015.

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 8

FPGA

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 8

r = atomic_load(&y,
 memory_order_acquire);

FPGA

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 8

r = atomic_load(&y,
 memory_order_acquire);

not supported

FPGA

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 9

r = atomic_load(&y,
 memory_order_acquire);

FPGA

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 9

r = atomic_load(&y,
 memory_order_acquire);

lock();
r = y;
unlock();

FPGA

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 10

FPGA

r = atomic_load(&y,
 memory_order_acquire);

John Wickerson Towards Verified Hardware Compilation

Compiling atomics
 10

FPGA

r = atomic_load(&y,
 memory_order_acquire);

r = y;

John Wickerson Towards Verified Hardware Compilation 11

FPGA

Thread 1

Thread 3

Memory

Memory
Memory

Thread 2

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 12

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 12

✓

John Wickerson Towards Verified Hardware Compilation

Atomic operations
• Atomics must appear to execute instantaneously to

other threads

• Atomics provide a variety of ordering guarantees

 12

✓

❓

John Wickerson Towards Verified Hardware Compilation 13

John Wickerson Towards Verified Hardware Compilation 13

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation 13

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

 
x = 1;

r1 = x;
r2 = x;  

John Wickerson Towards Verified Hardware Compilation

1 2 3 4
r1 = x; load x
r2 = x; load x

 13

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

 
x = 1;

r1 = x;
r2 = x;  

John Wickerson Towards Verified Hardware Compilation

1 2 3 4
r1 = x; load x
r2 = x; load x

 13

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

 
x = 1;

r1 = x;
r2 = x;  

John Wickerson Towards Verified Hardware Compilation 14

 
x = 1;

r1 = x;
r2 = x;  

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

1 2
r1 = x; load x
r2 = x; load x

John Wickerson Towards Verified Hardware Compilation 14

 
x = 1;

r1 = x;
r2 = x;  

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation 15

 
x = 1;

r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation 16

 
x = 1;

r0 = y+y+y+y+y+y;
r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation 16

1 2 3 4 5 … 36

r0 =  
 y+y+y+  
 y+y+y;

load y
load y
load y

load y
load y

load y
r1 = x; load x

r2 = x/a;
load x

divide

 
x = 1;

r0 = y+y+y+y+y+y;
r1 = x;
r2 = x/a;  

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling
 17

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling
• Two atomic accesses to the same location cannot be reordered.

 17

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling
• Two atomic accesses to the same location cannot be reordered.

• An atomic acquire load cannot be reordered with accesses that
come later in program order

 17

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling
• Two atomic accesses to the same location cannot be reordered.

• An atomic acquire load cannot be reordered with accesses that
come later in program order

• An atomic release store cannot be reordered with accesses that
come earlier in program order

 17

John Wickerson Towards Verified Hardware Compilation

Constraints on scheduling
• Two atomic accesses to the same location cannot be reordered.

• An atomic acquire load cannot be reordered with accesses that
come later in program order

• An atomic release store cannot be reordered with accesses that
come earlier in program order

• An atomic SC access cannot be reordered with any other
access.

 17

John Wickerson Towards Verified Hardware Compilation

Results
 18

(10)Ramanathan et al., "Hardware Synthesis of Weakly Consistent C Concurrency", FPGA, 2017

John Wickerson Towards Verified Hardware Compilation

Checking correctness
 19

John Wickerson Towards Verified Hardware Compilation

Checking correctness
• Ask Memalloy(11) for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

 19

(11)Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Checking correctness
• Ask Memalloy(11) for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

 19

(11)Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Checking correctness
• Ask Memalloy(11) for an execution that is forbidden

according to the C++ standard but is allowed by our
scheduling constraints.

• Memalloy uses the Alloy model checker, which in turn uses a
SAT-solving backend.

 19

(11)Wickerson et al., "Automatically Comparing Memory Consistency Models", POPL, 2017

John Wickerson Towards Verified Hardware Compilation

Can we do better?

 20

John Wickerson Towards Verified Hardware Compilation 21

1
x = 1; store x

atomic_store(&x, 1,
 memory_order_relaxed);

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

1 2
r1 = x; load x
r2 = x; load x

John Wickerson Towards Verified Hardware Compilation 22

r1 = atomic_load(&x,
 memory_order_relaxed);
r2 = atomic_load(&x,
 memory_order_relaxed);

1 2
r1 = x; load x
r2 = x; load x

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 23

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 24

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 25

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 26

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 27

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 28

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Sync-aware scheduling
 29

s = atomic_load(&yr,
 memory_order_acquire);  

if (s==1) { print(y); }

r = atomic_load(&xr,
 memory_order_acquire);  
 
if (r==1) { print(x); }

x = 1;  

atomic_store(&xr, 1,
 memory_order_release);  

y = 1;  

atomic_store(&yr, 1,
 memory_order_release);

John Wickerson Towards Verified Hardware Compilation

Longer paths too
 30

x = 1;  

atomic_store(&y, 1,
 memory_order_release);  

 
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
}

s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

John Wickerson Towards Verified Hardware Compilation

Results
 31

(12)Ramanathan et al., "Concurrency-Aware Thread Scheduling for High-Level Synthesis", FCCM, 2018

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 32

x = 1;  

atomic_store(&y, 1,
 memory_order_release);  

 
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
}

s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 33

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 34

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 35

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 36

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 37

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 38

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 39

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 40

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 41

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 42

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 43

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 44

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 45

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 46

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 47

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 48

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 48

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

• Our solution: enumerate only the "primary" paths.

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 49

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

Poorly scaling analysis
 50

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

Poorly scaling analysis
 51

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

Poorly scaling analysis
 52

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

John Wickerson Towards Verified Hardware Compilation

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

Poorly scaling analysis
 53

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

John Wickerson Towards Verified Hardware Compilation

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

Poorly scaling analysis
 54

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

John Wickerson Towards Verified Hardware Compilation

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

Poorly scaling analysis
 55

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

John Wickerson Towards Verified Hardware Compilation

Poorly scaling analysis
 56

r = atomic_load(&y,
 memory_order_acquire);  
r = atomic_load(&y,
 memory_order_acquire);  
 
if (r==1) {
 atomic_store(&z, 1,
 memory_order_release);
 atomic_store(&z, 1,
 memory_order_release);  
}

s = atomic_load(&z,
 memory_order_acquire);
s = atomic_load(&z,
 memory_order_acquire);

if (s==1) { print(x); }  

 
x = 1;  

atomic_store(&y, 1,
 memory_order_release);
atomic_store(&y, 1,
 memory_order_release);  

John Wickerson Towards Verified Hardware Compilation

Checking correctness
• As before, we use Memalloy to check that our constraints are

strong enough to guarantee C++ semantics.

 57

John Wickerson Towards Verified Hardware Compilation

Where next?
 58

FPGA

John Wickerson Towards Verified Hardware Compilation

Where next?
 58

FPGA

• Heavyweight: a fully verified hardware compiler (e.g. a
Verilog backend for CompCert).

John Wickerson Towards Verified Hardware Compilation

Where next?
 58

FPGA

• Heavyweight: a fully verified hardware compiler (e.g. a
Verilog backend for CompCert).

• Lightweight: automatically generate and verify
SystemVerilog assertions, à la RTLCheck.(13)

(13)Manerkar et al., "RTLCheck: Verifying the Memory Consistency of RTL Designs", MICRO, 2017.

John Wickerson
Imperial College London

FMATS Workshop, Microsoft Research Cambridge, 24 Sep 2018

Towards Verified
Hardware Compilation

