Overhauling SC atomics
N C11 and OpenCL

Mark Batty, Alastair F. Donaldson and John Wickerson

9899-2011/2012] . o
IDT) Provisional Specification

GGGGG

OpenCL

Information technology — Programming
languages — C
The OpenCL Specification

Version: 2.1

Document Revision: 8
Khronos OpenCL Working Group

Developed by Editors: Lee Howes and Aaftab Munshi

aincits>

Where IT all begins

S-REPLS @ Middlesex November 2015

.-
T
©

-
c
S

b

»
©
c

=

b
©

<
c
S

=
e
T
£
<

N short

* [he rules for sequentially-consistent atomic
operations and fences ("SC atomics’) in C11 and
OpenCL are

N short

* [he rules for sequentially-consistent atomic
operations and fences ("SC atomics’) in C11 and
OpenCL are

~ too complex,

N short

* [he rules for sequentially-consistent atomic
operations and fences ("SC atomics’) in C11 and
OpenCL are

~ too complex,

~ too weak, and

N short

* [he rules for sequentially-consistent atomic
operations and fences ("SC atomics’) in C11 and
OpenCL are

~ too complex,

~ too weak, and

S 7

= too strong.

N short

* [he rules for sequentially-consistent atomic

operations and fences ("SC atomics’) in C11 and
OpenCL are

~ too complex,
~ too weak, and

S 7

= too strong.

* We suggest how to fix them &

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

The C11 memory model

* Non-atomics
* Relaxed atomics
o Acquire/release atomics

e SC atomics

*X = 42;
atomic store explicit(y,
memory order release);

Wna(x,42) R(y,1,ACQ)

"

W(y,1 REL) Rna(x,42) / i

Wna(x,42)

lsb

‘ W(y,1,REL)

1if (atomic load explicit(y,
memory order acquire))
print(*x);

Wna(x,42) R(y,0,ACQ)

lsb

W(y,1,REL)

Wna(x,42)

sb

v

W(y,1,REL)

Consistent executions

e Execution XIs consistent iff

satisfies all the consistency axioms.

Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

Candidate executions

a: Wha(x,0) b: Wha(y,0)

c: W(x,1,RLX) d:R(x,1,RLX) f: W(x,2,SC) h: W(y,1,SC)
lsb lsb sb

\
e: R(x,2,RLX) ¢: R(y,0,8C) 1i:R(x,1,SC)

Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,8C) h: W(y, 1, SC)

Ty \Sst g St

rf e: R(x,2,RLX) ¢: R(y,0,8C) _1i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e

All consistency axioms
irr(hb)
irr(rt-1? ;: mo ; ri? ; hb)
irr(rf ; hb)
empty((rf ; [nal]) \ vis)
irr(rf u (Mo ; mo ; rt=1) u (Mo ; rf))
irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; ri-1; [SC] ; mo)
irr((S\ (mo ; S)) ; ri-1; hbl ; [W])
irr(S ; Fsb ; ri-1; mo)
irr(S ; ri-1; mo ; sbF)
irr(S ; Fsb ; ri-1; mo ; sbF)

AN IIN SN SN NN N

Derived relations

Fsb = [F] ; sb

sbF = sb ; [F]

rs' = thd u (E%; (R n W))

s= monrs \((mMo\rs'); mo)

sw = ([rel] ; Fsb? : [W n A];rs?:rf; [Rn A]; sbF?: [acqg]) \ thd
hb = (sb u (I x -I) u sw)*

hbl = hb n loc

vis = (W x R) n hbl'\ (hbl ; [W] ; hb)

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

All consistency axioms
irr(hb)
irr(rt-1? ;: mo ; ri? ; hb)
irr(rf ; hb)
empty((rf ; [nal]) \ vis)
irr(rf u (Mo ; mo ; rt=1) u (Mo ; rf))
irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; ri-1; [SC] ; mo)
irr((S\ (mo ; S)) ; ri-1; hbl ; [W])
irr(S ; Fsb ; ri-1; mo)
irr(S ; ri-1; mo ; sbF)
irr(S ; Fsb ; ri-1; mo ; sbF)

AN IIN SN SN NN N

SC axioms
irr(S ; hb)
(S ; Fsb? ; mo ; sbF?)
(S5 ri1; [SC] s mo)
irr((S \ (mo; 5)) ; ri-1; hbl; [W])
(
(
(

' " Fsb ; ri-1; mo)
- rf-1: mo ; sbF)
- Fsb ; rf-1; mo ; sbF)

Irr

SC axioms
irr(S ; hb)
(S ; Fsb? ; mo ; sbF?)
(S5 15 [SCT; mo)
irr((S \ (mo; 5)) ; ri-1; hbl; [W])
(
(
(

' - Fsb ; ri-1; mo)
-1 : mo ; sbF)
- Fsb ; rf-1; mo ; sbF)

Irr

SC axioms

hD)
Fsb? ; mo ; sbF?)
(=1 [SC] ; mo)

i1 hbl ; [W])

Fsb ; rf-1; mo)
(-1 : mo ; sbF)
Fsb ; ri-1; mo ; sbF)

-_| =
-_| =
~~ N N N /N /N /N

q
q

q
q

q
q

q
q

ﬁ
q

PBBHDP B

SC axioms

hb)
Fsb? ; mo ; sbF?)
(=1 [SC] ; mo)

oSy -1 hbl ; [W])

Fso ; rf-1; mo)
(-1 : mo ; sbF)
Fsb ; rf1; mo ; sbF)

- =
- =
-~ A~ M~~~ ~~

q
q

q
q

ﬁ
q

q
q

ﬁ
q

DR D

SC axioms

hb)
Fsb? ; mo ; sbF?)
rf-1; IS€] ; mo)

&= rf1; hbl : [W])

Fsb ; rf-1; mo)
-1, mo ; sbF)
Fsb ; rf-1; mo ; sbF)

Candidate executions

c: W(x,1,RLX) d:R(x,1,RLX) f:\W(x,2,8C) h: W(y, 1, SC)

Ty \Sst g St

rf e: R(x,2,RLX) ¢: R(y,0,8C) _1i: R(x,1,SC)

a: Wha(x,0) b: Wha(y,0)
o e

- =
- =
-~ A~ M~~~ ~~

q
q

q
q

ﬁ
q

q
q

ﬁ
q

DR D

SC axioms

hb)
Fsb? ; mo ; sbF?)
rf-1; IS€] ; mo)

&= rf1; hbl : [W])

Fsb ; rf-1; mo)
-1, mo ; sbF)
Fsb ; rf-1; mo ; sbF)

- = =
- = =

- = =
- = =

I
-
-
AN N N N TN N N

SC axioms

hD)

Fsb? ; mo ; sbF?)
rf-1 mO)
(=1 hbl ; [W])
Fsb ; rf-1; mo)
(-1 : mo ; sbF)

Fsb ; ri-1; mo ; sbF)

AN N N TN N N N

SC axioms

. hb)

- Fsb? ;. mo ; sbF?)

- rf-1; mo)

11 hbl s [W])

- Fsb ; rf-1; mo)
-1 mo ; sbF)

- Fsb ; rf-1; mo ; sbF)

q
q

q
q

e e |
e T
AN SN N TN N N

q
q

ﬂ
ﬁ

SC axioms

. hb)

- Fsb”? : mo ; sbF?)

- -1 Mmo)

- Fsb ; rf-1; mo)

-1 ; mo ; sbF)

- Fsb; rf-1: mo ; sbF)

q
q

q
q

3 3
AN OSSN N TN TN N

q

q
q

ﬂ
ﬁ

SC axioms

. hb)

- Fsb”? : mo ; sbF?)
rt-1: mo)

- Fsb ; ri-1; mo)

, (-1 : mo ; sbF)
- Fsb; rf-1: mo ; sbF)

q
q

q
q

3 3
AN OSSN N TN TN N

q

q
q

ﬂ
ﬁ

SC axioms

. hb)

- Fsb”? : mo ; sbF?)

, rf-1: mo)

- Fsb ; ri-1; mo)

, (-1 : mo ; sbF)
- Fsb; ri-1;: mo ; sbF)

SC axioms

irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)

irr(S ; Fsb? ; rf-1; mo ; sbF?)

SC axioms

irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb? ; ri-1; mo ; sbF?)

SC axioms

irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb? ; ri-1: mo ; sbF?)

SC axioms

irr(S ; Fsb”? ; hb ; sbF?)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb? ; ri-1: mo ; sbF?)

SC axioms

irr(S ; Fsb”? ; hb ; sbF?)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb? ; ri-1: mo ; sbF?)

SC axioms

irr(S ; Fsb”? ; hb ; sbF?)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb”? ; fr; sbF?)

SC axioms

irr(S ; Fsb”? ; hb ; sbF?)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; Fsb”? ; fr; sbF?)

SC axioms

irr(S ; Fsb”? ; (hb u mo u fr) ; sbF?)

All consistency axioms
irr(hb)
irr(rt-1? ;: mo ; ri? ; hb)
irr(rf ; hb)
empty((rf ; [nal]) \ vis)
irr(rf u (Mo ; mo ; rt=1) u (Mo ; rf))
irr(S ; hb)
irr(S ; Fsb”? ; mo ; sbF?)
irr(S ; ri-1; [SC] ; mo)
irr((S\ (mo ; S)) ; ri-1; hbl ; [W])
irr(S ; Fsb ; ri-1; mo)
irr(S ; ri-1; mo ; sbF)
irr(S ; Fsb ; ri-1; mo ; sbF)

AN IIN SN SN NN N

All consistency axioms

irr(hb)

irr(rt-1? ;: mo ; ri? ; hb)

irr(rf ; hb)

empty((rf ; [nal]) \ vis)

irr(rf u (Mo ; mo ; rt=1) u (Mo ; rf))
irr(S ; Fsb”? ; (hb u mo u fr) ; sbF?)

Changing the standard

6. There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:

e the result of the last modification A of M that precedes B
in S, if it exists, or

o if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen

before A, or) . .
1. A value computation A of an object M reads before a side

e if A does not exist, the result of some modification of M effect B on M if A and B are different operations and B
L th@ visible sequence of side effects with respect to B follows, in the modification order of M, the side effect that A
that is not memory_order_seq_cst. observes.
[...] 2. If X reads before Y, or happens before Y, or precedes Y in

modification order, then X (as well as any fences sequenced

9. For an atomic operation B that reads the value of an before X) is SC-before Y (as well as any fences sequenced

atomic object M, if there is a memory_order_seq_cst

fence X sequenced before B, then B observes either the gitey }-/)'

last memory_order_seq_cst modification of M preceding 3.1If A is SC-before B, and A and B are both memory_
X in the total order S or a later modification of M in its order_seq_cst, then A is restricted-SC-before B.
modification order. 4. There must be no cycles in restricted-SC-before.

10. For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S, then B observes either the
effects of A or a later modification of M in its modification
order. =

[93 words; FK reading ease 73.1]

11. For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X, Y is sequenced before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

[276 words; FK reading ease 41.2]

Consistent executions

 Execution Xis consistent iff
there exists rf, mo and S such that
(X rf, mo,S) is well-formed and
satisfies all the consistency axioms.

SC axioms
irr(S ; Fsb”? ; (hb u mo u fr) ; sbF?)

acyclic(SC2\ id n (Fsb? ; (hb u mo u fr) ; sbF?))

Performance impact

| | | | | |

10° :

(% .| total S | 3
o 107¢ partial S E
= i :
- 10°} E
O - .
I 100} CDSChecker -
g 0 - B
P g E
10_2 % | | | | | | | é

Size of program being simulated

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

OpenCL memory regions

device

WOork-group

TO | T | T2 T3 |

b,

! : _ :
R ~ g
- N Y
§ 0 .
\
R R R
4 N &
4 v
A 3 s

global | global_fga |

OpenCL memory scopes

device

WOork-group

store(x) load(x) | |

local

global global_fga

OpenCL memory scopes

device

WOork-group

store(x, WG) load(x, WGQG) | |

local .1 cache

global global_fga

OpenCL memory scopes

device

WOork-group

store(x, WG) | load(x,WG) |

global global_fga

OpenCL memory scopes

device

WOork-group

store(x,DV) | load(x,DV) |

local

ylobal global_fga

Outline

Introduction to the C11 memory model
Overhauling the rules for SC atomics in C11
Introduction to the OpenCL memory model

Overhauling the rules for SC atomics in OpenCL

SC axioms in OpenCL

Mostly copied from C11
"There Is a total order 5, providing...

every SC operation has ALL SCOpE
and accesses global fga memory...

OR every SC operation has DV scope
and does not access global fga memory’

device device
WOork-group g work-group

store(x,DV) ﬁ store(y,DV)

]
0ad(x,DV) K S ~_ load(y,DV)

global_fga

Problems

Can't always tell whether a location is global or
global fga!

The detault, which is memory scope device,
IS not always enough!

Non-compositionall
Unnecessarily restrictive!

*' And too weak anyway!

device device
WOork-group work-group
store(x,DV) store(y,DV)
load(x,DV) | load(y,DV)

global_fga

device

WOork-group

store(x,DV)

, store(z1,REL ALL) |

load(x,DV)

global_fga

device

work-group

store(y,DV)

me 102d(z1,ACQ,ALL) I

load(y,DV)

device device
WOork-group work-group

store(x,DV) store(y,DV)

store(z2,REL,ALL) |

load(z2,ACQ,ALL)

oad(x,DV) |\ l0ad(y,DV)

global_fga

device

WOork-group

store(x,DV)

, " store(z1,REL,ALL) |

load(z2,ACQ,ALL)

load(x,DV)

¥ &
N /
L.
37N

global_fga

device

work-group

store(y,DV)

store(z2,REL,ALL) ‘

me 102d(z1,ACQ,ALL) |

load(y,DV)

device device

WOork-group work-group
store(x,DV) store(y,DV)
T~
hb p
N
h \
"
load(x,DV) |(/ load(y,DV) |

global_fga

SC axiom in OpenCL

every SC operation has ALL scope

and accesses global fga memory

OR

every SC operation has DV scope

and does not access global fga memory

irr(S ; ((Fsb? : (hb u mo u fr) ; sbF?))

SC axiom in OpenCL

every SC operation has ALL scopgs#*"
and accesses global f SAIeT ory

every SC onord fion has DV scope
andeets not access global_ fga memory

ire(S ; ((Fsb? ; (hb u mo u fr) ; sbF?){h incl)

device device

WOork-group work-group

store(x,DV) store(y,DV)

hb \
"
load(x,DV) |(/ load(y,DV) |

global_fga

Changing the standard

If one of the following two conditions holds:

e All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

e All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:

e the result of the last modification A of M that precedes B in
S, if it exists, or

e if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

e if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[...]
If the total order S exists, the following rules hold:

e For an atomic operation B that reads the value of an
atomic object M, if there is a memory_order_seq_cst
fence X sequenced-before B, then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S, then B observes either the

effects of A or a later modification of M in its modification=t-asr 72 ==

order.

e For atomic operations A and B on an atomic object M,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X, Y is sequenced-before B, and X
precedes Y in S, then B observes either the effects of A
or a later modification of M in its modification order.

e For atomic operations A and B on an atomic object M, if
there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X, Y is sequenced-before B,
and X precedes Y in S, then B occurs later than A in the
modification order of M.

[391 words; FK reading ease -22.0]

. A value computation A of an object M reads before a side

effect B on M if A and B are different operations and B
follows, in the modification order of M, the side effect that A
observes.

. If X reads before Y, or global happens before Y, or local

happens before Y, or precedes Y in modification order, then
X (as well as any fences sequenced before X) is SC-before
Y (as well as any fences sequenced after V).

.If A is SC-before B, and A and B are both memory_

order_seq_cst, and A and B have inclusive scopes, then A
is restricted-SC-before B.

. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

N short

* [he rules for sequentially-consistent atomic

operations and fences ("SC atomics’) in C11 and
OpenCL are

~ too complex,
~ too weak, and

S 7

= too strong.

* We suggest how to fix them &

