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In short
• The rules for sequentially-consistent atomic 

operations and fences ("SC atomics") in C11 and 
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong. 

• We suggest how to fix them 😌.
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Outline

• Introduction to the C11 memory model 

• Overhauling the rules for SC atomics in C11 

• Introduction to the OpenCL memory model 

• Overhauling the rules for SC atomics in OpenCL



The C11 memory model

• Non-atomics 

• Relaxed atomics 

• Acquire/release atomics 

• SC atomics



*x = 42;  
atomic_store_explicit(y, 1,  
  memory_order_release);

if (atomic_load_explicit(y,  
    memory_order_acquire))  
  print(*x);

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x,42)

sb sb

Wna(x,42)

W(y,1,REL)

R(y,5,ACQ)

Rna(x, 2)

sb sb

Wna(x,42)

W(y,1,REL)

R(y,0,ACQ)

sb

Wna(x,42)

W(y,1,REL)

R(y,1,ACQ)

Rna(x, 0)

sb sb

✓

❌

✓

❌



Consistent executions

• Execution X is consistent iff  
    there exists rf, mo and S such that  
         (X,rf,mo,S) is well-formed and  
            satisfies all the consistency axioms.
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Candidate executions

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf

and rf ✓ =

loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write atomically to the same location; that is,

(mo [mo

�1

) = (=

loc

\W

2 \ A

2 \ id)
and acy(mo)

�
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S [ S

�1

) = (SC

2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z ) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z ) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id ) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r ), irreflexivity (irr r ), or emptiness (empty r ) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [ AR [ SC) \ (R [ F )

rel

def

= (REL [ AR [ SC) \ (W [ F )

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F ] ; sb

sbF

def

= sb ; [F ]

rs

0 def

= thd [ (E

2

; [R \W ])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel ] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq ]) \ thd
hb

def

= (sb [ (I ⇥ ¬I ) [ sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W ] ; hb)

cnf

def

= ((W ⇥W ) [ (W ⇥ R) [ (R ⇥W )) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel ) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf ) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr ) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]

4 2015/7/14
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S S

S

mo

mo

mo

rf

rf

rf

rf
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A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
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All consistency axioms

irr(S ; hb)
irr(S ; Fsb? ; mo ; sbF?)
irr(S ; rf-1 ; [SC] ; mo)
irr((S \ (mo ; S)) ; rf-1 ; hbl ; [W])
irr(S ; Fsb ; rf-1 ; mo)
irr(S ; rf-1 ; mo ; sbF)
irr(S ; Fsb ; rf-1 ; mo ; sbF)

irr(hb)
irr(rf-1? ; mo ; rf? ; hb)
irr(rf ; hb)
empty((rf ; [nal]) \ vis)
irr(rf ∪ (mo ; mo ; rf-1) ∪ (mo ; rf))



Derived relations
Fsb = [F] ; sb 

sbF = sb ; [F] 

rs' = thd ∪ (E2 ; (R ∩ W)) 

rs =  mo ∩ rs' \ ((mo \ rs') ; mo) 

sw = ([rel] ; Fsb? ; [W ∩ A] ; rs? ; rf ; [R ∩ A] ; sbF? ; [acq]) \ thd 

hb = (sb ∪ (I × -I) ∪ sw)+ 

hbl = hb ∩ loc 

vis = (W × R) ∩ hbl \ (hbl ; [W] ; hb)
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Candidate executions

litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ✓ E

2. A candidate execution is well-formed, written
wf (X ,w), if:

• every read event observes exactly one write event, and the
locations and values match; that is,

8e 2 R. 9!e 0 2 W . (e

0
, e) 2 rf
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loc

\=

val

�
(WfRf)

where 9! means ‘exists unique’;
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�1
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\W
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�
(WfMo)
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Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: W
na

(x, 0) b: W
na

(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb

S S

S

mo

mo

mo

rf

rf

rf

rf

2.3 C11 axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11. We express these
axioms using the .cat language [2], which means that the axioms
are expressed in a concise language based on the propositional
fragment of Tarski’s relation calculus [28].

Definition 8 (The .cat language). The cat language supports
the definition of relations using the operators union, intersection,
difference, complement (¬), inverse (r�1), reflexive closure (r?),
transitive closure (r+), and relational composition (;), which is
defined such that (x , z ) 2 r

1

; r

2

if (x , y) 2 r

1

and (y , z ) 2 r

2

for some y . It also provides the syntax [s] = {(e, e) | e 2 s}
for the identity relation (id ) restricted to the set s . Each axiom of
the memory model must be expressed in the form of an acyclicity
(acy r ), irreflexivity (irr r ), or emptiness (empty r ) constraint on
some relation r constructed using these operators.

In order to define these axioms, we need first to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [15], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [14],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [16] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

acq

def

= (ACQ [ AR [ SC) \ (R [ F )

rel

def

= (REL [ AR [ SC) \ (W [ F )

rb

def

= (rf

�1

;mo) \ id
Fsb

def

= [F ] ; sb

sbF

def

= sb ; [F ]

rs

0 def

= thd [ (E

2

; [R \W ])

rs

def

= mo \ rs

0 \ ((mo \ rs 0) ;mo)

sw

def

= ([rel ] ; Fsb

?

; [W \ A] ; rs

?

; rf ;

[R \ A] ; sbF

?

; [acq ]) \ thd
hb

def

= (sb [ (I ⇥ ¬I ) [ sw)

+

hbl

def

= hb \=

loc

vis

def

= (W ⇥ R) \ hbl \ (hbl ; [W ] ; hb)

cnf

def

= ((W ⇥W ) [ (W ⇥ R) [ (R ⇥W )) \=

loc

dr

def

= cnf \ hb \ hb�1 \ A2 \ thd

Commentary. The set acq (resp. rel ) contains all events that behave
as an acquire (resp. a release).5 A read reads-before (rb) all those
writes that are mo-after the write the read observed.6

The relation rs captures the release sequence, using rs

0 as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 A write is visible (vis) to a read if it is the
most recent write to that location in happens-before.11

Two events are in conflict (cnf ) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr ) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =

(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,

5 [15 (§7.17.3:3–4)], [15 (§7.17.4.1:2)] 6 [31 (§5.3)]
7 [15 (§5.1.2.4:10)] 8 [15 (§5.1.2.4:11)] 9 [15 (§7.17.4:2–4)]
10 [15 (§5.1.2.4:18)], simplified in the absence of memory_order_consume
11 [15 (§5.1.2.4:19)] 12 [15 (§5.1.2.4:4)] 13 [15 (§5.1.2.4:25)]
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Changing the standardA. Rules for SC atomics in C11
A.1 Original
The following text is reproduced verbatim from the C11 stan-
dard [15 (§7.17.3, paragraphs 6 and 9–11)].

6. There shall be a single total order S on all
memory_order_seq_cst operations, consistent with
the “happens before” order and modification orders for all
affected locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M
observes one of the following values:
• the result of the last modification A of M that precedes B

in S , if it exists, or
• if A exists, the result of some modification of M in the

visible sequence of side effects with respect to B that is
not memory_order_seq_cst and that does not happen
before A, or

• if A does not exist, the result of some modification of M
in the visible sequence of side effects with respect to B

that is not memory_order_seq_cst.

[. . . ]

9. For an atomic operation B that reads the value of an
atomic object M , if there is a memory_order_seq_cst
fence X sequenced before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

10. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

11. For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced before X , Y is sequenced before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
[276 words; FK reading ease 41.2]

For reference, we include with this passage its Flesch–Kincaid
(FK) reading ease score.43 A higher score indicates easier readability.
Scores usually range between 0 and 100.

43
http://www.readability-score.com

A.2 Our proposal
Section 3.2 presented our proposal for simplifying the sequential
consistency axioms in the C11 model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three:

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or happens before Y , or precedes Y in
modification order, then X (as well as any fences sequenced
before X ) is SC-before Y (as well as any fences sequenced
after Y ).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, then A is restricted-SC-before B .

4. There must be no cycles in restricted-SC-before.

[93 words; FK reading ease 73.1]
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Consistent executions

• Execution X is consistent iff  
    there exists rf, mo and S such that  
         (X,rf,mo,S) is well-formed and  
            satisfies all the consistency axioms.



SC axioms

acyclic(SC2 \ id ∩ (Fsb? ; (hb ∪ mo ∪ fr) ; sbF?))

irr(S ; hb ); sbF?Fsb? ; frmo )∪∪(



Performance impact
in different work-groups, so they have different L1 caches), then
perform their stores, and finally load the L1-cached values of x and
y. However, placing a FLU

L1

after the store and an INV

L1

before the
load ensures that no sequence of fetching and flushing can lead to
the relaxed behaviour. We do not need FLU

L1

or INV
L1

instructions
before or after the SC increment instruction, because INC

L2

writes
directly to the L2, invalidating the L1 as it does so.

The memory model also requires the IRIW litmus test
global atomic_int *x; global atomic_int *y;

store(x,1); store(y,1); r0=load(x); r2=load(y);

r1=load(y); r3=load(x);

not to produce the final state {r0 = r2 = 1, r1 = r3 = 0}. (Recall
that these store and load operations use memory order SC and
scope DV by default.) Here, an INV

L1

instruction between each pair
of loads is sufficient to rule out such executions.41

6. Simulating the memory models with HERD
Our overhaul of SC atomics avoids the requirement for the S relation
to be explicitly constructed in execution witnesses. Our hypothesis
was that this would lead to improved efficiency in the process of
exhaustively enumerating the allowed behaviour of litmus tests
that use SC atomics. We now explain how we extended the HERD
memory model simulator in order to enable investigation of C11
and OpenCL litmus tests (§6.1), and present experimental results
using HERD to compare the efficiency of simulation before and after
our overhaul, and also in comparison to the CDSChecker memory
model simulator [29] (§6.2). For a family of litmus tests derived from
Dekker’s algorithm, our results show that our revised axioms lead
to an exponential speedup in simulation time using HERD, bringing
performance using HERD, which is general-purpose and exhaustive
on loop-free programs, much closer to that of CDSChecker, which is
specifically tuned for the C11 memory model and is not guaranteed
to be exhaustive, even on loop-free programs.

6.1 Extensions to HERD

The version of HERD described by Alglave et al. [2, 3] supports
only assembly code: sequences of labelled instructions and gotos.
In order to simulate our formalisations of the C11 and OpenCL
memory models, we have extended the .cat format to support the
definition of faulty axioms, and the HERD tool with both a routine
for alerting the user when a faulty execution is detected and a module
for translating C11 and OpenCL programs into their executions.

We model only a small fragment of the C11 language: enough to
encode the litmus tests we found useful for testing our formalisation.
We exclude, for example, the address-of operator, compound types,
and function calls. We include if and while blocks, pointer deref-
erencing, simple expressions, and built-in atomic functions such as
atomic_thread_fence (C11) and atomic_work_item_fence

(OpenCL).

6.2 Simulating the C11 model: performance evaluation
We now compare the performance of HERD in enumerating the
behaviours of litmus tests (a) when equipped with the original SC
axioms in C11 vs. (b) when equipped with our revised SC axioms.
We also provide performance results gathered using CDSChecker, a
custom-built simulator for the C11 memory model [29]. The HERD
tool guarantees exhaustive enumeration of allowed behaviours for
a loop-free litmus test; CDSChecker aims for high coverage of
behaviours, but is known to be non-exhaustive in general [29].

Recall that Dekker’s mutual exclusion algorithm [14] is a key
use case for SC atomics. The essential idiom underlying an N -

41 On weaker models, such as Power, that are not multi-copy atomic [35],
further synchronisation would be required between the loads.
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Figure 1. Time to simulate an N -threaded store-buffering test

threaded version of Dekker’s algorithm is captured by the following
N -threaded store-buffering litmus tests:

P

N

def

=

⇣
store(x

2

,1); store(x

3

,1); . . . store(x

1

,1);

r

1

=load(x

1

); r

2

=load(x

2

); . . . rN=load(xN);

⌘

that operate on a collection {x
1

, . . . , x

N

} of atomic locations
initialised to zero. Recall that atomic store and load operations
use memory order SC by default. Dekker’s algorithm requires that it
is not possible to observe the final state where r

1

= · · · = r

N

= 0;
only SC is strong enough to rule out this relaxed behaviour.

We use the family (P

N

)

N2N to assess the scalability of the
two versions of HERD and of CDSChecker. Figure 1 shows the
time each tool takes to simulate P

N

as N increases.42 Experiments
were conducted on a 3.1 GHz MacBook Pro, and each data point
represents the mean of ten runs. We do not include error bars because
the standard deviation is negligible. The original memory model,
naively implemented in HERD, times out on just 4 threads. This is
because it iterates over all (2N )! orders of the 2N SC events that are
in every execution of P

N

. When HERD is provided with our revised
memory model, simulation times greatly improve. Bearing in mind
the logarithmic y-axis, the performance of both HERD on the revised
memory model and CDSChecker appears to scale exponentially
with N , which meets expectations since P

N

has 2N �1 unique final
states. Still, CDSChecker significantly outperforms HERD when
simulating P

N

, and on several other programs that we tried. This is
because CDSChecker, unlike HERD, is optimised specifically for
the C11 memory model, through the use of such techniques as the
early elimination of infeasible executions, and a variant of dynamic
partial order reduction (DPOR) [15] on the S order. In fact, we
conjecture that the use of DPOR here has an effect similar to our
proposal to rephrase the memory model with S as a partial order.

Figure 1 demonstrates that simply by tweaking the axioms that
define the memory model, simulation time can be dramatically
decreased, without the need to implement complex optimisations,
such as DPOR, that make it difficult to assess the soundness and
completeness of the tool. It happens that CDSCheckeris exhaustive
on all of our P

N

programs, but we remark that we can only be sure
of this because of HERD.

7. Related work
The C11 memory model has been formalised several times. Batty
et al. [7] present a comprehensive formalisation using Lem [28].
Vafeiadis et al. [38, 39] and Batty et al. [9] have also formalised

42 We used HERD revision 88ff189 (http://github.com/herd/
herdtools) and CDSChecker revision 7c51087 (git://demsky.
eecs.uci.edu/model-checker.git).
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Outline

• Introduction to the C11 memory model 

• Overhauling the rules for SC atomics in C11 

• Introduction to the OpenCL memory model 

• Overhauling the rules for SC atomics in OpenCL



OpenCL memory regions

T0 T1

local

global global_fga

work-group

device

T2 T3priv



OpenCL memory scopes

store(x) load(x)

local

global global_fga

work-group

device



OpenCL memory scopes

store(x,WG) load(x,WG)

global global_fga

work-group

device

local L1 cache



OpenCL memory scopes

store(x,WG)
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OpenCL memory scopes

store(x,DV)

global global_fga

work-group

device

load(x,DV)

local

inclusive scopes
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SC axioms in OpenCL
• Mostly copied from C11 

• "There is a total order S, providing... 

• every SC operation has ALL scope  
and accesses global_fga memory... 

• OR every SC operation has DV scope  
and does not access global_fga memory"



store(x,DV)

global_fga

work-group
device

load(x,DV)

store(y,DV)

work-group
device

load(y,DV)

global

S

S

S



Problems
😟 Can't always tell whether a location is global or 

global_fga! 

😟 The default, which is memory_scope_device, 
is not always enough! 

😟 Non-compositional! 

😟 Unnecessarily restrictive! 

😟 And too weak anyway!
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SC axiom in OpenCL

irr(S ; ((Fsb? ; (hb ∪ mo ∪ fr) ; sbF?))

every SC operation has ALL scope  
and accesses global_fga memory  
OR  
every SC operation has DV scope  
and does not access global_fga memory



SC axiom in OpenCL

irr(S ; ((Fsb? ; (hb ∪ mo ∪ fr) ; sbF?) ∩ incl)

every SC operation has ALL scope  
and accesses global_fga memory  
OR  
every SC operation has DV scope  
and does not access global_fga memory
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Changing the standardB. Rules for SC atomics in OpenCL
B.1 Original
The following text is reproduced verbatim from the OpenCL 2.1
standard [17 (51/14–52/13)]. We exclude the citations to the C11
standard.

If one of the following two conditions holds:
• All memory_order_seq_cst operations have the scope
memory_scope_all_svm_devices and all affected memory
locations are contained in system allocations or fine grain
SVM buffers with atomics support

• All memory_order_seq_cst operations have the scope
memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:
• the result of the last modification A of M that precedes B in
S , if it exists, or

• if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

• if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[. . . ]
If the total order S exists, the following rules hold:
• For an atomic operation B that reads the value of an

atomic object M , if there is a memory_order_seq_cst
fence X sequenced-before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X , Y is sequenced-before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
• For atomic operations A and B on an atomic object M , if

there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X , Y is sequenced-before B ,
and X precedes Y in S , then B occurs later than A in the
modification order of M .

[391 words; FK reading ease -22.0]

B.2 Our proposal
Section 5 presented our proposal for simplifying the sequential con-
sistency axioms in the OpenCL model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three.

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or global happens before Y , or local
happens before Y , or precedes Y in modification order, then
X (as well as any fences sequenced before X ) is SC-before
Y (as well as any fences sequenced after Y ).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, and A and B have inclusive scopes, then A

is restricted-SC-before B .
4. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

The only departures from our proposal for the C11 memory
model (Sec. A.2) are the requirement of inclusive scopes, and the
splitting of happens-before into its global and local versions.
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B. Rules for SC atomics in OpenCL
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standard.
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memory_scope_device and all affected memory locations
are not located in system allocated regions or fine-grain SVM
buffers with atomics support

then there shall exist a single total order S for all
memory_order_seq_cst operations that is consistent with the
modification orders for all affected locations, as well as the appro-
priate global-happens-before and local-happens-before orders for
those locations, such that each memory_order_seq_cst opera-
tion B that loads a value from an atomic object M in global or
local memory observes one of the following values:
• the result of the last modification A of M that precedes B in
S , if it exists, or

• if A exists, the result of some modification of M in the
visible sequence of side effects with respect to B that is not
memory_order_seq_cst and that does not happen before A,
or

• if A does not exist, the result of some modification of M in
the visible sequence of side effects with respect to B that is
not memory_order_seq_cst.

[. . . ]
If the total order S exists, the following rules hold:
• For an atomic operation B that reads the value of an

atomic object M , if there is a memory_order_seq_cst
fence X sequenced-before B , then B observes either the
last memory_order_seq_cst modification of M preceding
X in the total order S or a later modification of M in its
modification order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there is a
memory_order_seq_cst fence X such that A is sequenced-
before X and B follows X in S , then B observes either the
effects of A or a later modification of M in its modification
order.

• For atomic operations A and B on an atomic object M ,
where A modifies M and B takes its value, if there are
memory_order_seq_cst fences X and Y such that A is
sequenced- before X , Y is sequenced-before B , and X

precedes Y in S , then B observes either the effects of A

or a later modification of M in its modification order.
• For atomic operations A and B on an atomic object M , if

there are memory_order_seq_cst fences X and Y such
that A is sequenced-before X , Y is sequenced-before B ,
and X precedes Y in S , then B occurs later than A in the
modification order of M .

[391 words; FK reading ease -22.0]

B.2 Our proposal
Section 5 presented our proposal for simplifying the sequential con-
sistency axioms in the OpenCL model. We give here our suggestion
for how the specification document can be rephrased to accommo-
date our proposal, while maintaining the prose style used throughout
the rest of the document.

Specifically, the paragraphs quoted above can be removed and
replaced with the following three.

1. A value computation A of an object M reads before a side
effect B on M if A and B are different operations and B

follows, in the modification order of M , the side effect that A
observes.

2. If X reads before Y , or global happens before Y , or local
happens before Y , or precedes Y in modification order, then
X (as well as any fences sequenced before X ) is SC-before
Y (as well as any fences sequenced after Y ).

3. If A is SC-before B , and A and B are both memory_
order_seq_cst, and A and B have inclusive scopes, then A

is restricted-SC-before B .
4. There must be no cycles in restricted-SC-before.

[106 words; FK reading ease 71.0]

The only departures from our proposal for the C11 memory
model (Sec. A.2) are the requirement of inclusive scopes, and the
splitting of happens-before into its global and local versions.
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• The rules for sequentially-consistent atomic 
operations and fences ("SC atomics") in C11 and 
OpenCL are  
😕 too complex,  

😟 too weak, and  

😠 too strong. 

• We suggest how to fix them 😌.

In short


