Optimising the Computational Simulation of Mechanical Models: Designing a Real-Time Mass-Aggregate Physics Engine

Jordan Spoooner

July 16, 2015
Engine: Computer software that performs a fundamental function, especially as part of a larger program

- Moves objects
- Detects collisions
- Resolves collisions
Newton’s Laws of Motion

- A body will remain at rest or continue with constant velocity unless acted upon by an external force
- The acceleration of the body is proportional to the resultant force acting upon the body ⇒ \(\mathbf{a} = \frac{\mathbf{F}}{m} \)
- For every action there is an equal and opposite reaction
Storing the Data

Particles - No volume, no angular motion

- Position, Velocity, and Acceleration - What about speed/direction of motion? \(\mathbf{a} = d\mathbf{n} \)
- Mass
- Volume/ Any other variables?

```cpp
class Particle{
protected:
    Vector3 position;
    Vector3 velocity;
    Vector3 acceleration;
    real damping;
    real inverseMass;
}
```
Implementation: The Update Loop

- ‘The integrator’
- Separate to graphics
- Calculates change in position, p
- Damping
The Integrator

- Resolves forces
- \(a = \frac{F}{m} \)
- \(v = \int a \, dt \)
- \(s = \int v \, dt, \ s = \Delta p \)
Algorithms for Numerical Integration

- **Explicit Euler Integration**
 - $v_{n+1} = v_n + a_n \Delta t$
 - $s_{n+1} = s_n + v_n \Delta t$

- **Implicit Euler Integration**
 - $v_{n+1} = v_n + a_{n+1} \Delta t$
 - $s_{n+1} = s_n + v_{n+1} \Delta t$

- **Semi-Implicit Euler Integration**
 - $v_{n+1} = v_n + a_n \Delta t$
 - $s_{n+1} = s_n + v_{n+1} \Delta t$

- **Verlet Integration**
 - $s_{n+1} = s_n + v_n \Delta t + a_n \Delta t^2$ and $v_n = \frac{s_n - s_{n-1}}{\Delta t}$
 - gives $s_{n+1} = 2S_n - S_{n-1} + a_n \Delta t^2$
Runge-Kutta Methods

By Solving Differential Equations:

Figure: Runge-Kutta Method for Numerical Integration

\[
\begin{align*}
 dx_1 &= \Delta t \, v_{x,n} \\
 dv_x 1 &= \Delta t \, a_x(x_n, y_n, t) \\
 dx_2 &= \Delta t \left(v_{x,n} + \frac{dv_x 1}{2} \right) \\
 dv_x 2 &= \Delta t \, a_x(x_n + \frac{dx_1}{2}, y_n + \frac{dy_1}{2}, t + \frac{\Delta t}{2}) \\
 dx_3 &= \Delta t \left(v_{x,n} + \frac{dv_x 2}{2} \right) \\
 dv_x 3 &= \Delta t \, a_x(x_n + \frac{dx_2}{2}, y_n + \frac{dy_2}{2}, t + \frac{\Delta t}{2}) \\
 dx_4 &= \Delta t \left(v_{x,n} + dv_x 3 \right) \\
 dv_x 4 &= \Delta t \, a_x(x_n + dx_3, y_n + dy_3, t + \Delta t) \\
 x_{n+1} &= y_n + \frac{dx_1}{6} + \frac{dx_2}{3} + \frac{dx_3}{3} + \frac{dx_4}{6} \\
 v_{x,n+1} &= v_{x,n} + \frac{dv_x 1}{6} + \frac{dv_x 2}{3} + \frac{dv_x 3}{3} + \frac{dv_x 4}{4}
\end{align*}
\]
Damping

- Why do we include damping?
- Issues caused by variable frame rate
Calculating the new position:

\[p' = p + vt \]

Calculating the new velocity:

\[v' = vd^t + at \]

if (inverseMass <= 0.0f) return;
assert(duration > 0.0);
position.addScaledVector(velocity, duration);
velocity.addScaledVector(acceleration, duration);
velocity *= real_pow(damping, duration);
Testing: Projectiles

Figure: Projectile Simulation

```
projectileNumber->particle.setMass(200.0f);
projectileNumber->
particle.setVelocity(projectileVelocity);
projectileNumber->
particle.setAcceleration(0.0f,-20.0f,0.0f);
projectileNumber->
particle.setDamping(0.99f);
projectileNumber->particle.setPosition(0.0f,1.5f,0.0f);
```
Forces

- D’Alemberts Principle: \(\mathbf{F} = \sum_i \mathbf{F}_i \)

Figure: Geometrical Representation of Vector Addition

- Interfaces and Polymorphism
void PForceReg::updateForces(real duration) {
 Registry::iterator i = registrations.begin();
 for (; i != registrations.end(); i++) {
 i->fg->updateForce(i->particle, duration);
 }
}
Springs

- Hooke’s Law: \(f = kx \)
- Applications
- Stiff Springs

Figure: Stiff Springs over Time
```cpp
void PSpring::updateForce(Particle *particle, real duration) {

    Vector3 force;
    particle->getPosition(&force);
    force -= other->getPosition();

    real magnitude = force.magnitude();
    magnitude = real_abs(magnitude - restLength);
    magnitude *= springConstant;

    force.normalize();
    force *= magnitude;
    particle->addForce(force);
}
```
BSP (Octrees/Quadtrees)

Figure: BSP Method for Broadphase Collision Detection
Sort and Sweep

Figure: Sort and Sweep Method for Broadphase Collision Detection
Narrowphase Collision Detection and Resolving Interpenetration

Figure: Resolving Interpenetration

Frame 1
Before Collision

Frame 2
During Collision

Frame 3
After Collision
Limitations

- High-Speed?
- Objects at Rest?

Figure: Errors Caused by Objects at Rest

Frame 1: Object accelerates downwards

Frame 2: Collision with ground detected: Object given upwards velocity
Dealing with Multiple Objects?

Figure: Interpenetration Resolution with Multiple Objects

\[\Delta p_a = \frac{m_b}{m_a + m_b}dn \quad \text{and} \quad \Delta p_b = -\frac{m_a}{m_a + m_b}dn \]
Collision Resolution

Figure: The Impulse Method for Collision Resolution

- Newton’s Law of Restitution: $v = eu$
- Law of Conservation of Momentum:
 \[m_a u_a + m_b u_b = m_a v_a + m_b v_b \]
- Equating Impulses: $j_a = -j_b$ where $j = m v - m u$
- Other Methods?
- Applications
Get approach speed

\[v = eu \]

\[\Delta v_{total} = v - u \]

\[j_{total} = m_{total} \Delta v_{total} \]

\[\Delta v_a = \frac{j_{total}}{m_a} \]

\[\Delta v_b = \frac{j_{total}}{m_b} \]
Limitations of the Real-Time Mass-Aggregate Physics Engine

- Rigid Bodies
- Soft Bodies