Heaps and Hops
Soutenance de thèse

Jules Villard

LSV, ENS Cachan, CNRS
Moore’s Law

The number of transistors one can put on a chip doubles every two years
Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every two years

Moore’s law until recently

The frequency of processors doubles every two years
Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

- The frequency of processors is reaching limits
- Augment the number of processors on a chip!
Shift towards Concurrency

Moore’s Law

The number of transistors one can put on a chip doubles every two years

Moore’s law until recently

The frequency of processors doubles every two years

Moore’s law nowadays

- The frequency of processors is reaching limits
- Augment the number of processors on a chip!

- Concurrent programs are more needed than ever
- They are hard to write **correctly** and **efficiently**
Message Passing in Multicore Systems

- New paradigm: message passing over a shared memory
- Leads to efficient, copyless message passing
- May be more error-prone
To Copy or not to Copy?

Copyful

<table>
<thead>
<tr>
<th>data</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>send(struct,e,data);</td>
<td>d = receive(struct,f);</td>
</tr>
</tbody>
</table>

- (e, f): channel
- data points to a big struct
- struct: type of message

Introduction

- **Concurrency**

To Copy or not to Copy?

Copyful

<table>
<thead>
<tr>
<th>data</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>send(struct,e,data);</td>
<td>d = receive(struct,f);</td>
</tr>
</tbody>
</table>

- (e, f): channel
- data points to a big struct
- struct: type of message
To Copy or not to Copy?

Copyful

<table>
<thead>
<tr>
<th>data</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{send}($struct,e,data$)$</td>
<td>$d = \text{receive}($struct,f$)$</td>
</tr>
</tbody>
</table>

Copyless

<table>
<thead>
<tr>
<th>data</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{send}($pointer,e,data$)$</td>
<td>$d = \text{receive}($pointer,f$)$</td>
</tr>
</tbody>
</table>
To Copy or not to Copy?

Copyful

<table>
<thead>
<tr>
<th>Data (struct, e, data)</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>send(struct, e, data);</code></td>
<td><code>d = receive(struct, f);</code></td>
</tr>
</tbody>
</table>

Copyless

<table>
<thead>
<tr>
<th>Data (pointer, e, data)</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>send(pointer, e, data);</code></td>
<td><code>d = receive(pointer, f);</code></td>
</tr>
</tbody>
</table>
To Copy or not to Copy?

Copyful

data → send(struct, e, data); → d = receive(struct, f); →

Copyless

data → send(pointer, e, data); → dispose(data); →
d = receive(pointer, f); → dispose(d); →

Race!
To Copy or not to Copy?

Copyful

```
data     d
send(struct,e,data);   d = receive(struct,f);
```

Copyless

```
data     d
send(pointer,e,data);  d = receive(pointer,f);
dispose(data);  dispose(d);
```
To Copy or not to Copy?

Copyful

data →

send(struct, e, data);

Copyless No race

data

d →

d = receive(struct, f);

dispose(d);

Introduction • Concurrency
Singularity: a research project and an operating system.

- No hardware memory protection
- Sing\# language
- Isolation is verified at compile time
- Invariant: each memory cell is owned by at most one thread
- No shared resources
- Copyless message passing
Singularity: a research project and an operating system.

- No hardware memory protection
- Sing\# language
- Isolation is verified at compile time
- Invariant: each memory cell is owned by at most one thread
- No shared resources
- Copyless message passing
Singularity Features

[Fähndrich et al. ’06]

- Channels are **bidirectional** and **asynchronous**
 channel = pair of FIFO queues
- Channels are made of two **endpoints**
 similar to the socket model
- Endpoints can be allocated, disposed of, and communicated through channels
 similar to the π-calculus
- Communications are ruled by user-defined **contracts**
 similar to session types
- **No formalisation**
 How to ensure the absence of bugs?

Introduction • Concurrency
Formal Verification

- **Model** of the program
- **Specify** a correctness criterion in a mathematical language
- **Prove** a theorem which links the two
Main Contributions of the Thesis

- **Model** of the program
 - Semantics of copyless message passing programs

- **Specify** a correctness criterion in a mathematical language
 - Hoare triples: separation logic for channels in the heap
 - Contracts

- **Prove** a theorem which links the two
 - Automatic tool: Heap-Hop
 - Extend the proof system of separation logic
 - Properties of contracts rub off on programs
Our Analysis

Model

Specify

SL+MP

Program

Heap-Hop

Proof

Contracts Prop.

= Program Prop.

Contracts

Program

= Proof

Contracts Prop.

/\
Heap-Hop

Program

- message passing primitives

Proof

+

Contracts Prop.

=

Program Prop.

SL+MP

Contracts

Heap-Hop
Message Passing Primitives

- \((e, f) = \text{open}()\) Creates a bidirectional channel between endpoints \(e\) and \(f\)
- \(\text{close}(e, f)\) Closes the channel \((e, f)\)
- \(\text{send}(a, e, x)\) Sends message starting with value \(x\) on endpoint \(e\). The message has type/tag \(a\)
- \(x = \text{receive}(a, e)\) Receives message of type \(a\) on endpoint \(e\) and stores its value in \(x\)

```haskell
set_to_ten(x) {
    local e,f;
    (e,f) = open();
    send(integer,e,10);
    x = receive(integer,f);
    close(e,f);
}
```
Switch Receive

- **switch receive** selects a receive branch depending on availability of messages

```plaintext
if ( x ) {
    send (cell, e, x);
} else {
    send (integer, e, 0);
}

switch receive {
    y = receive (cell, f): { dispose (y); }
    z = receive (integer, f): {}
}
```
Program \rightarrow Proof \rightarrow SL+MP

Contracts \rightarrow Proof \rightarrow Contracts Prop.

Program Prop.

- Race freedom
- Reception fault freedom
- Leak freedom
Safety Properties

Separation property

At each point in the execution, the state can be partitioned into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.
Safety Properties

Separation property

At each point in the execution, the state can be \textit{partitioned} into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.
Safety Properties

Separation property

At each point in the execution, the state can be **partitioned** into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.
Safety Properties

Separation property

At each point in the execution, the state can be partitioned into what is owned by each program and each message in transit.

- Programs access only what they own.
- Prevents races.
Safety Properties

Separation property

Invalid receptions freedom

```
switch receive { 
    y = receive(a,f): { ... }
    z = receive(b,f): { ... }
}
```

```
send(c,e,x);
```

...
Safety Properties

Separation property

Invalid receptions freedom

Leak freedom

The program does not leak memory.

```c
1 main() {
2   local x,e,f;
3
4   x = new();
5   (e,f) = open();
6   send(cell,e,x);
7   close(e,f);
8 }
```
Heap-Hop

Program → Proof + Contracts Prop. = Program Prop.

SL+MP

Contracts

- Communicating automata
A Dialogue System

- Sending transitions: !a
- Receiving transitions: ?a
- Two buffers: one in each direction
- Configuration: \(\langle q, q', w, w' \rangle \)
A Dialogue System

Channel Contracts • Communicating Automata

\[\langle q, q_0, \varepsilon, \varepsilon \rangle \]
A Dialogue System

Channel Contracts • Communicating Automata
A Dialogue System

Channel Contracts • Communicating Automata

\[\langle q, q_2, ab, \varepsilon \rangle \]
A Dialogue System

\[\langle q_a, q_2, b, \varepsilon \rangle \]
A Dialogue System

\[\langle q, q_2, b, a \rangle \]
A Dialogue System

\[
\langle q, q_3, b, \varepsilon \rangle
\]
A Dialogue System

Channel Contracts • Communicating Automata
A Dialogue System

\[\langle q, q_3, \varepsilon, b \rangle \]
A Dialogue System

Channel Contracts • Communicating Automata
Describe dual communicating finite state machines

\[e \xrightarrow{\text{init}} \xrightarrow{!\text{pointer}} \xrightarrow{\text{end}} \]
Describe dual communicating finite state machines

\[
\begin{array}{c}
\mathcal{C} \\
\mathcal{C}'
\end{array}
\]

\[
\begin{array}{c}
\text{init} \quad \text{!pointer} \quad \text{end} \\
\text{init} \quad \text{?pointer} \quad \text{end}
\end{array}
\]
Describe dual communicating finite state machines

\[\mathcal{C} \quad \text{init} \xrightarrow{!\text{pointer}} \text{end} \quad \mathcal{C}' \]

\[\mathcal{C}' \quad q' \xrightarrow{!\text{cell}} q \xrightarrow{!\text{fin}} \text{end} \quad \mathcal{C}' \quad q' \xleftarrow{?\text{cell}} q \xrightarrow{?\text{fin}} \text{end} \]
Contracts as Protocol Specifications

- \((e,f) = \text{open}(C)\): initialise endpoints in the initial state of the contract
- \(\text{send}(a,e,x)\): becomes a !\(a\) transition
- \(y = \text{receive}(a,f)\): becomes a ?\(a\) transition
- \(\text{closed}(e,f)\) only when both endpoints are in the same **final** state.
Heap-Hop

Program → Proof + SL+MP

Contracts Prop. = Program Prop.

- Reception faults
- Leaks
Reception Errors

Definition

\[\langle q_1, q_2, a \cdot w_1, w_2 \rangle \text{ is a reception fault if} \]

- \(q_1 \xrightarrow{?b} q \) for some \(b \) and \(q \) and
- \(\forall b, q. q_1 \xrightarrow{?b} q \) implies \(b \neq a \)

\[\langle q, q, \varepsilon, \varepsilon \rangle \]
Reception Errors

Definition

$\langle q_1, q_2, a \cdot w_1, w_2 \rangle$ is a **reception fault** if

- $q_1 \xrightarrow{?b} q$ for some b and q and
- $\forall b, q. \quad q_1 \xrightarrow{?b} q$ implies $b \neq a$

\[\langle q_1, q, a, \varepsilon \rangle \]
Reception Errors

Definition

\(\langle q_1, q_2, a \cdot w_1, w_2 \rangle \) is a **reception fault** if

- \(q_1 \xrightarrow{?b} q \) for some \(b \) and \(q \) and
- \(\forall b, q, q_1 \xrightarrow{?b} q \implies b \neq a \)

\[\langle q_1, q'_1, a, b \rangle \]
Reception Errors

Definition

\[\langle q_1, q_2, a \cdot w_1, w_2 \rangle \text{ is a reception fault if} \]

- \(q_1 \xrightarrow{?b} q \) for some \(b \) and \(q \) and
- \(\forall b, q. \, q_1 \xrightarrow{?b} q \) implies \(b \neq a \)

\[\langle q_1, q_1', a, b \rangle \xrightarrow{?b} \text{ error} \]
Reception Errors

Definition

\[
\langle q_1, q_2, a \cdot w_1, w_2 \rangle \text{ is a reception fault if }
\]

- \(q_1 \xrightarrow{?b} q \) for some \(b \) and \(q \) and
- \(\forall b, q. \ q_1 \xrightarrow{?b} q \implies b \neq a \)

- A contract is reception fault-free if it cannot reach a reception fault.
Undelivered Messages

Definition

\[\langle q_f, q_f, w_1, w_2 \rangle \text{ is a leak} \text{ if } w_1 \cdot w_2 \neq \varepsilon \text{ and } q_f \text{ is final.} \]

\[\langle q, q, \varepsilon, \varepsilon \rangle \]
Undelivered Messages

Definition

\[\langle q_f, q_f, w_1, w_2 \rangle \text{ is a leak if } w_1 \cdot w_2 \neq \varepsilon \text{ and } q_f \text{ is final.} \]

\[\langle q_1, q, a, \varepsilon \rangle \]

Leak
Definition

\[\langle q_f, q_f, w_1, w_2 \rangle \text{ is a leak if } w_1 \cdot w_2 \neq \varepsilon \text{ and } q_f \text{ is final.} \]

Leak

\[\langle q_2, q, aa, \varepsilon \rangle \]
Undelivered Messages

Definition

\[\langle q_f, q_f, w_1, w_2 \rangle \] is a **leak** if \(w_1 \cdot w_2 \neq \varepsilon \) and \(q_f \) is final.

Leak

\[\langle q_2, q_2, a, \varepsilon \rangle \]
Definition

\(\langle q_f, q_f, w_1, w_2 \rangle \) is a \textbf{leak} if \(w_1 \cdot w_2 \neq \varepsilon \) and \(q_f \) is final.

\[
\langle q_2, q_2, a, \varepsilon \rangle
\]
Undelivered Messages

<table>
<thead>
<tr>
<th>Definition</th>
<th>Leak</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle q_f, q_f, w_1, w_2 \rangle$ is a leak if $w_1 \cdot w_2 \neq \varepsilon$ and q_f is final.</td>
<td></td>
</tr>
</tbody>
</table>

- A contract is **leak free** if it cannot reach a leak.
- A contract is **safe** if it is reception fault free and leak free.
Safety of communicating systems is undecidable in general

Channel’s buffer \(\approx\) Turing machine’s tape
Safety of communicating systems is undecidable in general

Channel’s buffer ≈ Turing machine’s tape

Contracts are restricted (dual systems)
Safety of communicating systems is undecidable in general

Channel’s buffer \approx Turing machine’s tape

- Contracts are restricted (dual systems)
- Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.
Safety of communicating systems is undecidable in general

Channel’s buffer \(\approx\) Turing machine’s tape

- Contracts are restricted (dual systems)
- Contracts can encode Turing machines as well

Theorem

Safety is undecidable for contracts.

- We give sufficient conditions for safety.
Sufficient Conditions for Reception Safety

Definition

Deterministic contract

Two distinct edges in a contract must be labelled by different messages.

- ![Diagram 1](image1)
- ![Diagram 2](image2)
- ![Diagram 3](image3)
Sufficient Conditions for Reception Safety

<table>
<thead>
<tr>
<th>Definition</th>
<th>Deterministic contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Positional contracts</td>
</tr>
<tr>
<td>All outgoing edges from a same state in a contract must be either all sends or all receives.</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
q \\
\downarrow \quad \downarrow \\
q_1 & q_2 \\
!a_1 & ?a_2
\end{array}
\quad \text{X}
\quad \begin{array}{c}
q \\
\downarrow \quad \downarrow \\
q_1 & q_2 \\
!a_1 & !a_2
\end{array}
\quad \text{○}
\]

Channel Contracts • Singularity Contracts
Sufficient Conditions for Reception Safety

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan’09] • [V., Lozes & Calcagno ’09]

Deterministic positional contracts are **reception fault free**.

Channel Contracts • Singularity Contracts
Sufficient Conditions for Reception Safety

Definition

Deterministic contract

Definition

Positional contracts

Theorem

[Stengel & Bultan’09] • [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.
Sufficient Conditions for Reception Safety

Definition
- Deterministic contract

Definition
- Positional contracts

Theorem

[Stengel & Bultan’09] • [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.

Channel Contracts • Singularity Contracts
Sufficient Conditions for Reception Safety

Definition
- Deterministic contract
- Positional contracts

Theorem
[Stengel & Bultan’09] • [V., Lozes & Calcagno ’09]

Deterministic positional contracts are reception fault free.
Sufficient Conditions for Reception Safety

<table>
<thead>
<tr>
<th>Definition</th>
<th>Deterministic contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Positional contracts</td>
</tr>
<tr>
<td>Theorem</td>
<td>[Stengel & Bultan’09] ● [V., Lozes & Calcagno ’09]</td>
</tr>
<tr>
<td>Deterministic positional contracts are reception fault free.</td>
<td></td>
</tr>
</tbody>
</table>

- **Channel Contracts**
 - **Singularity Contracts**

- **Diagram:**
 - State transitions and conditions for reception safety.
Another Source of Leaks

Channel Contracts • Singularity Contracts
Another Source of Leaks

\[\langle q, q, \varepsilon, \varepsilon \rangle \]
Another Source of Leaks

\[\langle q, q, a, \varepsilon \rangle \]
Another Source of Leaks

\[\langle q, q, aa, \varepsilon \rangle \]
Another Source of Leaks

\[\langle q, q, aaa, \varepsilon \rangle \]
Synchronising Contracts

<table>
<thead>
<tr>
<th>Definition</th>
<th>Synchronising state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A state s is synchronising if every cycle that goes through it contains at least one send and one receive.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image.png)

Definition

A state s is synchronising if every cycle that goes through it contains at least one send and one receive.

Theorem [V., Lozes & Calcagno '09]

Deterministic, positional and synchronising contracts are safe (fault and leak free).

Channel Contracts

- Singularity Contracts

* Channel Contracts • Singularity Contracts

Synchronising Contracts

<table>
<thead>
<tr>
<th>Definition</th>
<th>Synchronising state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A state s is synchronising if every cycle that goes through it contains at least one send and one receive.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Synchronising contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>A contract is synchronising if all its final states are.</td>
<td></td>
</tr>
</tbody>
</table>
Synchronising Contracts

<table>
<thead>
<tr>
<th>Definition</th>
<th>Synchronising state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A state s is synchronising if every cycle that goes through it contains at least one send and one receive.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Synchronising contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>A contract is synchronising if all its final states are.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[V., Lozes & Calcagno ’09]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic, positional and synchronising contracts are safe (fault and leak free).</td>
<td></td>
</tr>
</tbody>
</table>
Singularity Contracts

Definition

Singularity contracts are deterministic and **all** their states are synchronising.

- This is missing the positional condition!
- Does not guarantee reception fault freedom
- In fact, we proved that safety is still **undecidable** for deterministic or positional contracts.
- Positional Singularity contracts are **safe** and **bounded**.
Heap-Hop

Program

Proof

Contracts Prop.

Program Prop.

Contracts

SL+MP

• Extension to message passing
Separation Logic

[Reynolds 02, O’Hearn 01, …]

<table>
<thead>
<tr>
<th>Separation Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>An assertion language to describe states</td>
</tr>
<tr>
<td>A proof system for Hoare triples</td>
</tr>
</tbody>
</table>

- Local reasoning for heap-manipulating programs
- Naturally describes ownership transfers
- Has been extended to storable locks [Gotsman et al. 07]
Assertions

Syntax

E	$\ ::= $	$x \mid n \in \{0, 1, 2, \ldots \} \mid \cdots$	expressions
ϕ	$\ ::= $	$E_1 = E_2 \mid E_1 \neq E_2 \mid \text{emp} \mid E_1 \leftrightarrow E_2 \mid \exists x. \phi \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \phi_1 \ast \phi_2$	stack predicates
			heap predicates
			formulas
Syntax (continued)

<table>
<thead>
<tr>
<th>(\phi) ::= \ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \leftrightarrow (\mathcal{C}{q}, E')) endpoint predicate</td>
</tr>
</tbody>
</table>

Intuitively \(E \leftrightarrow (\mathcal{C}\{q\}, E') \) means:

- \(E \) is an allocated endpoint
- it is ruled by contract \(\mathcal{C} \)
- it is currently in the control state \(q \) of \(\mathcal{C} \)
- its peer is \(E' \)
Heap-Hop

Program \rightarrow \text{Proof} \rightarrow \text{SL+MP}

\text{Contracts Prop.} \rightarrow \text{Program Prop.}

- Extends Smallfoot with message passing
- Written in OCaml
- Open source
[V., Lozes & Calcagno TACAS’10]
Heap-Hop

Program

Proof

Contracts

SL+MP

Contracts Prop.

Program Prop.

- rules for message passing
- message footprints

Heap-Hop
Memory States σ

A memory state σ has three components

- A variable valuation (stack)
- A heap for memory cells
- Buffers for endpoints

Semantics of programs

Small-step interleaving operational semantics for programs p:

- $p, \sigma \rightarrow^* p', \sigma'$ (intermediate state)
- $p, \sigma \rightarrow^* \sigma'$ (final state)
- $p, \sigma \rightarrow^* \text{error}$ (error state)
\{ \phi \} \ p \ \{ \psi \} : \text{Hoare triple}

- \phi, \psi : \text{formulas}
- p : \text{program}

Fault-free interpretation of Hoare triples

If \{ \phi \} \ p \ \{ \psi \} is provable, then for all state \(\sigma \models \phi \),

1. \(p \) has no race or memory faults from \(\sigma \)
2. \(p \) implements its contracts
3. if \(p, \sigma \rightarrow^* \sigma' \) then \(\sigma' \models \psi \)

Proof system

Derivation rules to **prove** Hoare triples.
Communication Rules

OPEN

\[
i = \text{init}(C) \\quad \{\text{emp}\} \ (e,f) = \text{open}(C) \ \{e \mapsto (C\{i\},f) \ast f \mapsto (C\{i\},e)\}
\]

CLOSE

\[
q \in \text{finals}(C) \quad \{e \mapsto (C\{q\},f) \ast f \mapsto (\neg C\{q\},e)\} \ \text{close}(e,f) \ \{\text{emp}\}
\]

SEND

\[
q \xrightarrow{!a} q' \in C \quad e \mapsto (C\{q'\},-) \ast \phi \Rightarrow \gamma_a(e,x) \ast \phi' \\quad \{e \mapsto (C\{q\},-) \ast \phi\} \ \text{send}(a,e,x) \ \{\phi'\}
\]

RECEIVE

\[
q \xrightarrow{?a} q' \in C \quad \{e \mapsto (C\{q\},X')\} \ x = \text{receive}(a,e) \ \{e \mapsto (C\{q'\},X') \ast \gamma_a(X',x)\}
\]
Communication Rules

Open

\[t = \text{init}(e) \]

\{emp\} (e,f) = open(C) (e = (C[q], f) \rightarrow f = (C[q], e))

CLOSE

\[\text{q} \in \text{finals}(C) \]

\{e → (C[q], f) \# f → (¬C[q], e)\} close(e,f) \{emp\}

SEND

\[q \rightarrow q' \in C \quad e = (C[q'], e) \rightarrow d = \text{send}(a,e,x) \rightarrow \]

\{e → (C[q'], X')\} x = receive(a,e) \{e → (C[q'], X') \# γ(a)(X', x)\}

RECEIVE

\[q \xrightarrow{a} q' \in C \]

\{e → (C[q], X')\} x = receive(a,e) \{e → (C[q'], X') \# γ(a)(X', x)\}
Closing a Channel

\[
\text{CLOSE}
\]

\[
q \in \text{finals}(\mathcal{C})
\]

\[
\{ e \mapsto (\mathcal{C}\{ q \}, f) \} \star f \mapsto (\sim \mathcal{C}\{ q \}, e) \} \text{ close}(e, f) \{ \text{emp} \}
\]
Closing a Channel

\[
\text{CLOSE} \quad q \in \text{finals}(\mathcal{C}) \\
\{ e \mapsto (\mathcal{C}\{q\}, f) \ast f \mapsto (\sim \mathcal{C}\{q\}, e) \} \quad \text{close}(e, f) \{ \text{emp} \}
\]

Proving Copyless Message Passing • Proof System
General Rule for Receive

\[\text{Receive} \]

\[q \overset{?a}{\rightarrow} q' \in \mathcal{C} \]

\[\{ e \mapsto (\mathcal{C}\{q\}, X') \} x = \text{receive}(a, e) \{ e \mapsto (\mathcal{C}\{q'\}, X') \ast \gamma_a(X', x) \} \]
General Rule for Receive

\[
\begin{align*}
q \xrightarrow{?a} q' \in C \\
\{ e \mapsto (C\{q\}, X') \} \ x = \text{receive}(a, e) \ \{ e \mapsto (C\{q'\}, X') \star \gamma_a(X', x) \}
\end{align*}
\]
General Rule for Receive

\[\text{RECEIVE} \]

\[q \overset{a}{\rightarrow} q' \in \mathcal{C} \]

\[\{ e \mapsto (\mathcal{C}\{q\}, X') \} x = \text{receive}(a, e) \{ e \mapsto (\mathcal{C}\{q'\}, X') \ast \gamma_a(X', x) \} \]

Can be instantiated for each example:

\[\gamma_{\text{cell}}(\text{src}, \text{val}) \triangleq \text{val} \mapsto - \]
\[\gamma_{\text{ep}}(\text{src}, \text{val}) \triangleq \text{val} \mapsto (\mathcal{C}\{\text{end}\}, -) \land \text{val} = \text{src} \]
Heap-Hop

Program → Proof

• soundness

SL+MP → Proof

+

Contracts Prop. = Program Prop.

Contracts
Definition

Program validity

\(\{\phi\} p \{\psi\}\) is valid if, for all \(\sigma \models \phi\):

- \(p\) has **no race or memory fault** starting from \(\sigma\)
- \(p\) has **no reception faults** starting from \(\sigma\)
- if \(p, \sigma \rightarrow^{*} \sigma'\) then \(\sigma' \models \psi\)

Definition

Leak free programs

\(p\) is **leak free** if for all \(\sigma\)

\(p, \sigma \rightarrow^{*} \sigma'\) implies that the heap and buffers of \(\sigma'\) are empty
Properties of Proved Programs

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Soundness</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ({ \phi } p { \psi }) is provable with reception fault free contracts then ({ \phi } p { \psi }) is valid.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Leak freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ({ \phi } p { \text{emp} }) is provable with leak free contracts then (p) is leak free.</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion
Contributions

Contracts

- Formalisation of contracts
- Automatic verification of contract properties

Program analysis

- First extension of separation logic to message passing
- Formalisation of heap-manipulating, message passing programs with contracts
- Contracts and proofs collaborate to prove freedom from reception errors and leaks
- Tool that integrates this analysis: **Heap-Hop**
Perspectives

Contracts

- Prove progress for programs
- Extend to the multiparty case
- Enrich contracts with counters, non determinism, ...

Automatic program verification

- Discover specs and message footprints
- Discover contracts
- Fully automated tool
Program → Proof

Proof +

Contracts Prop. =

Program Prop. → SL+MP

Contracts

Heap-Hop