Parametric Completeness for Separation Theories

Jules Villard

University College London
Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)
Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably \textit{incomplete} (cf. Gödel).
Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- provability in some formal system for the logic; and
Logics: Expressivity vs Complexity

Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- **provability** in some *formal system* for the logic; and
- **validity** in a (class of) *intended model*(s) of the logic.
Mathematical logics expressivity trade-off

- Weaker languages cannot capture interesting properties, but
- Richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

A potential gap between two key concepts

- provability in some formal system for the logic; and
- validity in a (class of) intended model(s) of the logic.

This talk

- Study this gap in the context of separation logic
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps: Location \mapsto Values
- In-between: separation theories satisfying some of functionality
 - cancellativity
 - single-unit

Parametric Completeness for Separation Theories

Introduction
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples \(\{A\} \text{ program } \{B\} \)
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples \(A \) \text{ program } \{ B \}
- Assertions \(A, B \): Boolean BI (BBI)
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples \(\{A\} \text{ program } \{B\} \)
- Assertions \(A, B: \textbf{Boolean BI} \) (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples \(\{A\} \text{ program } \{B\} \)
- Assertions \(A, B: \text{Boolean BI} \) (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location \(\rightarrow \) Values
Separation Theories

Separation Logic (SL)

- Compositional program logic for heap-manipulating programs (C, C++, Java, ...)
- Hoare triples \(\{A\} \text{program} \{B\} \)
- Assertions \(A, B: \text{Boolean BI} \) (BBI)

Models of Separation Logic and BBI

- Models of BBI: partial commutative relational monoids
- Concrete model: Heaps : Location \(\rightarrow \) Values
- In-between: separation theories satisfying some of functionality, cancellativity, single-unit, ...
Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} \textit{finitely axiomatisable}, a.k.a. \textit{definable} in \mathcal{L}?
Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L}?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C}?
Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. **definable** in \mathcal{L}?
2. Is there a **complete proof system** for \mathcal{L} w.r.t. validity in \mathcal{C}?

(Note that these questions are not connected, in general.)
Definability of Classes of Models

Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L}?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C}?
 (Note that these questions are not connected, in general.)

Pure separation logic

- \mathcal{L} is Boolean BI (BBI);
Given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language,

1. Is \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L}?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C}?

(Note that these questions are not connected, in general.)

Pure separation logic

- \mathcal{L} is **Boolean BI (BBI)**;
- the intended models are given by **separation theories**
The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.

2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.

3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.

4. We show how to axiomatise validity in our hybrid system(s). Moreover, we do this such that completeness is parametric in the axioms defining separation theories.
The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.
2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.
The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.
2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.
3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.
The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.

2. We introduce separation theories, which describe practically interesting classes of models, and show that many such theories are not definable in BBI.

3. We then propose an extension of BBI based on hybrid logic, which adds a theory of naming to BBI, and show that these properties become definable in this extension.

4. We show how to axiomatise validity in our hybrid system(s). Moreover, we do this such that completeness is parametric in the axioms defining separation theories.
Boolean BI
BBI formula

\[A ::= P \mid \top \mid \bot \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \rightarrow A_2 \]
\[\mid I \mid A_1 \ast A_2 \mid A_1 \leftarrow A_2 \]
(Propositional) Boolean BI

BBI formula

\[A ::= P \mid \top \mid \bot \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \to A_2 \mid \mathbf{I} \mid A_1 \cdot A_2 \mid A_1 \not\cdot A_2 \]

Separating Conjunction

\[A_1 \cdot A_2 \iff \]

\[A_1 \mid \mid A_2 \]
(Propositional) Boolean BI

BBI formula

\[
A ::= P \mid \top \mid \bot \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid A_1 \rightarrow A_2 \\
| I \mid A_1 \ast A_2 \mid A_1 \rightarrow A_2
\]

Magic Wand
Proof theory of BBI

Provability for the multiplicatives is given by

\[
\begin{align*}
A \ast B & \vdash B \ast A \\
A \ast (B \ast C) & \vdash (A \ast B) \ast C \\
A & \vdash A \ast I \\
A \ast I & \vdash A \\
A_1 \vdash B_1 & \quad A_2 \vdash B_2 \\
\hline
A_1 \ast A_2 & \vdash B_1 \ast B_2 \\
A \ast B & \vdash C \\
A & \vdash B \multimap C \\
A \ast B & \vdash C
\end{align*}
\]
BBI-models

BBI model $\langle W, \circ, E \rangle$

A **relational commutative monoid**, i.e. a tuple $\langle W, \circ, E \rangle$ where

- $\circ : W \times W \to \mathcal{P}(W)$

 $\left(\text{lifted to } W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2 \right)$

- \circ commutative and associative

- $E \subseteq W$ and $\forall w \in W. \ w \circ E = \{ w \}$ (multi-units)
BBI-models

<table>
<thead>
<tr>
<th>BBI model</th>
<th>$\langle W, \circ, E \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A relational commutative monoid, i.e. a tuple $\langle W, \circ, E \rangle$ where</td>
<td></td>
</tr>
<tr>
<td>- $\circ : W \times W \to \mathcal{P}(W)$</td>
<td></td>
</tr>
<tr>
<td>- (lifted to $W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$)</td>
<td></td>
</tr>
<tr>
<td>- \circ commutative and associative</td>
<td></td>
</tr>
<tr>
<td>- $E \subseteq W$ and $\forall w \in W. w \circ E = {w}$ (multi-units)</td>
<td></td>
</tr>
<tr>
<td>(that is, $\forall e \in E. w \circ e \subseteq {w}$ and $\exists e \in E. w \circ e = {w}$)</td>
<td></td>
</tr>
</tbody>
</table>
BBI-models

<table>
<thead>
<tr>
<th>BBI model</th>
<th>(\langle W, \circ, E \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A relational commutative monoid, i.e a tuple (\langle W, \circ, E \rangle) where</td>
<td></td>
</tr>
<tr>
<td>• (\circ : W \times W \to \mathcal{P}(W))</td>
<td></td>
</tr>
<tr>
<td>(\left(\text{lifted to } W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2 \right))</td>
<td></td>
</tr>
<tr>
<td>• (\circ) commutative and associative</td>
<td></td>
</tr>
<tr>
<td>• (E \subseteq W) and (\forall w \in W. w \circ E = { w }) (multi-units)</td>
<td></td>
</tr>
<tr>
<td>(\text{(that is, } \forall e \in E. w \circ e \subseteq { w } \text{ and } \exists e \in E. w \circ e = { w }))</td>
<td></td>
</tr>
</tbody>
</table>

Typical example: heap models \(\langle H, \circ, \{ e \} \rangle \), where
BBI-models

A **relational commutative monoid**, *i.e.* a tuple $\langle W, \circ, E \rangle$ where

- $\circ : W \times W \rightarrow \mathcal{P}(W)$
 - (lifted to $W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$)
 - \circ commutative and associative

- $E \subseteq W$ and $\forall w \in W. w \circ E = \{w\}$
 - (multi-units)
 - (that is, $\forall e \in E. w \circ e \subseteq \{w\}$ and $\exists e \in E. w \circ e = \{w\}$)

Typical example: **heap models** $\langle H, \circ, \{e\} \rangle$, where

- H is the set of **heaps**, *i.e.* finite partial maps from locations to values,
BBI-models

A relational commutative monoid, i.e a tuple $\langle W, \circ, E \rangle$ where

- $\circ : W \times W \rightarrow \mathcal{P}(W)$

 $\left(\text{lifted to } W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2\right)$

- \circ commutative and associative

- $E \subseteq W$ and $\forall w \in W. w \circ E = \{w\}$ (multi-units) (that is, $\forall e \in E. w \circ e \subseteq \{w\}$ and $\exists e \in E. w \circ e = \{w\}$)

Typical example: heap models $\langle H, \circ, \{e\} \rangle$, where

- H is the set of heaps, i.e. finite partial maps from locations to values,

- \circ is the union of domain-disjoint heaps, and
BBI-models

A **relational commutative monoid**, i.e. a tuple \(\langle W, \circ, E \rangle \) where

- \(\circ : W \times W \to \mathcal{P}(W) \)

 \[
 \text{(lifted to } W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2) \]

- \(\circ \) commutative and associative

- \(E \subseteq W \) and \(\forall w \in W. \ w \circ E = \{ w \} \) (multi-units)

 (that is, \(\forall e \in E. \ w \circ e \subseteq \{ w \} \) and \(\exists e \in E. \ w \circ e = \{ w \} \))

Typical example: **heap models** \(\langle H, \circ, \{ e \} \rangle \), where

- \(H \) is the set of **heaps**, i.e. finite partial maps from locations to values,

- \(\circ \) is the union of **domain-disjoint** heaps, and

- \(e \) is the empty heap that is undefined everywhere.
Semantics of BBI

<table>
<thead>
<tr>
<th>Forcing relation $M, w \models \rho A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = \langle W, \circ, E \rangle$</td>
</tr>
</tbody>
</table>

| $M, w \models \rho P$ | \iff | $w \in \rho(P)$ |

Theorem Galmiche and Larchey-Wendling 2006

Provability in BBI coincides with validity in BBI-models.

Parametric Completeness for Separation Theories • Boolean BI
Semantics of BBI

Forcing relation $M, w \models \rho A$

$$M = \langle W, \circ, E \rangle$$

<table>
<thead>
<tr>
<th>$M, w \models \rho P$</th>
<th>\iff</th>
<th>$w \in \rho(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models \rho A_1 \land A_2$</td>
<td>\iff</td>
<td>$M, w \models \rho A_1 \text{ and } M, w \models \rho A_2$</td>
</tr>
</tbody>
</table>
Semantics of BBI

<table>
<thead>
<tr>
<th>Forcing relation $M, w \models_\rho A$</th>
<th>$M = \langle W, \circ, E \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models_\rho P$ \iff $w \in \rho(P)$</td>
<td></td>
</tr>
<tr>
<td>$M, w \models_\rho A_1 \land A_2$ \iff $M, w \models_\rho A_1$ and $M, w \models_\rho A_2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
<tr>
<td>$M, w \models_\rho I$ \iff $w \in E$</td>
<td></td>
</tr>
</tbody>
</table>
Semantics of BBI

<table>
<thead>
<tr>
<th>Forcing relation $M, w \models \rho A$</th>
<th>$M = \langle W, \circ, E \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models \rho P$ \iff $w \in \rho(P)$</td>
<td>$M, w \models \rho A_1 \land A_2$ \iff $M, w \models \rho A_1$ and $M, w \models \rho A_2$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$M, w \models \rho I$ \iff $w \in E$</td>
<td>$M, w \models \rho A_1 \ast A_2$ \iff $w \in w_1 \circ w_2$ and $M, w_1 \models \rho A_1$ and $M, w_2 \models \rho A_2$</td>
</tr>
</tbody>
</table>
Forcing relation $M, w \models_{\rho} A$

<table>
<thead>
<tr>
<th>Formula</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models_{\rho} P$</td>
<td>$w \in \rho(P)$</td>
</tr>
<tr>
<td>$M, w \models_{\rho} A_1 \land A_2$</td>
<td>$M, w \models_{\rho} A_1$ and $M, w \models_{\rho} A_2$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$M, w \models_{\rho} I$</td>
<td>$w \in E$</td>
</tr>
<tr>
<td>$M, w \models_{\rho} A_1 \ast A_2$</td>
<td>$w \in w_1 \circ w_2$ and $M, w_1 \models_{\rho} A_1$ and $M, w_2 \models_{\rho} A_2$</td>
</tr>
<tr>
<td>$M, w \models_{\rho} A_1 \rightarrow A_2$</td>
<td>$\forall w', w'' \in W$. if $w'' \in w \circ w'$ and $M, w' \models_{\rho} A_1$ then $M, w'' \models_{\rho} A_2$</td>
</tr>
</tbody>
</table>

$M = \langle W, \circ, E \rangle$
Semantics of BBI

Forcing relation $M, w \models_\rho A$

<table>
<thead>
<tr>
<th>$M, w \models_\rho P$</th>
<th>\iff</th>
<th>$w \in \rho(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models_\rho A_1 \land A_2$</td>
<td>\iff</td>
<td>$M, w \models_\rho A_1$ and $M, w \models_\rho A_2$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>$M, w \models_\rho I$</td>
<td>\iff</td>
<td>$w \in E$</td>
</tr>
<tr>
<td>$M, w \models_\rho A_1 * A_2$</td>
<td>\iff</td>
<td>$w \in w_1 \circ w_2$ and $M, w_1 \models_\rho A_1$ and $M, w_2 \models_\rho A_2$</td>
</tr>
<tr>
<td>$M, w \models_\rho A_1 \rightarrow A_2$</td>
<td>\iff</td>
<td>$\forall w', w'' \in W. \text{ if } w'' \in w \circ w'$ and $M, w' \models_\rho A_1$ then $M, w'' \models_\rho A_2$</td>
</tr>
</tbody>
</table>

A is **valid in** M iff $M, w \models_\rho A$ for all ρ and $w \in W$.

Theorem Galmiche and Larchey-Wendling 2006

Provability in BBI coincides with validity in BBI-models.
Semantics of BBI

Forcing relation $M, w \models_{\rho} A$

\[
M = \langle W, \circ, E \rangle \\
M, w \models_{\rho} P \iff w \in \rho(P) \\
M, w \models_{\rho} A_1 \land A_2 \iff M, w \models_{\rho} A_1 \text{ and } M, w \models_{\rho} A_2 \\
\vdots \\
M, w \models_{\rho} I \iff w \in E \\
M, w \models_{\rho} A_1 \ast A_2 \iff w \in w_1 \circ w_2 \text{ and } M, w_1 \models_{\rho} A_1 \text{ and } M, w_2 \models_{\rho} A_2 \\
M, w \models_{\rho} A_1 \rightarrow A_2 \iff \forall w', w'' \in W. \text{ if } w'' \in w \circ w' \text{ and } M, w' \models_{\rho} A_1 \text{ then } M, w'' \models_{\rho} A_2
\]

A is **valid in** M iff $M, w \models_{\rho} A$ for all ρ and $w \in W$.

Theorem Galmiche and Larchey-Wendling 2006

Provability in BBI coincides with validity in BBI-models.
(Un)definable properties in BBI
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory.
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset \) implies \(w_1 = w_2 \);
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset \) implies \(w_1 = w_2 \);

Single unit: \(|E| = 1 \);
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset \) implies \(w_1 = w_2 \);

Single unit: \(|E| = 1 \);

Indivisible units: \((w \circ w') \cap E \neq \emptyset \) implies \(w \in E \);
Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset\) implies \(w_1 = w_2\);

Single unit: \(|E| = 1\);

Indivisible units: \((w \circ w') \cap E \neq \emptyset\) implies \(w \in E\);

Disjointness: \(w \circ w \neq \emptyset\) implies \(w \in E\);
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset\) implies \(w_1 = w_2\);

Single unit: \(|E| = 1\);

Indivisible units: \((w \circ w') \cap E \neq \emptyset\) implies \(w \in E\);

Disjointness: \(w \circ w \neq \emptyset\) implies \(w \in E\);

Divisibility: for every \(w \not\in E\) there are \(w_1, w_2 \not\in E\) such that \(w \in w_1 \circ w_2\).
Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset\) implies \(w_1 = w_2\);

Single unit: \(|E| = 1\);

Indivisible units: \((w \circ w') \cap E \neq \emptyset\) implies \(w \in E\);

Disjointness: \(w \circ w \neq \emptyset\) implies \(w \in E\);

Divisibility: for every \(w \notin E\) there are \(w_1, w_2 \notin E\) such that \(w \in w_1 \circ w_2\);

Cross-split property: whenever \((a \circ b) \cap (c \circ d) \neq \emptyset\), there exist \(ac, ad, bc, bd\) such that \(a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc\) and \(d \in ad \circ bd\).
Separation theories

Applications of separation logic are typically based on models satisfying some collection of properties which we call a separation theory. We consider the following:

Partial functionality: \(w, w' \in w_1 \circ w_2 \) implies \(w = w' \);

Cancellativity: \((w \circ w_1) \cap (w \circ w_2) \neq \emptyset \) implies \(w_1 = w_2 \);

Single unit: \(|E| = 1 \);

Indivisible units: \((w \circ w') \cap E \neq \emptyset \) implies \(w \in E \);

Disjointness: \(w \circ w \neq \emptyset \) implies \(w \in E \);

Divisibility: for every \(w \not\in E \) there are \(w_1, w_2 \not\in E \) such that \(w \in w_1 \circ w_2 \);

Cross-split property:
Separation Algebras throughout the Ages

Definition Separation algebra (Calcagno et al. 07)

A *separation algebra* is a BBI-model that is **partial functional**, **cancellative**, and with a **single unit**.

<table>
<thead>
<tr>
<th>Definition</th>
<th>Separation algebra (Calcagno et al. 07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separation algebra is a BBI-model that is partial functional, cancellative, and with a single unit.</td>
<td></td>
</tr>
</tbody>
</table>
Separation Algebras throughout the Ages

<table>
<thead>
<tr>
<th>Definition</th>
<th>Separation algebra (Calcagno et al. 07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separation algebra is a BBI-model that is partial functional, cancellative, and with a single unit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
<th>Separation algebra (Dockins et al. 09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A separation algebra is a BBI-model that is partial functional and cancellative.</td>
<td></td>
</tr>
</tbody>
</table>
Separation Algebras throughout the Ages

Definition
Separation algebra (Calcagno et al. 07)

A *separation algebra* is a BBI-model that is **partial functional**, **cancellative**, and with a **single unit**.

Definition
Separation algebra (Dockins et al. 09)

A *separation algebra* is a BBI-model that is **partial functional** and **cancellative**.

Definition
Separation algebra (Dinsdale-Young et al. 13)

A *separation algebra* is a BBI-model that is **partial functional**.
Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$A \text{ is valid in } M \iff M \in \mathcal{C}.$$
Definable properties

A class C of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$A \text{ is valid in } M \iff M \in C.$$

Proposition

The following separation theory properties are BBI-definable:
Definable properties

A class C of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$A \text{ is valid in } M \iff M \in C.$$

Proposition

The following separation theory properties are BBI-definable:

- **Indivisible units:** $I \land (A \ast B) \vdash A$
Definable properties

A class \mathcal{C} of BBI-models is said to be \mathcal{L}-definable if there exists an \mathcal{L}-formula A such that for all BBI-models M,

$$A \text{ is valid in } M \iff M \in \mathcal{C}.$$

Proposition

The following separation theory properties are BBI-definable:

- **Indivisible units:** $I \land (A \ast B) \vdash A$
- **Divisibility:** $\neg I \vdash \neg I \ast \neg I$
A class \(\mathcal{C} \) of BBI-models is said to be \(\mathcal{L} \)-definable if there exists an \(\mathcal{L} \)-formula \(A \) such that for all BBI-models \(M \),

\[
A \text{ is valid in } M \iff M \in \mathcal{C}.
\]

Proposition

The following separation theory properties are BBI-definable:

- **Indivisible units**: \(I \land (A \ast B) \vdash A \)
- **Divisibility**: \(\neg I \vdash \neg I \ast \neg I \)

Proof.

Just directly verify the needed biimplication.
Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.
Undefinability via disjoint union

To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by</td>
</tr>
</tbody>
</table>

Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

$$M_1 \oplus M_2 \overset{\text{def}}{=} \langle W_1 \cup W_2, \circ_1 \cup \circ_2, E_1 \cup E_2 \rangle$$
To show a property is **not** BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

$$M_1 \uplus M_2 \overset{\text{def}}{=} \langle W_1 \cup W_2, \circ_1 \cup \circ_2, E_1 \cup E_2 \rangle$$

Proposition

If A is valid in M_1 and in M_2, and $M_1 \uplus M_2$ is defined, then it is also valid in $M_1 \uplus M_2$.
Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not preserved by some validity-preserving model construction.

Definition

If $M_1 = \langle W_1, \circ_1, E_1 \rangle$ and $M_2 = \langle W_2, \circ_2, E_2 \rangle$ are BBI-models and W_1, W_2 are disjoint then their disjoint union is given by

$$M_1 \uplus M_2 \overset{\text{def}}{=} \langle W_1 \cup W_2, \circ_1 \cup \circ_2, E_1 \cup E_2 \rangle$$

Proposition

If A is valid in M_1 and in M_2, and $M_1 \uplus M_2$ is defined, then it is also valid in $M_1 \uplus M_2$.

Proof.

Structural induction on A.

Parametric Completeness for Separation Theories • (Un)definable properties in BBI
Lemma

Let \mathcal{C} be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in \mathcal{C}$ but $M_1 \uplus M_2 \not\in \mathcal{C}$. Then \mathcal{C} is not BBI-definable.
Lemma

Let \mathcal{C} be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in \mathcal{C}$ but $M_1 \uplus M_2 \notin \mathcal{C}$. Then \mathcal{C} is not BBI-definable.

Proof.

If \mathcal{C} were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.
Undefinability of single-unit property

Lemma

Let \mathcal{C} be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in \mathcal{C}$ but $M_1 \uplus M_2 \notin \mathcal{C}$. Then \mathcal{C} is not BBI-definable.

Proof.

If \mathcal{C} were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.

Theorem

The single unit property is not BBI-definable.
Lemma

Let C be a class of BBI-models, and suppose that there exist BBI-models M_1 and M_2 such that $M_1, M_2 \in C$ but $M_1 \uplus M_2 \notin C$. Then C is not BBI-definable.

Proof.

If C were definable via A say, then A would be true in M_1 and M_2 but not in $M_1 \uplus M_2$, contradicting previous Proposition.

Theorem

The single unit property is not BBI-definable.

Proof.

The disjoint union of any two single-unit BBI-models (e.g. two copies of \mathbb{N} under addition) is not a single-unit model, so we are done by the above Lemma.
We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.
Undefinability via bounded morphisms

We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Proof. E.g., for functionality, we build models M and M' such that there is a bounded morphism from M to M', but M is functional while M' is not. See paper for details.
We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- **functionality**;

Proof. E.g., for functionality, we build models \(M \) and \(M' \) such that there is a bounded morphism from \(M \) to \(M' \), but \(M \) is functional while \(M' \) is not. See paper for details.
We adapt the notion of **bounded morphism** from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Proof. E.g., for functionality, we build models M and M' such that there is a bounded morphism from M to M', but M is functional while M' is not. See paper for details.
Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to BBI-models, and can show it is also validity-preserving.

Theorem

None of the following separation theory properties (or any combination thereof) is BBI-definable:

- functionality;
- cancellativity;
- disjointness.

Proof.

E.g., for functionality, we build models M and M' such that there is a bounded morphism from M to M', but M is functional while M' is not. See paper for details.
Hybrid BBI
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea**: conservatively increase the expressivity of BBI, using machinery of **hybrid logic**.
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea:** conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

\[A ::= \ldots | \ell | @\ell A \]
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea**: conservatively increase the expressivity of BBI, using machinery of **hybrid logic**.

<table>
<thead>
<tr>
<th>HyBBI formula (extends BBI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A ::= \ldots</td>
</tr>
</tbody>
</table>

- Valuations interpret nominals as **individual worlds** in a BBI-model.
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea**: conservatively increase the expressivity of BBI, using machinery of *hybrid logic*.

HyBBI formula (extends BBI)

\[
A ::= \ldots \mid \ell \mid @\ell A
\]

- Valuations interpret nominals as *individual worlds* in a BBI-model.

Forcing relation (extended)

\[
M, w \models \rho \ell \iff w = \rho(\ell)
\]
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea**: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

<table>
<thead>
<tr>
<th>HyBBI formula (extends BBI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A ::= \ldots</td>
</tr>
</tbody>
</table>

- Valuations interpret nominals as **individual worlds** in a BBI-model.

<table>
<thead>
<tr>
<th>Forcing relation (extended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M, w \models _\rho \ell \iff w = \rho(\ell)$</td>
</tr>
<tr>
<td>$M, w \models _\rho @\ell A \iff M, \rho(\ell) \models _\rho A$</td>
</tr>
</tbody>
</table>
HyBBI: a hybrid extension of BBI

- We saw that BBI is not expressive enough to accurately capture many separation theories.
- **Idea**: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI formula (extends BBI)

\[A ::= \ldots | \ell | @\ell A \]

- Valuations interpret nominals as *individual worlds* in a BBI-model.

Forcing relation (extended)

\[
\begin{align*}
M, w \models_\rho \ell & \iff w = \rho(\ell) \\
M, w \models_\rho @\ell A & \iff M, \rho(\ell) \models_\rho A
\end{align*}
\]

- **Fact**: HyBBI is a *conservative extension* of BBI.
Definable properties in HyBBI

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.
Definable properties in HyBBI

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:
A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

Functionality:\[\Diamond_{\ell} (j \ast k) \land \Diamond_{\ell'} (j \ast k) \vdash \Diamond_{\ell \ell'} \]
A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

- **Functionality:** \(@_\ell (j \ast k) \land @_{\ell'} (j \ast k) \vdash @_{\ell \ell'} \)
- **Cancellativity:** \(\ell \ast j \land \ell \ast k \vdash @_j k \)
A formula is pure if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

Theorem

The following separation theory properties are HyBBI-definable, using pure formulas:

- **Functionality:** \(\Diamond_{\ell} (j * k) \land \Diamond_{\ell'} (j * k) \vdash \Diamond_{\ell} \ell' \)
- **Cancellativity:** \(\ell * j \land \ell * k \vdash \Diamond j k \)
- **Single unit:** \(\Diamond_{\ell_1} I \land \Diamond_{\ell_2} I \vdash \Diamond_{\ell_1} \ell_2 \)
A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following separation theory properties are HyBBI-definable, using pure formulas:</td>
</tr>
<tr>
<td>Functionality:</td>
</tr>
<tr>
<td>Cancellativity:</td>
</tr>
<tr>
<td>Single unit:</td>
</tr>
<tr>
<td>Disjointness:</td>
</tr>
</tbody>
</table>
Definable properties in HyBBI

A formula is **pure** if it contains no propositional variables. Pure formulas have particularly nice properties wrt. completeness.

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following separation theory properties are HyBBI-definable, using pure formulas:</td>
</tr>
<tr>
<td>Functionality:</td>
</tr>
<tr>
<td>Cancellativity:</td>
</tr>
<tr>
<td>Single unit:</td>
</tr>
<tr>
<td>Disjointness:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy verifications!</td>
</tr>
</tbody>
</table>
Overlapping conjunction

\[A_1 \uplus A_2 \iff M, w \models \rho \ A_1 \uplus A_2 \iff \exists w_1, w_2, w_3, w', w'' \in W. \]

\[w' \in w_1 \circ w_2 \text{ and } w'' \in w_2 \circ w_3 \text{ and } w \in w' \circ w_3 \text{ and } M, w' \models \rho \ A_1 \text{ and } M, w'' \models \rho \ A_2 \]
Overlapping conjunction

\[A_1 \uplus A_2 \iff A_1 \cap A_2 \]

\[M, w \models \rho A_1 \uplus A_2 \iff \exists w_1, w_2, w_3, w', w'' \in \mathcal{W}. \]

\[w' \in w_1 \circ w_2 \text{ and } w'' \in w_2 \circ w_3 \text{ and } w \in w' \circ w_3 \]

and \(M, w' \models \rho A_1 \) and \(M, w'' \models \rho A_2 \)

By naming the shared part, one can easily define the overlapping conjunction:

\[(\ell_s \rightarrow A_1) \uplus (\ell_s \rightarrow A_2) \uplus \ell_s \]
Overlapping conjunction

\[A_1 \uplus^* A_2 \iff \exists w_1, w_2, w_3, w', w'' \in W. \]
\[w' \in w_1 \circ w_2 \text{ and } w'' \in w_2 \circ w_3 \text{ and } w \in w' \circ w_3 \text{ and } M, w' \models \rho A_1 \text{ and } M, w'' \models \rho A_2 \]

By naming the shared part, one can easily define the overlapping conjunction:

\[(\ell_s \rightarrow A_1) \ast (\ell_s \rightarrow A_2) \ast \ell_s \]

(*but where does \ell_s come from?..*)
A word about cross-split

We have brushed over the **cross-split** property:

\[(a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with } a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd.\]
A word about cross-split

We have brushed over the **cross-split** property:

$$(a \circ b) \cap (c \circ d) \neq \emptyset,$$

implies $\exists ac, ad, bc, bd$ with $a \in ac \circ ad$, $b \in bc \circ bd$, $c \in ac \circ bc$, $d \in ad \circ bd$.

$$\forall \begin{array}{c|c}\hline a & b \\
\hline\end{array} \quad \begin{array}{c|c|c|c|c}
\hline c & d & ac & bc & ad & bd \\
\hline & & & & \end{array} \quad \exists \begin{array}{c|c}\hline ac & bc \\
\hline ad & bd \\
\hline\end{array}$$
A word about cross-split

We have brushed over the **cross-split** property:

\[(a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with } a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd.\]

\[\forall \begin{array}{c|c}
 a & b \\
 \hline
 c & d \\
\end{array} \quad \exists \begin{array}{c|c|c|c}
 ac & bc & ad & bd \\
\hline
\end{array}\]

We conjecture this is not definable in BBI or in HyBBI.
A word about cross-split

We have brushed over the **cross-split** property:

\[(a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with } a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd.\]

We conjecture this is not definable in BBI or in HyBBI. If we add the ↓ binder to HyBBI, defined by

\[M, w \models_{\rho} \downarrow \ell. A \iff M, w \models_{\rho[\ell := w]} A\]
A word about cross-split

We have brushed over the **cross-split** property:

\[(a \circ b) \cap (c \circ d) \neq \emptyset, \text{ implies } \exists ac, ad, bc, bd \text{ with } a \in ac \circ ad, b \in bc \circ bd, c \in ac \circ bc, d \in ad \circ bd.\]

\[
\forall \begin{array}{c}
\circlearrowleft a \\
\circlearrowleft b \\
\circlearrowleft c \\
\circlearrowleft d
\end{array} \exists \begin{array}{c}
\circlearrowleft ac \\
\circlearrowleft bc \\
\circlearrowleft ad \\
\circlearrowleft bd
\end{array}
\]

We conjecture this is not definable in BBI or in HyBBI. If we add the ↓ binder to HyBBI, defined by

\[
M, w \models_\rho \downarrow \ell. A \iff M, w \models_\rho[\ell:=w] A
\]

then cross-split is definable as the pure formula

\[
(a * b) \land (c * d) \vdash @_a(\top * \downarrow ac. @_a(\top * \downarrow ad. @_a(ac * ad) \\
\land @_b(\top * \downarrow bc. @_b(\top * \downarrow bd. @_b(bc * bd) \\
\land @_c(ac * bc) \land @_d(ad * bd))))
\]
Overlapping conjunction (bis)

Proposition \(A_1 \cup^* A_2 \) is definable via the following Hybrid BBI formula, where \(\ell \) and \(\ell_s \) do not occur in \(A_1 \) or \(A_2 \):

\[
\downarrow \ell \top^* \downarrow \ell_s
\]

\[
@\ell (\ell_s \backslash A_1^*) \backslash (\ell_s \backslash A_2^*) \backslash \ell_s
\]

where \(A^\backslash B \) def = \(\neg (A^* \neg B) \)
Overlapping conjunction (bis)

A_1 \uplus A_2 \iff A_1 \cap A_2

Proposition

A_1 \uplus A_2 \text{ is definable via the following HyBBI(\downarrow) formula, where } \ell \text{ and } \ell_s \text{ do not occur in } A_1 \text{ or } A_2:

\downarrow \ell. \top \ast \downarrow \ell_s. @\ell (\ell_s \ominus A_1) \ast (\ell_s \ominus A_2) \ast \ell_s

(where \(A \ominus B \overset{\text{def}}{=} \neg (A \rightarrow \neg B) \))
Parametric completeness for HyBBI(\downarrow)
Axiomatic proof systems for HyBBI(\(\downarrow\))

Our axiom system \(K_{\text{HyBBI}(\downarrow)}\) is chosen to make the completeness proof as clean as possible.
Axiomatic proof systems for HyBBI(\(\downarrow\))

Our axiom system \(K_{\text{HyBBI}(\downarrow)}\) is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

\[(K_\@) \quad \@_\ell (A \rightarrow B) \vdash \@_\ell A \rightarrow \@_\ell B\]
Our axiom system $K_{HyBBI(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

- **($K@$)**
 \[\bowtie_\ell (A \rightarrow B) \vdash \bowtie_\ell A \rightarrow \bowtie_\ell B \]

- **($@$-intro)**
 \[\ell \land A \vdash \bowtie_\ell A \]
Axiomatic proof systems for HyBBI(↓)

Our axiom system \(K_{\text{HyBBI}(\downarrow)} \) is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

\[
\begin{align*}
(K_\@) & \quad \@_\ell (A \to B) \vdash \@_\ell A \to \@_\ell B \\
(\@\text{-intro}) & \quad \ell \land A \vdash \@_\ell A \\
(Bridge \ast) & \quad \@_\ell (k \ast k') \land \@_k A \land \@_k' B \vdash \@_\ell (A \ast B)
\end{align*}
\]
Axiomatic proof systems for HyBBI(\downarrow)

Our axiom system $K_{\text{HyBBI}(\downarrow)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

\((K_{\neg}) \quad \neg_{\ell}(A \rightarrow B) \vdash \neg_{\ell}A \rightarrow \neg_{\ell}B \)

\((@\text{-intro}) \quad \ell \wedge A \vdash \neg_{\ell}A \)

\((\text{Bridge } \ast) \quad \neg_{\ell}(k \ast k') \wedge \neg_{k}A \wedge \neg_{k'}B \vdash \neg_{\ell}(A \ast B) \)

\((\text{Bind } \downarrow) \quad \vdash \neg_{j}(\downarrow. B \leftrightarrow B[j/\ell]) \)
Axiomatic proof systems for HyBBI(↓)

Our axiom system $K_{\text{HyBBI}(↓)}$ is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

- **($K_@$)** $\vdash _\ell (A \rightarrow B) \rightarrow _\ell A \rightarrow _\ell B$
- **(@-intro)** $\vdash \ell \land A \rightarrow _\ell A$
- **(Bridge *)** $\vdash _\ell (k \ast k') \land _k A \land _k' B \rightarrow _\ell (A \ast B)$
- **(Bind ↓)** $\vdash _j (_\ell \downarrow \ell. B \leftrightarrow B[j/\ell])$

\[
\vdash _\ell (k \ast k') \land _k A \land _k' B \rightarrow C \quad k, k' \text{ not in } A, B, C \text{ or } \{\ell\}
\]

\[
_\ell (A \ast B) \vdash C \quad \text{(Paste *)}
\]
Axiomatic proof systems for HyBBI(↓)

Our axiom system \(K_{HyBBI(↓)} \) is chosen to make the completeness proof as clean as possible. Some example axioms and rules:

\[
\begin{align*}
(K@) & \quad \ell(A \rightarrow B) \vdash \ell A \rightarrow \ell B \\
(\ell\text{-intro}) & \quad \ell \land A \vdash \ell A \\
(Bridge \, \star) & \quad \ell(k * k') \land \ell kA \land \ell k'B \vdash \ell(A * B) \\
(Bind \, \ell) & \quad \vdash \ell j(\downarrow \ell. B \leftrightarrow B[j/\ell])
\end{align*}
\]

\[
\frac{\ell (k * k') \land \ell kA \land \ell k'B \vdash C}{\ell (A * B) \vdash C}
\]

\(k, k' \) not in \(A, B, C \) or \(\{\ell\} \) (Paste \, \star)

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Soundness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any (K_{HyBBI(↓)})-provable sequent is valid in all BBI-models.</td>
<td></td>
</tr>
</tbody>
</table>
Completeness

Standard modal logic approach to completeness via **maximal consistent sets (MCSs)**:

1. Show that any consistent set of formulas can be extended to an MCS (known as the **Lindenbaum construction**);
2. Define a **canonical model** whose worlds are MCSs, and a valuation such that a proposition P is true at w iff $P \in w$.
3. **Truth Lemma**: A is true at w iff $A \in w$ for any formula A.
4. If A is unprovable, $\{\neg A\}$ is consistent so there is an MCS $w \supset \{\neg A\}$. Then A is false at w in the canonical model, hence invalid.

(In our case, we also have to show that the canonical model is really a BBI-model.)
Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.

Truth Lemma: A is true at w iff $A \in w$ for any formula A.

Now, if A is unprovable, $\{\neg A\}$ is consistent so there is an MCS $w \supset \{\neg A\}$. Then A is false at w in the canonical model, hence invalid.

(In our case, we also have to show that the canonical model is really a BBI-model.)
Completeness

Standard modal logic approach to completeness via **maximal consistent sets (MCSs)**:

1. Show that any consistent set of formulas can be extended to an MCS (known as the **Lindenbaum construction**);
2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.
3. **Truth Lemma**: A is true at w iff $A \in w$ for any formula A.

Parametric Completeness for Separation Theories

- Parametric completeness for HyBBI(\downarrow)
Completeness

Standard modal logic approach to completeness via maximal consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended to an MCS (known as the Lindenbaum construction);
2. Define a canonical model whose worlds are MCSs, and a valuation s.t. proposition \(P \) is true at \(w \) iff \(P \in w \).
3. Truth Lemma: \(A \) is true at \(w \) iff \(A \in w \) for any formula \(A \).
4. Now, if \(A \) is unprovable, \(\{ \neg A \} \) is consistent so there is an MCS \(w \supset \{ \neg A \} \). Then \(A \) is false at \(w \) in the canonical model, hence invalid.

\[\square \]
Completeness

Standard modal logic approach to completeness via **maximal consistent sets (MCSs)**:

1. Show that any consistent set of formulas can be extended to an MCS (known as the **Lindenbaum construction**);
2. Define a **canonical model** whose worlds are MCSs, and a valuation s.t. proposition P is true at w iff $P \in w$.
3. **Truth Lemma**: A is true at w iff $A \in w$ for any formula A.
4. Now, if A is unprovable, $\{\neg A\}$ is consistent so there is an MCS $w \supset \{\neg A\}$. Then A is false at w in the canonical model, hence invalid.

(In our case, we also have to show that the canonical model is really a BBI-model.)
Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem Parametric completeness

If A is valid in the class of BBI-models satisfying Ax, then it is provable in \(K_{\text{HyBBI}}(↓) + Ax \).

Corollary

By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection. In particular, we obtain sound and complete proof systems for separation algebras.
Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Parametric completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>If A is valid in the class of BBI-models satisfying Ax, then it is provable in $K_{\text{HyBBI}(\downarrow)} + Ax$.</td>
<td></td>
</tr>
</tbody>
</table>

Statement of completeness
Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

Theorem

Parametric completeness

*If A is valid in the class of BBI-models satisfying Ax, then it is provable in $K_{HyBBI(\downarrow)} + Ax$.***

Corollary

By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection.
Statement of completeness

Following the above approach (non-trivial; details in paper) we obtain the following, for any set of pure axioms Ax:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Parametric completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>If A is valid in the class of BBI-models satisfying Ax, then it is provable in $K_{\text{HyBBI}(\downarrow)} + Ax$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>By a suitable choice of axioms, we have a sound and complete axiomatic proof system for any given separation theory from our collection. In particular, we obtain sound and complete proof systems for separation algebras.</td>
</tr>
</tbody>
</table>
Conclusion
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.

Future work on our hybrid logics could include:

- identification of decidable fragments;
- search for nice structural proof theories;
- investigate possible applications to program analysis.
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for **any separation theory** from those we consider.
Conclusions and future work

• BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
• One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
• We have **parametric completeness** for any set of axioms expressed as pure formulas.
• In particular, this yields complete proof systems for **any separation theory** from those we consider.
• Future work on our hybrid logics could include
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for **any separation theory** from those we consider.
- Future work on our hybrid logics could include
 - identification of **decidable fragments**;
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for **any separation theory** from those we consider.
- Future work on our hybrid logics could include
 - identification of **decidable fragments**;
 - search for nice **structural proof theories**;
Conclusions and future work

- BBI is **insufficiently expressive** to capture the classes of models of typical practical interest.
- One way to gain this expressivity is to incorporate **naming machinery** from hybrid logic.
- We have **parametric completeness** for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for **any separation theory** from those we consider.
- Future work on our hybrid logics could include
 - identification of **decidable fragments**;
 - search for nice **structural proof theories**;
 - investigate possible applications to **program analysis**.
Thanks for listening!

Draft paper available from authors’ webpages:

J. Brotherston and J. Villard.
Parametric completeness for separation theories.
To be presented at POPL’14.
Parametric Completeness for Separation Theories

Jules Villard

University College London
Programming Principles, Logic and Verification Group

Joint work with James Brotherston (UCL)