When Knuth Bendix Completion Fails

The Knuth Bendix procedure fails if an equation cannot be orientated

- eg \(x+y = y+x \) leads to circular rewriting as in \(2+3 \Rightarrow 3+2 \Rightarrow 2+3 ... \),
 \(f(x, g(z)) = f(g(z), x) \) leads to \(f(g(a), g(b)) \Rightarrow f(g(b), g(a)) \Rightarrow f(g(a), g(b)) ... \).

Avoid failure by allowing superposition to/from either side of a non-orientable equation as long as certain conditions are met to avoid non-termination.

- Can superpose \(l = r \) and \(s \Rightarrow t \) as long as \(\neg(l \theta \leq r \theta) \);
 \((\theta \) is either mgu of \(l \) and a subterm of \(s \), or of \(s \) and a subterm of \(l \).
\(\neg(l \theta \leq r \theta) \) means there are some instances for which \(l \theta > r \theta \), else \(l \theta \leq r \theta \).

- > must be total on ground terms;
 (i.e. any 2 ground terms can be ordered)
- when rewriting using \(l = r \), must have \(l \theta > r \theta \). (Ideas due to Bachmair)

\(f(x, g(z)) = f(g(z), x) \), \(f(a, y) \Rightarrow y \), \(f(y, b) \Rightarrow y \) (use kbo based on counting terms)
Cannot superpose \(f(a, y) \) and \(f(x, g(z)) \) because \(f(a, g(z)) <_{kbo} f(g(z), a) \)
Can superpose \(f(y, b) \) and \(f(g(z), x) \) because \(f(g(z), b) >_{kbo} f(b, g(z)) \) gives \(f(b, g(z)) \Rightarrow g(z) \)

Examples of conditional Orientating (ppt)

- Can superpose \(l = r \) and \(s \Rightarrow t \) as long as \(\neg(l \theta \leq r \theta) \);
 \((\theta \) is either mgu of \(l \) and a subterm of \(s \), or of \(s \) and a subterm of \(l \).
 i.e. there are some instances for which \(l \theta > r \theta \) (else \(l \theta \leq r \theta \)).
- > must be total on ground terms;
- when rewriting using \(l = r \), must have \(l \theta > r \theta \). (Ideas due to Bachmair)

Use kbo: \(s \gg t \) if \# functors in \(s \geq \# \) functors in \(t \), and \(0 < 1 \) all other terms.

(4) \(x+ -x \Rightarrow 0 \) (5) \(x + 0 \Rightarrow x \) (6) \(u+v = v+u \)

Check: \(\neg(x+x \leq_{kbo} 0+x) \) since for some \(x \) (i.e. \(x \neq 0 \)) \(x+0 \Rightarrow_{kbo} 0+x \)
(In other words, if \(x \neq 0 \) can orient \(x+0 \Rightarrow 0+x \) since \(x > 0 \))

(4)+(6) give critical term \(x+x \)

Not OK since it's not the case that \(\neg(x+x \leq_{kbo} -x+x) \);
In fact, \(x + -x \leq_{kbo} -x+x \Rightarrow -x=x \)
However can use (6) to rewrite \(-a+a \)
- \(-a+a >_{kbo} a+a \); hence \(-a+a \Rightarrow a+a \Rightarrow 0 \)

Example using the orientation restriction

(1) \(n(y,y) = n(M,y) \) (2) \(n(g(u,v),x) \Rightarrow n(u,n(v,x)) \)

Use kbo: \(s \gg_{kbo} t \) if \# symbols in \(s \geq \# \) symbols in \(t \).

Cannot order (1): \(y>M \Rightarrow n(y,y) > n(M,y) \) and \(y<M \Rightarrow n(M,y) > n(y,y) \)

Form critical pair – unify LHS of 1 with LHS 2
Check: \(\neg (n(g(u,v),g(u,v)) \leq n(M,g(u,v))) \)
In fact, \(n(g(u,v),g(u,v)) > n(M,g(u,v)) \) (LHS has more symbols than RHS, so OK)

Gives new rule
\(n(u,n(v,g(u,v))) \Rightarrow n(M,g(u,v)) \)

(1) \(n(g(u,v),g(u,v)) \)

(2) \(n(M,g(u,v)) \Rightarrow n(u,n(v,g(u,v))) \)
Informally, the method described on Slides 17ai-17aiii works because the transformation steps applied to any ground proof (using equations) to turn it into a rewrite proof by critical pair formation can be lifted to the general level. The lifted proof will not have been excluded by the restrictions:

- If \(\theta \leq r \) (i.e. an excluded step) then all instances of it would lead to excluded steps too; these excluded steps could not have been part of the transformation process of the original ground derivation, leading to a contradiction.

Note about the constraint \(\neg(\theta \leq r) \)

Since \(\leq \) is stable, \(\neg(\theta \leq r) \) means that “it is not the case that \(\theta \sigma \leq r \sigma \) for every substitution \(\sigma \)”. Hence \(\neg(\theta \leq r) \rightarrow \theta \sigma > r \sigma \) for some ground substitution \(\sigma \).

Hence it is possible to have both \(\neg((\theta \leq r) \) and \(\neg(r \leq \theta) \) (for different substitutions \(\sigma_1 \) and \(\sigma_2 \) - that is \(\theta \sigma_1 > r \sigma_2 \) and \(r \sigma_1 > \theta \sigma_2 \)). In such a case the equation \(l = r \) could be used in both directions but at different times.

Informally, the method described on Slides 17ai-17aii works because the transformation steps applied to any ground proof (using equations) to turn it into a rewrite proof by critical pair formation can be lifted to the general level. The lifted proof will not have been excluded by the restrictions:

- If \(\theta \leq r \) (i.e. an excluded step) then all instances of it would lead to excluded steps too; these excluded steps could not have been part of the transformation process of the original ground derivation, leading to a contradiction.

Using Knuth Bendix Completion as a Theorem Prover

- Consider goals of the form \(\exists x \left[t_1[x] = t_2[x] \right] \) and data restricted to equations.
- The negated goal is \(\forall x \left[\neg(t_1[x] = t_2[x]) \right] \)
- This leads to \(\forall x \left[\neg(t_1[x] = t_2[x]) \right] \) (using free variable rule)
- The two sides of the equality can be narrowed until a substitution is found that makes both sides equal
- The resulting inequality can then be resolved with \(x=x \).
- The Knuth Bendix procedure can also be applied incrementally to the rewrite rules and the constrained form (of Slides 17a) used for equations that cannot be oriented. This copes both with failure and divergence.

Example 1:

1. \(x+0 \Rightarrow x \)
2. \(x+s(y) \Rightarrow s(x+y) \)
3. \(y=y \)

Use oriented paramodulation - ie use equations in direction of \(\Rightarrow \)

Use oriented paramodulation - ie use equations in direction of \(\Rightarrow \)

Show \(\exists x \left[s(0)+x = s(s(0)) \right] \) (or find \(x \) s.t. \(s(0)+x = s(s(0)) \))

\(\neg(s(0)+x1 = s(s(0))) \Rightarrow \) (P 2.) \(\neg(s(0)+y1 = s(s(0))) \) (if \(x1==s(y1) \))

\(\neg(s(0)+y1 = s(s(0))) \Rightarrow \) (P 1.) \(\neg(s(0)) = s(s(0)) \) (if \(y1==0 \))

\(\neg(s(0)) = s(s(0)) \Rightarrow \) (R 3.) (if \(x1==s(y1)==s(0) \))

Using Knuth Bendix Completion as a Theorem Prover

Example 2:

1. \(g(a,b) \Rightarrow a \)
2. \(g(g(x,y),y) \Rightarrow h(y,x) \)
3. \(g(g(a,b),b) \Rightarrow h(b,a) \)

Superposition of (1) onto (2) gives \(g(g(a,b),b) \Rightarrow h(b,a) \)

Suppose the goal is \(\exists z \left[g(a,z) = h(z,a) \right] \) (ie find \(a, z \) s.t. \(g(a,z) = h(z,a) \))

Negated, this is \(\forall z \left[\neg(g(a,z) = h(z,a)) \right] \) (leading to \(\neg(g(a,z) = h(z,a)) \))

Using the rules (1) and (3) we get \(\neg(a = h(b,a)) \) (by (1) and binding \(z1==b \)) and then \(\neg(a = a) \) (by (3)), which resolves with \(x=x \).

The derivation yields also the witness \(z1 \) (here \(z1==b \)).
Example 3

1. \(n(x,x) = n(M,x) \)
2. \(n(g(u,v),x) \Rightarrow n(u,n(v,x)) \)
3. \(n(z,z) \neq z \) (negation of goal “find \(z \) s.t. \(n(z,z)=z \)”, i.e. \(\neg \exists z. n(z,z)=z \), becomes \(\forall z. n(z,z) \neq z \))
4. \(x = x \)
5. \(n(M,z) \neq z \) (Check: \(\neg (n(x,x) \leq n(M,x)) \), True - if \(x > M \) then \(n(x,x) > n(M,x) \))
6. \(n(u,n(v,g(u,v))) \Rightarrow n(M,g(u,v)) \) (see 17aiii for details of this step)
7. \(n(M,g(M,v1)) \neq n(v1,g(M,v1)) \) (\(u = M \) and \(z = n(v1,g(M,v1)) \))
8. \(n(M,g(M,M)) \)

Hence \(\{ z = n(v1,g(M,v1)) = n(M,g(M,M)) \} \)

Question: Are there any other solutions?

Summary of Slides 17

1. The Knuth Bendix procedure normally has three outcomes: success (a confluent and terminating set of rules is produced), failure (some rule cannot be oriented) and divergence (there are an infinite number of rules). Leads to consider how to deal with failure.

2. In the unfailing KB procedure, superposition is allowed between \(l = r \) and \(s \Rightarrow t \) if \(l \theta \sigma > r \theta \sigma \) is for some substitution \(\sigma \), where \(\theta \) is the unifying substitution of the superposition step.

3. The Knuth Bendix procedure can be used as a theorem prover. The goal (often of the form \(\exists x \left[t_1[x] = t_2[x] \right] \)) is negated to give \(\forall x \left[t_1[x] \neq t_2[x] \right] \). Knuth Bendix is applied to generate rewrite rules and they are used in narrowing steps to reduce both sides of the inequality to a common term. Resolution with \(x = x \) then gives \(\bot \). Even if the KB procedure diverges, interleaving of rule generation with narrowing can give a solution.

Example of a special case of non-termination

For a commutative and associative operator (eg +, or set union), there is a special unification algorithm called AC-unification, which takes these properties into account during superposition. The result is always a finite number of unifiers (possibly none). (See Bundy: Computer Modelling of Mathematical Reasoning)

Commutativity and associativity can also be included when rewriting
eg \(x+x = 0 \) together with commutativity of + allows \(-(b+a)+(a+b) = 0: \)
\(-b+a)+a+b \) can be unified with \(x+x \) with substitution \(x = (b+a) \) or \(x = (a+b) \) by using commutativity (either once at outer level, or twice) \(\Rightarrow 0 \) (by the rule)

(Note that adding \(x+y = y+x \) explicitly will not necessarily allow to derive \(-x+x = 0 \) from \(x+x = 0 \) because of the oriented restriction: \(-x+x \geq x+x \) is likely the case; see 17aii)

Adding \(x+y=y+x \) explicitly allows to derive \(x+x = 0 \) since \(x+x \geq x+x \) but does not allow to derive \(y+0 \Rightarrow y \) since \(\neg (0+y \leq \text{kbo} y+0) \)

In fact, if \(y > 0 \) then \(0+y \leq \text{kbo} y+0 \) and can’t superpose as oriented restriction not satisfied \(\neg (0+y \leq y+0) \) only holds if \(y = 0 \) (when it is obviously useless!)
Oriented Paramodulation (OP) 17ei

- We can use the idea of ordering an equation to control paramodulation steps.
- Restrict paramodulation by requiring the replacing term to be definitely not greater than the one being replaced.
- In case an equation can be orientated (ie every instance satisfies LHS>RHS) then the restriction allows to order the equation LHS==RHS.

Oriented Paramodulation: $l = r \land C$ paramodulates into $s[u]$, u not a variable if $\theta = \sigma \land \neg (\theta \leq \rho)$, where \leq is a stable monotonic simplification ordering (eg rpo, kbo).

(Example due to Hsiang and Rusinowitch CADE 8, 1986)

Example:
$n(x,x)=n(M,x)$ and the kbo: $n(x,x)<n(M,x)$ if x is bound to a term t<M;
$n(x,x)>n(M,x)$ if x is bound to a term s>M;

Can apply oriented paramodulation into $P(n(u,v))$:
use L to R to give: $P(n(M,v))$ or R to L to give: $P(n(v,v))$

Thus θ may be $u=v$ and must check $\neg(n(v,v) \leq n(M,v))$ (OK)
Or θ may be $u=M$ and must check $\neg(n(M,v) \leq n(v,v))$ (OK)

OP and Predicate Ordering 17eiii

- Oriented paramodulation can be combined with an ordering on predicate symbols (note the largest predicate symbol has highest priority here):
- \leq is extended to literals as well as terms such that "=" \leq all predicates

C1: $s=t \lor D1$ can paramodulate by oriented paramodulation into literal with largest predicate in $C2$ if $D1$ consists of predicates equal in the order to "=

C1: $E1 \lor D1$ and $C2$: $\neg E2 \lor D2$ can be resolved if $E1$ and $E2$ are unifiable and no predicate in $D1$ is $> E1$ and no predicate in $D2$ is $> E2$.

i.e. $E1 \lor E2$ use the largest predicates in $C1 \lor C2$

Example: the Aunt Agatha problem
1. $K(d,a)$. 2. $d=>a \land d => b \land d => c$. 3. $H(b,d)$. 4. $x=b \land H(b,x)$. 5. $a=b$. 6. $\neg K(x,y) \lor H(x,y)$. 7. $\neg H(c,x) \lor x=b$. 8. $\neg K(a,a)$. 9. $\neg H(x,f(x))$

Order functors as b d a b c and predicates K H s a b (K has highest priority).

10. $(1+2, P) \land K(a,a) \lor d => b \lor d => c$. 15. $(13+14, R) \land d => c$.
11. $(10+8, R) \land d => b \lor d => c$. 16. $(1+6, R) \land H(d,a)$.
12. $(4+9, R) \land f(b) => a$. 17. $(16+15, P) \land H(c,a)$.
13. $(12+9, P) \land \neg H(b,b)$. 18. $(7+17, R) \land a => b$.
14. $(11+3, P) \land H(b,b) \lor d => c$. 19. $(18+5, R) \land []$

Combining Oriented Paramodulation and Predicate Ordering 17eiv

Oriented Paramodulation allows to control the use of paramodulation. It can also be combined with predicate ordering if we treat predicates as functors for the purpose of ordering. It is easiest to make the greatest predicate have the highest priority (in contrast to what we did in Slides 7, but like Otter does), and to give the = predicate lowest priority. In case paramodulation is explicitly simulated by resolution, this behaves similarly to locking the equality axioms as we suggested in Slides 12. We can also extend the use of quasi-orderings to other refinements, even if paramodulation is not involved, such as atom ordering and hyper-resolution. Some examples of using these ideas are given on Slide 17ev.

An example of an ordering of terms that’s combined with a predicate ordering was given in the optional material in slides 7 (the lexicographic ordering). However, once orderings are combined also with paramodulation steps, we require that the order be a simplification order too; for instance, kbo or rpo. If s is such an order, then we can compare two atoms thus:

$s=\{P(1,...,sn), s=P(1,...,sn)\}$ if $s=Q(1,...,tm)$

i) $P>Q$ in the predicate order, or
(ii) $P=s$ and $s=Q[t1,...,tm]$, where $>s$ is the lexicographic order based on s, or
(iii) $P=Q$, $P=s$ and $s=Q[t1,t2]$ (multi-set order because $=$ is symmetric).
Further Examples: (Extension to atom ordering)

1) $P(0)$ 2) $\neg P(x) \lor P(s(x))$

$P(s(x)) > P(x)$ because $s(x) > x$ (using any simplification ordering)
so $P(s(x))$ is the literal that must be selected in (2).
There are then no ordered resolvents between these clauses.

Group Theory problem:

1. $f(a,b) => c$ 2. $\neg f(b,a) = c$ 3. $f(x,x) => e$ 4. $f(x,e) => x$
5. $f(e,x) => x$ 6. $f(f(x,y),z) => f(x,f(y,z))$

Use kbo based on length of terms.

7. (1+6, P) $f(a, f(b,z)) => f(c,z)$ 10. (9+6, P) $f(a, f(c,z)) => f(b,z)$
8. (3+6+5, P) $f(x,f(x,z)) => z$ 11. (10+ 3+4, P) $f(b,c) => a$
9. (1+8, P) $f(a,c) => b$ 12. (8+11, P) $f(b,a) => c$
13. (2+12, R) []

Completeness of the method is shown in Hsiang and Rusinowitch, CADE-8.

Summary of Optional material in Slides 17

1. There are special procedures for the particular case of an associative and
commutative operator, eg +, in which the properties are built into the unification.

2. Oriented paramodulation restricts paramodulation according to some term
ordering. It can be combined with resolution restricted by atom ordering. An
equation $l=r$ may be used for paramodulation from l to r as long as there are
some instances such that $l\theta > r\theta$. Otherwise, $r \geq l$ and the rule must be used in
that direction.