Arrays as lists

- For abstract reasoning, arrays are often best thought of as lists.
- **Computational** methods for lists (e.g. cons, ++) of Haskell are not always best for arrays in Java.
- Nevertheless, we can still use the Haskell ideas in our reasoning about arrays
- Further illustrations of loop invariants.

MANIPULATING LISTS

If arrays are like "lists" then it could make sense to use head, tail, last, concatenation (++) and sublists when reasoning about them, even though it may not be simple to construct these things in Java.

Example:

- `a` represents the list `[a[0], a[1], a[2]]`,
- `head(a) = a[0]`, `last(a) = a[2]`,
- `tail(a) = [a[1], a[2]]`,
- `[b[1], b[2]]` is a sublist of `b`
- `a++b` represents the list `[a[0], a[1], a[2], b[0], b[1], b[2], b[3]]`

Note for computing purposes, must also know how the elements are subscripted.

ARRAYS REPRESENT LISTS

An array is characterised by
- its elements,
- and the order of its elements

In other words, abstractly, arrays are lists of elements.

Examples:

Given `double [] a =new double[3]` (i.e. `a.length=3`) `a` represents the list `[a[0], a[1], a[2]]`

Given `double [] a =new double[0]` (i.e. `a.length=0`) `a` represents the empty list `[]`

(Java also has ArrayLists and Vectors, which are, in effect, variable length arrays. See later.)

ARRAYS AS LISTS — AND SUBLISTS

Let `a` be any Java array, and let `i`, `j` be integers with `0≤i,j≤a.length`. We write `a(i to j)` for the Haskell list `[a[i], a[i+1], ..., a[j-1]]` //usual convention on regions

Formally, `a(i to j)` is defined iff `0≤i,j≤a.length`

- `a(i to j) = []`, if `i = j`
- `a(i to j) = [a[i]]`, if `i < j`

Some Properties (suppose `someType [] a` and `a.length=nn`)

- If we view `a` as a list, that list would be `a(0 to n)`
 Let's **define** `a-as-a-list = a(0 to n)`
- If `a(i to j)` is defined, its length is `j-i`; (e.g. `a(2 to 4) = [a[2], a[3]])`
- If `0 ≤ i ≤ j ≤ k ≤ a.length` then `a(i to k) = a(i to j) ++ a(j to k)`
- `a(i to i+1) = [a[i]]`
- for `i<j`, `a(i to j) = a[i]:a(i+1 to j) = [a[i]]++a(i+1 to j)`

 `= a(i to j-1)++[a[j-1]]`, etc.
Arrays as Lists and Tail Recursion, page 5

In this chapter we are concerned with transferring our reasoning about lists to reasoning about arrays, in order to make that reasoning simpler. We are not concerned (particularly) whether to use arrays, ArrayLists or Vectors to represent lists.

When reasoning about programs it can be convenient to talk about empty arrays. E.g., it is useful, when considering a portion of an array, to be able to state it is empty. This might be a condition for termination. You can define them in Java, e.g. as in int [] b = new int[0], even though they don’t seem very useful in practice. On the other hand, an empty ArrayList in Java is a potentially useful object. You can add to or delete elements from an ArrayList, so increasing or diminishing its size; an empty ArrayList may indicate a special case to be considered differently from other cases.

The notation a[i to j] is chosen to represent the array elements a[i], a[i+1], up to a[j-1] (it does not include the element a[j]), as this conforms to the Java convention for array indices when i=0 and j=a.length. Note that a[i to j] is defined iff 0≤i≤j≤a.length. It also follows the notation we use for segments of arrays in several of the algorithms considered in this part of the course, in which the end point is not included in the array. This choice also makes some things neater:

e.g. the length of the list (or number of array elements) is j-i; an empty list is a[i to i];
joining two consecutive pieces of an array together is a[i to j] ++ a(j to k) = a(i to k).

Revision Exercise: On the next slide it is stated that there is just one function satisfying the given properties of reverse. Use list induction to show that if there were two “reverse” functions satisfying the properties, say reverse1 and reverse2, then they’d be equal – i.e for all ls, reverse1(ls) = reverse2(ls).

JAVA REVERSE

void jReverse(double [] a) { // elements of a could be any type;
// Pre: none
// Post: a = reverse a0 (where reverse is the Haskell function)
// and a is the value of a at return
// i.e. a-as-a-list = reverse a0-as-a-list }

For efficiency, swap pairs of elements of a, starting at the two ends (swap a[0] with a[a.length-1]) and work towards the middle.

Do a diagram: n = number of pairs swapped, k = a.length.

```
<table>
<thead>
<tr>
<th>swapped</th>
<th>unswapped</th>
<th>swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>a:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>indices</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Next move: swap a[n] with a[k-n-1]. (e.g. n=2: swap a[2] with a[k-3])

USING WHAT WE KNOW ALREADY

You used lists in Haskell a lot, and so understand them quite well.

BUT the Haskell methods used cons and concatenation (++)

Neither of these is used when constructing or manipulating arrays.
So how does the Haskell understanding transfer to Java?

Example: (One particular) Haskell definition of reverse

```
reverse [ ] = [ ]
reverse (h:t) = (reverse t) ++ [h]
```

Properties:

```
reverse [ ] = [ ]
reverse [h] = [h]
reverse (s++t) = (reverse t) ++ (reverse s)
```

Actually, there is only one function with these properties, so we could use them as a specification for the many possible Haskell implementations of reverse.

IDEA FOR JAVA IMPLEMENTATION

We use the Haskell function in the specification of the Java method; can use any Haskell implementation of reverse; we chose the simplest

```
swapped
unswapped
swapped
```

```
<table>
<thead>
<tr>
<th>swapped</th>
<th>unswapped</th>
<th>swapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>a:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>indices</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

From the diagram we see:

No. elements swapped = 2*n.
No. elements unswapped = k–(2*n).
Both must be non-negative.

Can stop when at most one element left unswapped, i.e. k–(2*n) ≤ 1 giving a loop variant.
Arrays as Lists and Tail Recursion, page 9

CODE

```java
void jReverse(double[] a) {
    // Pre: none
    // Post: reverse a0 = a (both as lists)
    final int K = a.length;
    int n = 0;
    while (K - 2*n > 1) {
        // Invariant: ?? (Assume a.length = a0.length = K)
        // Variant: K-(2^n)
        swap(a, n, K-n-1); n ++;
        // take care with swap; this one swaps a[n] with a[K-n-1]
    }
}
```

(Note: Could instead declare k as int k = a.length; would require (i) invariant to include k=a.length and (ii) to use k in place of K throughout in what follows.)

Arrays as Lists and Tail Recursion, page 11

LOOP INVARIANT IS ESTABLISHED

Loop invariant:

\[
\begin{align*}
& n \geq 0 \land K-(2^n) \geq 0 \land n \geq 0 \land \neg \text{ swapped a0 (0 to K), unswapped a0 (0 to K)} \\
& \text{Initialisation (establishing invariant):} \\
& \text{Initial code: } n = 0 \text{ (no pairs swapped yet), } K\text{=a.length and } a=a0
\end{align*}
\]

Then required to show –

\[
\begin{align*}
& 0 \geq 0 \land a\text{.length} \geq 0 \text{ : true by arithmetic and property of length and} \\
& \text{reverse a0 (0 to a0.length)=} \\
& a0(0 to 0)+\text{reverse a0 (0 to a0.length)+a0(a.length to a0.length)} \\
& \text{ie reverse a0= []+reverse a0++ []}
\end{align*}
\]

This is true. So we established the invariant!

Arrays as Lists and Tail Recursion, page 10

LOOP INVARIANT

Loop invariant: (look again at the diagram)

\[
\begin{align*}
& n \geq 0 \land K-(2^n) \geq 0 \land n \geq 0 \land \neg \text{ swapped a0 (0 to K), unswapped a0 (0 to K)} \\
& \text{Old style invariant might have been:} \\
& \forall i: \text{int}(0 \leq i < n) \rightarrow a0[i] = a[i] \land n \geq 0 \land K-(2^n) \geq 0 \land \\
& \forall i: \text{int}(0 \leq i < n) \rightarrow a0[i] = a[K-1-i] \land a0[K-1-i] = a[i])
\end{align*}
\]

Need the first part as a particular rearrangement is required.

Arrays as Lists and Tail Recursion, page 12

RE-ESTABLISHING INVARIANT

Assume the invariant holds at the start of an iteration and while condition is true (at least two elements left unswapped). Write n1, a1 for the values of n, a at the start of this iteration.

- The invariant is true, so
- reverse a0 (0 to K)
- a0 (0 to n1) ++\text{reverse a1 (n1 to K-n1)} ++ a1 (K-n1 to K).
- The while cond is true: (K-n1)-n1\geq 2. So a1 (n1 to K-n1) has length \geq 2 and can be expanded. Then the expression for reverse a0 = a0 (0 to n1)
- ++\text{reverse ([a1[n1]]+a1[n1+1 to K-n1-1]+[a[K-n1-1]])} ++ a1 (K-n1 to K).
- By reverse properties (above), and associativity of ++, this
- = a0 (0 to n1) ++[a[K-n1-1]] ++\text{reverse a1 (n1+1 to K-n1-1)+[a[n1]]} ++ a1 (K-n1 to K).
ALTERNATIVE JAVA REVERSE USING A ‘FOR’ LOOP

The while loop in `reverse` was while \((K - 2*n > 1)\)\)

\[K - 2^n > 1 \iff K - 2^n \geq 2 \iff 2^n \geq (K - 2)/2 \iff n \leq (K - 2)/2 \text{ (uses the fact that } 2^n \text{ is even)} \]

Use this as a limit for a for loop implementation.

```java
void jReverse(double [] a) {
    // Pre: none
    // Post: a = reverse a0 (both as lists)

    final int K = a.length;
    for (int n = 0; n <= (K-2)/2; n++) //could be done in parallel
        swap(a, n, K-n-1);
}
```

Must still check termination – that only a finite number of \(n\)-values are considered; i.e the list \([0, 1, 2, .. , (K-2)/2]\) is finite.

Take care there are no effects on the loop variable \(n\). (There aren't.)

FINALISATION

Above argument worked when \(K - (2^n) \geq 2\).
Write \(a3\) and \(n3\) for values of \(a\) and \(n\) after loop exit.
By Inv and false while condition \(0 \leq K - (2^n)3 \leq 1\).
Then \(a3(n3 \text{ to } K-n3)\) has length \(K - (2^n)3 = \text{either 1 or 0.}\) Either way
\(\text{reverse a3(n3 to K-n3) = a3(n3 to K-n3)}\).
Therefore, by the invariant,
\(\text{reverse a0(0 to K)}\)
\[= a3(0 \text{ to } n3) + \text{reverse a3(n3 to K-n3)} + a3(K-n3 \text{ to } K) \]
\[= a3(0 \text{ to } n3) + a3(n3 \text{ to } K-n3) + a3(K-n3 \text{ to } K) \]
\[= a3(0 \text{ to } K) = a0(0 \text{ to } K). \]

That is, Postcondition holds (remember \(K=a.length\):
\(\text{reverse a0-as-a-list = a-as-a-list} \)

Will it terminate?
Loop variant \(=\) number of elements left unswapped \(= K - (2^n)\) (which is \(\geq 0\) by Inv.). This decreases by 2 each iteration. Stop when it's \(\leq 1\).

REASONING ABOUT FOR LOOP IN JAVA REVERSE

```java
for (int n = 0; n <= (K-2)/2; n++) //could be done in parallel
    swap(a, n, K-n-1);
```

Reasoning about this requires \textit{Post} to be in terms of array elements:
\(\forall i: \text{int}(0 \leq i < a.length \iff a[i]=a[0[a0.length-1-i] \land a.length=a0.length.} \)

Must show for each \(i\): \(0i < a.length\), there is some iteration \(I\) which makes \(a[i]=a[0[a0.length-1-i] \) true and this is not undone; i.e. no other iteration affects \(a[i]\).
In fact, iteration \(I\) makes \(a[I]= a[0[K-I-1] \) \(a[K-I-1]=a0[I] \) and no other iteration affects these two elements of \(a\).

The condition \(a.length=a0.length\) is true as it is given by the postcondition of \textit{swap}.

Exercise: Using properties of \textit{reverse}, show by induction on length of \(a\) that this postcondition is equivalent to \(a = \text{reverse a0}\).
EXAMPLE: STRING COMPARISON

Problem: given two strings, which comes first in lexicographic order? Lexicographic order is "Dictionary Order".
 eg "cat"<"catch"; "cat"<"do"; "cat"<"car"; "cart"<"cave"; "car"="car"

First attempt:

```haskell
enum Ord {before, same, after}
Ord compare (char [] s, char [] t) {
  // Pre: none
  // Post: s = s0 and t = t0 and
  //       (r = Before and s is strictly before t in lex. order)
  //       or (r = Same and s = t)
  //       or (r = After and s is strictly after t))

Track along s and t in parallel until either they disagree or one of them is exhausted. Then we can work out the result.

(Note: Before is short for Ord.before, etc.)
```

PROGRAM IDEA

A possible Haskell solution:

```haskell
data Order = Before | Same | After
listcomp [ ] [ ] = Same
listcomp [ ] (y:t) = Before
listcomp (x:s) [ ] = After
listcomp (x:s) (y:t) |
  | x < y = Before
  | x==y = listcomp s t
  | x>y = After
```

Postcondition was:

```haskell
  // Post: s = s0 and t = t0 and
  //       (r = Before and s is strictly before t in lex. order)
  //       or (r = Same and s = t)
  //       or (r = After and s is strictly after t))
```

THE POST-CONDITION?

What does lexicographic order really mean? One explanation says – find the first place where s and t differ. So, using ^ for string concatenation, we write
 s = u^a^s', t = u^b^t',
where u, s', t' are strings and a, b are characters.

So:
 - u = first part where s and t agree
 (could be empty or could be all of s or all of t)
 - a and b (a ≠ b) are the first differing characters,
 - s' and t' are the remaining parts.

Then s is before (or after) t according as the unicode value of a is less than (or greater than) the unicode value of b, i.e. check a<b.

BUT this doesn’t cover the cases where one string is an initial substring of the other (where u exhausts s or t) or when s=t:
 - if t = s^v' & t^s then s is before t (u exhausts s), t' is non-empty
 - if s = t then they’re the same
 - if s = t^v' & s^t then s is after t (u exhausts t), s' is non-empty

STRING COMPARISON IN JAVA (1)

It is hard to give a neat characterisation of Post for jCompare.
Instead, relate the Java Post to Haskell function listcomp, (and then show listcomp is correct).

```java
Ord jCompare (char [] s, char [] t) {
  // Pre: none
  // Post: r = listcomp s0 t0 (both s and t as lists) \wedge s=s0 \wedge t=t0
  // Note that s and t won’t change, so we could write s,t for s0,t0
  // But we use s0, t0 as a reminder they are the initial values
```
METHOD

Having tracked along n elements, loop invariant tells us we can get the right answer simply by calculating

\[
\text{listcomp} \ s(n \text{ to } s.\text{length}) \ t(n \text{ to } t.\text{length})
\]

To do this, look at parts of Haskell definition.

If $s(n \text{ to } s.\text{length}) = []$ or $t(n \text{ to } t.\text{length}) = []$ (no more elements) then can calculate the result immediately (use first 3 cases of definition.)

Otherwise (last 3 cases), compare $s[n]$ and $t[n]$:
if different, can calculate result;
otherwise (recursive call) continue looping.

STRING COMPARISON IN JAVA (2)

Ord $j\text{Compare}(\text{char} [] \ s, \text{char} [] \ t)$

// Pre: none
// Post: $r = \text{listcomp} \ s0 \ t0$ (both s and t as lists) \ $s=s0 \land t=t0$
// In what follows we assume s and t don't change
// hence we can write s, t for $s0, t0$ throughout

Idea 1: Use index n to track along s and t in parallel ($s[n]$ and $t[n]$ are next characters to compare) until either they disagree or one of them is exhausted. Then we can work out the result.

Could use as Invariant

\[0 \leq n \leq \min(s.\text{length}, t.\text{length}) \ (\text{keep } n \text{ within bounds}) \land \forall i. (0 \leq i < n \rightarrow s[i] = t[i]) \]

In English: 'No difference found yet'.

BUT: difficult to relate this invariant to Postcondition

CODE

Ord $j\text{Compare}(\text{char} [] \ s, \text{char} [] \ t)$

// Pre: none
// Post: $r = \text{listcomp} \ s0 \ t0$ (s and t as lists) \ $s=s0 \land t=t0$

```
int n = 0
// Invariant: 0 \leq n \leq s.\text{length} \land 0 \leq n \leq t.\text{length} \\
// \text{listcomp} s0 t0 = \\
// \text{listcomp} s(n \text{ to } s.\text{length}) t(n \text{ to } t.\text{length}) \\
// Variant: min(s.\text{length}, t.\text{length})-n \\
while \ ((n<s.\text{length}) \&\& (n<t.\text{length}) \&\& (s[n] == t[n])) \{
// Neither s(n \text{ to } s.\text{length}) nor t(n \text{ to } t.\text{length}) is [ ] \\
// and s(n) = t(n); recursive case
n ++;
\} // s or t exhausted or s[n] < t[n] or s[n] > t[n] \\
// Finalisation - next slide
```
FINALISATION

// Invariant true, and in base case of Haskell def. — copy it!
if (exhausted(s,n) && (exhausted(t,n))
 return Ord.same;
else if (exhausted(s,n)) // so s exhausted, t not exhausted
 return Ord.before;
else if (exhausted(t,n)) // so t is exhausted, s not exhausted
 return Ord.after;
else // neither exhausted
 if (s[n] < t[n]) return Ord.before;
else if (s[n] > t[n]) return Ord.after;

Loop variant: Use number of possible comparisons that may still be made: \(\min(s.length, t.length) - n\)

```java
boolean exhausted(char [] s, int n) {
    // Pre: 0<=k
    return (k >= s.length);\n}
```

For the record here are the proofs that compare is correct. We assume \(s=s_0\) and \(\tau=t_0\) throughout.

1) **Invariant is set up by initial code.** Required to show Invariant is true when \(n=0\) and \(s=s_0\) and \(t=t_0\). i.e. show \(0\leq n\leq s.length \land 0\leq t\leq t.length \land listcomp s_0 t_0 = listcomp s t_0\), which is true. (Note lengths are always \(\geq 0\).)

2) **Invariant + while condition false + final code implies postcondition.** False while condition means one or other (or both) of \(s\) or \(t\) is exhausted or neither is exhausted but they differ at position \(n\). That is, one or more of the following conditions hold: (i) \(n>s.length\), (ii) \(n>=t.length\), or (iii) \(n<s.length \land n<t.length \land s[n] \neq t[n]\).

There are 5 cases in all, which are:
(a) only \(s\) is exhausted, (b) only \(t\) is exhausted, (c) both \(s\) and \(t\) are exhausted, (d) neither \(s\) nor \(t\) is exhausted and \(s[n]<t[n]\), and (e) neither \(s\) nor \(t\) is exhausted and \(s[n]>t[n]\). The code covers them all with the correct results. Below in (1) we show case (c), when both \(s\) and \(t\) are exhausted, and in (2) we give case (d). The other three cases are left as exercises.

5) **Invariant is maintained:** There are 2 parts to check. Let \(n1\) be the value of \(n\) at the start of the loop code and \(n2\) the value at end. Since the while condition holds, then \(n1<\min(s.length, t.length)\) and \(s[n1]=t[n1]\). By the code \(n2 = n1+1\), which guarantees that \(n2\leq\min(s.length, t.length)\). The second part of the invariant is re-established as follows, using the conjunct \(s[n1]=t[n1]\) of the while condition:

At start of loop listcomp \(s_0 t_0 = listcomp s(n1 to s.length) t(n1 to t.length)\) (by Invariant)

RTS listcomp \(s_0 t_0 = listcomp s(n2 to s.length) t(n2 to t.length)\)

We show this by showing \(\text{listcomp } s(n1 to s.length) t(n1 to t.length) = \text{listcomp } s(n2 to s.length) t(n2 to t.length)\)

LHS = \(\text{listcomp } s(n1+1 to s.length) t(n1+1 to t.length)\) (since \(n1<\min(s.length, t.length)\))

\(= \text{listcomp } s(n1+1 to s.length) t(n1+1 to t.length)\) (since \(s[n1]=t[n1]\))

\(= \text{listcomp } s(n2 to s.length) t(n2 to t.length) = \text{RHS}\)

all using the Haskell code for listcomp.
Tail Recursion

• Tail Recursion as a technique for transferring Haskell reasoning into Java.
• Tail recursion used to transform recursion into loops, so gaining in efficiency.
• Transform recursion into Tail Recursion using accumulating parameters
• Further illustration of loop invariants and reasoning with them

TAIL RECURSION = LOOPS

• Think of the tail recursion as meaning “do the same computation again, but with new arguments”.
• In Java, keep variables for the arguments, and then tail recursion means “update the variables, and repeat”. This is just looping.
• Loop invariant says: “the answer you originally wanted is the same as if you had calculated it starting with the variables you’ve got now”:
 "function arg0 = function arg"

 e.g. listcomp was tail recursive

 Ord ¡Compare(char [] s, char [] t){
 // (See earlier)
 // Invariant ... * listcomp s0 t0 =
 // listcomp s(n to s.length) t(n to t.length)
 The method of converting Haskell tail recursion to Java loops is the same whatever the argument types, as we’ll see.

 EXAMPLE – ISIN

 isin : Eq a => a -> [a] -> Bool
 isin x [] = false
 isin x (h:t) | h==x = true
 | otherwise = isin x t

 Boolean jsln(int x, int [] t) {
 // Pre: none
 // Post: r = isin x0 t0 & t is unchanged
 int i=0;
 while //Inv: x=x0 & t=t0 & isin x0 t0 = isin x t(i to t.length)
 // ie result we want = result from here & 0≤t.length
 // Variant: t.length-i
 ((i<t.length) && (x!=t[i])) {i++;}
 return (i=t.length); }

 ISIN IN JAVA

 A definition of a function f is tail recursive iff the results of any recursive calls of f are used immediately as the result of f, without any further calculation.

 An example:
 isin x [] = False
 isin x (h:t) | h=x = True
 | otherwise = isin x t

 A non-example:
 concat [] u = u
 concat (h:t) u = (h:(concat t u))

 Not tail recursive: the result of the recursive call (concat t u) is used in a further calculation; it has h put on the front.

 We see that in a tail recursive definition, the recursion is used simply to call the same function but with different arguments.
PROOF THAT JAVA ISIN IS CORRECT (1)

Invariant is initially established:
Note: x and t are unchanged throughout – x=x0 and t=t0 always.
Required to show invariant true just before entering loop first time:
Given:
i=0 (initialisation by code)
To show:
\[\text{isin } x \; t \; t_0 = \text{isin } x \; t(i \; t.l) \wedge 0 \leq \text{st} \; \text{length} \]
First conjunct
\[\iff \; \text{isin } x \; t_0 = \text{isin } x \; t(0 \; t.l) \] (substitute for i)
\[\iff \; \text{isin } x \; t_0 = \text{isin } x \; t_0 \] (x and t are unchanged)
Second conjunct
\[\iff 0 \leq 0 \leq \text{length} \iff \text{true by arithmetic and length property.} \]

PROOF THAT JAVA ISIN IS CORRECT (2)

Postcondition is achieved:
At exit of loop either \(t \geq t.l \) or \(x=t[i] \). Also Invariant is true:
\[\text{isin } x \; t_0 = \text{isin } x \; t(i \; t.l) \wedge 0 \leq \text{st} \; \text{length} \wedge t=t_0 \]

Case 1: \(i \geq t.l \).
\[i \geq t.l \] (by Inv.) and \(i \geq t.l \) (by Case) \(\implies i \geq t.l \)
\[\text{isin } x \; t_0 \] (result we want) = \[\text{isin } x \; t(i \; t.l) \] (by Inv)
= \[\text{isin } x \; t(t.l \; t.l) \; t.l \] (substitute for i)
= \[\text{isin } x \; [] \] = False (by Haskell code) = Java result r

Case 2: \(i<t.l \) and \(x=t[i] \)
Since \(i < t.l \), \(t(i \; t.l) = t[i]; t(i+1 \; t.l) \).
Hence \[\text{isin } x \; t_0 = \text{isin } x \; t(i \; t.l) \]
= \[\text{isin } x \; t[i]; t[i+1 \; t.l] \]
= True (by case, Haskell) = Java result r

Proof that jIsIn is correct

Remaining proofs required to show that jIsIn is correct.
Postcondition set up: See slide 33. Note that in Case 2 we rely on the fact that in
Java a test such as \(i < t.l \) \&\& \(x \neq t[i] \) evaluates the first condition and if it is
false does not evaluate the second condition. In a language where this was not the
case, you would need to code using if-statements inside the while loop and employ
an additional boolean variable, such as “finished” (or use some statement such as
break if the language provides it).

Variant decreases:
as i increases, \(t.l \)-i decreases.
By Inv. \(i \leq t.l \), so the variant \(\geq 0 \) and loop must stop.

Array accesses ok: Note that \(0 \leq i \leq t.l \) in the loop.
In fact, jIsIn could also have been implemented directly in terms of linked lists or
ArrayLists. (See later.) Using more abstract list operations may sometimes enable
the algorithm to be checked for correctness more easily (although in this case the
proof doesn’t seem too hard).
Of course, at some point it must be proved that the abstract operations provided by
the implementation (eg by ArrayLists) are correct.
Arrays as Lists and Tail Recursion, page 37 1/1/14

TAIL RECURSION – GENERAL SCHEME

Haskell definition (assuming \(f \) has one parameter):
\[
\begin{align*}
f \ x \\
| c1 &= a1 \\
| c2 &= a2 \\
| \ldots &= \ldots \\
| d1 &= f \ x1 \\
| d2 &= f \ x2 \\
| \ldots &= \ldots \\
\end{align*}
\]
a1, a2, \ldots are expressions giving results in the non-recursive cases.
x1, a2, \ldots are the new parameters used in the tail recursive cases.
a1, a2, \ldots x1, x2, \ldots, as well as the guards c1, c2, \ldots, d1, d2, \ldots, are all calculated simply, without recursion.

No difficulty in making this work if \(f \) has more than one parameter.

Exercise:

Use the general translation given on next slide to obtain \(j\text{IsIn} \).

Arrays as Lists and Tail Recursion, page 38 1/1/14

ANOTHER EXAMPLE: DATE (HASKELL)

This example is taken from an earlier tutorial on invariants

---pre: \(1 \leq d0 \land y0 \geq 1900 \)

---post: \((d0 = \sum (i = y0, r_y = 1) (\text{days}(i)) + r_d) \land 1 \leq r_d \leq \text{days}(r_y) \) where \((r_d, r_y) = \text{date } d0 \ y0 \)

\begin{align*}
\text{date } d \ y \\
& | d > \text{days}(y) = \text{date } (d - \text{days}(y)) \ (y + 1) \\
& | \text{otherwise } = (d, y)
\end{align*}

days(y) is a helper function and returns the number of days in y: eg

\begin{align*}
\text{days } y \\
& | (y \mod 4) = 0 = 366 \\
& | \text{otherwise } = 365
\end{align*}

See slide 40 for verification of \(\text{date} \) by induction.

Arrays as Lists and Tail Recursion, page 39 1/1/14

LOOP TRANSLATION IN GENERAL

resultType j\text{if}(\text{someType } x, \ldots) \{

// Pre: any preconditions needed for \(f \)

// Post: \(r = f \ x0 \)

\begin{align*}
\text{while } & (\text{c1} \&\& \text{c2} \&\& \ldots) \{ \\
& \text{Inv: } f \ x0 = f \ x \text{ } \lll\text{NOTE!!} \}
\end{align*}

// any preconditions for \(f \) in terms of \(x \) that are not implied

// by true while condition \& conditions for ok array bounds

// Variant: same as value used to show Haskell terminates

\begin{align*}
& \text{if } (d1) \ {x = x1;} \\
& \text{else if } (d2) \ {x = x2;} \\
& \text{else if } \ldots \ {\} \\
& \} \\
& \text{if } (c1) \text{ return } a1; \\
& \text{else if } (c2) \text{ return } a2; \\
& \text{else if } \ldots ;
\end{align*}

Arrays as Lists and Tail Recursion, page 40 1/1/14

ANOTHER EXAMPLE: DATE (JAVA)

ReturnPair j\text{Date}(int d, int y) \{

// Pre: \(d0 \geq 1 \land y0 \geq 1900 \)

// Post: \((r\text{day}, r\text{year}) = (\text{date } d0 \ y0) \)

\begin{align*}
\text{while } (d > j\text{Days}(y)) \{ \\
& \text{Inv: } (\text{date } d0 \ y0 = \text{date } d \ y) \land d0 \geq 1 \land y0 \geq 1900 \\
& \text{Variant: d} \\
& \quad d = d - j\text{Days}(y); \ y++; \\
& \quad \text{return new ReturnPair}(d, y);
\}
\end{align*}

The Java helper function jDays and the class ReturnPair are assumed.

\begin{align*}
\text{class ReturnPair\{ public final int } \\
& \text{d, int y)(day=d; year=y); \}}
\end{align*}

See slide 41 for verification of jDate. Note the Inv. includes the preconditions for d and y.
Proof that (Haskell) date is correct.

The proof is by induction on d. Let 1 \leq d for arbitrary d.
Assume as IH: For all d' < d
\forall y: \text{int}(1 \leq d' \land y \geq 1900) \rightarrow (d' = \sum(i = y, r'_y = 1) (\text{days}(i)) + r'_d) \land 1 \leq r'_d \leq \text{days}(r'_y),
where \((r'_d, r'_y) = \text{date } d' \ y\).
To show: \forall y: \text{int}(y \geq 1900) \rightarrow (d = \sum(i = y, r_y = 1) (\text{days}(i)) + r_d) \land 1 \leq r_d \leq \text{days}(r_y),
where \((r_d, r_y) = \text{date } d \ y\). Let y be arbitrary and satisfy y \geq 1900.

Case 1: d \leq \text{days}(y). Then r_d = d and r_y = y. After substitution,
must show (d = \sum(i = y, y - 1) (\text{days}(i)) + d) \land 1 \leq d \leq \text{days}(y).
First conjunct reduces to d = 0 + d, true by arithmetic.
Also 1 \leq d by assumption and \text{days}(y) by Case.

Case 2: d > \text{days}(y).
Let \((r'_d, r'_y) = \text{date } (d - \text{days}(y)) \ y + 1\). Then \((r_d, r_y) = (r'_d, r'_y)\).
Must show (d = \sum(i = y, r_y = 1) (\text{days}(i)) + r_d) \land 1 \leq r_d \leq \text{days}(r_y).
First note that the arguments for the call \text{date } (d - \text{days}(y)) \ (y + 1) satisfy its precondition:
d - \text{days}(y) > 0 \ (\text{by Case}) \ so d - \text{days}(y) \geq 1, \text{ and } y + 1 > y \geq 1900 \ by \ assumption.
Also, d - \text{days}(y) < d, so IH is applicable giving:
\forall y: \text{int}(1 \leq d - \text{days}(y) \ y + 1 \geq 1900) \rightarrow (d - \text{days}(y) = \sum(i = y, r'_y = 1) (\text{days}(i)) + r'_d)
\land 1 \leq r'_d \leq \text{days}(r'_y).
Hence can derive (d - \text{days}(y) = \sum(i = y, r'_y = 1) (\text{days}(i)) + r'_d) \land 1 \leq r'_d \leq \text{days}(r'_y)
\iff (\sum(i = y, r'_y - 1) (\text{days}(i)) + r'_d) \land 1 \leq r'_d \leq \text{days}(r'_y).
Substitute \(r_d = r'_d\) and \(r_y = r'_y\)
giving (d = \sum(i = y, r_y - 1) (\text{days}(i)) + r_d) \land 1 \leq r_d \leq \text{days}(r_y) \iff (*)

Proof that jDate is correct.

We show that for jDate the postcondition is set up at the end of loop and that the invariant is maintained within the loop.

Postcondition is set up by jDate
On exit from the while loop d=jDays(y) is false \iff d\leq jDays(y).
By invariant d\geq 1, so second part of Post is attained.
RTS also that \((r_{day}, r_{year})=\text{date } d \ y\).
\text{date } d \ y=\text{date } d \ y (\text{by Inv}) = (d, y) (\text{by Haskell date})
since d\leq \text{Days}(y)= (r_{day}, r_{year}) (\text{by Java jDate}).

Invariant is established at start of loop.
Required to show \text{date } d \ y = \text{date } d \ y \land d \geq 1 \land y \geq 1900. Know d=d0 and y=y0 by code \iff first conjunct true; second and third conjuncts are true by Precondition.

Invariant is re-established by loop code.
Let d1 and y1 be the values of d and y at start of loop code and d2 y2 be the values at end.
Know (1) d1\geq 1, y1\geq 1900 (by Inv) and (2) d1>jDays(y1) by loop test.
Also know: date d0 y0 = date d1 y1.
(Assume that Haskell \text{days } y and Java jDays(y) compute the same answer (**))

Required to show date d0 y0 = date d2 y2.
At the end of the loop code d2 = d1-jDays(y1) and y2 = y1+1.
\text{date } d1 \ y1 = \text{date } (d1-\text{days}(y1)) \ (y1+1) = \text{date } d2 \ y2
\ (use (**)) and Haskell code.
Note the preconditions of date d1 y1 holds by (1).
Hence date d0 y0 = date d2 y2.
The other parts of Invariant, d2 \geq 1 \land y2 \geq 1900, are true by (1) and (2).

Loop terminates.
Variant d decreases each iteration since d1-jDays(y1) < d1 by definition of jDays.
Since d is always \geq 1 by the Invariant, the looping cannot continue forever.
NOT ALL FUNCTIONS ARE TAIL RECURSIVE

--pre: n≥0 post: r = !n where r = fact n
fact n
| n==0 = 1
| otherwise = n*(fact (n-1))

BUT residual computations (n*) can be “accumulated” into a single variable (you saw this many times in Haskell lectures):

--pre: n≥0
factTR m n
| n==0 = m
| otherwise = factTR (m*n) (n-1)

m is the accumulator parameter in factTR.

Postcondition of factTR?
--Post:r = m * fact n where r = factTR m n

Can then calculate fact n by factTR 1 n

FROM NON-TAIL RECURSIVE FUNCTIONS TO LOOPS
VIA TAIL RECURSIVE FUNCTIONS

(1) Given correct non-tail recursive function f and the corresponding tail recursive function fTR, must show that f and fTR compute the same result (for appropriate initial values).

(2) The function fTR with the accumulating parameter is tail recursive, so can convert it into a loop (the Java program is jFTR). To obtain correct result from jFTR must initialise the accumulating parameter to the right value at the start.

(3) Prove jFTR correctly implements fTR.

(4) Check f is correct!

IMPLEMENTATION USING A LOOP (STEP 2)

int jFactTR(int n) {
// Pre: n≥0
// Post: r = fact n0 (or r = factTR 1 n0)
 int m = 1; // m is the accumulator
 while (n l>= 0) {
 // Inv: factTR 1 n0 (= fact n0) = factTR m n ∧ n≥0
 // Note nz0 needed for pre of factTR in reasoning
 // Variant: n
 m = m*n; n--;
 //get new arguments m and n
 }
 return m;
 //base case of factTR
}

Could also code the recursive definition of fact directly into Java. But this version with while is much more efficient.
Arrays as Lists and Tail Recursion, page 51

Proof that jFactTR is correct (Step 3)

The proof that jFactTR is correct follows exactly the same pattern as used to show that jDate is correct. Compare the two proofs to convince yourself this is so.

Postcondition is set up by jFactTR

At loop exit (n != 0) is false ==> n=0.
Required to show r = factTR l n0.
factTR l n0 = factTR m n (by the Inv.) = factTR m 0 (substitute for n)
= m (by Haskell factTR) = result r (by Java jFactTR).

Invariant is established at start of loop: n=n0 and m=1
Required to show (factTR l n0 = factTR m n) & n0>=0 <=>
(factTR l n0 = factTR l n0) & n0>=0 <= True by precondition

Isin In Haskell

isin : Eq a => a -> [a] -> Bool
isin x [] = false
isin x (h:t) |
| x==h = true
| otherwise = isin x t

Isin in Java Using ArrayList

boolean jIsIn2(int x, ArrayList<Integer> t) {
// Pre: none
// Post: r = isin x0 t0 & t=t0
int i=0;
while (i<list.length) |
| x!=t[i]
| i++;
return (i==list.length);
}
Proof that jIsIn2 is correct — Assume x=x0 and deep structure of t = deep structure of t0 throughout. This might be represented by "t\(=\)t0". (See comment below.)

Reasoning about jIsIn2 is difficult. The invariant has to capture that the iterator s is moving along the list t, and that the deep structure of t, i.e. the elements in t, are not changed. Moreover, the s.next() method call has the side effect of moving s along one element of t to find the next element in t. I am not sure at the moment exactly how best to tie the position of s into the list t. Perhaps can capture it by "s=suffix of t", and the postcondition of s.next() as "s=tail(s0) & & r=head(s0)".

Let's see. First though, here is a picture to illustrate these things.

![Diagram](image-url)

\(s = \text{a suffix of } t \)
\(r = 3 = \text{head(s0)} \)
\(s = \text{suffix of } t \)
\(s = \text{suffix of } t0 \)

4) Invariant is maintained:

Let s1 be the value of s when the loop test is made, and s2 be the value of s after the call to s.next() – i.e. at the end of an arbitrary loop iteration. A true loop test means s1 not finished and \(x \neq \text{value of head(s1)} \). Given

- (I1): s1 is a suffix of t
- (I2): isin x0 s1 = isin x0 t0.

RTS

- (I1'): s2 is a suffix of t0
- (I2'): isin x0 s2 = isin x0 t0.

(I1') is true by definition of suffix and tail given (I1).

- (I2'): LHS = isin x0 tail(s1) = isin x0 s1 by the Haskell code taken from right to left (since \(x \neq \text{value of head(s1)} \) = isin x0 t0 by the invariant = RHS.

5) Array accesses.

As the structure is an ArrayList must check access: element s1.next() is accessed and exists in the loop as the loop is non-empty by the successful call to s.hasNext() in the while condition.

Note: the deep structure of t doesn't change - the list iterator s (for t) simply moves over the list in order. The method next() has the side effect of doing this.

Invariant: x=x0 & "t=t0" & t=t0 &

- (I1): s is a suffix of t0 &
- (I2): isin x0 t0 = isin x s.

We'll assume x=x0, t=t0 and "t=t0" throughout and omit it from the reasoning to save clutter.

1) Invariant set up by initial code: s=s0 (implicit in iterator initialisation)

- (I1) \(\iff \) s0 is a suffix of t0 \(\iff \) True
- (I2) \(\iff \) isin x0 t0 = isin x t0 \(\iff \) True

2) (Invariant + false while condition + final code) implies postcondition:

Successful loop exit implies either s has completed iterating over t (case 1) or (s has not completed iterating over t \(\&\&\&\) x0=s.head()) (case 2)

The invariant says the required result \(r = \text{isin x0 t0} \) = isin x0 s.

Let s3 be value of s when the call s.next().intValue() is made:

- Case 1 (s has finished): s3=nil: \(\text{isin x0} \) = False, so the actual result given by the code (= s.hasNext()) = false is correct.
- Case 2 (x0=s.head()) and s=tail(s3): isin x0 s3 = True, so the actual result given by the Java code (= s.hasNext()) = true is correct.

3) Variant decreases: The number of elements still to be iterated over reduces by 1 on each iteration by side effect of next() method of the iterator. Hence the loop must stop as the length of a non-empty list cannot decrease forever.

This kind of reasoning is just as we did before. To remind you:

- The post-condition is in terms of a Haskell function \(\text{r} \), of the form \(\text{r} = \text{r initial-args} \).
- The invariant is also in terms of \(\text{r} \), of the form \(\text{r initial-args} = \text{r current-args} \).
- There may need to be additional requirements to enforce the preconditions of \(\text{r} \).

VARIATIONS

In the code on slide 52 the method jIsIn2 is defined for an ArrayList argument.

A recursive version is the following:

```java
boolean jIsIn3(int x, ArrayList<Integer> t) {
    ArrayList<Integer> s=t;
    if (s.isEmpty()) return false;
    if (x == (s.get(0)).intValue()) return true;
    s=s.subList(1,s.size()); return jIsIn3(x, s); }
```

You still have to reason that s remains a suffix of t0, etc. The actual parameter can be an implementation of List, namely ArrayList, declared (eg) as in ArrayList<Integer> t = new ArrayList<Integer>(10); After adding some elements jIsIn2 can be called by jIsIn2(6,t) for example.
GENERAL METHOD USING HASKELL

1) Find obvious solution in Haskell (usually easy)
2) Prove the function is correct by induction (often the hardest part).
3) Find less obvious tail recursive solution in Haskell and the relation between it and non-tail recursive function (sometimes not so easy).
4) Prove the two functions give the same answers by induction.
5) Translate the tail recursive version to Java with while loops (easy).
6) The loop invariant can be written down immediately in terms of the Haskell functions. If the base Haskell function H is tail recursive the invariant is $H \text{args0} = H \text{currentArgs}$ (eg isIn was like this). If not the invariant is $H\text{T initialArgs} = H\text{T currentArgs}$ (eg fact was like this). Initial Args are args0 and appropriate initial accumulator value.
7) Prove the Java method is correct (usually easy).

APPENDIX – FOR LOOPS

```java
public class Matrix{
    private int [ ] [ ] m, int size;
    //class invariant: size>0

    public Matrix(int n){Pre??
        m = new int [n] [n]; size = n;
    }

    //public String toString() for printing out matrices

    public void zeromatrix(){
        for (int i=0; i<size; i++)
            for (int j=0; j<size; j++)
                m[i][j] = 0;
    }
}
```

What precondition on Matrix will ensure the invariant true initially?

SUMMARY

- A useful notation for arrays-as-lists was introduced

a-as-a-list = a(0 to a.length)

- Haskell functions can be used to specify Java methods

- Tail recursive Haskell functions can be systematically converted into while loop Java methods
FOR LOOP REASONING

for loops are typically used to do the same operation to all elements of an array. Different iterations of the loop do not interfere with each other and the fact they happen in some particular order is irrelevant.

(i) Sometimes the operations could be executed in parallel.
Such for loops can be thought of as "do all these".
e.g. for (int i = 0; i < a.length; i++) a[i]=0;

(ii) Sometimes, although the iterations cannot be executed in parallel, they could still be executed in any order.
Such for loops can be thought of as "do this, then this...".
e.g. s = 0; for (int i = 1; i <= 5; i++) s+= i;
(We'll see examples next week.)

PROVING THE POSTCONDITION HOLDS (2)

For Case ii)

s = 0; for (int i = 1; i <= 5; i++) s+= i;
Why can't the operations occur in parallel here?

It is safest to reserve for loops for independent operations as in (i);
a for loop can be coded as a while loop and for reasoning purposes it
is often simpler to reason about the corresponding while loop.

For this example, it's possible to reason similar to Case i):
We must show that s=(Sum(i=1 to 5)(i)). Let I be an arbitrary int.
There is exactly one iteration which adds I to s.
Since this step is not undone, s=(Sum(i=1 to 5)(i))\+initial value
=(Sum(i=1 to 5)(i)) +0 = (Sum(i=1 to 5)(i)).

PROVING THE POSTCONDITION HOLDS

For case i):

for (int i=0; i<size; i++)
 for (int j=0; j<size; j++) m[i][j] = 0;

Let I and J be integers 0 \leq I,J < size. Show that, at the end, m[I][J] = 0.

Proof: there is an iteration of the for loops
(namely with i=I and j=J) in which m[i][j] becomes 0; once that is
done, none of the other iterations will ever undo it.
The pattern is quite general, and very easy. You reason that
everything necessary is done, and then (because the iterations are
independent) never undone. for loops should always terminate!

You may think that the second kind of for loop could be run in parallel. But consider again
s=0; for (int i=1; i<= 5; i++)\{s+=i\}
It does satisfy a kind of independence — it doesn't seem to matter in which order the steps
are taken. To show the loop gives s=15, we could try to show that s=(Sum(i=1 to 5)(i))+0
(=1+2+3+4+5) = 15.

We could argue as follows: imagine s is a location (a 'bucket' if you wish), initially with
value 0. For an arbitrary i, the ith iteration adds I into the location s and nothing removes it.
So at the end of the loop every value of i has been added in and the value of s is the total
sum. However, it is only correct if we assume the additions are made at different times.
Imagine that we tried to make the additions for i=2 and i=3 at exactly the same time. We
might argue as follows: "look in s" — the value is (say) 1 at the moment; "compute i+1 = 3" (i.e. 2+1) — make sure the value of s is now 3. But at the same time, the computation for i=3
would result in the conclusion "make sure the value of s is now 4". So what is the value of s?
There are various calculation for reasoning about such parallel operations - see the second (and fourth)
year courses in concurrency.

Of course, in practice, you will use for loops even when the operations are not independent.
However, such loops are really masquerading as while loops and when reasoning about them you
need to use the technique of invariants. (eg see an example next week.)
A TYPICAL FOR LOOP?

```java
boolean neg1 (int [] a) {
    //post: r ↔ at least one negative integer is in a ∧ a=a0
    boolean isNeg = false;
    for (int i=0; i<a.length; i++) isNeg=isNeg || (a[i]<0);
    return isNeg;
}
```

If a[i]≥0 for every i then isNeg = result = false, which is correct.
If a[i]<0 for some i, say I, then isNeg = true after the Ith iteration and stays true, and result = true, which is correct.

```java
boolean neg2 (int [] a) {
    for (int i=0; i<a.length; i++) if a[i]<0 return true;
    return false;
}
```

If a[i]≥0 for every i then neg2 returns from outside the for loop with result =false, which is correct. If a[i]<0 for some i, say I, then neg2 would return after the Ith iteration with result=true, which is correct.

CONVERTING FOR LOOPS TO WHILE LOOPS

Generally, a for loop of the form

```java
for (<init> <test> <inc>) <code>
```

becomes the while loop

```java
<init>
// inv true here
while <test> {     // inv true here and <test> true
    <code>
    <inc>  //variant decreased
}     //inv true here and <test> false
```

It’s up to you to find the right variant and invariant for the problem. The variant is often 0 when the loop stops — so test is variant>0. The invariant often includes the property variant≥0.

BUT ...

- The result of executing neg1 and neg2 would be the same even if the iterations of the for loop were executed in a different order.
- The reason is that although the answer could have been determined by any of the iterations, that answer would be the same in all cases.
- This is not the case for neg3.

```java
int neg3 (int [] a) {
    //post "returns the first value of i: a[i]<0 (if any)" ∧ a=a0
    //formally??
    for (int i=0; i<a.length; i++) if a[i]<0 return i;
    return a.length;
}
```

- The answer depends on which for loop iteration causes the return.
- Use a while loop for this kind of for loop.

Let’s apply the method to our earlier for loop:

```java
s=0; for (int i=1; i<=5; i++) s=s+i;
```

As a while loop it becomes

```java
s=0;
    int i = 1;
    while i<=5 {
        // inv true here and while condition true
        s = s+i; i++;
            // inv true here and while condition false
    }
```

In order to show this loop adds together the first five positive integers we must find and include the correct mid-condition as invariant and show it is maintained. We must also find a variant and show the loop stops at the right time.
The variant in this case is 6-i (the loop will stop when it reaches 0). 6-i>0 ↔ i<6, so the loop test is equivalent to variant>0.
The invariant should represent the state when we are making progress. It should tell us what we have added to s so far. It is s=Sum(k)k=1 to i-1 ∧ 1≤i≤6. We make the convention that Sum(0)=0. Now we show that the loop works and also that it stops. Note the second conjunct of the invariant – it’s important! It implies variant≥0.
The loop stops: the variant decreases at each iteration since i increases. Within the loop (i.e. when the while condition is true) the variant is >0. Hence the loop must stop since the variant cannot continue decreasing and remain >0.
The invariant is set up initially: when i=1, s should be 0; it is. Also 1≤i≤6.
The invariant is maintained: call the values of i and s at the start of the loop i1 and s1. The requirement is \(s = \sum(k)(k=1 to (i1+1)-1) = s1+i1 \). This is exactly what the loop code computes — first it adds i1 to s1, then it increments i1 to i1+1. Also \(1 \leq i1 \leq 5 \) as the true while condition gives \(i1 \leq 5 \). More formally, let i2 and s2 be the values of i and s at the end of the loop. Given:

\[
i1 \leq 6 \land i1 \leq 5 \land s1 = \sum(k)(k=1 to i1-1) \text{ (invariant before the code and loop test)}
\]

\[
i2 = i1+1 \land s2 = s1+i1 \text{ (effect of code)}
\]

Then RTS: \(1 \leq i2 \leq 6 \land s2 = \sum(k)(k=1 to i2-1) \text{ (after the code)} \)

First, \(1 \leq i1 \leq 6 \land i1 \leq 5 \implies 1 \leq i1 \leq 5 \implies 2 \leq i1+1 \leq 6 \implies 2 \leq i2 \leq 6 \implies 1 \leq i2 \leq 6 \)

Next, \(s1 = \sum(k)(k=1 to i1-1) \implies (s1+i1 = \sum(k)(k=1 to i1-1)+i1) \text{ (add i1 to both sides)} \)

\(\implies (s1+i1 = \sum(k)(k=1 to i1)) \implies s2 = \sum(k)(k=1 to i2-1) \).

The result is correct: at the end the false while condition (loop exited) tells us \(i \geq 5 \) and the invariant that \(i \leq 5 \land s = \sum(k)(k=1 to i-1) \). So \(i = 6 \) and \(s = \sum(k)(k=1 to 5) \). Done!

Generally, a for loop of the form \(\text{for } (\text{<init>} \text{ <test>} \text{ <inc>}) \text{ <code> } \) becomes the while loop

\[
\text{ <init> while <test> { } //inv true here and <test> true}
\]

\[
\text{ <code> <inc> } //\text{inv true here and <test> false}
\]

It is up to you to find the right variant and invariant for the problem.

The variant is often 0 when the loop stops and the invariant often includes variant\(\geq 0 \).

E.g. in the above example the variant was 6-i; it is 0 when i=6, which is when the loop will terminate. In addition 6-i\(\geq 0 \) is equivalent to \(6 \geq i \), which is included in the invariant.

Exercise: Formalise neg3 as a while loop with suitable invariant.