
AI Communications 23 (2010) 373–388 373
DOI 10.3233/AIC-2010-0480
IOS Press

Speculative constraint processing for
hierarchical agents

Hiroshi Hosobe a,∗, Ken Satoh a, Jiefei Ma b, Alessandra Russo b and Krysia Broda b

a National Institute of Informatics, Tokyo, Japan
E-mails: {hosobe, ksatoh}@nii.ac.jp
b Imperial College London, London, United Kingdom
E-mails: {jm103, ar3, kb}@doc.ic.ac.uk

Abstract. Speculative computation is an effective means for solving problems with incomplete information in multi-agent sys-
tems. It allows such a system to compute tentative solutions by using default knowledge about agents even if communications
between agents are delayed or fail. Previously we have proposed a logical framework for speculative constraint processing for
master–slave multi-agent systems. In this paper, we extend the framework to support more general multi-agent systems that are
hierarchically structured. We provide an operational model for the framework and present a prototype implementation of the
model.
Keywords: Multi-agent systems, speculative computation, logic programming, constraints

1. Introduction

Multi-agent systems typically rely on communica-
tions between agents. Most of multi-agent systems are
designed to work well as long as there is no prob-
lem with communications between agents. In practice,
however, it is often difficult to guarantee efficient and
reliable communications between agents. If a multi-
agent system is deployed on an unreliable network
such as the Internet, or if a multi-agent system requires
involvement of human users, communications might
be largely delayed or even fail.

Speculative computation is an effective means for
coping with such problems in multi-agent systems [2,
5,6,11,15–19]. It allows a multi-agent system to com-
pute tentative solutions if communications between
agents are delayed or fail. This speculative computa-
tion is done by using default knowledge about other
agents instead of waiting for their answers.

Previously we have proposed a logical framework
for speculative constraint processing for multi-agent
systems [2]. The framework allowed agents to com-
municate by means of constraints that are powerful in
modeling problems. In addition, it supported the revi-
sion of previous answers that is useful for modeling

*Corresponding author: Hiroshi Hosobe, National Institute of In-
formatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

complex problems involving, e.g., human users. How-
ever, the framework was limited to master–slave multi-
agent systems.

In this paper, we extend our previous framework to
support more general multi-agent systems that are hier-
archically structured. Unlike the previous framework,
the extended framework allows speculative compu-
tation agents to communicate with other speculative
computation agents. Therefore, with this extension, we
can model more complex problems as hierarchical
multi-agent systems. For example, this extension al-
lows us to model a multi-agent planning system where
the root agent speculatively executes the entire plan-
ning task while other personal agents also specula-
tively perform the management of the corresponding
human users. It should be noted that such a system
with multiple speculative computation agents cannot
be modeled as a master–slave multi-agent system.

Our framework can also be regarded as a model and
a mechanism for distributed problem solving. Knowl-
edge about a problem is hierarchically distributed over
a set of agents; some agents might be specialized in
particular tasks and other agents might be human users.
Since the whole problem cannot be solved by a single
agent, these agents must cooperatively solve the prob-
lem by exchanging questions and answers represented
as constraints. Since our framework supports specula-
tive computation, an agent that has sent a question to

0921-7126/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

374 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

one of its child agents does not need to wait for the
answer of the child agent; it speculatively continues
its computation by using default knowledge about the
child agent.

Our ultimate goal is to provide a powerful frame-
work for speculative computation that realizes effec-
tive and efficient information processing in distributed
multi-agent systems. For this purpose, we need to al-
low complex structures of agents as well as to enhance
the power of individual agents. Although our previ-
ous framework for master–slave multi-agent systems
achieved a powerful constraint-based mechanism for
handling individual agents, its limitation on the struc-
ture of agents posed a major difficulty. Thus our new
framework for hierarchical multi-agent systems marks
an incremental but essential advance toward our ulti-
mate goal.

Also, our technical contributions in this paper are
multifold:

– we present a logical framework for hierarchical
multi-agent systems by extending the formula-
tion and semantics of our previous master–slave
framework;

– we provide an operational model of hierarchical
multi-agent systems by modifying our previous
master–slave model;

– we formally prove the correctness of the opera-
tional model in the sense of both soundness and
completeness;

– we present a prototype implementation of the op-
erational model.

The rest of this paper is organized as follows. After
describing related work in Section 2, we provide the
formulation and semantics of our extended framework
in Section 3. Next, we present the operational model
for the extended framework in Section 4 and the proto-
type implementation of the model in Section 5. In Sec-
tion 6, we show an example of executing a multi-agent
system with our implementation. After discussing our
work in Section 7, we describe conclusions and future
work in Section 8.

2. Related work

Speculative computation has been studied in several
fields of computer science [1]. An example in the field
of logic programming is the use of speculative paral-
lelism in the Parlog language [3]. Its aim is to exploit
the speculative parallelism to speed up the execution of

parallel search algorithms such as the parallel A∗. Al-
though our work was motivated by such previous work,
we are particularly interested in the use of speculative
computation for multi-agent systems.

Originally in [18], we proposed a logical frame-
work for speculative computation for master–slave
multi-agent systems, which we realized by exploiting
abduction. Later we extended it to support more gen-
eral multi-agent systems that are hierarchically struc-
tured [19]; this work also enabled agents to revise
their answers (i.e., belief revision), which is caused
by the speculative computation of other agents. We
also proposed a framework for combining specula-
tive computation and abduction [16]. Sakama et al.
proposed an alternative logical multi-agent framework
that translates a program by attaching time stamps to
predicates [15]. Inoue and Iwanuma proposed a dif-
ferent approach to speculative computation that uses a
consequence-finding procedure [6]. It should be noted
that all these studies were restricted to yes/no ques-
tions.

To handle more general questions, we proposed
a framework for speculative constraint processing
(firstly in [17] and also in its journal version [5]).
In the framework, constraints facilitated the model-
ing of more general problems. Later we extended the
constraint-based framework to support the revision of
answers [2]. However, both of these frameworks were
limited to master–slave multi-agent systems.

Constraint programming languages such as AKL [8]
and Oz [20] perform a kind of speculative computa-
tion. AKL allows local speculative variable bindings
in a guard of each clause until one of guards succeeds
and Oz can control multiple computation spaces, each
of which represents an alternative path of constraint
processing. As far as we understand, however, specula-
tive computation used in these languages is mainly mo-
tivated for or-parallel computing where multiple paths
of computation are executed in parallel until one of the
paths succeeds eventually. On the other hand, we re-
gard speculative computation as default computation
where most plausible paths of computation are exe-
cuted. Moreover, they do not consider the usage of
speculative computation for incomplete communica-
tion environments. However, we believe that AKL and
Oz could be good platforms for the implementation of
speculative computation using defaults.

There have been studies on the extension of logic
programming to multi-agent systems (e.g., [10]). Un-
like those studies, our work is focused on speculative
computation for multi-agent systems.

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 375

Researchers have been studying agent-based frame-
works for processing constraint satisfaction problems
(e.g., [12,22]) and similar problems (e.g., [4,21]).
Our framework is more computationally complex than
these frameworks, since our framework allows pro-
grammers to dynamically generate such problems and
also control speculative computation due to the power
of constraint logic programming.

In the field of artificial intelligence, there has been
much research on non-monotonic reasoning such as
default logic [14], abductive logic programming [9]
and multi-agent non-monotonic reasoning [13]. Unlike
such research, our work is focused on the use of de-
fault knowledge to enable speculative computation in
multi-agent systems.

3. Hierarchical multi-agent system

This section provides a formulation and a semantics
of hierarchical multi-agent systems.

3.1. Formulation

We first formulate multi-agent systems. In this pa-
per, we restrict our attention to a tree-structured com-
position of agents that we call an agent hierarchy.

Definition 1 (Agent hierarchy). An agent hierarchy H
is a tree consisting of a set of nodes called agents. Let
root(H) be the root node of H , called the root agent.
Let int(H) be the set of all the non-leaf nodes of H ,
each called an internal agent. Let ext(H) be the set of
all the leaf nodes of H , each called an external agent.
Given an internal agent M , let chi(M , H) be the set
of all the child nodes of M , each called a child agent
of M . Given a non-root agent S, let par(S, H) be the
parent node of S, called the parent agent of S.

By convention, we use either M or S (possibly with
primes and subscripts) to indicate an agent. Also, when
we refer to specific agents, we adopt r as the root agent,
another small letter (e.g., a and b) as a non-root internal
agent and a small letter with a prime (e.g., a′ and b′) as
an external agent.

Example 1. Let H be the tree consisting of nodes r, a,
b, a′ and b′ and parent-to-child edges r → a, a → a′,
r → b and b → b′. Then H can be regarded as the
agent hierarchy with agents r, a, b, a′ and b′, satisfying
root(H) = r, int(H) = {r, a, b}, ext(H) = {a′, b′},
chi(r, H) = {a, b}, par(a, H) = par(b, H) = r,
chi(a, H) = {a′}, par(a′, H) = a, chi(b, H) = {b′}
and par(b′, H) = b.

We restrict internal agents to artificial agents that
are based on a variant of constraint logic program-
ming (CLP) [7]. Specifically, each internal agent is as-
sociated with a specification that is a constraint logic
program with default rules. Rules in constraint logic
programs as well as default rules consist of atoms and
constraints. Atoms are categorized into askable and
non-askable atoms; intuitively, an agent treats an ask-
able atom as a question that should be posed to one
of its children and a non-askable atom as a piece of
knowledge that should be acquired from its program.

Definition 2 (Askable/non-askable atom). Given an
agent hierarchy H and an agent M ∈ int(H), an
atom is either p(X1, X2, . . . , Xn)@S called an askable
atom, or p(t1, t2, . . . , tn)@M called a non-askable
atom, where S ∈ chi(M , H), p is an n-ary predicate,
each Xi is a variable and each ti is a term. Given an
askable atom Q@S, the set of the variables that appear
in Q is written var(Q).

Definition 3 (Specification of an agent). Given an
agent hierarchy H and an agent M ∈ int(H), a speci-
fication FM of M is a pair 〈ΔM , PM 〉 with the follow-
ing ΔM and PM .

– ΔM is a set of rules in the form:

Q@S ← C | |,

each called a default rule w.r.t. Q@S, where S is
a child agent of M , Q@S is an askable atom and
C is a set of constraints.

– PM is a constraint logic program that is a set of
rules R in the form:

H ← C | | B1, B2, . . . , Bn,

where:

* H is a non-askable atom called the head of R
and written head(R);

* C is a set of constraints written const(R);
* each Bi is either an askable or non-askable

atom and the sequence B1, B2, . . . , Bn is
called the body of R and written body(R).

A multi-agent system is an agent hierarchy, each of
whose internal agents is associated with a specifica-
tion.

376 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

Definition 4 (Multi-agent system). A multi-agent sys-
tem is a pair 〈H , F 〉, where H is an agent hierarchy
and F is a set of specifications FM = 〈ΔM , PM 〉 of
M ∈ int(H), i.e., F = {〈ΔM , PM 〉}M ∈int(H).

We use the following room reservation problem as a
running example.

Example 2. Let H be the agent hierarchy given in Ex-
ample 1. Let F = {Fr, Fa, Fb} with the following
specifications of r, a and b:

– Fr = 〈Δr, Pr 〉 where

* Δr contains the following default rules:
available(D)@a ← D ∈ {1, 2, 3} | |,
available(D)@b ← D ∈ {1, 2, 3} | |,

* Pr is the following constraint logic program:
reserve(R, L, D)@r ←

R = twin_room, L = [a, b] | |
available(D)@a, available(D)@b,

reserve(R, L, D)@r ←
R = single_room, L = [a] | |
available(D)@a, unavailable(D)@b,

reserve(R, L, D)@r ←
R = single_room, L = [b] | |
unavailable(D)@a, available(D)@b.

– Fa = 〈Δa, Pa〉 where

* Δa contains the following default rules:
free(D)@a′ ← D ∈ {1, 2} | |,
busy(D)@a′ ← D ∈ {3} | |,

* Pa is the following constraint logic program:
available(D)@a ← | | free(D)@a′,
unavailable(D)@a ← | | busy(D)@a′.

– Fb = 〈Δb, Pb〉 where

* Δb contains the following default rules:
free(D)@b′ ← D ∈ {2} | |,

* Pb is the following constraint logic program:
available(D)@b ← | | free(D)@b′,
unavailable(D)@b ← | | busy(D)@b′.

Then 〈H , F 〉 is a multi-agent system.

In this example, there are two human users repre-
sented as external agents a′ and b′, whose availability is
maintained by internal agents a and b, respectively. In-
tuitively, the root agent r speculatively reserves a twin
or single room for a′ and/or b′ by using the default rules
and by asking a and b about the availability of a′ and
b′; then a and b speculatively compute the availability
of a′ and b′ by using their more detailed default rules.

3.2. Semantics

Next, we present the semantics of hierarchical multi-
agent systems. We define it by extending the semantics
for our previous framework [2], which is based on the
CLP scheme [7].

We first define a goal that is a question posed to a
multi-agent system.

Definition 5 (Goal). Let 〈H , F 〉 be a multi-agent sys-
tem. A goal G is “← C | | B1, B2, . . . , Bn”, where C is
a set of constraints called the constraints of G and each
Bi is either an askable or non-askable atom. The se-
quence B1, B2, . . . , Bn is called the body of G.

The belief state of a multi-agent system gives the
set of answers and default rules about external agents
that should be used to obtain theoretical solutions to
the entire system.

Definition 6 (Belief state). Let 〈H , F 〉 be a multi-
agent system with F = {〈ΔM , PM 〉}M ∈int(H). Let
AH be a set of most recent answers of the external
agents, each of which is a rule “Q@S ← C| |” with
S ∈ ext(H). The belief state of 〈H , F 〉 w.r.t. AH , writ-
ten bel(AH , 〈H , F 〉), is:

bel(AH , 〈H , F 〉)

= AH ∪
{

“Q@S ← C ′ | |” | S ∈ ext(H)

∧ “Q@S ← C ′ | |” ∈ Δpar(S,H)

∧ ¬ ∃C, “Q@S ← C| |” ∈ AH

}
.

As in the ordinary CLP scheme, a solution to the
entire multi-agent system is obtained by a derivation
of a goal that is a sequence of reductions.

Definition 7 (Reduction). Let 〈H , F 〉 be a multi-agent
system with F = {〈ΔM , PM 〉}M ∈int(H) and AH be a
set of most recent answers of the external agents. A re-
duction of a goal “← C | | B1, B2, . . . , Bn” w.r.t. 〈H ,
F 〉, AH and Bi is a goal “← C ′ | | GS” such that:

– there exists a rule R in (
⋃

M ∈int(H) PM) ∪
bel(AH , 〈H , F 〉) such that C ∧ (Bi = head(R)) ∧
const(R) is consistent;1

1If Bi is unifiable with head(R), Bi = head(R) represents the
conjunction of the constraints that equate the arguments of Bi with
those of head(R); otherwise, Bi = head(R) represents false.

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 377

– C ′ = C ∧ (Bi = head(R)) ∧ const(R);
– GS = B1, . . . , Bi−1, body(R), Bi+1, . . . , Bn.

Definition 8 (Derivation). Let 〈H , F 〉 be a multi-
agent system with F = {〈ΔM , PM 〉}M ∈int(H) and
Mroot = root(H), and AH be a set of most recent an-
swers of the external agents. A derivation of a goal
G = “← | | Qinit@Mroot” w.r.t. 〈H , F 〉 and AH is a se-
quence of reductions “← | | Qinit@Mroot”, . . . ,“← C| |”
w.r.t. 〈H , F 〉 and AH , where an atom in the body of the
current goal is selected in each reduction. C is called
an answer w.r.t. 〈H , F 〉, AH and G.

4. Operational model

This section provides the operational model of hi-
erarchical multi-agent systems defined in the previous
section. After an overview of the operational model,
we present its data structures, procedure and correct-
ness.

4.1. Overview

This operational model is an extension of the model
that we previously constructed for master–slave multi-
agent systems [2]. Since a hierarchical multi-agent sys-
tem can be regarded as a hierarchy of master–slave
multi-agent systems, the main task of the extension
is to appropriately connect such master–slave multi-
agent systems in a hierarchical manner. For this pur-
pose, we made to the previous model a modification re-
lated to the treatment of returned answers and finished
processes.

As in the previous model, the execution of an agent
is based on two kinds of phases: process reduction
phases and fact arrival phases. A process reduction
phase is a normal execution of a program in an internal
agent and a fact arrival phase is an interruption phase
that is invoked when an answer arrives from a child
agent.

A computational state in an internal agent is rep-
resented as a process. Processes are created when a
choice point of computation, such as case splitting, de-
fault handling, and answer arrival, is encountered. Fig-
ures 1–4 illustrate how processes are updated. In these
trees, each node represents a process, but we only show
constraints associated with the process. Each root node
represents a constraint for the original process and the
other nodes represent the constraints added to the de-
scendant processes. Note that we specify true for non-
root nodes without added constraints, since the addi-

Fig. 1. Handling an askable atom Q@S in a process reduction phase.

Fig. 2. Handling a first answer Cf for Q@S.

tion of the true constraint does not change the solutions
to existing constraints. The leaves of the process trees
represent the current processes. In other words, the
processes that are not at the leaves have been deleted.

Figure 1 shows a situation where an agent treats
an askable atom Q@S whose answer has not yet ar-
rived in a process reduction phase. In this case, the cur-
rent process represented by C is split into two differ-
ent kinds of processes: a process using the default Cd,
called a default process,2 and the current process C it-
self, called an original process, that is suspended at this
point.

If there are multiple default rules for Q@S, we will
have more than one default process, but still only one
original process. The reason for suspending such a
process (which is kept in memory) is that, in case of
a contradictory revision of the default or a later arrival
of an alternative answer, the intermediate result of the
suspended process can be reused.

Figure 2 illustrates a situation where the agent re-
ceives a first answer to Q@S, expressed by the con-
straint Cf , after reductions of the default processes
(represented by the dashed lines). Then the default and
original processes are updated as follows:

– each default process is reduced to two different
kinds of processes, i.e., a process including Cf
and the current process itself that is suspended at
this point;

– the original process is also reduced to two differ-
ent kinds of processes, i.e., a process including
Cf ∧ ¬Cd, and the original process suspended at
this point.

2We assume for simplicity that there is only one default rule for
Q@S.

378 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

Fig. 3. Handling an alternative answer Ca for Q@S.

Fig. 4. Handling a revised answer Cr for Q@S.

Figure 3 depicts a situation where the agent receives
an alternative answer to Q@S whose constraint is Ca.
We need to update processes basically in the same way
as in handling the first answer Cf , without affecting
the processes that treat Cf .

Figure 4 shows a situation where the agent receives
an answer to Q@S that revises the first answer Cf to
Cr. In our operational model, a revised answer is al-
ways narrower than its previous answer, i.e., Cr entails
Cf .3 Therefore, we only need to update the processes
that treat Cf .

4.2. Data structures

We now define necessary data structures for the op-
erational model. A process identifier is an element
of a countably infinite set {p1, p2, . . .}. An answer
identifier is an element of {os, on} ∪ {d1, d2, . . .} ∪
{p1, p2, . . .}, where {d1, d2, . . .} is a countably infi-
nite set, and {os, on}, {d1, d2, . . .} and {p1, p2, . . .} are
disjoint. A labeled askable atom is a pair 〈Q@S, os 〉,
〈Q@S, on 〉, 〈Q@S, di〉 or 〈Q@S, pi〉, where Q@S is
an askable atom, and os, on, di and pi are answer iden-
tifiers.

3It should be noted that an answer that is not narrower than a
previous answer can be represented as an alternative answer.

An answer is a data structure sent by an agent to its
parent agent to reply to a question.

Definition 9 (Answer). Given a multi-agent system
〈H , F 〉 and an agent M ∈ int(H), an answer to
M is a quadruple 〈Q@S, AID, C, AIDprev 〉, where
S ∈ chi(M , H), Q@S is an askable atom, AID is
an answer identifier, C is a set of constraints and
AIDprev is either nil or a different answer identifier
from AID. If AIDprev = nil, this answer is called
a new answer; otherwise, it is called a revised an-
swer. For any pair of answers 〈Q@S, AID, C, AIDprev 〉
and 〈Q@S, AIDprev, Cprev, AID′ 〉 (which is sometimes
called the previous answer) with AIDprev
= nil, C must
entail Cprev.

A process is a data structure that holds a (possibly
intermediate) result of computing an answer. A sin-
gle agent maintains a set of processes to keep differ-
ent ways of possible computation. In the operational
model, processes are divided into two categories, i.e.,
ordinary and finished processes. Although they are al-
ways distinguished, they have a common structure de-
fined in the following definition.

Definition 10 (Process). Given a multi-agent system
〈H , F 〉 and an agent M ∈ int(H), a process P of M
is a quintuple 〈PID, C, GS, WA, AA〉, where PID is a
process identifier written pid(P), C is a set of con-
straints written pconst(P), GS is a set of atoms written
gs(P), WA and AA are sets of labeled askable atoms
written wa(P) and aa(P) respectively. If wa(P) = ∅,
P is said to be active and otherwise suspended.

An answer entry is a data structure that keeps an an-
swer and the identifiers of the processes using the an-
swer.

Definition 11 (Answer entry). Given a multi-agent
system 〈H , F 〉 and an agent M ∈ int(H), an answer
entry A for M is a quadruple 〈Q@S, AID, C, UPS〉,
where S ∈ chi(M , H), Q@S is an askable atom writ-
ten aq(A), AID is an answer identifier written aid(A),
C is a set of constraints written aconst(A) and UPS is
a set of process identifiers written ups(A). If aid(A) is
either os or on, A is called an original answer entry; if
aid(A) is di, A is called a default answer entry; other-
wise, A is called an ordinary answer entry.

An original answer entry is associated with either os
or on. Intuitively, an entry with os records processes

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 379

from which processes using default answer entries
were speculatively created; by contrast, an entry with
on keeps processes from which processes using ordi-
nary answer entries were created.

4.3. Procedure

Now we present the procedure of the operational
model. The main routine illustrated in Fig. 5 and de-
scribed in Fig. 6 processes an internal agent M . It con-
sists of two parts. The first part creates answer entries
used for speculative computation. The second part is
the main loop that performs one of the following three
operations. The first operation creates a process for a
newly asked question. The second and third operations
invoke a fact arrival phase and a process reduction
phase, respectively.

The process reduction phase presented in Fig. 7
treats an active ordinary process P by the normal exe-
cution of its constraint logic program. This phase car-
ries out one of the following three operations. The
first operation changes P into a finished one if P has

Fig. 5. Workflow of an internal agent.

an empty goal. The second operation reduces P w.r.t.
a non-askable atom L in a similar way to the CLP
scheme. The third operation reduces P w.r.t. an askable
atom Q@S by using either the ordinary or the default
answer entries corresponding to Q@S.

The fact arrival phase given in Fig. 8 updates the re-
lated answer entries and processes when the agent M
receives an answer 〈Q@S, AID, Cp, AIDprev 〉 from a
child agent S. This phase executes one of the follow-
ing two operations. The first operation treats a new an-
swer; it reflects the returned constraints Cp by creat-
ing new processes from the processes that are referred
by the default and original answer entries correspond-
ing to Q@S. The second operation handles a revised
answer; it adds Cp to the processes using the previous
answer whose identifier is AIDprev.

4.4. Correctness

We show the correctness of the operational model
presented in this section. For this purpose, we begin
with two lemmas that hold for local parts of hierar-
chical multi-agent systems called master–slave restric-
tions.

Definition 12 (Master–slave restriction). Given a
multi-agent system 〈H , F 〉 with F = {〈ΔM ′ ,
PM ′ 〉}M ′ ∈int(H) and an agent M ∈ int(H), the
master–slave restriction of 〈H , F 〉 to M , written
msres(M , 〈H , F 〉), is the multi-agent system 〈HM ,
{〈ΔM , PM 〉}〉, where HM is the agent hierarchy con-
sisting of M as its root and chi(M , H) as the child
agents of M .

foreach askable atom Q@S that appears in PM do
create original answer entries 〈Q@S, os, true, ∅ 〉 and 〈Q@S, on, true, ∅ 〉;
foreach default rule “Q@S ← Cd||” ∈ ΔM do

create a default answer entry 〈Q@S, d, Cd, ∅ 〉;

repeat
if a question Qinit was asked by the parent then

PID := a new process ID;
create an ordinary process 〈PID, true, {Qinit@M}, ∅, ∅ 〉;

else if an answer 〈Q@S, AID, Cp, AIDprev 〉 arrived from a child then
invoke a fact arrival phase for 〈Q@S, AID, Cp, AIDprev 〉;

else if there is an active ordinary process P then
invoke a process reduction phase for P ;

until M is terminated ;

Fig. 6. Processing an internal agent M .

380 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

if gs(P) = ∅ then
change P into a finished process with the same data;
answer 〈Qinit@M , pid(P), pconst(P), nil〉 to the parent;

else
select an atom L from gs(P);
if L is a non-askable atom then

foreach rule R ∈ PM do
C := pconst(P) ∧ (L = head(R)) ∧ const(R);
if C is consistent then

PID := a new process ID; GS := body(R) ∪ gs(P) \ {L};
create an ordinary process 〈PID, C, GS, ∅, aa(P)〉;
foreach answer entry A s.t. 〈aq(A), aid(A)〉 ∈ aa(P) do

ups(A) := ups(A) ∪ {PID};

foreach answer entry A s.t. 〈aq(A), aid(A)〉 ∈ aa(P) do
ups(A) := ups(A) \ {pid(P)};

kill P ;
else // L is an askable atom Q@S.

Q@S := L;
ASp := {Ap | Ap is an ordinary answer entry s.t. aq(Ap) = Q@S};
if ASp 	= ∅ then AS := ASp; AIDo := on;
else AS := {Ad | Ad is a default answer entry s.t. aq(Ad) = Q@S}; AIDo := os;
foreach answer entry A ∈ AS do

C := pconst(P) ∧ aconst(A);
if C is consistent then

PID := a new process ID; GS := gs(P) \ {Q@S}; AA := aa(P) ∪ {〈Q@S, aid(A)〉};
create an ordinary process 〈PID, C, GS, ∅, AA〉;
ups(A) := ups(A) ∪ {PID};
foreach answer entry A′ s.t. 〈aq(A′), aid(A′)〉 ∈ aa(P) do

ups(A′) := ups(A′) ∪ {PID};

select the original answer entry Ao s.t. aq(Ao) = Q@S ∧ aid(Ao) = AIDo;
if AIDo = os ∧ ups(Ao) = ∅ then send a question Q to the child S;
ups(Ao) := ups(Ao) ∪ {pid(P)}; gs(P) := gs(P) \ {Q@S}; wa(P) := {〈Q@S, AIDo〉};

Fig. 7. Process reduction phase for an active ordinary process P .

The first lemma shows the soundness of master–
slave restrictions of hierarchical multi-agent systems
in a similar way to the theorem on the soundness of
master–slave multi-agent systems [2].

Lemma 1 (Soundness of the master–slave restriction).
For any multi-agent system 〈H , F 〉, any agent M ∈
int(H), any initial goal “← | | Qinit@M”, any execu-
tion of M , and any process P of M , there exists a
sequence of reductions “← | | Qinit@M”, . . . ,“← C | |
GSo ∪ gs(P)” w.r.t. msres(M , 〈H , F 〉) and AP such
that πvar(Qinit)(pconst(P)) entails πvar(Qinit)(C), where

GSo =
{
Q@S | 〈Q@S, os 〉 ∈ wa(P)

∨ 〈Q@S, on 〉 ∈ wa(P)
}

AP =
{

“Q@S ← C ′ | |” |
there exists an answer entry

〈Q@S, AID, C ′, UPS〉 for M

such that 〈Q@S, AID〉 ∈ aa(P)
}

,

and πV (C) indicates the projection of a constraint C
onto a set V of variables.

Proof. See Appendix. �

Intuitively, Lemma 1 states that, for any process P
of an internal agent M , there exists a sequence of re-
ductions w.r.t. the master–slave restriction to M that
yields a constraint entailed by the constraint of P . We
prove this lemma by induction on the number of steps

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 381

if AIDprev = nil then // A new answer arrived.
create an ordinary answer entry Ap = 〈Q@S, AID, Cp, ∅ 〉;
foreach default answer entry Ad s.t. aq(Ad) = Q@S do

foreach process Pd s.t. pid(Pd) ∈ ups(Ad) do
C := pconst(Pd) ∧ Cp;
if C is consistent then

PID := a new process ID; WA := wa(Pd) \ {〈Q@S, aid(Ad)〉};
AA := (aa(Pd) \ {〈Q@S, aid(Ad)〉}) ∪ {〈Q@S, AID〉};
create a process 〈PID, C, gs(Pd), WA, AA〉 having the same type as Pd;
ups(Ap) := ups(Ap) ∪ {PID};
if Pd is an active finished process then

answer 〈Qinit@M , PID, C, pid(Pd)〉 to the parent;

else // C is inconsistent.
if Pd is an active finished process then

answer 〈Qinit@M , pid(Pd), false, pid(Pd)〉 to the parent;

wa(Pd) := wa(Pd) ∪ {〈Q@S, aid(Ad)〉}; aa(Pd) := aa(Pd) \ {〈Q@S, aid(Ad)〉};

foreach original answer entry Ao s.t. aq(Ao) = Q@S do
foreach process Po s.t. pid(Po) ∈ ups(Ao) do

C := pconst(Po) ∧ Cp;
if aid(Ao) = os then C := C ∧ (

∧
“Q@S←Cd ||”∈ΔM

¬Cd);

if C is consistent then
PID := a new process ID; WA := wa(Po) \ {〈Q@S, aid(Ao)〉}; AA := aa(Po) ∪ {〈Q@S, AID〉};
create a process 〈PID, C, gs(Po), WA, AA〉 having the same type as Po;
ups(Ap) := ups(Ap) ∪ {PID};

else // A revised answer arrived.
select the ordinary answer entry Ap s.t. aq(Ap) = Q@S ∧ aid(Ap) = AIDprev;
aid(Ap) := AID; aconst(Ap) := Cp; UPS := ups(Ap);
foreach process P s.t. pid(P) ∈ UPS do

pconst(P) := pconst(P) ∧ Cp;
if P is an active finished process then

answer 〈Qinit@M , pid(P), pconst(P), pid(P)〉 to the parent;

if pconst(P) is consistent then
aa(P) := (aa(P) \ {〈Q@S, AIDprev 〉}) ∪ {〈Q@S, AID〉};

else // pconst(P) is inconsistent.
ups(Ap) := ups(Ap) \ {pid(P)};
kill P ;

Fig. 8. Fact arrival phase for an answer 〈Q@S, AID, Cp, AIDprev 〉.

for the execution of M . At the induction step, we show
that, for any execution consisting of n + 1 steps, we
can construct such a sequence of reductions from that
for an execution with n steps.

The second lemma gives the completeness of mas-
ter–slave restrictions of hierarchical multi-agent sys-
tems.

Lemma 2 (Completeness of the master–slave restric-
tion). For any multi-agent system 〈H , F 〉, any agent
M ∈ int(H), any initial goal “← | | Qinit@M”, any

execution of M , any valuation θ of var(Qinit) that
satisfies the answer obtained from some derivation
of “← | | Qinit@M” w.r.t. msres(M , 〈H , F 〉) and AM ,
where

AM =
{

“Q@S ← C ′ | |” |
there exists an ordinary answer entry

〈Q@S, AID, C ′, UPS〉 for M
}

,

there exist an active process P of M and a sequence
of reductions “← pconst(P) | | gs(P)”, . . . ,“← C| |”

382 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

w.r.t. msres(M , 〈H , F 〉) and AM such that θ satis-
fies C.

Proof. See Appendix. �

Intuitively, Lemma 2 says that, for any valuation θ
obtained from some derivation w.r.t. the master–slave
restriction of an internal agent M , there exists an active
process P of M that will derive an answer including θ.
We prove this lemma by induction on the number of
steps for the execution of M . At the induction step, we
show that, for any execution consisting of n + 1 steps,
we can find such an active process by comparing it with
a “reduced” execution consisting of n steps.

We prove two theorems to show that hierarchical
multi-agent systems eventually obtain all and only cor-
rect solutions. This state is called hierarchical stability.

Definition 13 (Hierarchical stability). An execution of
a multi-agent system 〈H , F 〉 is hierarchically stable if
and only if the following conditions hold:

– for any agent M ∈ int(H), there exists no active
ordinary process P of M ;

– for any agent M ∈ int(H) and any active fin-
ished process P of M , there exists no default an-
swer entry Ad for M such that 〈Q@S, aid(Ad)〉 ∈
aa(P) and S ∈ int(H), where Q@S = aq(Ad);

– for any agent S ∈ int(H) \ {root(H)}, there exists
an ordinary answer entry 〈Q@S, AID, C, UPS〉
for par(S) if and only if there exists an active fin-
ished process P of S such that AID = pid(P),
C = pconst(P), and “← | | Q@S” is the initial
goal of P ;

– for any agent S ∈ ext(H), there exists an ordinary
answer entry 〈Q@S, AID, C, UPS〉 for par(S) if
and only if there exists a most recent answer
“Q@S ← C| |” of S whose answer identifier is
AID.

The first theorem provides the soundness of hierar-
chical multi-agent systems; i.e., only correct solutions
in the sense of the semantics are eventually computed.

Theorem 1 (Soundness of the hierarchically stable
system). For any multi-agent system 〈H , F 〉 with
Mroot = root(H), any initial goal “← | | Qinit@Mroot”,
any hierarchically stable execution of 〈H , F 〉 with a
set AH of most recent answers of the external agents,
and any active finished process P of Mroot, there exists
a derivation “← | | Qinit@Mroot”, . . . ,“← C| |” w.r.t.
〈H , F 〉 and AH such that πvar(Qinit)(pconst(P)) entails
πvar(Qinit)(C).

Proof. See Appendix. �

Intuitively, Theorem 1 claims that, for any active
finished process P of the root agent in a hierarchi-
cally stable multi-agent system, there exists a deriva-
tion w.r.t. the multi-agent system that yields a con-
straint entailed by the constraint of P . We prove this
theorem by induction on the tree structure of the multi-
agent system. At the induction step, we show that, for
any subtree of the multi-agent system, we can construct
such a derivation by applying Lemma 1.

The second theorem gives the completeness of hier-
archical multi-agent systems; i.e., all correct solutions
in the sense of the semantics are eventually computed.

Theorem 2 (Completeness of the hierarchically sta-
ble system). For any multi-agent system 〈H , F 〉 with
Mroot = root(H), any initial goal “← | | Qinit@Mroot”,
any hierarchically stable execution of 〈H , F 〉 with
a set AH of most recent answers of the external
agents, and any valuation θ of var(Qinit) that sat-
isfies the answer obtained from some derivation of
“← | | Qinit@Mroot” w.r.t. 〈H , F 〉 and AH , there exists
an active finished process P of Mroot such that θ satis-
fies pconst(P).

Proof. See Appendix. �

Intuitively, Theorem 2 states that, if the execution of
a multi-agent system is hierarchically stable, for any
valuation θ obtained from some derivation w.r.t. the
multi-agent system, the root agent has an active fin-
ished process p whose answer includes θ. We prove
this theorem by induction on the tree structure of the
multi-agent system. At the induction step, we show
that, for any subtree of the multi-agent system, we
can find such an active finished process by applying
Lemma 2.

5. Implementation

Using the operational model proposed in the pre-
vious section, we have developed a prototype sys-
tem, called SpecCp, for speculative constraint process-
ing for hierarchical multi-agent systems.4 Our cur-
rent implementation is written in the Objective Caml5

language, and consists of approximately 2500 lines

4http://www.informaticians.org/speccp/.
5http://caml.inria.fr/ocaml/.

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 383

Fig. 9. Execution of the multi-agent system in Example 2.

of code. The system implements the necessary basic
mechanisms for the CLP scheme, including a finite-
domain constraint solver.6

Instead of truly concurrent execution, the proto-
type system performs pseudo-concurrent execution of
agents in a serialized manner; it performs one atomic
operation of an agent at a time by possibly selecting
different agents one after another. The system provides
an interactive interpreter that allows a user to exper-
iment with various executions. At every step, a user
is prompted to select which agent to execute next, to-
gether with which process of the selected agent to re-
duce, or which answer to be received by the agent.
Thus the pseudo-concurrent execution of agents is
completely under the control of the user.

6. Illustrative example

This section shows an example of executing a multi-
agent system. We use the multi-agent system for the
room reservation problem presented in Example 2. We
executed it by running our prototype system described

6We could have reduced the work if we had implemented our pro-
totype system on top of a CLP language rather than Objective Caml,
which is a functional programming language. However, we adopted
Objective Caml simply because the primary developer has consider-
able experience in functional programming.

in the previous section. Below we illustrate its execu-
tion by extracting parts of the textual output of the pro-
totype system from the entire output.7

We begin by asking the root agent r a goal
“← reserve(R, L, D)@r” (Fig. 9(a)), and then obtain
the following state of r.8

Answer entries:
Ordinary processes:
(1, {}, {rsv(R,L,D)}, {}, {})
Finished processes:

At present, there is only one ordinary process whose
ID is 1 and that contains the initial goal, and there is
no finished process. Answer entries exist internally, but
are not printed here since they are not yet used by any
processes.

Next, the system indicates that the ordinary pro-
cess 1 of agent r can be reduced, and therefore the
user chooses its reduction (by entering “r 1” after
“Which step?”).

SELECT NEXT STEP
Reducible processes (agent pid):
r 1
Receivable answers (receiver sender):
none

7We sometimes break a long output line to fit it to the page.
8For brevity, we denote reserve as rsv, available as av,

unavailable as unav, twin_room as tr, single_room as sr, free as
fr and busy as bs.

384 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

Which step?
r 1

Then the system prints out the following state of
agent r, which means that the process was reduced into
the new processes 2–4.

Answer entries:
Ordinary processes:
(2, {L=[a,b], R=tr}, {av(D)@a, av(D)@b},
{}, {})
(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},
{}, {})
(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},
{}, {})
Finished processes:

After the user selects the reduction of the process 2,
the system outputs the following, where agent r sends
a question available(D) to its child agent a.9

Agent r asked: av(D@r#2)@a

Answer entries:
(av(D)@a, os, {true}, {2})
(av(D)@a, d(1), {D:{1,2,3}}, {5})
Ordinary processes:
(2, {L=[a,b], R=tr}, {av(D)@b},
{(av(D)@a, os)}, {})
(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},
{}, {})
(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},
{}, {})
(5, {L=[a,b], R=tr, D:{1,2,3}},
{av(D)@b}, {}, {(av(D)@a, d(1))})
Finished processes:

After further two reductions (during which agent r
sends a question available(D) to agent b), the system
yields the following (Fig. 9(b)).

Agent r returned to Root_caller
the new answer:
(rsv(R,L,D)@r, p(6),
{R=tr, L=[a,b], D:{1,2,3}}, nil)

Answer entries:
(av(D)@a, os, {true}, {2})
(av(D)@a, d(1), {D:{1,2,3}}, {5,6})
(av(D)@b, os, {true}, {5})
(av(D)@b, d(2), {D:{1,2,3}}, {6})
Ordinary processes:
(2, {L=[a,b], R=tr}, {av(D)@b},
{(av(D)@a, os)}, {})
(3, {L=[a], R=sr}, {av(D)@a, unav(D)@b},
{}, {})

9In the asked question av(D@r#2)@a, the variable D was re-
named into D@r#2 to avoid a conflict of the variable name.

(4, {L=[b], R=sr}, {unav(D)@a, av(D)@b},
{}, {})

(5, {L=[a,b], R=tr, D:{1,2,3}}, {},
{(av(D)@b, os)}, {(av(D)@a, d(1))})

Finished processes:
(6, {L=[a,b], R=tr, D:{1,2,3},

D:{1,2,3}}, {}, {},
{(av(D)@a, d(1)), (av(D)@b, d(2))})

Now we have the first answer R = twin_room,
L = [a, b], and D ∈ {1, 2, 3}. Note that it is a tentative
answer speculatively computed from the default rules
of r.

Since agent r sent available(D) to its child agent a,
it soon returns an answer that it speculatively computes
from its default “free(D)@a′ ← D ∈ {1, 2} | |”.

Agent a returned to r the new answer:
(av(D@r#2)@a, p(3), {D@r#2:{1,2}}, nil)

Then agent r returns a revised answer R = twin_
room, L = [a, b] and D ∈ {1, 2} (Fig. 9(c)).

Agent r returned to Root_caller
the revised answer:
(rsv(R,L,D)@r, p(7),
{R=tr, L=[a,b], D:{1,2}}, p(6))

Similarly, agent b returns an answer that it computes
from its default rule “free(D)@b′ ← D ∈ {2} | |”.

Agent b returned to r the new answer:
(av(D@r#2)@b, p(3), {D@r#2:{2}}, nil)

Then agent r returns a further revised answer R =
twin_room, L = [a, b] and D ∈ {2} (Fig. 9(d)).

Agent r returned to Root_caller
the revised answer:
(rsv(R,L,D)@r, p(9),
{R=tr, L=[a,b], D:{2}}, p(7))

Next, switch our attention to the ordinary process 4
of agent r. Its reduction causes r to send a question
unavailable(D) to agent a (Fig. 9(e)).

Agent r asked: unav(D@r#4)@a

Then agent a returns an answer that it computes
from its default rule “busy(D)@a′ ← D ∈ {3} | |”
(Fig. 9(f)).

Agent a returned to r the new answer:
(unav(D@r#4)@a, p(6), {D@r#4:{3}}, nil)

Next, suppose that the external agent b′ answers
free(D)@b′ by returning D ∈ {2, 3} to agent b. Then
b returns a new answer to agent r after computing the
difference.

Agent b returned to r the new answer:
(av(D@r#2)@b, p(5), {D@r#2:{3}}, nil)

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 385

Then r returns an answer R = single_room, L = [b]
and D ∈ {3} (Fig. 9(g)).

Agent r returned to Root_caller
the new answer:
(rsv(R,L,D)@r, p(13),
{R=sr, L=[b], D:{3}}, nil)

Note that this is not a revised answer but a new an-
swer, which means that the answer R = twin_room,
L = [a, b] and D ∈ {2} is still valid.

As illustrated in this example, speculative constraint
processing for hierarchical multi-agent systems com-
putes tentative solutions as soon as possible by using
default rules associated with the internal agents. If such
default rules are overridden by answers returned by
child agents, previous answers are replaced with nar-
rower revised ones, or new answers are incrementally
added.

7. Discussion

Speculative constraint processing requires appropri-
ate default rules to obtain good results based on spec-
ulative computation. Therefore, its success relies on
problem domains to which it is applied. For example,
the problems of room reservation and meeting schedul-
ing are promising examples for speculative constraint
processing, since people usually have regular sched-
ules that are appropriate to default rules. However,
even if completely inappropriate default rules are spec-
ified, speculative constraint processing gives perfor-
mance that is comparable to non-speculative compu-
tation. This is because, in such a case, the fact arrival
phase immediately suspends the active processes based
on the inappropriate default rules and then resumes the
previously suspended processes that have been waiting
for the answers. Note that this is similar to the case of
non-speculative computation because it must wait for
answers without proceeding its computation process.
Also, it should be noted that, when a returned answer
does not entail but is consistent with the default rule,
speculative constraint processing can immediately out-
put corrected partial results.

As described in Section 1, speculative constraint
processing handles more expressive questions than our
previous speculative computation frameworks [16,18,
19] that allow only yes/no questions. However, spec-
ulative constraint processing currently does not sup-
port negation that is supported in the previous yes/no-
type frameworks; in this sense, speculative constraint

processing is not a complete generalization of the
yes/no-type frameworks. Since negation is often use-
ful for modeling problems, it is desirable to further ex-
tend speculative constraint processing to handle nega-
tion.

8. Conclusions and future work

In this paper, we proposed a logical framework
for speculative constraint processing for hierarchi-
cal multi-agent systems. We provided an operational
model for our new framework that we constructed by
extending our previous operational model for master–
slave multi-agent systems. We also presented a pro-
totype implementation of the operational model that
performs pseudo-concurrent execution of agents in a
serialized manner.

Our future work includes a multi-threaded imple-
mentation of our new framework. We have already de-
veloped a multi-threaded implementation of our pre-
vious framework for master–slave multi-agent systems
[11]. We will extend the existing multi-threaded imple-
mentation to cover hierarchical multi-agent systems.
The resulting multi-threaded implementation will en-
able truly concurrent execution of agents in a distrib-
uted environment. We are also interested in supporting
negation in speculative constraint processing, since it
is useful for modeling various problems as discussed
in Section 7.

Appendix

Proof of Lemma 1. We prove this lemma by induction
on the number of steps for the execution of M .

Induction base. When a query Qinit@M is asked at
the initial step, a process P = 〈PID, true, {Qinit@M},
∅, ∅〉 is created and therefore this lemma holds.

Induction step. Assume that this lemma holds for
any execution with n steps.

Consider any execution with n + 1 steps. It is
straightforward to show that this lemma holds for the
process reduction phase.

Here we consider the case that the fact arrival phase
treats a new answer 〈Q@S, AID, Cp, nil〉. In this case,
there is no answer entry in the form 〈Q@S, AID, Cp,
UPS′ 〉.

Let 〈Q@S, d, Cd, UPSd〉 be any default answer en-
try and Pd be any ordinary process such that pid(Pd) ∈
UPSd. By the induction hypothesis, Pd satisfies this

386 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

lemma for some C ′ ′ and A(n)
Pd

; i.e., there is a sequence
of reductions “← | | Qinit@M”, . . . ,“← C1 | |{Q@S} ∪
GS”, “← C1 ∧ Cd | | GS”, . . . ,“← C1 ∧ Cd ∧ C2 | |
{Q′@S′ | 〈Q′@S′, os 〉 ∈ wa(Pd) ∨ 〈Q′@S′, on 〉 ∈
wa(Pd)} ∪ gs(Pd)” w.r.t. msres(M , 〈H , F 〉) and A(n)

Pd

such that πvar(Qinit)(pconst(Pd)) entails πvar(Qinit)(C1 ∧
Cd ∧C2), where C1 and C2 are the constraints obtained
before and after processing Q@S, respectively.

Assume that pconst(Pd) ∧ Cp is consistent. Then a
process P = 〈PID, pconst(Pd) ∧ Cp, gs(Pd), wa(Pd) \
{〈Q@S, d〉}, (aa(Pd)\{〈Q@S, d〉}) ∪ {〈Q@S, AID〉}〉
is created and we have A(n+1)

P = (A(n)
Pd

\ {“Q@S ←
Cd| |”}) ∪ {“Q@S ← Cp| |”}. Then we can con-
sider the sequence of reductions “← | | Qinit@M”, . . . ,
“← C1 | |{Q@S} ∪ GS”, “← C1 ∧ Cp | | GS”, . . . ,
“← C1 ∧ Cp ∧ C2 | |{Q′@S′ | 〈Q′@S′, os 〉 ∈ wa(P) ∨
〈Q′@S′, on 〉 ∈ wa(P)} ∪ gs(P)” w.r.t. msres(M ,
〈H , F 〉) and A(n+1)

P . Then πvar(Qinit)(pconst(P)) en-
tails πvar(Qinit)(C1 ∧ Cp ∧ C2) since pconst(P) =
Cp ∧ pconst(Pd) and πvar(Qinit)(pconst(Pd)) entails
πvar(Qinit)(C1 ∧ Cd ∧ C2). Thus this lemma holds for P .

If there exists no ordinary answer entry Ap such
that aq(Ap) = Q@S, this step changes Pd by set-
ting wa(Pd) := wa(Pd) ∪ {〈Q@S, d〉} and aa(Pd) :=
aa(Pd) \ {〈Q@S, d〉}, and hence we have A(n+1)

Pd
=

A(n)
Pd

\ {“Q@S ← Cd| |”}. Otherwise, Pd is unchanged
since 〈Q@S, d〉 ∈ wa(Pd) and 〈Q@S, d〉 /∈ aa(Pd)
hold for the original Pd, and thus we have A(n+1)

Pd
=

A(n)
Pd

. Therefore, this lemma is kept satisfied for Pd.

Next, let Ao be any original answer entry and Po

be any ordinary process such that aq(Ao) = Q@S

and pid(Po) ∈ ups(Ao). By the induction hypothesis,
Po satisfies this lemma for some C ′ ′ and A(n)

Po
; i.e.,

there is a sequence of reductions “← | | Qinit@M”, . . . ,
“← C ′ ′ | |{Q@S} ∪ gs(Po)” w.r.t. msres(M , 〈H , F 〉)
and A(n)

Po
such that πvar(Qinit)(pconst(Po)) entails

πvar(Qinit)(C
′ ′). Since this step does not change Po, this

lemma is kept satisfied for Po.
Assume that aid(Ao) = os and pconst(Po) ∧ Cp ∧

(
∧

“Q@S←Cd | |”∈ΔM
¬Cd) is consistent. Then a process

P = 〈PID, pconst(Po) ∧ Cp ∧
∧

“Q@S←Cd | |”∈ΔM
¬Cd,

gs(Po), wa(Po) \ {〈Q@S, os 〉}, aa(Po) ∪ {〈Q@S,
AID〉}〉 is created, and we have A(n+1)

P = A(n)
Po

∪
{“Q@S ← Cp| |”}. Then we can consider the sequence
of reductions “← | | Qinit@M”, . . . ,“← C ′ ′ | |{Q@S}∪
gs(P)”, “← C ′ ′ ∧ Cp | | gs(P)” w.r.t. msres(M , 〈H ,
F 〉) and A(n+1)

P . Then πvar(Qinit)(pconst(P)) entails

πvar(Qinit)(C
′ ′ ∧ Cp) since

pconst(P) = pconst(Po) ∧ Cp

∧
∧

“Q@S←Cd | |”∈ΔM

¬Cd

and πvar(Qinit)(pconst(Po)) entails πvar(Qinit)(C
′ ′).

Therefore, this lemma holds for P . Also, if aid(Ao) =
on, we can similarly show that this lemma holds for the
created process.

This lemma is kept satisfied for the other processes
that are not handled in this case, since those processes
and their most recent answer sets are unchanged.
Therefore, this lemma holds for any processes after
processing a new answer in the fact arrival phase.

Similarly, we can show that this lemma holds for the
case that the fact arrival phase treats a revised answer.
Thus this lemma holds in all the cases. �

Proof of Lemma 2. We prove this lemma by induction
on the number of steps for the execution of M .

Induction base. When Qinit@M is asked at the ini-
tial step, a process P = 〈PID, true, {Qinit@M}, ∅, ∅〉
is created, and therefore this lemma holds.

Induction step. Assume that this lemma holds for
any execution with n steps.

Consider any execution with n + 1 steps. We
can construct a “reduced” execution by skipping the
last process reduction phase while keeping the other
process reduction phases and all the fact arrival phases.
Note that this reduced execution consists of n steps and
has the same set of most recent answers as the original
execution that consists of n + 1 steps. Then we have
the following cases: (A) the skipped process reduc-
tion phase treats a non-askable atom; (B) the skipped
process reduction phase treats an askable atom Q@S.

Consider case (A). By the induction hypothesis and
the completeness of the CLP scheme, it is straightfor-
ward to show that this lemma holds.

Next, consider case (B). If there exists an active
process P ′ of M such that P ′ remains both in the
original and reduced executions, and that θ is derived
from P ′, this lemma clearly holds. Next, assume that
there exists no such active process P ′ of M . Let P
be the process in the original execution for which the
process reduction phase is skipped in the reduced exe-
cution. We assume for simplicity that 〈Q@S, AID〉 /∈
aa(P) for any AID, and also that there exists no ordi-
nary answer entry Ap such that aq(Ap) = Q@S. Con-
sider any sequence of active processes successively de-

H. Hosobe et al. / Speculative constraint processing for hierarchical agents 387

rived from P in the original execution by using a de-
fault rule “Q@S← Ci

d| |”. Since the skipped process
reduction phase is the last one, these processes ex-
cept the first one come from the remaining fact arrival
phases. Let Ci

d, C0
1 , . . . , C0

l0
, C1

p, C1
1 , . . . , C1

l1
, C2

p , C2
1 ,

. . . , C2
l2

, . . . , Cm
p , Cm

1 , . . . , Cm
lm

be the constraints suc-
cessively added in this order to these processes, where
C1

p is a new answer w.r.t. Q@S, each Cj
p (2 �

j � m) is a revised answer whose previous an-
swer is C

j−1
p , and each C

j
k (0 � j � m and

1 � k � lj) is an answer w.r.t. another askable
atom than Q@S. By contrast, in the reduced execution,
because of the skipped process reduction phase, the
constraints C0

1 , . . . , C0
l0

, C1
1 , . . . , C1

l1
, C2

1 , . . . , C2
l2

, . . . ,
Cm

1 , . . . , Cm
lm

are added, and Q@S remains in the goal
of the resulting process. By the induction hypothe-
sis, θ must be derived from such a resulting process
in the reduced execution. If θ is derived from the
corresponding process in the original execution that
uses some Ci

d, this lemma holds. Otherwise, we can
choose an alternative sequence of active processes suc-
cessively derived from P that use the following con-
straints: C0

1 , . . . , C0
l0

, C1
p ∧ (

∧
“Q@S←Ci

d
| |”∈ΔM

¬Ci
d),

C1
1 , . . . , C1

l1
, C2

p, C2
1 , . . . , C2

l2
, . . . , Cm

p , Cm
1 , . . . , Cm

lm
.

Thus θ is derived from the resulting process in the orig-
inal execution. Therefore, this lemma holds. �

Proof of Theorem 1. We prove this theorem by in-
duction on the tree structure of 〈H , F 〉. For this pur-
pose, we introduce hierarchical restrictions of 〈H , F 〉.
Let F = {〈ΔM ′ , PM ′ 〉}M ′ ∈int(H). The hierarchical re-
striction of 〈H , F 〉 to an agent M ∈ int(H), written
hres(M , 〈H , F 〉), is defined as the multi-agent system
〈HM , FM 〉, where HM is the agent hierarchy consist-
ing of M as the root and all the descendant agents
of M in H , and FM = {〈ΔM ′ , PM ′ 〉}M ′ ∈int(HM).
We also define height(HM) as the height of HM , i.e.,
the number of the agents along the longest path from
the root to an external agent of HM . Below we prove
the proposition (∗) that, for any M ∈ int(H) and
any active finished process PM of M , there exists
a derivation “← | | QPM

@M”, . . . ,“← CPM
| |” w.r.t.

〈HM , FM 〉 = hres(M , 〈H , F 〉) and AH such that
πvar(QPM

)(pconst(PM)) entails πvar(QPM
)(CPM

).
Induction base. Consider any M ∈ int(H) such that

height(HM) = 2 (which is the minimum). Since all
the children of M are external agents, (∗) holds by
Lemma 1.

Induction step. Assume that, for any M ∈ int(H)
such that height(HM) � n, (∗) holds. Consider any

M ∈ int(H) such that height(HM) = n + 1. Let PM

be an arbitrary active finished process of M . Then, for
any 〈Q@S, AID〉 ∈ aa(PM), we have the following
cases: (A) S ∈ ext(H); (B) S ∈ int(H).

Consider case (A). There exists an answer entry
〈Q@S, AID, CS , UPS〉 for M . If it is an ordinary an-
swer entry, there exists a most recent answer “Q@S ←
CS | |” in AH ; otherwise, it is a default answer entry,
and there exists a default rule “Q@S ← CS | |” in ΔM .
Thus “Q@S ← CS | |” is in bel(AH , 〈HM , FM 〉).

Next, consider case (B). There exist an ordinary an-
swer entry 〈Q@S, AID, CS , UPS〉 for M and an active
finished process PS of S such that AID = pid(PS) and
CS = pconst(PS). By the induction hypothesis, there
exists a derivation “← | | Q@S”, . . . ,“← CPS

| |” w.r.t.
hres(S, 〈H , F 〉) and AH such that πvar(Q)(CS) entails
πvar(Q)(CPS

).
Let “← | | QPM

@M” be the initial goal of PM .
By Lemma 1, there exists a sequence of reductions
“← | | QPM

@M”, . . . ,“← C ′ ′ | |” w.r.t. msres(M , 〈H ,
F 〉) and APM

such that πvar(QPM
)(pconst(PM)) entails

πvar(QPM
)(C

′ ′), where APM
= {“Q@S ← C ′ | |” |

there exists an answer entry 〈Q@S, AID, C ′, UPS〉
for M such that 〈Q@S, AID〉 ∈ aa(PM)}. Then,
replacing each reduction using “Q@S ← CS | |”
for S ∈ int(H) with the same reductions as in
“← | | Q@S”, . . . ,“← CPS

| |” above, we can construct
a derivation “← | | QPM

@M”, . . . ,“← CPM
| |” w.r.t.

〈HM , FM 〉 and AH . Also, since πvar(Q)(CS) entails
πvar(Q)(CPS

) for any CS , πvar(QPM
)(pconst(PM)) en-

tails πvar(QPM
)(CPM

). �

Proof of Theorem 2. We prove this theorem by in-
duction on the tree structure of 〈H , F 〉. As in the
proof of Theorem 1, we use hierarchical restrictions of
〈H , F 〉 and their heights. Below we prove the propo-
sition (∗) that, for any M ∈ int(H) and any val-
uation θM of var(QM) that satisfies the answer ob-
tained from some derivation of “← | | QM @M” w.r.t.
〈HM , FM 〉 = hres(M , 〈H , F 〉) and AH , there exists
an active finished process PM of M such that θM sat-
isfies pconst(PM).

Induction base. Consider any M ∈ int(H) such that
height(HM) = 2. Since all the children of M are ex-
ternal agents, (∗) holds by Lemma 2.

Induction step. Assume that, for any M ∈ int(H)
such that height(HM) � n, (∗) holds. Consider any
M ∈ int(H) such that height(HM) = n + 1. Define
AM as in Lemma 2. Let θM be an arbitrary valua-
tion as defined for (∗). Then, for any “Q@S ← CS | |”

388 H. Hosobe et al. / Speculative constraint processing for hierarchical agents

with S ∈ chi(M , H) that is used in the derivation of
“← | | QM @M”, we have the following cases: (A) S ∈
ext(H); (B) S ∈ int(H).

Consider case (A). Then any “Q@S ← CS | |” in
AH is also in AM .

Next, consider case (B). By the induction hypoth-
esis, for any valuation θS of var(Q) that satisfies the
answer obtained from some derivation of “Q@S ←
CS | |”, there exists an active finished process PS of S
such that θS satisfies pconst(PS). Because of the hier-
archical stability, “Q@S ← pconst(PS)| |” is in AM .

Thus we can construct a derivation “← | | QM @M”,
. . . ,“← CM | |” w.r.t. msres(M , 〈H , F 〉) and AM such
that θM satisfies CM . Then, by Lemma 2, there ex-
ists an active finished process PM of M such that θM

satisfies pconst(PM). �

Acknowledgement

This work was supported in part by the Japan So-
ciety for the Promotion of Science, Grant-in-Aid for
Scientific Research (B), 19300053.

References

[1] F.W. Burton, Speculative computation, parallelism, and func-
tional programming, IEEE Trans. Comput. 34(12) (1985),
1190–1193.

[2] M. Ceberio, H. Hosobe and K. Satoh, Speculative constraint
processing with iterative revision for disjunctive answers, in:
Post-proc. Intl. Workshop on Computational Logic in Multi-
Agent Systems (CLIMA-VI), LNAI, Vol. 3900, 2006, pp. 340–
357.

[3] S. Gregory, Experiments with speculative parallelism in Par-
log, in: Proc. Intl. Symp. on Logic Programming (ILPS’93),
1993, pp. 370–387.

[4] A.B. Hassine, X. Defago and T.B. Ho, Agent-based ap-
proach to dynamic meeting scheduling problems, in: Proc. Intl.
Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS2004), 2004, pp. 1132–1139.

[5] H. Hosobe, K. Satoh and P. Codognet, Agent-based speculative
constraint processing, IEICE Trans. Inf. Syst. E90-D(9) (2007),
1354–1362.

[6] K. Inoue and K. Iwanuma, Speculative computation through
consequence-finding in multi-agent environments, Ann. Math.
Artif. Intell. 42(1–3) (2004), 255–291.

[7] J. Jaffar, M. Maher, K. Marriott and P. Stuckey, The semantics
of constraint logic programs, J. Log. Program. 37(1–3) (1998),
1–46.

[8] S. Janson and S. Haridi, Programming paradigms of the An-
dorra Kernel Language, in: Proc. Intl. Symp. on Logic Pro-
gramming (ISLP’91), 1991, pp. 167–183.

[9] A.C. Kakas, R.A. Kowalski and F. Toni, The role of abduction
in logic programming, in: Handbook of Logic in Artificial In-
telligence and Logic Programming, Vol. 5, Oxford Univ. Press,
Oxford, UK, 2006, pp. 235–324.

[10] R. Kowalski and F. Sadri, From logic programming towards
multi-agent systems, Ann. Math. Artif. Intell. 25(3,4) (1999),
391–419.

[11] J. Ma, A. Russo, K. Broda, H. Hosobe and K. Satoh, On the
implementation of speculative constraint processing, in: Proc.
Intl. Workshop on Computational Logic in Multi-Agent Sys-
tems (CLIMA-X), 2009, pp. 105–120.

[12] P.J. Modi, W.-M. Shen, M. Tambe and M. Yokoo, Adopt:
Asynchronous distributed constraint optimization with quality
guarantees, Artif. Intell. 161(1,2) (2005), 149–180.

[13] L. Morgenstern, A formal theory of multiple agent non-
monotonic reasoning, in: Proc. Natl. Conf. on Artificial Intelli-
gence (AAAI-90), 1990, pp. 538–544.

[14] R. Reiter, A logic for default reasoning, Artif. Intell. 13(1,2)
(1980), 81–132.

[15] C. Sakama, K. Inoue, K. Iwanuma and K. Satoh, A defeasi-
ble reasoning system in multi-agent environments, in: Proc.
Intl. Workshop on Computational Logic in Multi-Agent Sys-
tems (CLIMA-00), 2000, pp. 1–6.

[16] K. Satoh, Speculative computation and abduction for an au-
tonomous agent, IEICE Trans. Inf. Syst. E88-D(9) (2005),
2031–2038.

[17] K. Satoh, P. Codognet and H. Hosobe, Speculative constraint
processing in multi-agent systems, in: Proc. Pac. Rim Intl.
Workshop on Multi-Agents (PRIMA2003), LNAI, Vol. 2891,
2003, pp. 133–144.

[18] K. Satoh, K. Inoue, K. Iwanuma and C. Sakama, Specula-
tive computation by abduction under incomplete communica-
tion environments, in: Proc. Intl. Conf. on Multi-Agent Systems
(ICMAS2000), 2000, pp. 263–270.

[19] K. Satoh and K. Yamamoto, Speculative computation with
multi-agent belief revision, in: Proc. Intl. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS2002),
2002, pp. 897–904.

[20] G. Smolka, The Oz programming model, in: Computer Science
Today: Recent Trends and Developments, LNCS, Vol. 1000,
1995, pp. 324–343.

[21] R.J. Wallace and E.C. Freuder, Constraint-based reasoning and
privacy/efficiency tradeoffs in multi-agent problem solving,
Artif. Intell. 161(1,2) (2005), 209–227.

[22] M. Yokoo, E.H. Durfee, T. Ishida and K. Kuwabara, The dis-
tributed constraint satisfaction problem: Formalization and al-
gorithms, IEEE Trans. Knowl. Data Eng. 10(5) (1998), 673–
685.

Copyright of AI Communications is the property of IOS Press and its content may not be copied or emailed to

multiple sites or posted to a listserv without the copyright holder's express written permission. However, users

may print, download, or email articles for individual use.

