
Determining and Verifying Good Policies for

Cloned Teleo-Reactive Agents

Krysia Broda and Christopher John Hogger

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, UK

kb@doc.ic.ac.uk, cjh@doc.ic.ac.uk

Abstract. This paper presents a new method for finding and evalu-
ating policies for cloned multiple teleo-reactive agents operating in the
context of exogenous events. The method is based upon discounted re-
ward evaluation of policy restricted situation graphs. A teleo-reactive
agent behaves autonomously under the control of a policy and is pre-
disposed by that policy to achieve some goal. Our framework plans for a
set of conjoint agents by focusing upon one representative of them and
introduces generic situations in order to reduce the number of policies.
Simulation results reported here indicate that our method affords a good
degree of predictive power and scalability.

1 Introduction

This paper examines the problem of designing optimal or near-optimal policies
for a group of teleo-reactive (TR) agents operating in the context of exogenous

events. From the viewpoint of any individual agent an exogenous event is any
change in the world not caused through its own actions. The characteristics of
a TR agent are, typically, that it behaves autonomously under the control of
a stored program or policy, that the policy alone instructs it how to react to
perceptions of the world, that it possesses very limited computing resources for
program storage and interpretation and that it is predisposed by the policy to
achieve some goal. The main features of TR agents were introduced in [17] and
further developed in [18]. We make two key assumptions about an agent: that
it has (i) little or no access to cognitive resources, such as beliefs or reasoning
systems, and (ii) only partial observational capability, in that its perceptions
may not fully capture the whole environmental state. Such agents could find
uses in those applications, for instance nano-medicine or remote exploration,
where physical or economic constraints might preclude such access. Informally,
a good policy is one which disposes an agent to perform well in pursuit of a
defined goal whatever state it is currently in.

A reactive agent responding only to its current perception of the state can be
modelled naturally by a Markov Decision Process (MDP). When that perception
captures less than the entirety of the state the agent may be modelled using the
framework of Partially Observable MDPs (POMDPs) [6, 10, 16]. Seeking good



policies for a given agent within the POMDP framework typically requires, in
order to compensate for the lack of full state information, that the actual state
be estimated using a history of previous events. When the history is owed only

to actions of known agents, it is accurately representable. However, it is not
accurately representable if arbitrary exogenous events can occur, which is exactly
the case in which we, by contrast, are interested. Our approach is somewhat
similar in motivation to that of [7], in that we plan for a set of conjoint agents
by focusing upon some representative subset of them, or of [9], in that we focus
on changes that affect a particular agent.

Our position must also be distinguished from that taken by many in the
multi-agent community who equip their agents with complex theories about the
environment and elaborate communication mechanisms, because of our focus on
minimally equipped agents. Nevertheless, the problem remains of dealing with
an agent having limited perception.

Choosing a good policy for a given goal is generally difficult. Even simple
agents and worlds can offer huge numbers of policies to consider. Most ways of
designing TR-policies are learning-based, as in [1] and [2], which apply inductive
logic programming to determine advantageous associations between actions and
consequences. Other learning schemes for TR-planning are [11], [15] and [20].

The core concepts in our approach, first proposed in [3], are as follows. The
world in which the agent operates has a total set O of possible states. The
agent is presumed to possess perceptors through which it may partially perceive
these states; the set of all its possible perceptions is denoted by P . The agent
is also presumed capable of certain actions which form a set A. In any state
o ∈ O, the agent’s possible perceptions form some subset P (o) ⊆ P, and in
response to any perception p ∈ P (o) the agent’s possible actions form some
subset A(p) ⊆ A. A policy for the agent is any total function f :P → A satisfying
∀p ∈ P , f(p) ∈ A(p). The number of possible policies is the product of the
cardinalities of the A(p) sets for all p ∈ P . A situation for the agent is any pair
(o, p) for which o ∈ O and p ∈ P (o). We denote by S the set of all possible
situations, one or more of which may be designated goal situations. Associated
with the agent is a unique unrestricted situation graph G in which each node is a
situation. This graph has an arc labelled by an action a directed from node (o, p)
to node (o′, p′) in every case that a ∈ A(p) and execution of action a could take
the state from o to o′ and the agent’s perception from p to p′. The possibilities
that o = o′ and/or p = p′ are not inherently excluded. The policies are evaluated
using discounted-reward principles [10] applied to the situation graphs.

A key feature of this approach is that the graph for the agent can repre-
sent, besides the effects of its own actions, the effects of exogenous actions,
whether enacted by other agents or by other indeterminate agencies. This ob-
viates analysing comprehensively the explicit combinations of all the agents’
behaviours. This treatment is one contribution to the control of scalability and
is in contrast to that presented in [19], who explicate entirely the joint per-
ceptions of the agents. Scalability can be further controlled by abstraction, by
way of replacing sets of concrete situations by abstract generic situations (see



Section 7). Situation graphs have also been employed to represent and exploit
inter-agent communication [4].

The framework is not restricted to dealing with agents inhabiting physical
worlds. It may instead be used as a particular kind of program development
paradigm. In this context the world operated upon consists of data structures
(or knowledge representations), whilst the agents serve as algorithms acting upon
those structures. For instance, the world may consist of an array of values and
each agent may be capable of transforming some region of that array within
its prescribed range of perception. We have applied our framework successfully
to simple cases of sorting and tiling problems, producing optimal agent poli-
cies which, under the control of a fixed governing meta-program, enact efficient
strategies for solving those problems. Similar examples were investigated in [12],
in which the authors report learning various “unusual algorithms” for sorting an
array.

This paper demonstrates the use of situation graphs to predict optimal or
near-optimal policies for groups of cloned TR-agents, and assesses their effec-
tiveness on the basis of simulation results. The main contribution is to show
that useful designs for agent clones can be obtained by analysing a single agent
acting in the context of events instigated by others. Section 2 illustrates how TR-
scenarios are formulated and Section 3 discusses the evaluation and testing of
policies. In Section 4 we describe the treatment of multi-agent contexts and some
case-studies are presented in Section 5. Section 6 uses the results of those stud-
ies to discuss some ramifications of the design method and Section 7 discusses
an approach to abstractions. Finally, Section 8 summarizes our conclusions and
compares our work with other approaches.

2 An Illustration

The above ideas are now illustrated using BlocksWorld for a single agent case.
Of course, BlocksWorld is just a generic exemplar of a wide range of state tran-
sition systems. In BlocksWorld the world comprises a surface and a number of
identical blocks. A state is an arrangement of the blocks such that some are
stacked in towers on the surface whilst others are each held by some agent, and
is representable by a list of the towers’ heights. Suppose there are just 2 blocks
and one agent which can, at any instant, see just one thing – the surface, a
1-tower or a 2-tower, denoted by s0, s1 and s2 respectively. Further, it can sense
whether it is holding a block or not doing so, denoted by h and nh respectively.
Its perception set P then comprises just 5 legal pairings of “seeing” status and
“holding” status. At any instant the agent performs whichever action a ∈ A
corresponds, according to its policy, to its current perception p ∈ P ; this be-
haviour is assumed to be durative – the action cannot change while perception p
persists. The action set A in BlocksWorld is {k, l, w}. In a k-action (“pick”) the
agent removes the top block from a tower it is seeing, and afterwards is hold-
ing that block and seeing the resulting tower (or the surface, as appropriate).
In an l-action (“place”) the agent places a block it is holding upon what it is



seeing (the surface or some tower), and afterwards is not holding a block and is
seeing the resulting tower. In a w-action (“wander”) the agent merely updates
its perception without altering the state. Figure 1 shows these aspects of the
formulation, labelling the states 1 . . . 3 and the perceptions a . . . e.

(a) states and perceptions

o P (o)

1 [1, 1] {a, b}
2 [1] {d, e}
3 [2] {a, c}

(b) perceptions and actions

p A(p)

a [s0, nh] {w}
b [s1, nh] {k, w}
c [s2, nh] {k, w}
d [s0, h] {l, w}
e [s1, h] {l, w}

Fig. 1. Formulation of the 2-block world

Figure 2a shows the unrestricted graph G, where each node (o, p) is abbre-
viated to op. There are 16 policies, one being

f = {a → w, b → w, c → w, d → w, e → l}

To adopt this policy is to eliminate certain arcs from G to leave the f -restricted

graph Gf shown in Figure 2b. Gf gives the transitions the agent could make
under policy f . In this case each action is deterministic. More generally, at least
some actions are non-deterministic. For instance, in the 4 block world, shown
in Figure 4, in the situation ([1, 3], [s0, nh]) (i.e. 3i), if the policy specified the
w action for perception i, then the agent could afterwards be seeing either a 1-
tower (in situation 3d) or a 2-tower (in situation 3f). For a given goal, choosing f

(a) 1a 1b 2d 2e 3c 3a
W

L
W

L
W

KK

(b) 1a 1b 2d 2e 3c 3a
WLW W

Fig. 2. (a) Unrestricted graph G; (b) f -restricted graph Gf

partitions the set S of nodes in G into two disjoint subsets Tf and Nf called the
trough and non-trough respectively. Tf comprises exactly those nodes from which
there is no path in Gf to the goal, and Nf comprises all others. Choosing, say, the
goal 3c in the example yields Tf = {1a, 1b} and Nf = {2d, 2e, 3c, 3a}. Here, no
arc in Gf is directed from Nf to Tf . When such an arc does exist, Gf is described
as NT -bridged. In that case an agent able in principle to reach the goal from some
initial node may traverse the bridge and thereafter be unable to reach the goal,



since no arc directed from Tf to Nf can exist. Define λ = 100|Nf |/|S|. Then for a
series of experiments choosing initial situations randomly, the agent’s predicted
success rate is the proportion of experiments for which the agent reaches the goal.
This is denoted by SRpre(f) and (as a percentage) is < λ if Gf is NT -bridged
but is otherwise exactly λ. For the example above SRpre(f) = 66.67%.

3 Predicting and Testing Policies

This section explains how policies are evaluated in a single-agent context. The
extension to the multi-agent context then follows in the next section.

The predicted value Vpre(f) of a policy f is the mean of the values of all
situations in Gf , assuming they are equally probable as initial ones. In case some
“initial situations” are known to be more likely than others they are weighted
accordingly. The value of a situation S should reflect the reward accumulated
by the agent in proceeding from S, favouring goal-reaching paths over others. If
S has immediate successor-set SS then its value V (S) can be measured by the
discounted-reward formula

V (S) = Σu∈SS(pu.(rwd(u) + γ.V (u))) (1)

where pu is the probability that from S the agent proceeds next to u, rwd(u) is
the reward it earns by doing so and γ is a discount factor such that 0 ≤ γ < 1. In
case S is a situation with no successors Equation 1 forces V (S) = 0. This is made
the case for a goal situation, reflecting that we are evaluating only the policy’s
ability to cause agents to reach the goal and not what may occur afterwards. In
case S is a situation with a single successor transition to itself (called a reflexive

arc), Equation 1 yields the value r/(1 − γ) for S. In addition, if every trough
node has a successor then Equation 1 yields the value r/(1−γ) for each one. In a
single-agent context equal probabilities are assigned to those arcs emergent from
S. We employ two fixed numbers R and r such that rwd(S) = R if S is a goal and
rwd(S) = r otherwise, where R � r. The situations’ values are therefore related
by a set of linear equations which, since γ < 1, have unique finite solutions and
so determine a finite value for Vpre(f). In general, choosing R � r ranks more
highly those policies well-disposed to the reaching of the goal, whilst γ controls
the separation (but not, in general, the ranks) of the policies’ values. A Policy

Predictor program is used to compute policy values by this method, and also to
compute (as above) the upper bounds (λ) on their success-rates.

We tested the quality of the Policy Predictor by using a Policy Simulator

program. Each run of the simulator takes an initial situation S and subsequently
drives the agent according to the given policy f . The simulated agent then
implicitly traverses some path in Gf from S. The run terminates when it either
reaches the goal or exceeds a prescribed bound B on the number of transitions
performed. As the path is traversed, the value V (S) is computed incrementally on
the same basis as used by the predictor. That is, in case the bound B is reached
the situation S approximates a trough node and is given the value r/(1 − γ);



otherwise, the value is

1 + γr + . . . + γkR = r(1 − γk)/(1 − γ) + Rγk

since all rewards have value r except the last, which has the value R. Equal
numbers of runs are executed for each initial situation S and the mean of all
observed V (S) values gives the observed policy value Vobs(f). The simulator also
reports the observed success rate SRobs(f).

The simulator supports both positionless and positional simulation modes.
For instance, in BlocksWorld, this means the former associates no positional data
to the agent or the towers, and so uses the same information about the problem
as the predictor. Thus, if the agent picks a block from the 2-tower in the state
[1, 1, 2], it is indeterminate as to which tower it will see afterwards in the new
state [1, 1, 1]. By contrast, the positional mode assigns discrete grid coordinates
to the agent and the towers, and exploits these to effect transitions in a manner
somewhat closer to physical reality through knowing precisely where the agent
is located and what it is seeing. In the positionless case the graph does not have
any reflexive wanders, since such arcs would not correspond to any physically
meaningful action. On the other hand, they are included in the positional case
to represent wandering from one place to another. In this paper there are results
for both kinds of simulation, all using parameter values R = 100, r = −1 and
γ = 0.9.

To visualize the correlation of predictions with test outcomes for a set F of
n policies, those policies’ observed values are charted against the ranks of their
predicted values. Overall predictive quality is reflected by the extent to which the
chart exhibits a monotonically decreasing profile. A precise measure of this can
be computed as the Kendall rank-correlation coefficient τF for F [21], as follows.
Let (f, g) be any pair of distinct policies in F satisfying Vpre(f) ≤ Vpre(g). This
pair is said to be concordant if Vobs(f) ≤ Vobs(g), but is otherwise discordant.
Then τF = 2(C − D)/n(n − 1) where C and D are the numbers of concordant
pairs and discordant pairs, respectively, in F × F . Its least possible value is -1
and its greatest is +1. It is convenient to map it to a percentage scale by defining
QF = 0% when they disagree maximally.

Figure 3 shows the chart for the 2-block example above, choosing the goal as
(3, c), i.e. “build and see a 2-tower”. Observed policy values are measured along
the vertical axis, and predicted ranks (here, from 1 to 16) along the horizontal
one. Arcs emergent from (3, c) were suppressed from G to mirror the fact that the
simulator terminates any run that reaches a goal. For each policy the simulator
executed 1002 runs with B = 100. The chart is perfectly monotonic and QF =
100%. The optimal policy is {a → w, b → k, c → w, d → w, e → l}, which
picks a block only from a 1-tower and places a block only upon a 1-tower. Its
success rate is 100% and observed policy value is 73.05%.

4 Policies for Multiple Agents

Whether or not it is useful to employ multiple agents in the pursuit of a goal
depends upon the nature of the world and of the agents’ interactions with the



0 .0 0

2 0 .0 0

4 0 .0 0

6 0 .0 0

8 0 .0 0

1 3 5 72 4 6 9 1 2 1 6

Fig. 3. Policy ranking chart for building a 2-tower

world and with each other. With limited perceptions, incognizance of the goal
and lack of communication, simple TR-agents of the kind we have considered
may cooperate advantageously only by serendipity. Predicting accurately the be-
haviour of multiple agents presents not only analytical difficulties, in attempting
to assess the overall impact of their interactions, but also problems of scale – for
just a modest case of a 4-block world with 2 agents there are potentially more
than 13,000 policies to consider.

This section explains how a situation graph focusing upon one agent, termed
“self”, can express the effects of other agents acting in concert with it. The
key question is whether such a graph enables prediction of good policies for the
combined agents without requiring explicit analysis of all the combinations of
the situations they occupy.

For this purpose we introduce a special domain-independent action named x

that all agents possess in their A sets. So for BlocksWorld A is now {k, l, w, x}.
In any situation graph an x-arc directed from (o, p) to (o′, p′) signifies that, from
the viewpoint of self, the state transition from o to o′ is effected exogenously by
some other agent(s). So, when self’s policy prescribes an x-action for perception
p, this is interpreted operationally as requiring self to “wait” (that is, to become
inactive) until its situation is updated exogenously to (o′, p′). On the other hand,
when self’s policy prescribes some action other than x self may alternatively
undergo an exogenous transition caused by the action of another agent. We call
this passive updating of self.

It may be desirable to filter out policies that, for some reason or other, are
unacceptable. For example, perhaps policies that would result in an agent never
reaching the goal or policies that would result in assured deadlock are of this
sort. We have considered a filter that reduces the chance of all agents waiting to
be passively updated. One way to do this is to arrange that whenever an agent’s
policy requires it to wait, at least one of the transitions it awaits should be
achievable in one step by some other agent. In the case that all agents have the
same policy f (i.e. are clones) the filter is called the clone-consistency principle

and operates as follows. Suppose f contains p → x and Gf has an x-arc from
(o, p) to (o′, p′). In case Gf also has an arc from (o, q) to (o′, q′) labeled by an
action a other than x or w and f contains q → a, then the x-transition is feasible
and the arc is enabled. That is, self could be passively updated by another agent
taking action a in situation (o, q). Any policy with rule p → x for which no x-arcs



from situation (o, p) are enabled is called clone inconsistent. In this case, if an
agent is in situation (o, p), then all agents would be stuck in state o, none able
to change the state, although some may be able to move between perceptions in
o. If all agents happened to be in (o, p) then true deadlock would ensue. Besides
reducing the possibility of deadlock this principle also reduces very significantly
the number of policies requiring to be examined.

In the example shown in Figure 4 a clone inconsistent policy is one which
includes the rules b → x and either h → x or h → w. Consider an agent waiting
in situation (10, b). Other agents could be in situations (10, h) or (10, b). In
neither of these situations can agent change the state, so the x transition to
(8, c) will never be taken. On the other hand, if the policy specified h → l, then
the transition between (10, h) and (8, c) is possible. However, deadlock is not
completely ruled out, since it might still happen that all agents were in situation
(10, b).

In the multiple-agent context the predictor assigns probabilities to the arcs
of a graph Gf as follows. Each node S = (o, p) has emergent arcs for the action
a that self performs according to the rule p → a in its policy f . If a = x then
these x-arcs are the only arcs emergent from S. The predictor counts, for each
one, the number of distinct ways its transition could arise, taking account of
the number of other agents that could effect it. Their probabilities are then
required to be proportional to these counts and to have sum Σx = 1. If a 6= x

then S additionally has arcs labeled a and these are assigned equal probabilities
having sum Σa. In this case Σa and Σx are made to satisfy Σa + Σx = 1 and
Σx = (n − 1)Σa where n is the total number of agents, reflecting the relative
likelihood in situation S of self being the agent selected to act or one of the
others being selected to act.

In the multiple-agent context the simulator effects transitions between multi-

situations, which generalise situations. A multi-situation is a physically possi-

ble assignment of the agents to situations that share a common state and dif-
fer (if at all) only in perceptions. An example of a multi-situation for the 2
agent example shown in Figure 4 is {(r1, (3, d)), (r2, (3, d))}. On the other hand,
{(r1, (3, d)), (r2, (3, a))} is not a multi-situation as it is physically impossible.

A run in a simulation begins with an initial multi-situation chosen randomly
from the set of all multi-situations distinguishable up to agent identity. Each
subsequent transition from a state o is made by randomly choosing some agent
and performing the action a prescribed by its policy, causing the state to become
some o′. If a ∈ {w, x} then o = o′ and the other active agents’ perceptions remain
unchanged. If (for BlocksWorld), a ∈ {k, l}, then o 6= o′ and the other active
agents are passively updated in a manner chosen randomly from all possible
ways of updating them to state o′, according to the distribution of probabilities
for action a taken in state o.

A transition from the multi-situation {(r1, (2, d)), (r2, (2, d))} (again for the
example shown in Figure 4) might be: r1 is selected, its policy (say) dictates
action k and the new multi-situation would be either {(r1, (6, h)), (r2, (6, i))}
or {(r1, (6, h)), (r2, (6, d))}. The situation change for r2 in this transition is an



example of a passive update corresponding to an x-arc from either (2, d) to (6, i)
or (2, d) to (6, d). The simulator chooses randomly from these two possibilities.

A run is terminated when any active agent in the group reaches a goal situa-
tion or when the simulation depth bound B is reached. The simulator’s successive
random choosing of which agent acts next provides an adequate approximation
to the more realistic scenario in which they would all be acting concurrently.
Owing to the physical constraint that there can be only one state of the world
at any instant, any set of concurrent actions that produced that state can be
serialized in one way or another to achieve the same outcome. The simulator’s
randomness effectively covers all such possible serializations.

An x-arc in the graph thus represents two notions at once. On the one hand
it represents the action of deliberate waiting in accordance with self’s own policy.
On the other hand it indicates how self can be impacted by the actions of others.

5 Multiple Clone Examples

o P (o)

1 [2,2] {e, i}
2 [1,1,1,1] {d, i}
3 [1,1,2] {d, e, i}
4 [1, 3] {d, f, i}
5 [4] {g, i}
6 [1,1,1] {a, d, h, i}
7 [1, 2] {a, b, d,

e, h, i}
8 [3] {c, f, h, i}
9 [1,1] {a, h}
10 [2] {b, h}

p A(p)

a [s1, h] {l, w, x}
b [s2, h] {l, w, x}
c [s3, h] {l, w, x}
d [s1, nh] {k, w, x}
e [s2, nh] {k, w, x}
f [s3, nh] {k, w, x}
g [s4, nh] {k, w, x}
h [s0, h] {l, w, x}
i [s0, nh] {w, x}

Fig. 4. Formulation of 4-block world with 2 agents

All the examples in this section are for a world having 4 blocks (see the
formulation in Figure 4), but with various goals and various numbers of cloned
agents. The total number of policies is 13,122 but only 810 are clone-consistent.
The simulator operated in positionless mode. Each of these 810 was given about
1000 simulation runs with B = 100, and the reward parameters used were R =
100, r = −1 and γ = 0.9.

Example 5.1: [Two agents building a 4-tower] The formulation is shown in
Figure 4. The unrestricted graph G has 30 nodes, among which is the goal (5, g).
Figure 5 shows a fragment of G (4d appears twice only for drawing convenience).
Even this fragment has some incident and emergent arcs omitted from the figure.



5i 5g 8c 8h 4d

8i 8f 10b 10h

4d 4f

W
L

W

XX X

W

K

L

K

W

X

X

W

Fig. 5. Graph G for 4-blocks and 2 agents

Figure 6 shows the policy ranking chart for the set F of the best 240 policies. For
these, QF is 87.90%. The best ones are ranked almost perfectly. The observed
optimal one, having predicted rank 2, is

{a → l, b → w, c → w, d → k, e → k, f → w, g → w, h → w, i → w}

This picks only from a tower of height < 3 and places upon any tower of height
< 4 (but not upon the surface).

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

Fig. 6. Policy ranking chart for Example 5.1

Example 5.2: [Three agents building a 4-tower] The graph G is now a little
larger, as there is an extra state. It has 36 nodes. Figure 7 charts the best 240
policies, for which QF is 89.94%. For the best 20 it is 85.79%. The observed
optimal policy is the same as for 2 agents, and is the predicted optimal one.

Example 5.3: [Four agents building a 4-tower] The graph G now has yet one
more state (in which every block is being held). It has 39 nodes. Figure 8 charts
the best 240 policies, for which QF is 90.02%. For the best 20 it is again 85.79%.
The observed optimal policy is the predicted optimal one, being

{a → l, b → l, c → l, d → k, e → w, f → w, g → w, h → w, i → w}



-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

Fig. 7. Policy ranking chart for Example 5.2

which picks only from a tower of height 1 and places only upon a tower of height
< 4. The best policy is slightly different from the three agent case as it is more
likely that agents are holding blocks and consequently that towers of height 2
are less likely. If all 4 agents were treated individually, although there would still
be 13122 policies, there would be several hundreds of situations, making each
policy evaluation substantially more complex.

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

Fig. 8. Policy ranking chart for Example 5.3

Example 5.4: [Two agents building a 2-tower and two 1-towers] Here, G is the
same graph as in Example 5.1. The goal is now (3, i), i.e. “build one 2-tower,
two 1-towers and see the surface”. This example is different from the previous
three, in that an agent cannot, using a single perception, recognise that the goal
has been reached. Figure 9 charts the best 240 policies, for which QF is only
78.61%. For the best 20, however, it is 90.53%. The three observed best policies

{a → w, b → w, c → w, d → w, e → w, f → k, g → k, h → l, i → w}

(or c → x or c → l) are the three predicted best ones, sharing the property that
they pick only from a tower of height > 2 and can place upon the surface. They
differ only in the case that an agent is holding a block and seeing a 3-tower
(perception c), and their values are virtually identical. In the case c → x the
agent waits for another agent to pick from the 3-tower. The case c → l is a
retrograde choice as there is no merit in building a 4-tower, and it may seem



surprising that it occurs in a high-value policy. However, the probability of a
3-tower actually arising is made very low by the other rules in these policies,
so that choosing c → l has no significant impact upon the policy value. The

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

Fig. 9. Policy ranking chart for Example 5.4

chart is more volatile in this example. This may be due in part to the looser
coupling of state and perception in the goal situation. In the 4-tower examples
the perception “seeing a 4-tower” implies that the state contains a 4-tower. In
the present example there is no single perception that implies that the goal
state has been achieved, so the agents have poorer goal-recognition. However,
the volatility in all these examples has other causes as well, as discussed in the
next section.

Though limited in scope, these case studies suggest that, in order to select
a good policy, the agent designer is unlikely to go far wrong in choosing from
the best 10% according to the predictor. The predictor is clearly imperfect,
and is inevitably so due to the approximations it makes, but unless the design
imperatives are very demanding it is sufficient to seek policies yielding reasonable
rather than optimal behaviour.

The option remains open to filter ostensibly high value policies using a more
sophisticated predictor, in order to eliminate those that are actually worse than
the basic one suggests. Such refinements can employ, for a small selection of
policies, analyses that would be impractical in scale if applied to all policies.

Example 5.5: [Two agents building four 1-towers] In this example the goal is
again not wholly perceivable by an agent, although it is more easily achievable
than the goal of Example 5.4. Figure 10 charts the best 240 of them, for which
QF is 87.60%. For the best 20 it is 90.00%. The two observed best policies

{a → w, b → w, c → (w or x), d → w, e → k, f → k, g → k, h → l, i → w}

are the two predicted best ones, sharing the property that they pick only from
a tower of height >1 and place only upon the surface. In this case (unlike that
in Example 5.4) the result is intuitive: the goal is clearly best achieved by the
agents demolishing every non-unit tower they find whilst leaving unit towers
undisturbed.



In these examples use of multiple clauses merely accelerates the achievement
of what a single agent could accomplish on its own. However, we intend to explore
domains in which communication, represented by appropriate perceptions, would
expedite genuinely joint behaviour.

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

Fig. 10. Policy ranking chart for Example 5.5

6 Factors Affecting Predictive Quality

We dealt with a multi-clone context by optimizing a single clone using only the x-
action to represent the effects of other clones. This is our alternative to analysing
comprehensively how the clones behave conjointly. The latter analysis would
need an unrestricted graph in which each node were a complete multi-situation
having emergent arcs for all the real (non-x) actions its members could perform.
From this multi-graph one could then seek the best policy for any one clone.
The combinatorial nature of such an analysis makes it generally impractical.
Figure 11 repeats the chart for Example 5.4 but highlights two of its many

-1 0 .0 0

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

predicted rank too high

predicted rank too low

Fig. 11. Prediction anomalies in Example 5.4

anomalies. The policy indicated with too high a predicted rank is

{a → w, b → l, c → w, d → w, e → w, f → k, g → k, h → l, i → w}

If we examine how its predicted value is calculated, we find that a node S = (4, f)
in Gf is assigned a positive value V (S) even though, in reality, the goal is



unachievable from S. As noted earlier, the calculation of policy values must take
into account passive transitions of self (x-updating). Our method sees paths from
S to the goal that contain steps in which self is assumed to be x-updatable by
the other agent, although, in fact, the goal is unachievable from S. In situation
S no block is held and self is seeing a 3-tower and must pick. From S there is
the following ostensible path in Gf that reaches the goal:

(a) self is in situation (4, f) and – because of what happens next to it in this
path – the other agent must also be in (4, f);

(b) the other agent takes action k and moves to (7, b), whilst self is passively
updated to (7, e);

(c) self performs two wander actions taking it to (7, i), whilst the other agent
remains at (7, b);

(d) the graph shows an x-action from (7, i) to the goal (3, d), which is correct
since another agent could be in situation (7, h). However, if this particular
path is followed, the other agent would not be in the required (7, h) but in
(7, b).

This path is infeasible because to achieve it would require self to perform actions
and undergo x-updates that the other agent could never fulfil. In the multi-graph
this joint scenario would not be feasible and any group situations containing
(4, f) would be assigned negative node values thereby reducing the policy’s rank.

Figure 11 also indicates a policy with too low a predicted rank. Anomalies of
this kind arise primarily from inaccuracy in the probabilities on the x-arcs in Gf ,
again owing to insufficient information about the situations actually occupied
by self’s partners.

7 Scaling Using Abstractions

Although the approach discussed in earlier sections will work for small sets of
perceptions, when this set becomes large it is clear that the number of policies is
too great to evaluate them all. The method of abstractions groups the perceptions
such that a single action can apply to all perceptions in a group, thereby reducing
the number of policies that need to be considered. So far, we have applied this
approach only to a case involving just one agent, although the method can easily
be combined with the approach taken for groups of cloned agents.

In this section, we illustrate the method for the case of an agent aiming to
build a 10-tower from 10 blocks. If each tower size were considered separately as
a perception there would be 21 possible perceptions for 1 agent, making more
than one million possible policies and approximately 100 situations. Instead, we
choose to consider the set Gp of just 8 grouped perceptions,

{(s0, h), (s0, nh), (s5, h), (s5, nh), (< s5, h), (< s5, nh), (> s5, h), (> s5, nh)}

which yields 256 policies only. Each perception in Gp, called a generic perception,
consists of one or more concrete perceptions. For example, (< s5, h) means the



agent is looking at a non-empty tower with fewer than five blocks and holding
a block. Similarly, (> s5, h) means the agent is looking at a tower containing at
least six blocks and the generic perception contains the four concrete perceptions
(s6, h), (s7, h), (s8, h), (s9, h). We impose the restriction that, for a generic
perception P = {p1, . . . , pm}, the set of actions A(pi) is the same for each i. In
this way it is possible to associate a single action with P that is always possible
whatever concrete perception actually pertains. In this example, this restriction
forbids combining the concrete perceptions (0, nh) with any other, since its action
set is {w}, whereas all other perceptions include some other action.

It is likely that the objective states can also be abstracted, since there may be
several states that behave in essentially similar ways when paired with a generic
perception. In general, therefore, there is a set of generic situations, given by
Sa = Oa × Pa, where Oa and Pa are, respectively, the sets of generic objective
states and generic perceptions. Each situation (O, P ) in Sa is given by a set
of concrete situations: (O, P ) = {(oi, pj)|oi ∈ O and pj ∈ P}. The only other
criterion we impose is that each generic situation in Sa should be non-empty
and that the abstractions partition the sets of concrete perceptions and concrete
states.

(a) states

O P(O)

1 [10] {d, h}
2 [one5] {a, b, e, f, g, h}
3 [5,5] {f, h}
4 [no5no10] {a, b, c, d, g, h}

(b) perceptions

P A(P )

a [< s5, h] {l, w}
b [< s5, nh] {k, w}
c [> s5, h] {l, w}
d [> s5, nh] {k, w}
e [s5, h] {l, w}
f [s5, nh] {k, w}
g [s0, h] {l, w}
h [s0, nh] {w}

Fig. 12. States, perceptions and actions

Figure 12 shows the generic perceptions and states for the 10 blocks example.
The state [one5] consists of the eleven concrete states in which there is exactly
one 5-tower. The state [no5no10] consists of all concrete states that have neither a
5-tower nor a 10-tower. In general, the unrestricted graph includes an arc labelled
by action a between generic situations (O1, P1) and (O2, P2) if there is an arc
between some concrete situations (o1, p1) and (o2, p2), where (o1, p1) ∈ (O1, P1)
and (o2, p2) ∈ (O2, P2). It is clear, therefore, that there will be more non-
determinism present in graphs for generic situations, since there may be several
ways to select (o1, p1).

Figure 13 shows the restricted graph for the policy

{a → w, b → k, c → l, d → w, e → l, f → k, g → w, h → w}



1h 3f 2a 2e 4d
lwk

w w k
w

w

2gk2b3h1d

l

l

4c
2h

w

2f
k

4a
w

4g

ww

4b
w w

4h
w w

w

Fig. 13. Restricted graph for abstraction

The graph omits various reflexive arcs to keep it readable. For example, when
in situation 2b, it could be that the concrete state is [5, 2, 2, 1] and the agent is
seeing a 2-tower. After a pick action the agent would still be in abstract situation
2b (although in a different concrete situation). There would be a reflexive arc
(2b, 2b) to reflect this possibility (and others). If this policy were to be used
by several cloned agents there are several transitions by which self might be
passively updated. They are the following (abbreviated) transitions:

(2a, 2g), (2a, 4a), (2b, 2h), (2b, 4b), (2e, 4a), (2e, 4c), (2f, 4d), (2g, 4g),
(2h, 4h), (3f, 2b), (3f, 2f), (3h, 2h), (4a, 4g), (4b, 4h), (4d, 1d), (4h, 1h)

For example, if the agent self is in situation 2b, it could be in several different
concrete situations. If self were looking at some 1-tower, another agent might
also be looking at the same tower and act before self to pick the block. Then self

would find itself in situation 2h. Alternatively, self might be looking at a 4-tower,
in a concrete situation consisting of a 5-tower, 4-tower and another agent could
be looking at the 5-tower and holding a block. In this case the second agent
would place the block and self would passively update to situation 4b.

The simulation for this example was made using positional mode on a 5 x
4 cellular grid using a single agent. The chart was extremely volatile, owing
partly to inaccuracy in the probabilities assigned to the non-deterministic arcs.
It had a QF of 64.87%, and 51.43% for the first 20. The analytical calculation of
probabilities described in Section 4 is difficult to apply in the abstract context
because it has to consider the multitude of underlying concrete situations that
all the agents might occupy. To circumvent this difficulty we used the simulator
to assist in probability estimation by counting, for each policy, the number of
occasions each arc was traversed. The probabilities inferred from these counts
were then supplied to the Policy Predictor The policy chart for about 1000
simulation runs is shown in Figure 14. It has a better QF of 70.83%, with a
value of 69.47% for the first 20.



-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

Fig. 14. Chart for abstraction

This method of estimation is nonetheless imperfect because information is lost
when one conveys, to the abstract graph, the simulator’s observations (counts) of
concrete transitions. For instance, in the graph in Figure 13 there is a path from
(2, f) to (4, c) via (4, a). Both transitions in this path are feasible, the first since
the agent can go from the concrete situation of looking at the only 5-tower and
not holding a block to the concrete situation of looking at a 4-tower and holding
a block, and the second since the agent can wander from the concrete situation
of a 7-tower and 3-tower with the agent looking at the 3-tower to the agent
looking at the 7-tower. However, these two transitions cannot actually occur in
sequence: to make the transition from (2, f) to (4, a) with action k, means the
agent must end up in some concrete situation looking at a 4-tower, not holding a
block and where all towers have height <5. Therefore, it is impossible to wander
to a situation where the agent is looking at a tower higher than 5.

We call this phenomenon of a restricted graph piecewise incoherence. In other
words, a restricted graph offers, between generic situations, paths that may not
be piecewise-coherent for all concrete instances of their arcs. It is this property
that leads to the values given to policies being either underestimated or over-
estimated. Underestimation occurs when futile piecewise incoherent paths are
present, whereas overestimation occurs when a piecewise incoherent path leads
quickly to the goal.

A final reason for volatility is due to the choice of abstraction. For example,
another abstraction might split state 4 into two states, one in which there is a
tower containing more than 5 blocks and one in which there is no such tower.
So far, we have always chosen an abstraction that distinguishes the goal. That
is, the generic goal situation contains only concrete goal situations. If this is not
the case, then under- and over-estimation of policy values will again occur.

8 Conclusions and Related Work

We have presented a method using situation graphs for predicting policies for
TR-agents in multi-agent contexts. The use of situation graphs enables policies
to be evaluated taking account of objective states, yielding greater discrimi-
nation than approaches (e.g. [10]) that focus primarily upon perceptions. This
discrimination is necessary due to our assumption that exogenous events are not
only possible but an inherent fact in a multi-agent context, so that we cannot



rely on using histories to estimate current situations. Furthermore, since we wish
to find policies to achieve goals not detectable by a single perception, we cannot
use the method of back-chaining and the so-called regression property used in
[17], since a given perception may not be unique to the goal.

However, inclusion of objective state information poses a greater need for
scalable methods, especially in multi-agent contexts. We have demonstrated here
that in such contexts good policies are obtainable by analysing how any single
agent responds to exogenous effects caused by other agents. This applies whether
or not the agents are cloned. We have shown in [5] that the approach continues to
yield good results in positionally sensitive formulations, even when abstraction
is also employed.

Our future work will seek to understand better the relationship between our
“self-based prediction graph” and the multi-graph and to investigate how the
use of the former might be refined to give even better predictive power. The
multi-graph approach seems to be similar in spirit to the approach described in
[13], although they do not restrict their agents to be clones, and future work
will further investigate this relationship. In this paper we have restricted agents
to behave without communicating with one another. However, communication,
and local and global memory, might be modelled as additional perceptions. Thus
an agent may communicate with another using a kind of telepathy. Future work
will seek to include the modelling of telepathy within the multiagent framework.
Increasing the number of perceptions increases exponentially the number of poli-
cies and so in addition we will investigate a branch and bound strategy, based
on an idea in [14] that an upper bound for the value of a partially determined
policy is obtained by taking the “best” action from all situations not yet con-
strained by the policy. However, in [14] the policy value is determined as the
shortest path to a single goal and for actions that are apparently deterministic.
In our case none of these can be assumed: there may be multiple goal situations,
actions need not be deterministic and our policy is dependent on the value of
the tree of paths from each node. Furthermore, the impact of x-arcs in partial
policies requires careful consideration.

A different approach to finding policies for agents with partial observability
is to use the method of belief states as described in [6, 10]. In this case the beliefs
of an agent are represented by real-valued n-dimensional vectors, n ≥ 1. For
instance, for a problem which can be modelled using four states a 4-dimensional
vector would be used. The belief state [0.25, 0, 0.5, 0.25] indicates that the agent
believes it is more likely to be in state 3 than in states 1 or 4 and definitely
is not in state 2. Each node is now a belief state and the arcs are labelled by
actions. In order to obtain an optimal policy for traversing this infinite graph,
an iterative algorithm is used to find an approximation by computing

V (b) = maxa∈A(r + γ × e)

where r is the expected reward for action a from state b and e is the estimated
expected value of successor states, using the current estimates. In [22] it was
shown that the optimal value function can be represented using some finite set



of vectors V , such that the value of a node is computed as V (b) = maxv∈V 〈b ·v〉,
where 〈b · v〉 is the inner product of vectors b and v. In [6, 10] it is shown how a
policy can be found using this result.

The above approach and many others similar to it are useful in problems
where the environment changes only under the actions of the agent. Otherwise,
there is no reason why the agent should assume its previous belief state is any
guide to the recent past and hence to the current state. When several agents
are acting, an agent’s environment undergoes exogenous changes due to other
agents’ actions so this assumption is not valid. In effect, the use of belief states
is an encoding of the recent past, or the history of the agent’s earlier actions and
observations. This is demonstrated next for a simple example.

We have taken a very simple example from [6], with just one agent, and
applied the method described in this paper. The problem concerns an agent
that can move left or right through a linear sequence of four cells to look for a
star which is always in the same place, in this case at cell 3. The set of states is
{1, 2, 3, 4} and each perception is a triple [o, a1, a2], where o is either “e(mpty)”
or “s(tar)” and a1 and a2 are the two most recent actions (either “move left” or
“move right”). We assumed the agent stops when it sees the star. The predicted
optimal policy is

[e, ml, ml] → r, [e, ml, mr] → r, [e, mr, ml] → r, [e, mr, mr] → l, [s,−,−] → l

The previous actions are not relevant when seeing a star, so [s,−,−] is, in fact, a
generic situation. A similar policy has [s,−,−] → r and both correspond to the
policy in [6]. This shows that, for small-scale single-agent contexts, at least, our
method gives the same results as the POMDP method but uses much simpler
machinery to obtain them. For multi-agent contexts our use of the self-oriented
x-arc framework appears simpler and more scaleable than the corresponding
“decentralized” POMDP approach of [19], which has to analyse conjointly how
all the agents are acting upon the environment.

Throughout, our work so far has concerned only functional policies. In con-
trast, a relational policy [8] would allow choice of action for each perception ac-
cording to some probability distribution, which may be given or learned. These
represent two different engineering approaches to agent applications and it is of
key interest to determine how well communities of (various) functional agents
can subsume the capabilities of relational agents.

References

1. Benson, S. Inductive Learning of Reactive Action Models, Proceedings of the 12th
International Conference on Machine Learning, (1995) 47-54

2. Benson, S. and Nilsson, N. Reacting, planning and learning in an autonomous
agent, Machine Intelligence 14, Eds. Furukawa, K., Michie, D. and Muggleton, S,
Clarendon Press, Oxford, (1995) 29-64

3. Broda, K., Hogger, C.J. and Watson, S. Constructing Teleo-Reactive Robot Pro-
grams, Proceedings of the 14th European Conference on Artificial Intelligence,
Berlin, (2000) 653-657



4. Broda, K. and Hogger, C.J. Designing Teleo-Reactive Programs, Technical Report
2003/8, Dept. of Computing, Imperial College London, UK, (2003)

5. Broda, K. and Hogger, C.J. Designing and Simulating Individual Teleo-Reactive
Agents, Poster Proceedings, 27th German Conference on Artificial Intelligence,
Ulm, (2004) 1-15

6. Cassandra, A.R., Kaelbling, L.P. and Littman, M. Acting Optimally in Par-
tially Observable Stochastic Domains, Proceedings 12th National Conference on
AI (AAAI-94), Seattle, (1994) 183-188

7. Chades, I., Scherrer, B. and Charpillet, F. Planning Cooperative Homogeneous
Multiagent Systems using Markov Decision Processes, Proceedings of the 5th In-
ternational Conference on Enterprise Information Systems (ICEIS 2003), (2003)
426-429

8. Dickens, L. Learning through Exploration, MSc Dissertation, Department of Com-
puting, Imperial College London, (2004)

9. Guestrin, C., Lagoudakis, M. and Parr, R. Coordinated Reinforcement Learning,
AAAI Spring Symposium, Stanford, California, (2002)

10. Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. Planning and Acting in Par-
tially Observable Stochastic Domains, Artificial Intelligence 101, (1998) 99-134

11. Kochenderfer, M. Evolving Hierarchical and Recursive Teleo-reactive Programs
through Genetic Programming, EuroGP 2003, LNCS 2610, (2003) 83-92

12. Lauer, M. and Riedmiller, M. Generalisation in Reinforcement Learning and the
Use of Observations-Based Learning, Proceedings of FGML workshop, (2002) 100-
107

13. Lauer, M. and Riedmiller, M. Reinforcement Learning for Stochastic Cooperative
Multi-Agent-Systems, AAMAS-04, Columbia, New York, (2004) 1516-1517

14. Littman, L. Memoryless Policies: theoretical limitations and practical results, Pro-
ceedings of the 3rd International Conference on Simulation of Adaptive Behaviour,
MIT Press (1994)

15. Mitchell, T. Reinforcement Learning, Machine Learning, McGraw Hill, (1997) 367-
390

16. Nair R., Tambe, M., Yokoo, M., Pynadath, D. and Marsella, M. Taming Decen-
tralised POMDPs: Towards Efficient Policy Computation for Multiagent Settings,
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), (2003) 705-711

17. Nilsson, N.J. Teleo-Reactive Programs for Agent Control, Artificial Intelligence
Research 1, (1994) 139-158

18. Nilsson, N.J. Teleo-Reactive Programs and the Triple-Tower Architecture, Elec-
tronic Transactions on Artificial Intelligence 5, (2001) 99-110

19. Rathnasabapathy, B. and Gmytrasiewicz, P., Formalizing Multi-Agent POMDPs
in the Context of Network Routing, Proceedings of 36th Hawaii International Con-
ference on System Sciences (HICSS’03), (2003)

20. Ryan, M.R.K. and Pendrith, M.D. RL-TOPS: An Architecture for Modularity and
Re-Use in Reinforcement Learning, Proceedings of the 15th International Confer-
ence on Machine Learning, Madison, Wisconsin, (1998) 481-487

21. Snedecor, G.W. and Cochran, W.G. Statistical Methods, Iowa State Univ. Press,
(1972)

22. Smallwood, R.D. and Sondik, E.J. The optimal control of partially observable
Markov decision processes over a finite horizon, Oper. Res. 26 (2), (1978) 1071 -
1088


