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Abstract

In this paper we explore the use of a formal ontology as a con-
straining framework for the belief store of a rational agent. The static
beliefs of the agent are the axioms of the ontology. The dynamic be-
liefs are the descriptions of the individuals that are instances of the
ontology classes. The individuals all have a unique identifier, an asso-
ciated set of named classes to which they are believed to belong, and
a set of property values. The ontology axioms act as a schema for the
dynamic beliefs. Belief updates not conforming to the axioms lead to
either rejection of the update or some other revision of the dynamic be-
lief store to maintain consistency. Partial descriptions are augmented
by inferences of property values and class memberships licensed by the
axioms.

For concreteness we sketch how such an ontology based agent belief
store could be implemented in a multi-threaded logic programming
language with action rules and object oriented programming features
called Go!. This language was specifically designed for implementing
communicating rational agent applications. We shall see that its logic
rules allow us to extend an ontology of classes and properties with
rule defined n-ary relations and functions. Its action rules enable us to
implement a consistency maintenance system that takes into account
justifications for beliefs. The pragmatics of consistency maintenance
is an issue not normally considered by the ontology community.

The paper assumes some familiarity with ontology specification us-
ing languages such as OWL DL and its subsets, and with logic pro-
gramming.

1 Introduction

It is generally accepted that a shared ontology is essential for high level
communication between agents (Huhns and Singh 1997), and messages in
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the agent communication languages such as KQML (Finin et al. 1994)
can have a field that gives the name of the ontology used in the query or
statement that is the content of the message. However, to our knowledge
comparatively little work seems to have been done regarding the use of a
formal ontology as the framework for the internal and dynamic beliefs of
an agent, these beliefs being the descriptions of individuals belonging to the
classes of the ontology.

Ontology specification languages such as OWL DL (McGuinness and
van Harmelen 2004) are based on description logics (Horrocks et al. 2003).
Inferences regarding the relationships between classes of an ontology are
called T-box inferences, whereas those concerning descriptions of individuals
are A-box inferences (Baader et al. 2004). There are very good inferences
procedures for T-box reasoning - the sort of reasoning needed to answer
queries about concepts, such as whether or not one class concept is subsumed
by another based on their descriptions, and to test for inconsistency of the
class and property axioms of an ontology. But for agents, whose beliefs
mainly comprise descriptions of individuals, efficient A-box reasoning is as
important, if not more so. Proposed query languages for OWL, such as
OWL-QL (Fikes et al. 2003), need A-box inference as they are essentially
queries to retrieve names of individuals and property values satisfying some
class membership and property value constraints.

This issue is being addressed. There is an instance store implementa-
tion (Bechhofer et al. 2005) that can hold a relatively large set of individual
descriptions stored in a data base. It supports the retrieval of all instances
satisfying some OWL concept description. There is also an implementa-
tion (Nagy et al. 2006) that similarly finds all the individuals with descrip-
tions stored in a data base that are instances of some OWL class description
by translating the class description to Prolog, but, as reported, the approach
does not currently make use of class and property axioms. (Grosof et al.
2003) show how a description logic, now called DLP (Description Logic Pro-
grams), can be converted into function free definite Horn Clauses and hence
can be evaluated either using logic programming or Datalog systems, the
latter being tailored for large sets of facts.

However, when the instance store is frequently updated, as it will be
when used to record the dynamic beliefs of an agent, the pragmatics of
consistency maintenance of such beliefs becomes an issue. This is especially
true when forward inferencing with stored conclusions has been used, which
is common for agent reasoning systems in order to support fast selection
of an action or plan response (Nilsson 2001). One of the widely accepted
hallmarks of agency is reactivity (Jennings et al. 1998).
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Suppose that an agent is told some NewF that is inconsistent, given the
ontology axioms, with a fact OldF it already believes about some individual.
Does it reject NewF, or does it delete OldF and any other stored fact it might
have inferred and stored using the ontology axioms and OldF? To handle
these issues rationally, the agent needs to record justifications for all its
dynamic beliefs. Then, if NewF comes from a source it deems more reliable
than the source of OldF, it should remove the latter, and use techniques
from truth maintenance systems (TMS) (Doyle 1979) to find other beliefs
that should also be removed if OldF is removed by associating justifications
for the inferred recorded facts. This is the approach we adopt.

Volz’s thesis (Volz 2004), which considerably extends the work presented
in (Grosof et al. 2003), deals with such consequential changes for Datalog
rule sets. Instead of a TMS, he uses a rule set derived from the original
rules to find the previously inferred and recorded facts that must be deleted
when either a given fact or rule is deleted. (Broekstra and Kampman 2003)
treats consistency maintenance for an RDFS ontology (Brickley and Guha
2004). Like us, they use a TMS. As we shall see, a key advantage of using
a TMS is that the justifications can be used to decide between alternative
ways of preserving consistence.

For concreteness, we shall describe the implementation of an ontology
constrained belief store in a multi-paradigm, multi-threaded symbolic pro-
gramming language Go! (Clark and McCabe 2004). It is a class based object
oriented language combining logic, functional and imperative programming
features. Our use of Go! is not essential, any other language offering Prolog
style inference and dynamic updates of facts could have been used, but we
do believe it is important to address the issue of implementation. We have
used Go! as it has been expressly designed to be an agent programming
language.

In a previous paper (Clark and McCabe 2006), we have explored using
OWL like ontological concepts to shape the way knowledge is represented
as a hierarchy of Go! classes echoing the ontology class hierarchy. Following
Goldman (Goldman 2003), we call this approach ontology oriented program-
ming. It is illustrated by the two example class definitions of section 2.2.
However, this approach does not allow the ontology being used to be quickly
changed. For agents that may need to process information from the semantic
web that conforms to some formal ontology, or which need to communicate
with other agents using such an ontology, having a generic agent architecture
which we can specialise with different ontology axioms gives flexibility.

This paper explores the representation and use of the axioms and descrip-
tions of the individuals of an ontology expressed in the DL-Lite (Galvanese
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et al. 2005b) subset of OWL DL, for use within a rational agent. We con-
sider DL-Lite rather than OWL DL, as DL-Lite is a tractable subset (Grau
2006) of OWL DL specifically designed to allow efficient implementation of
A-Box inferences using OWL-QL style queries. We shall use the abstract
syntax for DL-Lite given in (Grau 2006), rather than the description logic
syntax of (Galvanese et al. 2005b), as the abstract syntax axioms map
almost directly into Go! syntax. We consider just the one ontology language
as the focus of this paper is the issues raised balancing consistency mainte-
nance of a dynamic agent belief store, where the consistency constraints are
axioms of an ontology, with efficient inference of extra beliefs that we can
infer using these axioms. For this purpose, consideration of one representa-
tive ontology was deemed sufficient. In addition, by restricting ourselves to
the axiom scheme of DL-Lite we shall see that the belief store consistency
maintenance problem, although non-trivial, is tractable. It offers a viable
approach for the implementation of an ontology constrained agent belief
store, or a knowledge store server that pairs DL-Lite ontology axioms with
a dynamic fact base.

In the next section we introduce the Go! language and its labeled class
notation. In section 3 we give a generic class definition for recording the de-
scriptions of DL-Lite individuals as objects, and we show how we can build a
layer of higher level relations and procedures for deductively accessing and
manipulating these objects. Using Go!’s logic programming rules we can
define more general n-ary relations in terms of the binary relations (unary
class properties) of the base ontology. This gives us expressive power simi-
lar to the proposed rule extensions of OWL, such as OWL Rules (Horrocks
et al. 2005). In section 4 we discuss the representation of DL-Lite class and
property axioms and axioms about the identity of individuals. In section
5 we discuss the use of the axioms to constrain the insertion and manipu-
lation of the individual descriptions and to infer new properties and class
memberships for partially described individuals. We shall use a combination
of forward and backward chaining deduction, with justifications associated
with each dynamically asserted fact. The justifications are used in the con-
sistency maintenance. We do not consider updates of the ontology axioms
as, for many agent applications, these will remain fixed for the life time of
the agent.

A Go! agent using the ontology belief store will typically be multi-
threaded (Clark and McCabe 2004), with separate threads dealing with
environment monitoring and the consequential belief updates, queries and
data from other agents, and the execution of plans to achieve its own goals.
We show how an agent might deal with OWL-QL style queries to its belief
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store in section 6 by defining an interpreter for such queries.
Even though the Go! language uses negation-as-failure(Clark 1978), which

assumes closed world semantics of its logic rules, our OWL-QL query evalu-
ation using the individual descriptions and the DL-Lite axioms does not use
the negation-as-failure inference rule. It conforms to the open world seman-
tics of DL-Lite. In the open world semantics, previous answers to queries
must remain valid when new facts about individuals are added. It is not
valid to draw a conclusion based on the absence of information - the closed
world assumption - which is done by the negation-as-failure rule.

In section 7 we conclude and mention other related work.

2 Quick introduction to Go!

Go! is a typed, multi-threaded and multi-paradigm programming language
comprising Prolog style relation definitions, function definitions and action
procedures which can be grouped together into labelled classes.

The threads execute action procedures, querying relations and calling
functions as need be. They communicate by atomically updating and ac-
cessing shared objects, usually a dynamic relation or a mail box object. A
thread may suspend waiting for an update to a shared object, either waiting
for a tuple to be added or deleted from a dynamic relation, or waiting for
a message to be added to a mailbox. A dynamic relation used in this way
behaves as a generalisation of a Linda tuple store (Carriero and Gelernter
1989), as explained in (Clark and McCabe 2004).

2.1 Function and relation rules

Functions are defined using sequences of rewrite rules of the form:

f (A 1,..,A k)::Test => Exp

where the guard Test is omitted if not required. The operator :: can be
read as such that. Function types are declared using type definitions of the
form:

f :[t 1,..,t k]=>t

sons_of:[symbol]=>list[symbol].
sons_of(P) => {S||parent_of(P,S),male(S)}.

father_of:[family_person]=>family_person.
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father_of(C)::C.parent(F),F.gender()=male=>F.

An expression of the form {Trm||Cond} denotes the list of all the instanti-
ations of Trm, given by the different solutions to Cond.

The two function definitions represent two styles of information repre-
sentation in Go!. The first, in which properties of individuals are represented
as n-ary relations that mention the individual’s name - usually a symbol, is
the classical logic/Prolog style. The second collects information about an
individual into an object O. We then access properties of the individual by
querying this object using an O.p(...) form of call. family person is an
object type.

Relation definitions comprise sequences of Prolog-style :- clauses with
some modifications – such as permitting evaluable expressions as arguments
of conditions in queries and rule bodies, and no cut operator to control
backtracking. Instead of the general purpose cut, there are single solution
calls, conditionals, and :-- committed choice clauses, which can be read as
iff rules.

Each relation definition has an associated type declaration of the form:

r :[t 1,..,t k]{}

An example is the test relation:

has_no_daughters:[family_person]{}.
has_no_daughters(P):-

(P.child(C) *> C.gender()=male).

*> is Go!’s forall. has no daughters(P) holds of a family person object
P if every child of P (if any) has gender male. The relation could also be
defined using:

has_no_daughters(P):-
\+ (P.child(C),C.gender()=female).

\+ is Go!’s negation as failure operator (Clark 1978).

2.2 Labeled Classes

Below are type definitions defining object type personI and one of its sub-
types dancerI, and two labeled classes for objects of these two types.

The first <˜ rule defines the personI type. It gives the interface signature
for objects of that type. The @= type declaration tells us that a person
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term with three arguments of specified types is the label of a class that
implements the personI type. Immediately below is the class with this
label. The arguments Nm, Gndr, Places of the label are global variables of
the entire class. We can have more than one labeled class implementation
for the same object type.

gender::=male | female. type with literals male, female

desire::=wantToDance(symbol) | ... type with constructors

belief::=haveDancedWithMale(symbol) | ...
personI <˜ {gender:[]=>gender.

name:[]=>symbol. lives:[string]{}}.
person:[symbol,gender,list[string]]@=personI.
person(Nm,Gndr,Places)..{

gender()=>Gndr.
name()=>Nm.
lives(P):-P in Places.
}.

dancerI <˜ personI.
dancerI <˜ {desires:[desire]{}. believes:[belief]{}}.
dancer:[symbol,gender,list[string],

list[desire],list[belief]]@=dancerI.
dancer(Nm,Gndr,Places,_,_) <= person(Nm,Gndr,Places).
dancer(_,_,_,Desrs,Bels)..{

desires(Des) :- Des in Desrs.
believes(Bel) :- Bel in Bels.
}.

The dancerI type is defined by two <˜ rules. The first says that it is an
extension of the personI type, hence that dancerI is a sub-type of personI.
The second gives the type signature for two extra relation methods of the
dancerI type.

The dancer class definition is preceded by a <= class rule that says that
any instance dancer(Nm,Gndr,Places, , ) of the dancer class implicitly
includes all the definitions of the instance person(Nm,Gndr,Places) of the
person class.

We can create an instance of the dancer class, i.e. a dancerI object,
and query it as follows:

Mary:dancer = dancer(’mary’,female,["Cardiff"],
[wantToDance(’polka’),wantToDance(’jive’),..],
[haveDancedWithMale(’john’),...]).
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Mary.lives(Place)
has one solution: Place="Cardiff"

Mary.desires(wantToDance(D))
has solutions: D=’polka’1 D=’jive’

Mary.believes(haveDancedWithMale(OthrDncr))
has a solution: OthrDncr=’john’

2.3 Go! dynamic relations

In Prolog we can use assert and retract clauses to change the definition of
a dynamic relation. In Go!, a dynamic relation is an object with updateable
state. It is an instance of a system class with polymorphic type dynamic[T],
T being the type of the terms in the extension of the dynamic relation.

The dynamic relations class has procedure methods: add(Trm), for adding
Trm to the end of the current extension of the relation, del(Trm) for remov-
ing the first term that unifies with Trm, delall(Trm) for removing all terms
unifying with Trm. Finally, it has a relation method mem(Trm) for accessing
terms in the current extension that unify with Trm.

To allow modification of the beliefs and desires we can redefine the
Dancer class to use dynamic relations to store their initial values. Instances
of the class are then objects with updateable state.

2.4 Action rules and threads

The locus of activity in Go! is a thread ; each Go! thread executes an action
procedure. Procedures are defined using non-declarative action rules. A
procedure p is defined by a sequence of action rules of the form:

p (A 1,..,A k)::Test -> Action 1;...;Action n

with an associated type definition of the form:

p :[t 1,..,t k]*

The * signals procedure type. Go! uses ”;” rather than ”,” to separate the
actions to emphasise the imperative aspect of the rule. As with function
rules, the first action rule for a procedure p that matches some call and has
its Test succeed is used, with no backtracking. Actions should not fail.

1Unlike Prolog, Go! does not have a variable name convention. An identifier must al-
ways be quoted when used as a symbol unless it has been declared as a lit-
eral value of some type, such as the literals male and female of type gender.
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The permissible actions of an action rule include: message send and
receive, I/O, updating of dynamic relations, hash tables and re-assignable
variables, the calling of a procedure, and the spawning of any action, or
sequence of actions, to create a new action thread.

3 Representing DL-Lite individuals

In a DL-Lite ontology an individual is described by a individual description
fact. Such a fact, called an individual, has the abstract syntax:

individual::=individual(individualId {type(classId)} {value})
value::= value(individualvaluedpropertyID individualId)

Here, the {...} brackets indicate a field that can occur any number of times,
including zero2.

Example individual facts conforming to this syntax are:

individual(mary type(femaleDancer)
value(wantToDance polka)
value(haveDancedWithMale bill))

individual(polka type(dance))

This describes an individual femaleDancer with identifier mary which has
a values for the properties wantToDance and haveDancedWithMale. This
value of the wantToDance property is a dance individual with identifier
polka.

We can represent DL-Lite individual description usings values of the Go!
individual data type:

individual::=individual(individualId,list[type],list[value])
individualId::=id(symbol).
type::=type(symbol).
value::= value(symbol,individualId).

The optional repetition of the type and value terms is captured by making
these lists, which can be empty. We have used symbols wrapped in id

2DL-Lite syntax given in (Grau 2006) also allows the type of an individual to be defined
by a class description, as described in section 4. However, at the cost of introducing new
class identifiers and class axioms, we can always re-express an individual description to
use just class identifiers. Similarly, it allows the value of a property to be the description
of an unidentified individual. Again, we can avoid this at the expense of introducing new
individual identifiers with associated descriptions
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functors as individual identifiers, but just symbols for property identifiers
and class identifiers. However, we could have used a defined type allowing
the use of any OWL URI.

The above DL-Lite individual description of mary is mapped to the pair
of Go! terms:

individual(id(’mary’),[type(’femaleDancer’)],
[value(’wantToDance’,id(’polka’)),
value(’haveDancedWithMale’,id(’bill’))]).

individual(id(’polka’),[type(’dance’)]).

It is quite straightforward to write a parser in Go! using its DCG grammar
rules (Pereira and Warren 1980) to map either DL-Lite abstract syntax
strings, or the DL-Lite subset of the OWL RDF/XML syntax (Smith et al
2004), into Go! individual terms.

individual terms could be used as the stored terms of a dynamic re-
lation to represent the beliefs of an agent. But this would not allow us
to update the values of individual properties of a description without re-
placing the entire description. In order to efficiently update descriptions,
we shall instead assume the agent stores them as the state-full objects of
the Go! Individual class given below. individual data terms can still be
communicated in messages between agents.

Individual_I <˜ {class:[type]{}.
propVal:[symbol,individualId]{}.
addClass:[type]*.
addProp:[symbol,individualId]*}.

Individual:[list[type],list[value]]@>Individual_I.
Individual(Ts,Vs)..{

Classes:dynamic[type]=dynamic(Ts).
Properties:dynamic[value]=dynamic(Vs).
class(C):-Classes.mem(type(C)).
addClass(C) -> (class(T) ? {} | Classes.add(type(C))).
propVal(P,V) :- Properties.mem(value(P,V)).
addProp(P,V) ->
(propVal(P,V) ? {} | Properties.add(value(P,V)).

}.

The type terms giving classes to which an individual belongs are held in a
dynamic relation Classes, allowing recorded class membership to be both
retrieved and updated. Property values are also stored in a dynamic relation.
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Notice that the type declaration for the Individual class label uses the @>
operator rather than @=. The use of @> declares that the class it labels has
update-able state.

There are two procedures: addClass and addProp for adding a new
membership class (a new type) and a new property value, respectively. Their
action rules execute a (Test?Then|Else) conditional action that does noth-
ing if the class name or property value is already recorded. Notice that the
Classes and Properties dynamic relations are not declared in the inter-
face type. This means that they are private and can only be manipulated
by the two procedures addClass and addProp, and accessed by the relations
class and propVal. A more complete definition would include procedures
for removing class names and property values.

We use a global dynamic relation:

Individuals:dynamic[(individualId,Individual)]=dynamic([]).

for storing the individual objects paired with their identifiers. We can now
define a procedure which takes a term of type individual as argument,
generates the Individual object describing that individual, and inserts it
into Individuals paired with its indentifier.

new:[individual]*.
new(individual(Id,Types,Values)) ->

Individuals.add((Id,Individual(Types,Values))).

We can store the description of mary using the two procedure calls:

new(individual(id(’polka’),[type(’dance’)],[])
new(individual(id(’mary’),[type(’femaleDancer’)],

[value(’wantToDance’,id(’polka’)),
value(’haveDancedWithMale’,id(’bill’))]))

executed in any order.

3.1 Access relations and procedures

To facilitate access and manipulation of stored descriptions we can define
utility relations and procedures:

objectFor:[individualId,Individual]{}.
objectFor(I,O):-Individuals.mem((I,O)).

classOf:[individualId,symbol]{}.
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classOf(I,C):-objectFor(I,O),O.class(C).

valueFor:[individualId,symbol,individualId]{}.
valueFor(I,Prop,Val):-objectFor(I,O),O.propVal(Prop,Val).

addPropFor:[individualId,symbol,individualId]*.
addProp(I,P,V) -> objectFor(I,O);O.addProp(P,V).

valueFor(I,Prop,Val) has several uses. A query:

valueFor(id(’mary’),Prop,Val)

can be used to find each recorded property for mary and each of that prop-
erty’s values. A query:

valueFor(I,’wantToDance’,_)

can be used to find the identifiers of individuals that we can infer have at
least one value for the wantToDance property. More generally:

valueFor(I,Prop,Val)

can be used to find the identifiers of each of the currently described individ-
uals, the name of each of their defined properties, and values that we can
infer they have, or should have, for that property3.

3.2 Extending the ontology with defined properties

Using valueFor, we can use Go!’s logic rules to define new properties, even
new n-ary relations, over individuals and property names. For example, we
can define the ternary relation:

shareADanceDesire:[individualId,individualId,individualId]{}.
shareADanceDesire(Dncr1,Dncr2,Dsr):-

valueFor(Dncr1,’wantToDance’,Dsr),
valueFor(Dncr2,’wantToDance’,Dsr).

A query:
3We shall see later that a class axiom can specify that each individual of some class

c must have a value for a given property p. So, for an i that belongs to c, even though
it might have no recorded value for p, we can infer exists(Val)(valueFor(i,p,Val)).
So, I=i,Prop=p,Val=..., where ... is some term denoting an unknown value, will be an
answer to the query valueFor(I,P,Val).
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shareADanceDesire(id(’mary’),id(’bill’),Dsr)

can be used to find the name of a dance that is a shared desire of mary and
bill. More generally:

shareAPropValue:[symbol,individualId,
individualId,individualId]{}.

shareAPropValue(Prop,Id1,Id2,Val):-
valueFor(Id1,Prop,Val), valueFor(Id2,Prop,Val).

relates two individuals, a property name and common value they have for
the property.

By defining auxiliary relations in this way we can build on and signifi-
cantly enhance the base binary relationships of an DL-Lite ontology whilst
retaining efficient evaluation of conjunctive queries involving the defined re-
lations. Providing such definitions do not make use of Go!’s \+ (negation)
or *> (forall), queries with such defined relations will still be evaluated using
the open world semantics.

4 Representing ontology axioms

The above representation of descriptions of the individuals of an ontology is
an efficient representation for use by an agent. However, as it stands there
is no guarantee that the descriptions conform to the sort of constraints that
one can express with an DL-Lite class or property axiom.

For example, we might have DL-Lite axioms:

Class(dancer complete person
restriction(wantToDance someValuesFrom(owl:thing)))

Class(femaleDancer complete dancer female)
Class(maleDancer complete dancer male)
Class(dance partial activity)
Class(male partial person)
Class(female partial person)
DisjointClasses(male female).
ObjectProperty(wantToDance domain(dancer) range(dance))
ObjectProperty(haveDancedWithMale domain(femaleDancer)

range(maleDancer)
inverseOf(haveDancedWithFemale))

The first tells us a dancer is defined as a person that has at least one value
for the wantToDance property. The second tells us that a femaleDancer is
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defined as a dancer that is female, and the third tells us that a maleDancer
is, by definition, a dancer that is male. Since both these classes are sub-
classes of the dancer class, the restriction regarding wantToDance applies
to these two classes as well. The fourth Class axiom tells us that a dance is
an activity. The next three axioms tell us that the male and female
are disjoint classes are subclasses of person. The first property axiom
tells us that wantToDance is a property which is restricted to dancers and
has range the dance class. This axiom together with the dancer restric-
tion for wantToDance tells us that every dancer the wantToDance prop-
erty has at least one dance value. (In DL-Lite we cannot directly specify
this restriction.) The last axiom tells us that hasDancedWithMale relates a
femaleDancer to a maleDancer and that hasDancedWithFemale is its in-
verse. Hence it also tells us that this inverse property relates a maleDancer
to a femaleDancer.

DL-Lite class axioms can be represented as Go! facts with the type sig-
natures:

Class:[symbol,modality,list[description]]{}.
EquivalentClasses:[list[description]]{}.
DisjointClasses:[list[description]]{}.
SubClassOf;[description,description]{}.

where:

modality ::= partial | complete.
description ::= isa(symbol) | hasAValue(symbol) | nothing

| intersectionOf(list[description]).

A DL-Lite individual valued property axiom can be represented as a Go!
fact with signature:

ObjectProperty(symbol,list[domain],list[range],list[Flag]){}

where:

Domain ::= domain(symbol).
Range ::= range(symbol).
Flag ::= Functional | inverseOf(symbol) | InverseFunctional.

Using this syntax, the above DL-Lite axioms become the following Go!
facts:
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Class(’dancer’,complete,[isa(’person’),
hasAValue(’wantToDance’)]).

Class(’femaleDancer’,complete,[isa(’dancer’),isa(’female’)]).
Class(’maleDancer’,complete,[isa(’dancer’),isa(’male’)]).
Class(’male’,partial,[isa(’person’)]).
DisjointClasses([isa(’male’),isa(’female’)]).
Class(’female’,partial,[isa(’person’)]).
Class(’dance’,partial,[isa(’activity’)]).
ObjectProperty(’wantToDance’,[domain(’dancer’)],

[range(’dance’)],[]).
ObjectProperty(’hasDancedWithMale’,[domain(’femaleDancer’)],

[range(’maleDancer’)]
[inverseOf(’hasDancedWithFemale’)]).

The list of description terms in a Class axiom is a list of class descriptions.
An isa(S) term names a super class S, a hasAValue(P) denotes the class
of things that have at least one value for the property P (we use this as a
shorthand for the DL-Lite restriction(P someValuesFrom(owl:thing))
description. nothing denotes the empty class and an intersectionOf term
denotes the class which is the intersection of a list of described classes.

The partial modality indicates that class membership constraints of
the list of description expressions give just necessary conditions for class
membership, i.e. the described class is a subclass of the intersection of
the classes of the description list. The complete modality indicates that
the axiom gives necessary and sufficient conditions for class membership,
i.e. the described class is identical to the intersection of the classes of the
description list. This means that we can use a complete class axiom to
infer membership of the described class by showing that an individual is a
member of all the classes of the description list.

At the expense of adding extra complete class axioms, we can dispense
with both SubClassOf axioms and intersectionOf descriptions, we can
also specify the domain and range of a property using just one isa term,
and we can ensure that both EquivalentClasses and DisjointClasses
axioms contain only isa descriptions.

We can further ensure that the lists of class names appearing in different
equivalent axioms are disjoint, and that for each such axiom only one of its
class names appears in any of the other axioms. This can be achieved by first
merging the lists of any equivalence axioms that overlap. We then choose
the first class name in each EquivalenceClass list as the canonical name,
ConN, for the equivalent classes of that axiom. For each other C appearing in
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the equivalence axiom, we replace all other occurrences of C in the ontology
axioms by ConN. We shall also assume that there is no complete class axiom
of the form class(C1,complete,[isa(C2)]). This is just alternative way
of specifying that C1 and C2 are equivalent and can be replaced by such an
equivalence axiom.

The following Go! relation links a class name to its canonical name.

canonicalNameOf:[symbol,symbol]{}.
canonicalNameOf(C,ConN):-
(EquivalentClasses([isa(ConN),..Cs]),isa(C) in [ConN,..Cs] ?

true
| ConN=C).

We now redefine the addClass method for our Go! Individual objects so
that only canonical names are stored:

addClass(C)->
canonicalNameOf(C,ConN),
(class(ConN) ? {}
|
Classes.add(type(ConN)).

4.1 Individual Identity Axioms

In addition to descriptions of individuals one can also have:

SameIndividual DifferentIndividuals

axioms indicating that some set of individual identifiers are all aliases for
the same individual, or that some set of names definitely are not aliases.
To handle these axioms we modify our Go! object representation of the
description of an individual. The approach we adopt gives us fast access
to all the recorded class and property values of an individual taking into
account its aliases, but, just as importantly, it also allows the agent to recover
the separate ontology classes and property values of a pair of individuals
should it decide to revise its opinion about their identity.

The new Go! Individual object for an individual I has extra dynamic
relations: diffFrom and sameAs, which record the names of all the individ-
uals believed to be different from or the same as I. In addition, the object
contains a private re-assignable variable Alias with value this, the object
itself, if sameAs is empty. The current value of this variable is returned by
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the function method alias(). There are methods for updating Alias and
the diffFrom and sameAs relations.

For an object O, representing and individual I that has a non-empty
sameAs, the Alias variable holds a different Individual object A. The
objects for all its sameAs individuals also have A as their Alias value. The
type and value facts recorded in A are always the union of the corresponding
facts in each of the objects of the aliased individuals. A itself has no recorded
aliases.

The methods for adding new types and property values to O also update
its Alias object, if it is different from O. We now redefine the external
classOf and valueFor relations so that they access the type and value
relations in the alias object of an individual I, thereby accessing the types
and property values for I or any of its aliases.

classOf(I,C) :-
objectFor(I,O), O.alias().class(C).

valueFor(I,P,V) :-
objectFor(I,O), O.alias().propVal(P,V).

The external procedure for adding a new identifier J to the sameAs for
an individual I also unions the type and value facts of their respective
alias objects to create a new alias object. It then updates both their Alias
variables to point to this new alias object. J’s sameAs relation is also updated
to record I as an extra alias. These single additions to the alias sets of the
objects for I and J and the update of their Alias variables to point to a new
common alias object are the only changes made to these objects. Deleting
an individual J from the sameAs relation for I reverses this operation. A
new alias object recording the union of the type and property values for I
and its remaining aliases is created to become their new Alias value. The
same is done for J and its remaining aliases.

5 Ontology axiom use

Both for answering queries regarding class relationships, and for determining
what hasAValue restrictions might apply to an individual, our agent will find
it useful to be able to access a pre-computed extension of a subclass relation
that records all the over description term subclass relationships it can infer
from the axioms. Similarly, it will be useful for it to have quick access to
the extension of a disjoint relation, recording each pair of classes that it
can infer to be disjoint taking into account the subclass relation and the
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DisjointClasses axioms. It can generate both these extensions by a using
a slight modification of the DL-Lite axiom normalisation process described
in (Galvanese et al. 2005a).

The following normalise procedure generates the extensions of both re-
lations by forward chaining inferences. The extensions are stored in two
dynamic relation objects SubClass and Disjoint. A pair (D1,D2) of in-
ferred disjoint class descriptions is stored only once, (D2,D1) is not stored.

SubClass:dynamic[(description,description)]=dynamic([]).
subclass:[description,description]{}.
subclass(D1,D2):-SubClass.mem((D1,D2)).
includedIn:[description,description]{}.
includedIn(D1,D2):- (D1=D2|subclass(D1,D2)).

extends subclass to include pairs of identical terms

Disjoint:dynamic[(description,description)]=dynamic([]).
disjoint:[description,description]{}.
disjoint(D1,D2):-(Disjoint.mem((D1,D2))|Disjoint.mem((D2,D1))).

normalise:[]*.
normalise()-> eval{generateBase();extendUntilClosed()} in
{ noChange:logical:=true. noChange a re-assignable var

generateBase:[]*.
generateBase()->

(Class(C,_,Des),D in Des *> recordSubclass(isa(C),D));
C is subclass of each descr. in a C axiom

(Class(C,complete,[hasAValue(P)]) *>
recordSubclass(hasAValue(P),isa(C)));
hasAValue(P) same as isa(C), so a subclass

(ObjectProperty(P,[domain(C)],_,_) *>
recordSubclass(hasAValue(P),isa(C)));
hasAValue(P) subclass of P’s domain

(ObjectProperty(P,_,[range(C)],Flgs),
inverseOf(IP) in Flgs *>

recordSubclass(hasAValue(IP),isa(C)));
hasAValue(IP),IP inverse of P,subclass P’s range

(DisjointClasses(IsaDs),
D1 in IsaDs,D2 in IsaDs,D1!=D2 *>

recordDisjoint(D1,D2)).
record pairs mentioned in a DisjointClasses axiom
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recordSubclass:[description,description]*.
recordSubclass(D1,D2)::subclass(D1,D2)->{}.
recordSubclass(D1,D2)->

SubClass.add((D1,D2));noChange:=false.
noChange made false if new subclass pair added

recordDisjoint:[description,description]*.
recordDisjoint(D1,D2)::disjoint(D1,D2)->{}.
recordDisjoint(D1,D2)->

Disjoint.add((D1,D2));noChange:=false.
noChange made false if new disjoint pair added

extendUntilClosed()::noChange->{}.
noChange true, no additions last round, finished

extendUntilClosed()->
noChange:=true; noChange was false, reset to true

(subclass(D1,D2),subclass(D2,D3),D1!=D3) *>
recordSubclass(D1,D3));
subclass is transitive

(subclass(D1,D2),disjoint(D2,D3),D1!=D3) *>
recordDisjoint(D1,D3));
subclass of a disjoint class is also disjoint

(Class(C,complete,Descrs),Des in Descrs,
includedIn(D,Des),D!=isa(C),
(OD in Descrs *> includedIn(D,OD))

*>
recordSubclass(D,isa(C)));
any D now included in each descr. of complete

axiom for some C, is a subclass of isa(C)

extendUntilClosed().
}.

subclass and disjoint are the relations used for accessing the extensions
of the dynamic relations SubClass and Disjoint.

The generation of the extensions of the two relations is in two phases.
First generateBase finds all the immediate subclass and disjoint rela-
tionships, those that are directly inferable from the axioms. Notice that
recordSubclass only adds a new pair if it is not already recorded, whilst
recordDisjoint only adds a pair (D1,D2) if neither (D1,D2) nor (D2,D1)
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is already recorded. When either procedure adds a new pair, its sets the
logical variable noChange to false to signal an update has been made. This
variable is shared by both these procedures and extendUntilClosed.

The second phase uses the iterative extendUntilClosed procedure to
compute the closure of these base extensions. It uses one step transitiv-
ity and complete class axioms to find new subclass relationships, and it
uses the subclass and disjoint extensions so far computed to infer new
disjoint pairs. The first time extendUntilClosed is called noChange will
be false because subclass and disjoint relationships will have been recorded
by generateBase. It is reset to true at the start of each round of extensions.
If it does not get set to false during an extension round, no new subclass
or disjoint relationships can be inferred, so extendUntilClosed terminates,
otherwise it attempts another round of extensions.

Using the Class and DisjointClasses axioms we gave in section 4, the
normalise procedure generates extensions for SubClass and Disjoint such
that:

subclass(isa(’male’),isa(’person’))
subclass(isa(’female’),isa(’person’)
subclass(isa(’dancer’),isa(’person’))
subclass(isa(’dancer’),hasAValue(’wantToDance’))
subclass(isa(’maleDancer’),isa(’male’))
subclass(isa(’maleDancer’),isa(’dancer’))
subclass(isa(’maleDancer’),isa(’person’))
subclass(isa(’maleDancer’),hasAValue(’wantToDance’))
... simlarly for femaleDancer

subclass(isa(’dance’), isa(’activity’)).
disjoint(isa(’male’), isa(’female’)).
disjoint(isa(’maleDancer’), isa(’female’)).
disjoint(isa(’maleDancer’), isa(’femaleDancer’)).
disjoint(isa(’femaleDancer’), isa(’male’)).

If we include the property axioms given earlier we also get:

subclass(hasAValue(’wantToDance’),isa(’dancer’))
subclass(hasAValue(’wantToDance’),isa(’person’))
subclass(hasAValue(’hasDancedWithMale’),isa(’femaleDancer’))
subclass(hasAValue(’hasDancedWithMale’),hasAValue(’wantToDance’))
...
disjoint(hasAValue(’hasDancedWithMale’),isa(’male’)).
disjoint(hasAValue(’hasDancedWithMale’),isa(’male’)).
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disjoint(hasAValue(’hasDancedWithFemale’),
hasAValue(’hasDancedWithMale’)).

...

If we include the axioms:

Class(’student’,partial,[isa(’person’),hasAValue(’college’)]).
Class(’dancingStudent’,complete,

[isa(’student’),hasAValue(’wantToDance’)]).

we get:

subclass(isa(’student’),isa(’person’))
subclass(isa(’student’),hasAValue(’college’))
subclass(isa(’dancingStudent’),isa(’student’))
subclass(isa(’dancingStudent’),hasAValue(’wantsToDance’)).
...
subclass(isa(’dancingStudent’),isa(’dancer’))

subclass(isa(’dancingStudent’),isa(’dancer’)) can be inferred in two
ways. Firstly, by transitivity, isa(’dancingStudent’) is a subclass of
hasAValue(’wantToDance’)), which is a subclass of the domain dancer
of wantToDance. Secondly, using the complete class axiom for dancer,
isa(’dancingStudent’) is a subclass of each of the description classes of
this class axiom. This second inference holds even if we remove the property
axiom for wantToDance giving its domain.

We assume that our agent calls normalise as part of its initialisation.
It can then use subclass and the disjoint to see if there is any subclass
pair that is inferable disjoint. It does this by evaluating the set expression:

DisjSubs={(C1,C2)||subclass(C1,C2),disjoint(C1,C2)}

For the axioms given so far this set is empty, but suppose that in addition
to the Class axioms for student and dancingStudent we added the axiom:

DisjointClasses([isa(’dancer’),isa(’student’)])

DisjSubs will now contain:

(isa(’dancingStudent’),isa(’student’))
(isa(’dancingStudent’),isa(’dancer’))
(isa(’dancingStudent’),hasAValue(’wantsToDance’))

So, as described, dancingStudent can have no members - the only way it
can be a subclass of another class and yet share no members with that class.
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5.1 Forward vs backward chaining inference

When we use the ontology axioms for inference with respect to individual de-
scription, there are two ways they can be used. We can use them in a forward
chaining way to find and record implied class memberships and property val-
ues for other individuals immediately some description is added or modified,
or we can delay doing the inferences until we need to answer queries. If the
former, when the agent adds its description of mary, with value john for
its hasDancedWitMale property where john has no recorded description, it
also adds a description for john with membership class maleDancer and
the value mary for the hasDancedWithFemale property. If the latter, we
only add mary’s description, and, if the agent needs to check if john is a
maleDancer, it searches its recorded descriptions to see if john is the value
of a property with range maleDancer.

We believe the following are reasonable choices for the efficient imple-
mentation of an DL-Lite ontology conforming belief store in a language such
as Go!:

Backward chaining inferences

• An individual’s membership of a class implied by the ontology ax-
ioms, and its recorded types and property values, is inferred whenever
needed, and not remembered.

Forward chaining inferences

• Whenever an hitherto un-described individual is named as a property
value a new description object for the individual is created.

• When an individual I has a new value J for a property P stored, and
P has an inverse IP, the agent ensures that the value I for IP is stored
in the description of J.

• A new class membership implied by a property range is inferred and
recorded, if need be, when the property value is stored.

• The identity of individuals implied because a property is functional,
or inverse functional, is inferred as the new property value is stored.

• Class memberships or property values implied by the identity of two
individuals are inferred when the identity first becomes known. Com-
bined values are stored in an alias object as described in section 4.1.
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• When a new type(C) class membership is recorded for an individ-
ual I, and subclass(isa(C),hasAValue(P)) holds, a special value
some(I,P) is added for property P of I, if not already recorded.

5.2 Rules used for backward chaining inference

Below is the definition for a new relation ClassOf that extends the classOf
relation defined earlier. classOf just accesses the recorded types of an
individual. ClassOf makes use of ontology axioms. It also handles the
special some property values that are added by forward chaining inference.
We have changed the individualId type to include these terms.

ClassOf uses two intermediary relations. First, baseClassOf extends
classOf to cover some terms and to make use of complete class axioms.
canonicalClassOf then extends this to cover super-classes as recorded in
the subclass relation. These will all be canonical class names. ClassOf
covers class name aliases for these canonical names.

individualId::=id(symbol) | some(symbol,symbol).

ClassOf:[individualId,symbol]{}.
ClassOf(Id,C) :-

canonicalClassOf(Id,ConN),canonicalNameOf(C,ConN).

canonicalClassOf:[individualId,symbol]{}.
canonicalClassOf(Id,C):-

baseClassOf(Id,BC),(C=BC|subclass(BC,isa(C))).

baseClassOf:[individualId,symbol]{}.
baseClassOf(id(I),C):-

classOf(id(I),C).
baseClassOf(some(_,P),R):-

ObjectProperty(P,_,[range(R)],_).
baseClassOf(id(I),C):-

Class(C,complete,Descrs),
(isa(C) in Desrcs *> canonicalClassOf(id(I),C)),
(hasAValue(P) in Desrcs *> valueFor(id(I),P,_).

The last clause of the baseClassOf allows is to infer that an individual is a
member of a class C if we can infer that it is also a member of every class
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mentioned in the list of classes of a complete class axiom for C. For the class
axiom:

Class(’dancer’,complete,[isa(’person’),
hasAValue(’wantToDance’)])

its use is equivalent to having an extra rule:

baseClassOf(id(I),’dancer’):-
canonicalClassOf(id(I),’person’),
valueFor(id(I),’wantToDance’,_).

So, suppose our agent believes only that bill is a person and is then told
that bill has a value polka for wantToDance . It can now infer that bill
is a dancer.

Such implicit rule extensions to baseClassOf are equivalent to some of
the rules generated by the mapping from DLP to Datalog in (Grosof et al.
2003). The DL-Lite complete axiom for dancer cannot be used in DLP.
The class would have to be described using two axioms:

Class(’dancer’,partial,[isa(’person’)]).
SubClassOf(intersectionOf(isa(’person’),

hasAValue(’wantToDance’)),
isa(’dancer’)).

These will be mapped into the two Datalog rules:

person(I)← dancer(I)
dancer(I)← person(I) ∧ wantToDance(I,D)

We do not need the equivalent of the first rule as the dancer, person
subclass relationship is computed by the normalise procedure and stored
as a subclass pair. This will accessed by the canonicalClass definition
allowing the agent to infer that an individual described as a dancer is also a
person. Our implicit extension of baseClassOf is equivalent to the second
rule.

5.3 Role of some terms

The storing of a some(I,P) term as a value of a property P for individual
id(I), if subclass(isa(C),hasAValue(P)) holds for one of the recorded
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types C of P, enables us to correctly answer a query about id(I) that asks if
it has a P value. For, even when there are no explicitly identified individuals
(denoted by an id term) recorded as P values, we will have the some term
stored. In addition, if a property axiom tells us that P has range C, it will
enable us to always answer queries that ask if I has a P value that belongs
to C, or any other class of which C is a subclass.

For example, our dancer ontology says that dancer is a person that
has a value for the wantToDance property, which is declared to have range
dance. Now suppose the agent believes that jim is a dancer but does not
yet know the identities of any dance jim might want to do. It will still get
id(’jim’) as an element of the query set:

{I || valueFor(I,’wantToDance’,D),ClassOf(D,’dance’)}

This is because jim will have the term some(’jim’,’wantToDance’) as a
recorded value for its wantToDance property, and

ClassOf(some(’jim’,’wantToDance’),’dance’)

holds because of the range declaration for wantToDance.
If the agent only wanted the names of individuals who wanted to do

some identified dance, it can use the set expression:

{I || valueFor(id(I),’wantToDance’,id(DId)),
ClassOf(id(DId),’dance’))}

To find all the dancer individuals that as yet have no identified dance
desire, it can use:

{I || ClassOf(id(I),’dancer’),
\+ valueFor(id(I),’wantToDance’,id( ))}

This is, of course, not the same as the set of dancers who have no dance
desire, as, by the definition of the dancer class, there are none. However,
for an agent this query can be used as a precursor to an information gath-
ering activity in which the names of the dance desires for these dancers are
sought. In OWL-QL(Fikes et al. 2003), similar distinctions regarding known
and unknown values for properties can be made by specifying must-bind,
may-bind and don’t-bind modes for the answer variables.
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5.4 Checking consistency of individual descriptions

When an individual description is about to be added to the agent’s belief
store, or a stored description is modified, the description is checked to see
that is consistent with the axioms of the ontology.

The description of an individual I is deemed to be acceptable if, after
replacing each of its class names by their canonical names, its description
satisfies the following:

• Its alias and difference sets are disjoint.

• No two of its recorded or inferable types are for disjoint classes.

• For each property P of I:

– If P is functional, either all P’s values are already recorded as
aliases, or, merging their descriptions would produce an accept-
able description.

– If P is inverse functional with a value J, and J already has a value
I’ for the special property inverseP, then either I and I’ are
already aliases or the merger of their descriptions is acceptable.

– In addition, any implied new property values for other individ-
uals leaves their descriptions acceptable. For example, if I has
value(P,J), where P has an inverse IP, adding value(IP,I) to
J will leave its description acceptable. Likewise, if P has range R,
adding type(R) to J would leave it acceptable.

5.5 Forward chaining inferences and justifications

• A new description for an individual I can be added to the agent’s
object store providing it is acceptable. When it is added:

– Each of its class names is replaced by its canonical name

– If some property P of I is such that P has a range(C), then each
value J of P has an implied type(C). If type(C) is already a
recorded class of J, then (I,value(P,J)) is added as an extra
justification. If it is not yet recorded, nor inferable from J’s exist-
ing description, the agent modifies its description of J to include
type(C), with this as initial justification.

– The descriptions of individuals referenced as values of each prop-
erty that has an inverse, are updated. If the implied value is
already recorded, just an extra appropriate justification is added.
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– If a recorded type(C) for I is such that for some property P
subClass(isa(C),hasAValue(P)) holds, value(P,some(I,P))
is added to I as a reminder of this restriction, with type(C) as
justification.

– If a property P of an individual I is inverse functional with value
J, and no property axiom gives the name of the inverse of P, we
ensure that value(inverseP,I) is recorded in object J. We add
(I,value(P,J)) as a justification.

– Individuals inferred as being the same because of functionality
or inverse functionality of some property, that are not already
recorded as aliases, are aliased as described at the end of section
4. Justifications are added recording the reason, or the extra
reason for the identification.

• A new membership class C can be added to a description providing the
description remains acceptable. If this is a subclass of hasAValue(P),
for some P, the appropriate some value is added as a value for P .

• A new value for a property P can be added to a stored description
for individual I providing the description remains acceptable. Other
updates may be made as when a new individual description is added.

• Each individual property value, class membership or identification
with another individual, stored as a result of an observation or a mes-
sage from another agent, has the source of that belief recorded as a
justification.

5.6 Using the justifications

The justifications provide a mechanism for garbage collecting stored conclu-
sions when all the forward chaining inferences that generated the justifica-
tions rely on facts that have been deleted. They also help an agent to decide
how to revise its beliefs should it be given information that is inconsistent
with current beliefs. For example, suppose our agent Ag is told that some
individual I is the same as J by an agent AgSus with suspect reliability. Fur-
ther suppose that I and J have different recorded values I’ and J’ for some
property P, axiomatized in the ontology as functional, and that both these
values for P came from reliable sources, or observations by Ag. Let is further
suppose that I’ and J’ are believed to be different - each has the other in
its diffFrom set either because of an ontology axiom or information from a
reliable source. Recording that I and J are aliases would require that either
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the agent to drop one of these P values, or to assume that I’ and J’ are not
different but are actually aliases. Ag may prefer to reject the information
that I and J are the same individual from AgSus.

Now, suppose the agent wants to remove a belief B either because it has
observed that it is false or been told this by a reliable source. It does forward
inference from B using the ontology axioms as described in section 5.5 to
find each consequential belief CB that it might have been inferred and stored
when B was added. It removes each justification for CB containing B. It will
remove CB if its justification set is now empty. Before removing CB it must
recursively apply the same justification pruning process starting from CB.

As an example, suppose B is the belief value(P,J) about an individual
I where P has range C. It will remove B from the justification set that I has
type(C).

The above prunes the belief store of those beliefs that can be inferred
by forward chaining using B. The agent must also ensure that B cannot be
re-inferred. This will usually lead to the pruning of more beliefs that can be
determined as false.

Thus, when it is removing B from justification sets by doing forward
inference from B, it must also check that each consequential belief CB does
not similarly imply B. If it does, CB must also be removed, even if it has
other justifications. B being the value of a property with an inverse, and CB
being the stored value for the inverse property, is an example.

Finally, if any B that is deleted has associated justifications, the agent
must remove at least one belief mentioned in each these justifications. As
an example of this last step, suppose B is the belief that some individual J
has type(C) and this has (I,value(P,J) as justification, added because P
has range C. The agent must also remove value(P,J) from its beliefs about
I.

The removal of a belief deemed to be false typically results in the ex-
amination and removal of other beliefs directly and indirectly linked to it.
At least at the end of this recursive removal of justifications and beliefs the
set of recorded individual descriptions will be consistent with the ontology
axioms and reflect what the agent considers to be a true state of affairs. A
prior checking of what belief store revisions will result from the removal of a
belief that an agent considers may be false can be used to gather and weigh
evidence for the belief. As a result it may decide to leave the belief in its
store. How such pragmatic decisions are made will be application dependent
and is beyond the scope of this paper.
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6 External Queries

Internally an agent can use the ClassOf and valueFor relations to query its
belief store. But it is useful for agent’s to be able to query each others beliefs,
to ask questions of one another. We can envisage that inside each agent is a
dedicated query answering thread accepting queries from other agents. We
use a query syntax loosely based on OWL-QL (Fikes et al. 2003).

Queries are terms of type:

answerTerm::=i(individualId) | p(symbol).
query::=all(list[answerTerm],list[queryCond]).
queryCond::= holds(symbol,individualId,individualId) |

typeOf(individualId,symbol).

OWL-QL uses type instead of typeOf and does not use holds to prefix
property value conditions. Instead it uses just an unlabelled 3-tuple. The p
answer terms will contain property names.

The query term:

all([i(I),i(J)],[holds(’child’,I,J),typeOf(J,’male’)])

corresponds to the Go! set expression:

{[i(I),i(J)] || valueFor(I,’child’,J),ClassOf(J,’male’)}

The agent evaluates a query term by invoking the function evalQ:

evalQ:[query]=>list[answerTerm].
evalQ(all(AnsTms,QConds)) => {AnsTms||evalConds(QConds)}.

evalConds:[list[queryCond]]{}.
evalConds([]).
evalConds([Cond,..RConds]):-
evalCond(Cond),
evalConds(RConds).

evalCond(typeOf(I,C)):-ClassOf(I,C).
evalCond(holds(P,I,V)):-valueFor(I,P,V).

Two more example query terms are:

all([i(J)],[holds(’child’,id(’bill’),J),holds(’wife’,J,_)])

all([i(I),p(P)],[typeOf(I,’person’),holds(P,I,id(’bill’))])
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The first is to find all bill’s children that have wife. The second is to find
each person I and that is related to bill by a property P, and the name of
the property.

We can easily generalise our query and queryCond types, extending
evalQ appropriately, to allow single solution queries, disjunctive query con-
ditions, and conditional queries. If an agent has auxiliary relations defined
using relation rules, like the shareADanceDesire relation of section 3, we
can also allow external queries to access these by extending the queryCond
type to include query conditions of the form:

rel(symbol,list[individualId])

To evaluate such conditions, we simple add extra rules to the evalCond
definition, one for each defined relation that external queries can use. For
example:

evalCond(rel(’shareADanceDesire’,[D1,D2,Dnce])):-
shareADanceDesire(D1,D2,Dnce).

7 Related Work and Final Remarks

7.1 Agents using formal ontologies

Regarding the use of the axioms of a formal ontology within an agents belief
store we believe that (Barbuceaneau and Fox 1996) describes the first agent
architecture to adopt this approach. The paper describes an agent building
shell in which the agent’s beliefs can be represented using a description logic
managed using a truth maintenance system. Details are not given.

More recently, the EU Agent Cities project (Willmott et al. 2001)
used information agents that converted theatre and restaurant information
from web pages into an ontology instance store represented as RDF triples.
Two ontologies, Shows and Restaurant (AgentCities 2003), expressed in
DAML/OIL were used. The instance stores were then queried by personal
agents using FIPA ACL (FIPA 2002) messages. However, the ontology ax-
ioms were not used to check for consistency of the restaurant and shows
data as it was collected and stored - instead web scraper agents were hand
programmed to generate only correct descriptions with respect to the on-
tology. In addition, when the information was queried, only the axioms
defining the subclass hierarchy of the ontology were used to reason about
class memberships. So the inference layer was quite weak.
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GraniteNights (Grimnes et al. 2003), another information agent appli-
cation, similarly only makes use of RDF triples to encode the instance store
data about restaurants and shows in Aberdeen. It also only does inference
using RDFS sub-class axioms.

In (Chen et al. 2005) a broker agent supporting user agents in a ubiqui-
tous computing environment is described. It uses an OWL based ontology
describing the location structure of the physical environment, the types,
roles and BDI (Beliefs, Desires, Intentions) structures of the user agents,
and policy issues. The broker agent stores and makes available shared lo-
cation and activity information about the users. It also uses the ontology
to check for the consistency of information the user agents provide and to
augment this information in answering their queries. The information is
stored on a relational data base and accessed using a rule inference engine
implemented in Java. This is a real application of the approach advocated
in this paper but details of the inference rules used to support reasoning
using the ontology axioms, and the consistency checking, are not given.

Another interesting application making use of an ontology to aid rea-
soning is its proposed use in (Schenoff et al 2004) within an autonomous
vehicle as an aid to perception. The intention is to use an ontology based on
description logic to describe obstacles that may be encountered in the path
of the vehicle. The ontology will then be used to classify an obstacle from
its perceived features.

(Alechina et al. 2006) contains a description of a proposed belief re-
vision algorithm for Jason, a Java implementation of an extension of the
BDI agent language AgentSpeak(L)(Rao 1996). The belief store comprises
a set of atomic beliefs. Beliefs are added or removed either as a result of a
message, agent observations, or forward inference plans that are triggered
by belief update events. The algorithm makes use of justifications and pref-
erences. The preferences are used to determine which belief to drop from a
justification set for an inferred belief when the belief is deemed to be false.
Which of a set of alternative beliefs to drop to maintain consistency is an
issue we have not dealt with.

7.2 Multi-agent truth maintenance

We have only considered the revision of ontology facts to maintain consis-
tency with the axioms within a single agent. However, we have assumed
that agents will query one another and perhaps directly transfer beliefs us-
ing KQML style (Finin et al. 1994) tell and deny messages. Keeping track
of which beliefs were used to answer every OWL-QL query an agent has re-
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ceived, so that a new reply may be sent if the answer changes due to changes
in these beliefs, is a costly proposition. KQML does have the notion of a
subscription query. This is a persistent query that should be re-answered
each time a different answer will be given, and an agent may or may not
support that type of query.

On the other hand, if an agent directly transfers a belief to another agent
using a tell message, which it later decides to delete from its won belief
store because it considers it to be false, it might want to update all the
agents to which the belief has been told by sending them a deny message.
This leads us into the realm of multi-agent truth maintenance, as treated
in (Huhns and Bridgeland 1991).

The consequential revisions of the belief stores of the agent’s receiving
the denials may generate the need for them to send out other denials, and
successive rounds of communication may be needed before the combined
beliefs of the various agents become consistent with their respective ontology
axioms. We assume that these axioms, if different, are collectively consistent.
Doing this in an efficient manner which is guaranteed to terminate is an issue
we have not yet considered.

7.3 Ontologies with rule defined relations

We have shown how Go!’s logic rules can be used to extend the range of
ontological relationships that can be expressed. There are several proposals
to augment description logic based ontologies with rules.

We have already mentioned the work of (Grosof et al. 2003) which maps
a description logic into Datalog. (Volz 2004) shows how more expressive
description logics can be mapped into Datalog extended with equality and
constraints.

The proposed SWRL (Semantic Web Rule Language) (Horrocks et al.
2005) is an extension of OWL DL to include a Horn clause rule language.

WRL (Web Rule Language) (de Bruijn 2005), which builds upon F-
Logic (Kifer et al. 1995), a frame based logic programming language, is
another recent proposal to complement OWL with rules.

Flora-2 (Yang et al. 2003), is another extension of F-Logic that can be
used for rule based ontological knowledge representation. Like Go!, Flora-
2 is a OO logic programming language with multiple inheritance. It also
includes transaction logic rules for specifying updates. In Flora-2 one could
implement an agent with an ontology constrained belief store. This is also
true of any Prolog or Prolog extension.
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7.4 Final Remarks

The Go! definitions of sections 3, 4, 5 give the flavour of the way in which we
can use individual descriptions of some DL-Lite ontology, augmented and
constrained by the axioms of the ontology, as a Go! agent’s belief store. We
have also seen how we can further augment the ontology using Go! relation
definitions that build upon the binary relations of the ontology.

Our view is that the use of formal ontologies to frame the beliefs of an
agent is an idea whose time has come. As we have argued in this paper,
this means that we must also address the issue of belief revision to maintain
consistency with the ontology because it is the essence of an agent that its
contingent beliefs about the state of the world are in flux. As another key
requirement of an agent is reactivity - the timely response to changes in its
environment - the inferences must also be performed in a timely fashion.

We have outlined the implementation of a concrete approach to handling
dynamic beliefs about individuals of an ontology expressed in DL-Lite. It
balances gaining faster inference by sometimes doing forward chaining, with
recorded conclusions, with the resultant cost of having to use a justification
based truth maintenance system to be able to efficiently maintain ontological
consistency of the belief store when it is modified. We have not dealt with
the formal aspects of the soundness or completeness of our implementation
of a DL-Lite reasoner in Go! as our primary concern in this paper was
the practical issues concerning use of a simple ontology framework inside a
reactive, rational agent.

We intend to test the feasibility of our approach by using such an ontol-
ogy constrained belief store in an existing Go! implemented multi-threaded
BDI agent architecture in which plans are an elaboration of Nilsson’s Teleo-
Reactive programs (Nilsson 2001).
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