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£bstract

This monograph attempts to give a concise introduction to the theory and
practice of logic programming. It has five chapters. The first is an
introduction to the use of the Horn clause subset of predicate logic as a
programming language. A non-deterministic-abstract evaluator is defined
and its implementation on z stack machine is briefly described. Chapter 2
is devoted to control issues. It introduces program annotations as a
language for controlling the non-deterministic evaluator. Using
annoctations one can set up coroutining evaluations and make the order of
evaluztion of 2 Horn clause procedure dependent upon its mode of use.
Chapter 3 reviews the model theory and fixed point semantics of Horn clause
programs, It presents a new proof of the equivalence between the
procecdural and mathematical semantics of logic programs. Moreover the
equivalence proved is stronger than the classical completeness result. The
equivalence is stated in terms of the answer substitutions that are the
cutput of an evaluztion. In chapter 4 the mathematiczl semantics is used
to justify verious techniques for verifying logic programs. All of these
consist of constructing around the logic program a first order theory sbout
the relztions it computes. Certain theorems of this theory are then
correctness and termination results for the program, Finally, chapter 5
inverts the verification process and explores the use of a particular
verification method, consequence verification, as a technique for deriving
programs from their specifications. Starting from an axiomatisaticn of a2
relation in unrestricted first order logic it examines ways in which we can
systematically search for a set of computationally useful Horn clause
theorems. These are the logic program for the relation,
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of LUSH resoclution.

Chapter 4 is nearly all new material on the verification of logic
programs, although it is a development of some earlier research. First,
it is shown that we can express properties such as correctness and
termination as first order sentences about the program computed
relations. If the sentence is true, the program has the verification
property it expresses. It is then shown how these sentences can be
proved by deriving them as theorems of the theory of the progranm
computed relations. The axioms of this theory are the clauses of the
program strengthened to equivalences and induction schemas. The use of
these stronger axioms is justified by appeal to the fixpoint semantics.
Program verification techniques such as structural induction and
computational induction become first order proofs using particular
induction schemas. Finally, a quite different wverification method is
investigated. In this method the program clauses are not used as
axioms; they are derived as theorems. This verification method can be
interpreted as a generalisation of fixpoint inductien.

If we can verify a logic program by confirming that each of its
clauses are theorems, we can synthesise a logic program by finding its
clauses as theorems. That is, we can start with an intuitively correct
first order axiomatisation of some relation we want to compute. We can
then try to piece together a logic program by deriving a set of Horn
clause theorems. This deductive approach to the construction of logiec
programs is the subject of Chapter 5. A method for systematically
searching for Horn clause theorems is described and exemplified. We
then show how wWwe can sometimes piece together quite different programs
by taking different subsets of some set of theorems. Finally, we apply
the program derivation techniques to the task of transforming a given
logic program P. We treat certain axioms of the theory of the relations
it computes as specification axioms implicitly given by the program.
From these a different set of Horn clause theorems is derived, which is

a new program P',
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Chapter 1 Syntax and Procedural Semantics

In this chapter we survey the machine oriented aspects of using the
Horn clause subset of predicate logic as a programming language. We
describs a resolution theorem prover which, given a logic program and a
computation rule, executes the program along the lines of a canventional
program interpreter. It gives us a procedural semantics for logic
programs., We briefly describe a stack implementation.

1.1 Inference as computation

Robinson's machine oriented resolution inference rule for the clausal
notation of predicate logic [Robinson 1965] was the first essential step
along the road to viewing inference as computation. Then Green[1669]
showed that a resolution theorem prover could be used to 'simulate' a
computation. However it was Hayes [1973] and Kowalski [1974,1979b] who
gave resolution inference an explicit procedural interpretation,
Wowalski for the Horn clause subset of predicate logic and Hayes, for
the most part, for logic programs comprising a set of =quality
statements., The final credibility was provided by the Harseilles
lRoussel 1975] and Edinburgh [Warren =t alia 19771 PROLOG
implementations. These are essentially computationally efficient Horn
clause theorem provers. The Edinburgh implementation, which borrowed
and extended the implementation techniques of the Marseilles PROLOG, is
particularly impressive. It pre-—compiles much of the work of a
unification (the basic unit of computation of a logic program) as a
sequence of machine level instructions associated with the program
clauses. For list manipulation programs it compares favourably with
compiled purs LISP; [Warren et alia 1977] has the details. PROLOG has
also heen implemented in Budapest[Szeredi 1977], Leuven[Bruynooghe
19761, London[Clark & McCabe 1979) and Vaterloo[Roberts 19771.

We shall follow ¥owalski and use Horn clauses as the basic programming

notation, We assume some familiarity with the concepts of unification
and resolution, however we shall give a brief explanation of these

ideas.
1.2 Syntax of logic programs

DFEFINITIONS
(1) A Horn clause implication is a sentence of the form

R(t1,..,tn)}<=-A1%., &Am.

Fach AL, like R(t1,..,tn), is an atomic formula. When m=0, and the
antecedent of the implication is empty, we call it an assertion.
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{?) Something is an atomic formula (or atom) if it is of the form
R(t1,..,tn), n>0, where R is an n-ary relation name (predicate) and

t1,..,tn are terms.

(2) A term is a variable, a constant, or of the form f(t1,..,tn),
n»", where f is an n-ary function name (functor) and t1,..,tn are

terms,

Ye assume a denumerable set of names comprising finite length strings
over a finite alphabet which does not include the logical symbols "<-7
nom o n(m myn and "g",  Whether or not a name is a variadle/constant, a
functor or a predicate can be determined by context. So a functor is
just a name used in the functor context, etc. To distinguish wvariables
from constants we adopt the convention that names beginning with an
lower case letter are varables. All other names in the
variable/constant context are constants. Informally, we shall use infix
notation for both terms and atoms. For example, we shall write "u 1in
u.x" instead of "in(u,.{u,x))", and "tom married mary" instead of
"married(tom,mary)”. As with these examples, we shall underline the
infix predicates. We shall assume that infix functors associate to the
right, so "2,2.Mi1" is syntactic sugar for no(2,.(3, 81",

Neclarative reading

Tf x1,..,xk are all the variables of the clause
R(t1,..,tn)<=AT&. . kAm
we can read it as:
for all x1,..,xk, R(t1,..,tn) if A1 and A2... and Am.

Mternatively, if y1,...,yl are variables that only appear in the
antecedent A1A,...&%Am, and z1,...,2j are the variables that appear in
the consequent, we can read it as:

for all z1,...,zj, R{t1,..,tn) if
there exists y1,...,yl such that Al and...and Am.

The alternative reading derives from the fact that a universally
quantified implication

(¥x)[P<-0]
is logically equivalent to

{P¢-(3x)Q]

when x does not appear in P. We use "(¥x)" when we want to explicitly
indicate a universal quantification of a variable x, "(3x)}" for an
existential guantification.

Vs shall say that the above clause is about the predicate R, because R
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is the predicate of the consequent atom of the implication.

NEFTMITTINN

A logic program is a set of Horn clause implications which contains at
least one implication about each predicate appsaring in any of its
clauses,

As in all programming notations we shall assume that some predicates
are primitive, with a fixed 'system' provided set of clauses. An
example would be the product predicate. Atoms that wuse the predicate
will usually be written as ti=t2xt3, t1,t2 and t3 being the terms of the
atom and "..=..x.." being the infix relation name. Conceptually, we
treat the system provided implementation as equivalent to the infinite
set of assertions:

O=0x0<=
C=1x0<¢=
0=0x1<~
1=1x1<-

H=2x2<-

.

Of course, in practice only a finite subset of these assertions will be
accessible, that subset being represented procedurally so as to maks use
of the hardware operations of the machine.

example program - 1

append (N1l ,x ,x)<-
2)

append(u .x,y,u.z) <-append(x,y,z)

is a logic program for the predicate "append”. As the mnemonic content
of this relation name indicates, the two statements of the program can
be read as statements about appending list structures. We take "Nil" to
be the name of the empty list, and "." to be the name of a list
constructor such that u.x is the list x with u 'consed' onto the front.
With this interpretation, the assertion of the program tells us that for
all x, appending the empty list onto x leaves (it unchanged. The
implication tells us that for all x,y,z and u, if z is the result of
appending x and y then u.z is the result of appending u.x and y.

Recursive data structures

B term of the form t1.(t2.(..(tn.Nil)..)) is the name of the list
ft1,£2,..tn]. The set of all such terms is the recursive data structure
implicitly introduced by this logiec program. Note that the ‘'cases'
treated by each clause are indicated by the 'patterns' of terms in the
consequent atom of the clause, the 'procedure head' as Kowalski calls
it. "is {s a common form of logic programs for relations on recursive
data structures. Since we usually give the form of both the 'input' and
'output' structures, it corresponds to a slight generalisation of the
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case format proposed by Hoare [1973) for programs manipulating recursive
data structures,

Computational use

Suppose We want to append two l1ists, say the two unit 1lists [2] and
f2]. Ve do this by asking for an instance of the unary relation:

x is the result of appending [2] and [3].

Under our assumed meaning of the "append™ predicate, this relation is
named hy append(2.Hil,3.Mi1,x). A request for an instance of this

relation is written:
{—appand(?,N{1,3.M1 %),

Such an expression is a goal clause, the atom append(2.Ni1, 3. M1 ,x)
being a call of the append program. An evaluation of the goal clause is
a constructive proof, using the program clauses as premises, that there
{5 an % such that append(2,Nil,2.Ni1,x).

The proof is constructive in that it will bind x to a term t such that
thwe assertion append(2.Mil,3.K{1,t) is a logical consequence of the
program clauses, Since these clauses are all true statements about
appending 1lists, the assertion append(2.Nil, 3.N{1,t) must be a true
statement about the append relation. This means that x can only be
bound %o the term 2.3.Nil. This is the only term that names the list
[2,31 which is the result of appending the lists [2],[3].

The truth preserving aspect of a logic program computation is its
crucial property. We shall deal with this more fully in Chapter 3. For
the time heing let us note that it enables us to understand a loglc
program declaratively or procedurally: to understand it as a set of
statements about the relation we want to compute, or as a recipe for
findingz instances of the relation.

The declarative reading of the "append" program is as a pair of
universally quantified statements about appending lists. Its procedural
reading depends on the way it is used. As a program for appending lists
it ecan be read:

to append the empty list Nil to some list y, return y;
to append a constructed list u.x to some list y first
append x te y giving z, then return u.z.

Mon-deterministic use

We can use the same logic program non-deterministically to split a
1ist into front and back sublists. To split the list [2,3] we use the

goal clause
<-append(x,y,2.3.M1)
since this names the relation

{<x,y>: [2,3] is the concatenation of x,y}.
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As we shall see, each of the substitutions
{x/Mil,y/72.32,. 41}
{x/2.M1,y/2. 111
(x/2.2.M11,y/Nil}

is a possible answer substitution. Each correctly denotes an instance of
the relation named by the goal clause. The ability to use the same set
of clauses to compute both a function and its inverse, and more
generally %o find values for any unknown arguments of a relation, is a
novel feature of logic programs. Indeed, as we shall see 1in the next
chapter, each logic program represents a whole family of different
algorithms, each algorithm corresponding to a different computational
use of the clausss of the program.

4s a program for decomposing a list into front and back sublists, the
nappend” program can be read:

to decompose a list w
either return <Nil,w>
or if w is a constructed 1list u.z then
decompose z into <x,y> and return <uLX,¥>
The either,or indicates a non-deterministic branch.

Most general answers

The goal clause
¢-append(x,y,z)
is a request for any triple of lists in the append relation. There are
an ‘infinite number of instances of this relation. The goal clause

evaluator we describe in section 1.4 1is able to construct answer
substitutions that ‘'cover' all these instances. More interestingly.

each answer substitution names not just a single instance, but an
infinite subset of the relation. One answer is

Ax/Mil,y/y,.2/¥) .

which, since it binds y and z to the same variable, denotes the infinite
set of list tuples

{<f 1,1,1>:1 any list}.
Another answer is
{x/u.NM1,y/y,z/u.yl,

which names the infinite set of append instances that have a unit 1list
as first argument. The general form of each of the infinite set of
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possible answer substitutions is

{x/ul.u2...uk. M1, y/y, z/ul.u2...ukyl. Kk>0.
Tt denot=s the infinite set of instances that have a list of length k as
first argument. We get these instance scdemas, rather than particular
instances, because the goal clause evaluatomr always returns the most
general answer for each inference/computatiem path.

As a program for generating the general fiorm of an instance of the
append relation the program can be read:

either return <Mil,x,x>
or find an instancs <t1,£2,t3> and return <u.t1,t2,u.t3>
where u is a variable naot appesaring in t1,t2 or £3.

example program—2

The generation and modification of answer substitutions are the data
structure construction and manipulation wperations of a logic program
evaluation. Viewed as data structures, amswer bindings that contain
variables have a special role. This is bexause the answer binding x/t.
where t contains some variable y, is modified to a new binding x/t' when
the wvariable y 1is itself bound. This gives the effect of a data

structure assignment (t changed to t').

One use of the following program manipulastes answer bindings in Just
this way. It is a program for the predicate "front". This is intended
to name the relation which holds between a mmmber n and a pair of 1lists
2,x when x i3 the list of the first n el=ments of z. It makes use of
the above program for "append™, and an auxilliary program for the list
length relation.

front{n,x,z)<-length(x,n) & append(x.¥,2)

length(Nil,0)<-
length{u.x,s(n))<-length(x,n)

The clauses can be read:

x i{s the list of the front n elements ®f z if the length
of x is n and there is a y such that x @ppended to ¥ is z,

the length of the empty list is zero,
the length of a 1ist u.x is n+l if the length of x is n.
These are all true statements about the fromt relation.

Let us note in passing that the program. implicitly 'declares' two
recursive data structures. The first is the list data structure, the
one we have already come across. Te ot¥%er 1is the recursive data
structure of the natural numbers, the met of objects generated from
zero, named by "0", using the number generatter, add 1, named by the
functor "s". Thus, the term "s(0)" names the number 1, "s(s{0))"™ the
number 2, and 2o on. Of course, We can, anfl shall, use the normal
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decimal notation numerals as syntactic sugar for these terms.

Relative to the above reading of the program as a set of statements
ahout, the front n elements of a list, the goal clause
<-front(2,x,A.B.C.M1) names the unary relation that is true of x when
it is the 1ist [A,R] of the first two elements of the 1ist [A,B,C]. One
computational use of the program to generate the answer substitution
{x/A.B,¥11} (we shall discover in the next chapter there are other quite
different ways to generate the answer), is equivalent to first
evaluating the goal clause <-length(2,x) %o produce the answer
substitution [x/u.v.Ni1l}, then  evaluating the goal clause
¢-append(u.v.Nil,y A.B.C.NL1) to produce the amiliary bindings
{u/A,v/Pl. The first answer binding for x gives the general form of a
1ist of two elements, the second answer binding is the final answer
[x/A.B M1}, This i3 generated when the evaluation of
<-append(u.v.Nil,y,A.B.C.N{1) 'fills-in' the u,v slots of the general
answer,

example program-3

The two sets of assertions:

Jack fathered George<d- Tom married Mary<-
Tom fathered Bill<- Bill married Jane<-

a . (3)
Bob fathered Tom<- Jack married Susan<-

are a quite different kind of logic program. They are more like a data
base than a program 1in the conventional sense, With the English
language meaning of the relation names, we can read them as a
deseription of certain family relations that prevail amongst a group of
people named "Jack", "George", etc.

Data retrieval

We 'compute' with the data-base-style program in exactly the same way
as with the 'recursive' program for append. Thus a goal clause

¢~Tom fathered x & x married Jane

i{s a request for an instance of the unary relation (presumably the only
{nstance) comprising offsprings of Tom that are married to Jane. The
evaluation of this goal clause will be a search over the "fathered" and
"married" assertion sets. The result is the binding x/Bill.

Data confirmation

The goal clause

¢-Poh married Sarah

is a request for the confirmation that Bob and Sarah are married. Ir
the assertion

1.2 Syntax of logic programs "

Pob married Sarah <=

appears in our logic program the answer is true. If the assertion does
not appear, all attempts to establish that Bob is married to Sarah using
the assertions of the program will fail, so the answer is fail.

1.3 Substitution and unification

The abstract interpreter we shall describe in the next section 1s a
resolution theorem prover. The unit of computation is a resoclution, of
which the essential component 1s wunification. Unification is the
process of finding a substitution that makes twWo or more atoms
syntactically identical. In this section we give a brief introduction
to these concepts. For a complete treatment the reader should consult

Robinson[1945] or Robinson[1979].

DEFINITIONS
(1) A substitution is a set

s = {x1/t1,..,xk/tk)

of varisble/term pairs in which the x1,..,xk are distinct wvariables.
We say that xi is bound %o the term ti.

(2) A substitution instance of an expression E (a clause, atom or
tarm) is any expression E' that can be obtained from E by
simultansously replacing each of the variables bound by a substitution
s, at each occurence in E, by the term to which it is bound. Ve use
[Els or Es to denote this substitution instance.

(2) # variant of an expression E is a substitution instance Es where s
is a change of variable substitution. That is,

s = {x1/y1,x2/y2,.. . xk/yk}

where x1,..xk are all the variables of E and y1,..,yk are any X
distinet variables.

(1) The composition s1%s2 of two substitutions

s1 = (x1/t1,...xn/tn}, s2 = {y1/t'1,..,yk/t'k}
is the substitution

s'1 union s'2
where

s'1 = {x1/[t1)s52,...,xn/(tn)s2}

and s'2 is s2 with any bindings for the variables x1,..,xn deleted.
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examples

——

C is the clause

P(fix,a) ,g(b,y)) <~ O2(x,z) & P(y,z)

and s1 = {x/fu,y/v,z/x]}
s2 = [x/h(u),y/x,2/b}
33 = {u/g(b).x/h(u}}.

[C1s1 is the C variant
P(f(u,a),g(b,v)) <= Qu,x) & P{v,x).
[C]s2 s the substitution instance
P(f{h(u),a),g(b,x)) <~ Q(h(u),b) & P(x,b).
$2%s2 {s the substitution

{x/h{g(b)) , y/h(w) , z/b , u/g(bl)].

Hotes
{1) An expression variant just 'says the same thing' wusing different
variables. Two expressions E,E' are instances of one another if and

only if they are variants.

(2) The notation and definition of a substitution is a little different
from the standard one. MNormally a binding of a term t to a variable x
{s written t/x. We use x/t because it accords with the variable
assignment notation x=t of programming languages. The definition is a
little different because the standard definition excludes identity
bindings such as x/x. They are excluded because they have no effect
when the substitution 1s applied. We allow identity bindings 1in
substitutions since we want to include them in the answer substitutions
produced by a logic program evaluation. The consequence 1is that
different sets of bindings s1 52 can represent the same substitution.
Nur definition of equality for substitutions is:

s1zs? iff s1 and s2 are identical sets of bindings
after the deletion of any identity bindings.

Thus the identity substitution, the substitution that leaves any clause
unchanged, §s denoted by any set of identity bindings, including the

empty set { }.
(3) Composition of substitutions is defined so that
[Cs)s'=[C)s*s'.

It also has the property that composition is  associative. In
consequence we shall leave out the brackets in expressions such as

1.3 Substitution and unification 13

s1%s2¥%s3,
NEETMTTTON
A unifier of two atoms A1,A2 is a substitution s such that [A1ls and
f421s are syntactically identical. s 1s a most general unifier
(m.g.u) if every other unifying substitution s' is such that s'=s®s"
for some substitution s".

Example
The substitution
{w/2,z,u/2,x/N1,y/3.111}
i1s a unifier for the pair of atoms
append(2.M11, 3. N1 ,w), append(u.x,y,u.z).
When applied to each atom it produces the same substitution instance
append(2.Mil,3.N1,2.2).
Any other unifier must have the same bindings for u,x and y but could
bind W to any term of the form 2.t if it included the binding z/t.

Since such a substitution is the composition of the above unifier and
the substitution {z/t)}, the above unifier i{s an m.g.u. of the atoms.

Unification algorithm

An algorithm which tests whether or not two atoms are unifiable, and
whieh returns an m.g.u. if they are, is a unification algorithm.

In the logic programming context the unification of two atoms 1s the
tdata handshake' between a goal clause atom and the consequent atom of
some program clause that takes place when the evaluator makes use aof the
eclause. Tn the above example, append(2.Nil,3.Nil,w) would de the goal
clause atom and append(u.x,y,u.z) the consequent atom. Unification does
the work of data structure component selection (the bindings u/2,
x/Ni1), and unification and composition does the work of data structure
construction ( the binding w/2.z composed with some binding for z).

Robinson[1965] gave the first unification algorithm and proved it
correct. Since then there have been several faster algorithms proposed,
for example in [Baxter 1973] and in [Patterson & VWegman 19761
Unfortunately these faster algorithms require a special representation
of the atoms to be unified. Robinson's algorithm will work directly on
the 1ist/sub-list representation of the atoms used in logic programming
implementations. Consequently his original algorithm (or rather, as we
shall s=e below, a much faster restricted version) is used by the PROLOG

systems,
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Robinsom's algorithm

Suppose the atoms to be unified are R(t1,...tn) and R{t'1,...t'n).
T™e algorithm iterates 4owm  the list of argument pairs
r¢t1,£'1>,..,<tn,t*'n>] building up a sequence s1,52,..,sk of partial
unifiers. If the algorithm successfully terminates, the composition
s1#52% %sk {s an m.g.u. of the two atoms. At the beginning, the
sequence of partial unifiers has just one sudbstitution, which is the
identity substitution.

When the list of argument pairs is empty the algorithm successfully
terminates.

Otherwlise, suppose <t,t'> is the first argument pair on the list. We
must try to unify ts and t's where s is the composition s1%s2%, . ®si of
the sequence of partial unifiers generated so far.

Case (1) ts or t's is a variable v:

if the other term 1s a non-variable e in which v
occurs (the occur check), fail
else add {v/el to the end of the sequence of partial
unifiers and continue with the tail list of argument pairs.

Case (2) ts is a constant, t's is not a variable:
{f t's is an identical constant continue with the tail list of
argument pairs,
else fail.
Case (3) ts is of the form f(el,..,em), t's is not a variable:
if t's is of the form f(e'l,..,e'm) continue with the list
{<e1,e'1>,..,<em,e"m>] appended to the front of the
tail 1ist of argument pairs,
else fail.

A note on implementation

In applying the above algorithm we do not need to construct the terms
ts and t's. We can instead use t and t'. However, when we encounter a
variable we must first check to see if it is bound by one of the partial
unifiers s1,..,si. If it is, we proceed as if its binding term appeared
instead of the variable. In effect, we are modifying the algorithm so
that t,t' and the set of previously generated bindings represent ts and
t's. By storing this set of bindings in such a way that we can rapidly
check whether a2 variable is bound, and if so, to what binding term, we
can considerably speed-up the execution of the algorithm. We shall say
more about this implicit repesentation of substitution instances, and
the speedy look-up of variable bindings, in section 1.6.
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The oecur check

The slowness of the above algorithm is entirely due to the occur
check, A simple example of an occur check fallure is the pair of atoms

ax), o(f(x)).

The attempted unification will pair x with the term f(x) in which it
appears. Tn this case it is obvious that the atoms are not unifiable.
Any substitution [x/t) will produce the non-identical pair of atoms
Q(t), Q(f(t)). A more interesting example of an occur check failure is
the pair of atoms

P(x,g(x)), P(h{y),¥y)

that have no variables in common. The pairing of x with h(y) will
generate the partial unifier {x/h(y)} which now modifies the pair
<g(x),y> making them the argument pair <g(h(y)),y>. The match of y and
g(h(y)) gives an occur check failure.

Fortunately, most of the pairs of atoms that must be unified during a
logic program evaluation satisfy two condititons that exclude the
possibility of an occur check failure. The atoms never have variables
in common, and the goal clause atom usually only has a single occurrence
of each variable. For a pair of atoms satisfying these two conditions,
an occur cheek failure cannot arise. Because of this, none of the
PROLOG implementations apply the occcur check, although in IC-PROLOG it
can be requested for unifications involving specified clauses. The gain
is extremely fast unification. The loss (except for IC-PROLOG) is that
the logic programmer must make sure that his program is such that an
occur check failure would not arise.

1.8 An sbstract interpreter

Any resolution theorem prover can be used as a logic program executor.
However the inference system which i{s most obviously computational is
LUSH resolution [Hill 1974]. This is the inference system that Kowal ski
describes when he talks about the procedural interpretation of predicate

logic [Kowalski 19741,

The LUSH inference rule defines a search space of alternative
derivations. We prefer to think of these alternative derivations as

alternative paths of a non-deterministic evaluation of a 'call' of the
logic program given by some goal clause

{~B1&..&BEn.

Here, PB1,..,Bn are all atoms, and, if x1,..,Xk are the emw»mupmm of the
clause, it is a 'call' for the computation of a substitution

s = {x1/e1,x2/e2,..,xk/ek}

such that [B1%,.4Pnls is a logical consequence of the program. If there
are no variables in the goal clause, it is request for the confirmation
that R14...APn is a logical consequence of the program.
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Tva trace of one of the paths of the non-deterministic evaluation is
given by a s=quence of goal clauses

C1,C2, 0 nyucns

each one derived from the preceding one, by the following evaluation
stsp. 71 1is the initial, or given, goal clause. We shall follow
¥owalski [1974] and refer to the program clauses as procedures, the
consaquent atoms of the clauses as procedure heads, and the antecedent
atoms as procedure calls. We shall also refer to the atoms of a goal
clause as procedure calls.

Computation rule

Suppose the current goal clause comprises the conjunction of procedure
calls

<-B1&...&Bk.

An evaluation step is the execution of one of these calls. Which one is
executed 1s determined by a computation rule, a rule which for goal
clause generated during the evaluation selects one atom of the clause as
the ecall “o be executed next. Tie computation rule is a parameter of
the evaluation.

Evaluation step

Let us suppose that the selected call is Bi, and that this is the atom
Rit1,...tn). An attempt 1is made to start the execution of the call

using a variant
R(t"1,..,t"n)<-A1&.. . &Am

of one of the program procedures for R. This wvariant must have no
variables in common with the current goal clause. If there is more than
one procedure for R, the choosing of the procedure is a non-
deterministic step in the evaluation, each procsdure about R presenting
us with an alternative branching of the evaluation.

We try to unify R(t1,..,tn) with R(t'1,...t'n).

If they do not unify this branching of the evaluation path terminates
with fail.

If they do unify, with most general unifier s, this branching of the
evaluation path leads to a new conjuction of procedure calls, a new goal

clause, which 1s the resolvent

<= [B1&. . ABi-1% A1&..&Am 4Bi+1&. .&Bk]s.
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foroutining

If, for the next evaluation step, the computation rule selects one of
the newly introduced calls [41ls,..,[Am]s, the evaluation is continuing
with the execution of the previously selected call. A ccmputation rule
that always selects a most recently introduced call corresponds to the
call, execute, return control of a conventional programming language.
If the computation rule does not select one of the calls [Alls,..,[Amls,
it is suspesnding the execution of the Bi call, and starting the
execution of one of the other calls [Bjls. We shall call such a rule a
coroutining rule. We shall view any binding in the substitution s for a
variable that appears in Bj as 'data' that is communicated to Bj. In
the next chapter we shall discuss the role of the computation rule in
more detail. In particular, we shall discuss data flow computation
rules which coroutine on the basis of the communication of data through
sharasd variables.

Successful evaluation

An evaluation path terminates with success when the empty goal clause
is generated. This happens when the last step is the execution of the
single call of a goal clause <-B using an assertion procedure B'¢-.

Computed answer substitution

Suppose s1,...,sn is the sequsnce of unifying substitutions of a
successful evaluation, 31 being the substitution of the first step, sn
that of the last step. Let

s = 31%32%,,.%sn

be the composition of these unifying substitutions. The subset of s
that gives bindings for the variables of the initial goal clause C,
augmented with the identity substitution x/x for any variable of C not
bound by s, is the answer given by that successful evaluation. If there
are no variables in C, the answer is true.

DEFINITION
An answer substitution for a goal clause C and program P is R-
computable if it is the output of a successful evaluation of C,P using

computation rule R.
Procedural vs. nom—procedural semantics

The above definition 1is our procedural semantics for  answer
substitutions. It characterises answer substitutions 1in terms of a
mechanism for computing them. In Chapter 3 w= 3hall give a non-
procedural semantics for answer substitutions using the model theory of
first order logic. We shall prove that this model theory semantics
defines essentially the same set of answers as the procedural semantics.
This is what justifies the dual declarative/procedural reading for logic
programs. We shall alsc prove that the set of computable answers is

independent of the computation rule.




1.5 Search trees 18

1.5 Search trees

4 logic program P, a goal clause C, and a computation rule R, together
define a search tree of all the possible evaluation paths for C. The
form of the tree is as depicted in Fig. 1.1. Each interior node in the
Lree is a clause derived from its parent by an evaluation step. Each of
the children of a node are the results of attempted executions of the
selected procedure call of that node. A fail node offspring records a

\\\\\\n
fail \ fail
c1 cz
‘—
\
success fail n
c12 ;
\ \
A
Ay
1 !
/ fail '
[
\
' ,/ infinite branch
_____ ,,
!
success

Fig. 1.1 A search tree

failed unification. A success leaf node marks the end of a successful
evaluation path. Some of the evaluation paths may be infinite,

ﬂ»muh 1.2 and 1.3 are search trees for two of the calls to the logic
programs of the preceding section. The computation rule used is: select
the leftmost call.

The very first step of the succesful evaluation path of Fig. T2
requires the unification of append(2.Nil,3.Nil,w) and append(u.x,y,u.2).
The m.g.u. binds u to 2 and x to Nil, that is it decomposes the ‘'input'
2,Nil into its head and tail sublists. As we mentioned in the preceding
section, the selection of components from data structures in acccordance
with a given pattern, in this case the pattern "u.x", is one of the
major roles of unification. The other major role is the production of
partial approximations, templates, for the output. This is illustrated
5y the binding 2.z for W. This binding gives us a first approximation
to the answer substitution w/2,3.N1 which is the final output of the
evaluation path. It tells us that any answer for the path will bind w
to 2."something”. This first approximation is a partial result that
could now be accessed by another procedure call in which w appeared. We
shall return to this idea of 'data flow' activation of procedure calls

in the next chapter.
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¢-append(2.Nil, 3.Nil,w)

attempt to use
append(Hil ,x ,x) <=

attempt to use
append{u.x,y,u.z)<-append(x.y,2)

31 = {w/2.z,u/2,x/Nil,y/3.011]

fail

<-append(Nil,3.M1,2)

attempt to use attempt to use
append (Nil ,x' ,x*) <~ append(utx,y,ulzi<- ...

s2 = {x'/2.Mil,z/3.M1}

sucecess fail

Answer: s1%s2 binds w to 2.3.Hil

Fig. 1.2

Search rule

The strategy that is used to search for a successful evaluation, the
search tree construction strategy, we shall call the search rule.

The search rule must be fair. That is, it must be such that each
success branch on the search tree will eventually be found. For search
trees on which each branch is finite (and so, by Konig's lemma contain
only a finite number of nodes) a back-tracking search as depicted in
Fig. 1.4 is fair. For a back-tracking search strategy the seach rule
reduces to an ordering rule, a rule which for each selected atom gives
the try order of the program clauses for its predicate. The ordering
rule defines the left to right order of the branches on the search tree.

A back-tracking search for the successful evaluation of Fig. 1.3 is
equivalent to a double loop search over the nfathered™ and "married"
asssertion sets. However, a similar depth-first search of Fig. 1.2 does
not involve significant back-tracking. Each failure node 13 an
i{mmediate offspring of the one and only successful evaluation path.
Search trees such as this record an essentially deterministic
computation. At each step there is only one clause whose consequent
will unify with the selected ecall of the goal clause.

A genuinely non-deterministic use of the append program is depicted in
Fig. e It is the search tree for the goal clause
Almuvmanﬁn.w.m.m.z»ug. Fach of the answer substitutions gives one of
the possible decompositions of the 1ist [2,3] into front and back
sublists, A back-tracking construction of this tree will generate the

answer substitutions in the left-to-right order that they appear on the
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¢<-Tom Fathered x & x married Jane

Jack fathered Georged- Bob fathered Tom<-

om fathered Bill<-

s1={x/Bi11)
fa fail
¢-BY¥11 married Jane _ _ - -~ 7 s
Tom married -_F_J__.A..\ Jack married Susan<-
M1 married Jane<-

fail

SucCREES _ o - = -~

Answer: leftmost sumcressful evaluation binds x to Bill

Fig. 3.1

Beadk-tracking

Fig. 1.8
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¢-append(v,w,2,3.Mi1)
\\\
success
ans = [v/Nil,w/2.3.Hil} ¢-append(x,w,3.Nil)

\\\\\ <~append(x'

success

ans = {v/2.Hil,w/3. 111} \\\\\\\\/////

success fail
ans = {v/2.3.Nil,w/Nil}

W, HLL)

Fig. 1.5

tree.

1.6 Proof trees and spaghetti stacks

We have defined the evaluation step of the abstract interpreter as a
textual substitution in a goal clause 'state of evaluation'. In an
{mplementation we would, of course, represent this substitution
implicitly. We do not want to go into too much detail concerning
implementation. However, we can get the general Idea of how the
interpreter can be implemented using activation records and binding
enviromments, as well as an alternative conceptualisation of what an
evaluation is, by viewing a successful evaluation as the construction of
a complete proof tree.

DEF INITICHS
For a goal clause C and logic program P

(1) A proof tree is a tree whose non-root nodes are all labelled by
substitution instances of atoms in C and P in accordancze with the

following constraints:
(a) the (unlabelled) root node has n jmmediate descendants labelled

with atoms B'1,..,B'n only if ¢B'1%..4B'n is a substitution instance

of the goal clause., We call these the goal clause atoms of the tree.
(b} a node labelled B' has m immediate descendants labelled

A',..,A'm only Iif B'¢-A'14..%A'm is a substitution instance of some

clause in the program.

(2) The initial proof tree is a proof tree whose leaf atoms are all
{mmediate descendants of the root node and these are labelled by the
atoms of the goal clause.

(3) A terminal node is a leaf node of a proof tree labelled by a
substitution instance B' of a program assertion.
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(4) A complete proof tree is a proof tree whose leaf nodes are all
terminal nodes,

A successful evaluation can now be re-interpreted as the construction
of a complete proof tree. The construction starts with the initial
proof tree for the goal clause and program and proceeds by a secuence of
proof tree extension operations. The extension operation is the proof
tree equivalent of a goal clause evaluation step. At each stage in the
construction the leaf atoms not yet marked as terminal are the atoms of
the derived goal clause.

Proof tree extension

Using the computation rule, we select one of the unmarked leaf atoms
atoms Bi. If Bi unifi=s with the consequent atom of some clause variant
B'¢-A"1%,.&A'm, which does not contain any variable already on the tree,
we modify the tree as follows:

(1) If m=0, mark the selected leal as terminal.
If m>0, add Al,..,Am as immediate descendants of the selected leaf.

(2) Apply the unifying substitution to each atom of the tree.

DEFINITION
A comstructed proof tree is a proof tree that has been constructed
from the initial proof tree by a sequence of proof tree extensions.

Constructed proof trees are the abstract data structures manipulated
by the stack implementation we shall shortly describe., Proof trees,
constructed or not, are the crucial intermediary concept which will
enable us to connect the procsdural semantics for answer suhstitutions
with the non-procedural semantics of Chapter 3.

Structured shared representation

Yhen we extend a constructad proof tree we do not need to literally
apply the unifying sustitution to each atom on the tree. We can instead
‘associate' the set of variable bindings that represent the unifier with
the tree, Ten, when we are attempting to unify a selected leafl atom
with some procedure head, if we encouter a variable we not only check to
see it has already been bound during the current unification, we also
cheek to see if it was bound by any of the previous unifiers. In other
words, we ‘evaluate' each atom relative to all the bindings so far
generated,

Fig.1.6 is an example of a constructed proof tree represented in this
implieit fashion. It 1is for a goal clause <-B1&B2&B3 and a program

which contains:

a clause B¢-A with a variant [B<-A]Jv such that Bv unifies with Bl
with m.g.u. s1,

a clause B'<-A14A2 with a variant [B<-A1&A2)v* such that
[B']v' unifies with [B3]s1 with m.g.u. 52,

an assertion A'<¢- with a variant [A'<=]v" such that
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Fig. 1.6

fA']v" unifies with [A2v']s1%32 with m.g.u. s3.

The numbers attached to each sibling group of atoms give the extension
step at which that group of atoms was added to the tree. The attaching
of the empty sibling group as the immediate descendant of the atom A2v’
is the marking of [A2v']s1%s2 as a terminal node.

Implicit representation of atoms and binding terms

In a tree as depicted in Fig. 1.6 the i'th sibling group of atoms are
always the antecedent atoms of the clause variant used in the i'th
extension step. If we generate the variant by subscripting the
varisbles of the clause with the subscript i, then

(1) we shall always get a variant that does not contain variables
already on the tree, and

(2) the sibling group of atoms can be represented by a polinter to
the program clause.

The pointer to the clause and the step label 1 determine the variants
of its antecedent atoms that should appear on the tree. For example, in
Fig. 1.6, a pointer to the program clause B'<-A1&A2, together with the
step number 2, would identify the atoms Alv', A2v' as Al and A2 with
their variables subscripted by 2.

The same implicit representation can be used for variable bindings.
Suppose that im the construction of the above tree, the second step
unification bound some varable x0 of the goal clause to a term [tlv of
the atom B'v. This 1is Jjust the term t of B' with its variables
subscripted by 2. We can therefore represent it by the term/step number
pair <t,2>, storing the x0 binding as x0/¢t,2>. As with the program
clauses, t will be represented by a pointer to its occurence in B'.

This implicit representation of the atoms and the binding terms is the
Boyer and Moore[1973] structure shared representation of resolvents.
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Binding environments

Remember that when we extend the tree we must 'evaluate' the selected
leaf relative to the sets of bindings of the previous unifiers. We do
this by looking-up any variable we encounter in each of the previous
unifiers, If it is bound by any of them, and it can be bound by at most
one, then we proceed as if its binding term appeared in place of the
variable.

For speedy look-up of the variable bindinga we can re-distribute them
over the tree, We can group all the bindings for an {-subscripted
veriable with the 1'th sibling group of nodes on the tree. Looking-up
an {1 subscripted veriable i3 now a matter of checking whether that
variable is bound in just the subset of substitutions associated with
the 1'th sibling group. By ‘'compiling’ variables of a program clause
into integer offsets, and assigning a binding location for each variable
whether or not it is bound, looking-up the j'th variable of the clause
variant used in the 1'th extension step becomes an access-operation on
the j'th loeation of the i'th vector of bindings. Conversely, recording
the binding when a unification astep binds the variable 1s a store
operation on this location. That a variable is not yet bound, can be
recorded by storing a special mundefined™ value in its binding location.

Our constructed proof tree of Fig. 1.6 is now a tree of activation
records as depieted in Fig.1.7T. Each activation record points to a
program clause, and contains a vector of binding locations which is the
binding environment for that activation of the clause. The el are the

binding enviromments.

0: | pointer to el
w_mmmmww

/

1: pointer to el
B<-A

2:| pointer to | e2
m_Alb._ra.m

3:|pointer to| e3
At <- s

Fig. 1.T
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Bepresentation ms a stack

Fig. 1.8 is the linear representation of Fig. 1.7 as & spaghettl
stack. Fach entry on the stack is an activation record for a clause.

0: pointer to el
uw__wmmm 3

i || { Finker 1o el

\ B<-A

+H pointer to e2
B' ¢-A1§A2
3: \\ pointer to e3
AV <=
Fig. 1.8

When we extend the proof tree we grow the stack. The unmarked leaf
atoms of the tree are the atoms of an activation record which are not
pointed to by an activation record lower down the stack. To save
checking this, we can include a live-dead bit vector in each activation
record. As soon as the j'th atom of an activation record is pointed to,
We set the j'th bit.

Popping on failure

Such a stack representation is ideal for implementing a back-tracking
search. Let us suppose that in the proof tree depicted in Fig. 1.6, and
represented by the stack of Fig. 1.8, the computation rule selects the
atom [Alv']si®s2833, This 1is <A1,2> evaluated relative to all the
defined bindings of e0,e1,e2 and e3. Let us further suppose that this
atom will not unify with any of the program clauses for its predicate.
As we try éach clsuse in turn, we are back-tracking over all the fallure
nodes which are the immediate descendants of

[(Av)&B2&(A1v')] 51752953

on the partially constructed search tree of Fig. 1.9. A back-tracking
traversal of the search tree would next visit the descendant of

[(Av)&B2&(A1v'&A2v')] s1%s2

given by trying to unify [A2v']s1%s2 using an untried ec¢lause for its
predicate. To jump to this clause on the search tree, we must first
reset the stack so that it records the derived clause
[(Av)&B1&(A1v'&A2v') 51852, We do this by popping the top record of the
stack, sand deleting (in fact setting to undefined) any bindings
{introduced into the binding environments e0,e1,e2,e3 by the unifying
substitution s83. To know which variables to reset, we must include with
each stack entry a reset 1ist of those variables in binding environments
higher up the stack bound by the evaluation step it records. The only
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B14B2%33

#

{(Av)&B2%B3]s1

/

((Av)&B2&(A1v'&A2V' ) ]s51%52

-
-
-
-~

[(Av)B2&(A1v')]s1¥#s2%s3 ~ 9

N |

fail ..... fail

Fig. 1.9

other information we need i3 the next clause to be tried for the
alternative evaluation step involving [A2v']s1%s2, So we must also have
recorded in the popped activation record (implieitly or explicitly} the
1ist of untried clauses for its parent atom. If this set is empty, we
backtrack further by again failure popping the stack.

Fopping on success

In the stack implementation of a more conventional recursive
programming language a top of stack activation record with no unexecuted
procedure calls would be popped from the stack. Such an activation
record records a successfully completed evaluation of its parent
procedure call. The top of stack record on the stack of Fig. 1.8 is an
example of such an activation record. Its removal would be a success

popping of the stack.

For us, success popping is not so straightforward. To begin with the
activation record should not be removed if it records an evaluation step
for which there are untried alternatives. If this 1is the case, its
reset 1ist and 1ist of untried clauses will be needed if we subsequently
have to back-track on that evaluation step and fallure pop the record.
Its - entry on the stack records a branch point in the evaluation which
must be remembered. It might as well be remembered by leaving the

record on the stack.

FEven when the top of stack activation record has an empty 1list of
untried clauses, we cannot simply discard it. We must first append its
reset list of variables to the reset list of the next to top activation
record. Failure popping this next to top record is now equivalent to
failure popping the top two records one after the other. We must also
do something with its 'referenced' variables. These are the variables
of the top of stack binding environment el that appear in the binding
terms of variables in e0,..,ei-1. The bindings for these 'referenced’
variables are part of the substitution that 1s implicitly applied to
each unactivated procedure call on the stack. The bindings for the
refenced variables must be retained.
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One solution, that adopted by Warren[1977], is to keep the bindings
for the wvariables that can be referenced in this way on a sSeparate
'global variable' stack. This stack can be fallure popped but not
suzcess popoed. The variable bindings that are kept in the activation
stack are for the 'local’ variables, the variables of the clause that
cannot appear in the binding terms of variables higher up the stack.
The bindings for the local variables can be garbage collected by a
success pop.

Tail recursion

When we success pop the stack we make sure that the reduced stack
retains all the information about the state of the evaluation that we
may need for a subsequent evaluation step, or a subsequent back-tracking
step. Using the same 'compression' techniques, we can somet imes record
the state of the evaluation after an evaluation step without growing the

stack.

Let us suppose that, as for a success pop, the current top of stack
record records a deterministic evaluation step, a2 step for which there
are no untried alternatives. Let us further suppose that it has one
unexecuted call which is the selected call for the next evaluation step.
If the execution of this call is also a deterministic step, then we can
success pop the top of stack record before we grow the stack.

T™is space optimisation is a generalisation of what is usually called
tail recursion. In the special case where the new activation record is
for the same program clause, the overwriting of the variable bindings is
equivalent to a sequence of assignments to the local variables of the
clause for an 'iterative' execution. The Edinburgh PROLOG anticipates
this possibility, and compiles programs such as the "append™ program
into iterative code [Warren 1979].

Te ab%ove has been an intentionally brief introduction to the
implementation possibilities. For further details the reader should
consult the referenced papers by Warren.
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Chapter 2 Logic Algorithms

For the abstract interpreter we defined in the last chapter, the
computation rule and the search rule are a '‘control input' which is
independent of the logic program and goal clauss., By changing this
control input we change the way the answer substitutions are computed,
but, providing the search rule is such that it will eventually Z_auuown:
successful evaluation, we do not change the set of computed answers .

Following Hayes[1973] and Kowalski[1979al, we can think of each
computation of this set of answers as the trace of one of the family of
equivalent algorithms implicit in the logic program, each algorithm in
the family being defined by the program and a particular control input
to the interpreter.

DEFINITIOM
A logie algorithm is a logic program together with a fixed computation

and search rule control.

In this chapter we shall discuss some search and computation rule
controls that are both 'algorit'mically' useful and straightforward to
implement. As a focus for the discussion, we shall examine the search
and computation rule control options available to the PROLOG progr ammer ,
and in particular, the IC-PROLOG programmer. We shall describe the way
in which the control that is to be used in conjunction with a particular
PROLOG program is specified, and we shall look at the sort of algorithm
transformations that can be brought about just by changing this control.

2.1 Search rule control

We have seen that back-tracking is very easy to implement. For this
reason all the PROLOG implementations use back-tracking as the search
strategy. This means that the programmer control of the search is
limited to the ordering rule, the rule which determines the try order of
the program clauses for each selected call. Although back-tracking is
not, in general, a fair strategy, this restriction of the search rule
can nearly always be compensated for. By a Jjudicious choice of the
computation rule and the ordering rule we can generally ensure that a
back-tracking search would find all the successful evaluations.

The ordering rule could be such that it assigns a different try order
for different calls involving the same predicate. The implementation of
such a context dependent ordering rule need not impose too much
overhead, MICRO~-PLANNER [Sussman & Winograd 19701, with its
recommendation lists, provided a restricted form of dynamic ordering.

This is because the set of R-computable answers is independent of
the computation rule R. A result we have already mentioned, which
we shall prove in the next chapter.
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As yet, no PROLOG implementation gives this, Tlexibility. The programmer
must choose a fixed try order for each call dnvolving the predicate. He
then implicitly specifies this try order by the before-after order in

which he enters the clauses,

Clause indexing

ere i{s one refinement of the fixed try arder that several of the
PROLNGs allow. This is the indexing of t!se clauses. By accessing the
clauses for a particular predicate via an fimdex, w2 can often delete
from the try list some or all of the clauses that cannot unify with the
call, This cuts out much of the shallow back-tracking of the search for
an applicable clause. -

The Fdinburgh PROLOG automatically indemes the clauses for every
predicate on the top-level functor or cwmstant of the first argument
position. 1In IC-PROLOG, indexing for a predicate must be explicitly
requested, but the indexing can be on any omr mll the argument positions.
Such indexing is particularly useful for damta base programs. We shall
see that by indexing we can significantly medify the retrieval algorithm
of some logic + control combination.

2.2 Computation rule control

The computation rule is an area in which we can more usefully exploit
control flexibilty. In this, IC~PROLOG dtiTTers signifieantly from the
Marseilles and Edinburgh PROLOG implementatirmms. Both of these use a
depth first left-to-right proof tree cxmstruction strategy. The
programmer just controls the left to right mrder of each sibling group
of nodes on the tree, Each of these sibling groups comprise some
instance of the procedure calls of a program rlause. By the left to
right order in which these calls sppear im the c¢lause, the programmer
fixes their order on the proof tree for eacth mse of the clause.

The depth first construction of the prood tree corresponds to the
strictly sequential execution of a conventiomal program. When a program

procedure
BC-ANE. . &Am

is used, 'control' will 'enter' the procedure and 'exit' only when each
of its procedure calls A1l,..,Am have been ewecuted, one after the other,
in the order in which they are given. The ewxecution of each call is the
construction of the sub-tree of the complete proof tree that is rooted

at that call.

The major advantage of using such a simple pomputation rule is that it
{s easy for the programmer to understand and very easy to implement.
Unfortunately, it doss somewhat restrict the range of algorithms that we

can obtain from a given logic program.

We have seen that a logic program can ‘e . called with different
input/output patterns, with different argoments given and different
arguments to be found, For each call patterm we may need a quite
different order of execution of the calls im the body of each clause.
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We stould therefore allow the execution order to be determined by the
use.

We have also seen that the execution of a call can, after a flew steps,
produze a partial result for the final output binding of a variable.
Tor example, the execution of the call append(2.2.4,.Ni1,5.Ni1,2), using
our append program, will produce a whole sequence

2,41, 2.2.w2, 2.3.b4.w3, 2,3.4,5.M1

of partial results ending in the final output binding 2z/2.32.4.5.Nil.
The first partial result 1is produced when the first step in the
execution binds z to 2.w1. Thereafter, each new partial result is
generated when the next step in the execution binds the variable of the
previous result. When a variable has its final output Dbinding
approximated to in this way, we could use the production of each new
partial result as a trigger that suspends the execution of the call
which 1s producing the binding, and resumes the execution of some call
that is consuming it. The consumer call will be a call 1in which the
variable also appears, but which is not allowed to generate 2 new
partial result. The attempt to do this, by trying to bind some variable
in the 1last partial result, would be the trigger for the suspension of
the consumer and the resumption of the producer. This sort of data flow
corouting is almost as straightforward a control concept as strictly
sequential execution. It can also be implemented without too much
overhead.

IC-PROLOG provides the programmer with this sort of control
flexibility. The medium for specifying the computation rule is program
annotation. As with the other PROLOGs, the text order of the procedure
calls also carries implicit control information. A completely
unannotated procedure will always have its calls executed in the order
they are given, with the execution of the next call commenced only when
that of the preceding call is complete. Howsver, by attaching simple
annotations to the variables of a procedure the programmer can:

(1) signal that the execution of a procedure call should be data flow
coroutined with the execution of the sequence of preceding calls,

(2) restrict the use of the control defined by the text order and
annotation of the procedure body %o a particular input/output use.

This use of annotations to specify the computation rule control for

Horn elause programs 1is similar to Schwarz's use of annotations to
specify control information for recursion equation programs{Schwarz

19771,

Data flow coroutining
Suppose that in the clause
BC-A1&..AAm

the variable v appears in one or more of the calls Al,..,Al-1 and in the
eall AL Let us also suppose that the execution of the procedure will
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generate a szquence of term approximations to the final answer binding
for wv. The programmer signals that the execution of the saquence of
calls A1%,.%Ai-1 is to be data flow coroutined with the execution of Ai,
by attaching a """ or "?" annotation to the occurence of v in Al.

Ai{ as the consumer of v

If v is annotated "v?", then AL is the consumer and Al&..&M =1 the
producer of the sequence of partial results for v.

Let us suppose that during an uninterrupted execution of Al&..&ZAI-1
the final answer binding for v 1is approximated to by a sejuence
t1,£2,...tn of partial results. The first partial result, t1, is
generated when v is first given a non-variable binding. Thereafter,
tj+1 is the term tj with one or more of its variables replaced by a
non-variable term. It is generated when some some Step in the
evaluation of Al1&..%Ai-1 binds one or more of the variables of tj.

The corsutining interaction between Alk..AAi-1 and Al starts with the
execution of Al&..%ZAL-1. However, the generation of each new partial
result tj is the trigger for the suspension of the execution of
A1%..%Ai-1 and the resumption (or start) of the execution of M.
Conversely, the attempt by Al to generate a new partial result for the
binding of v, which it does when it tries to bind one of the variables
of tj to a non-variable, is the trigger for the suspension of Al and the
resumption of Al&..&ZAl-1.

Because Al gets more 'information' about the final binding for v with
each new partial result, we shall call the zeneration of each partial
result a data transfer from the producer Al&..&Ai-1 to the consumer Ai.
Correspondingly, we shall call the attempt by Al to access more
information than has been transfered, which it does when it tries Lo
bind a wvariable of the 1last partial result, a data request from the
consumer to the producer.

The data flow coroutining terminates when either the execution of Al
or that of Alk..:3Ri-1 is completed. At that point, the currently
suspended execution is resumed and run to completion.

Ai as the producer

If the variable in A&i is annotated "v~", then Al is the producer of
the sequence of partial results. The coroutining still starts with the
execution of Al4..&kAi=1, but its execution is suspended as soon as it
tries to bind v to a non-variable. Thereafter, the coroutining
continues as for Al the consumer, with the suspension and resumption

triggers reversed.

A note on implementation

The above type of producer/consumer interaction can be implemented by
using process descriptor bindings for variables. Each variable of a
term that is the current partial result for the  shared variable v 1is
bound to a process deseriptor. Tme process descriptor records the state
of the consumer/producer interaction. It tells us whether the con3umer
or the producer 1is currently active, and it records the last suspension
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point of each process.

Ye deal with these process descriptor bindings by modifying the
unification algorithm. Suppose that, during some unification, there 1is
an attempt te mateh a process dessriptor binding for a variable u
against a non—wariable t. u must be a variable of the last partial
result tj commumircated from the producer to the consumer of the process
descriptor. The wmatch is the trigger for a control transfer.

If the process descriptor records a currently active producer, u is
rebound to t, amd all the variables of t inherit the process deseriptor
binding. This term binding for u has generated a new partial result
tj+1. When the emification is successfully completed, control transfers
to the suspended consumer. At the same time we update the process
deseriptor to record the new suspension address for the producer.

If the proces= descriptor records an active consumer, the unification
i3 not completied. Any bindings it has already generated are undone.
The consumer susgension address is updated, and the producer process
resumed.

In each case the old state of the descriptor is saved in case @& need
to back-track om this step.

Inner coroutini:

In a consumer#producer interaction between the executions of the call
ssquence Al,..,&i-1 and the call Al there can be inner coroutining.

In either executtion a procedure may be invoked which has a local
consumer/producesr interaction signalled by an annotation on one of its
shared variables. This inner coroutining will proceed independently of
the outer corouttining between Al&k..%XAi-1 and Al.

Inner coroutimtimg will also occur if one of the calls Al,..,Al-1, say
AJ, has been de=signated the producer or consumer of some other variable
wl Ir so, dhuring the execution of the sequence Al&..%Ai-1 the
execution of ‘the call Aj will be coroutined with the execution of the
subsequence of oalls Al&..kAj-1 in exactly the same way as the execution
of AlA..5AJ-14A%%. .&A1-1 13 coroutined wth Al.

Lazy evaluation. mode

The producer ammotations of the procedure
Rlx,w)<~T(w,z)8Q(z", y)&R(Y" ,X)

will result in tfre generation of a sequence of partial results for W
given x. This 43S exactly the behavior we want if the call iz producing

In IC-PROLNG thewre can be only one designated producer or one
consumer for any wariable. The restriction to one producer is not
unreasonable. The restriction to one consumer could be relaxed,
with the eonsimerrs queued as deseribed below.
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w and consuming x. The Q and R calls are invoked 'lazily' to generate
piecemeal results for the intermediary values z and y. By a consistent
use of the producer annotation """, we can specify a computational
behaviour similar to that of lazy LISP [Henderson & Morris 1976,
Friedman & Wise 197561l.

Nueuing of data transfers

When there is inner coroutining, a situation can arise in which
several suspended executions should be resuned as a result of variable
being bound. An example of this is the procedure

P(x,y)<=Q(x,y)&T(y?)

invoked by a producer P(x',y'") to generate an answer binding for y'.
When the first partial result 1s generated by the execution of the
Q(x,y) call, we should both commence the execution of the consumer T(y?)
and resume the execution of the consumer of y'. Intuitively, T(y?)
should have precedence, since it is a local test of the partial result,
which 1t may reject. This 1is what happens. The resumption of the
innermost coroutined pair takes precedence.

The consumers that should be resumed when some variable is bound are
queued 1in their dinner to outer order. In turn, each is resuned as
though it were the only suspended consumer. When the consumer zZenerates
the data request that normally leads to a resumption of the producer,
the next consumer on the queue Is resimed. Only when the queue is
empty, is the producer re-activated.

In the above example, the test T(y?) will be executed first to check
the partial result. If the check does not fail, the consumer of y' is
resumed. On the next data request from this outer consumer, the same
generate, test and transfer pattern will be repeated.

Delaying the data transfer

Normally, a producer is suspended immediately after the generation of
the new partial result. By using another annotation, we can delay this

producer suspension.

This is the clause bar. It is a ":" which replaces the "&" at any
point ir the sequence of calls of some procedure body, or which appears
at the end of the sequence of calls. The effect of the bar in the

clause

BC-A1&.. kA A5+ 1&. . &Am

is to delay the suspension of any producer that would normally occur
during the execution of the procedure until after the execution of the
saquence of calls AlA..%AJ 1is completed.

The bar can be ussd to delay the transfer of a new partial result
until after some test procedure has successfully terminated. For
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example, we could use
Pix,glu}}<=T({x):...

to delay the transfer of the partial result represented by the term
glu). Tt will only be transfered if the test on the x input succeeds.
If this test fails, the incorrect partial result is never transferred.

Tt can also b= used to delay the transfer of a ned partial result
until it is more fully instantiated. By using the bar in the clause

P{f(u,v))<Qu):..,

we delay the transfer of the partial result given by f(u,v) until u has
besn bound by the execution of Q(u).

Linking the control with the use

In IC-PROLOG, the programmer can restrict the use of the control
specified by the text order and annotations of a procedure body to a
particular input/output use. He does this by attaching annotations to
the terms in the procedure head. If he wants to specify a different
control for different uses, he gives a 1list of control alternatives for
the procedure written as a list of clauses

[(c1.,c2,...,xl.

Each of the Ci, ignoring the annotations and the order of the procedure
calls, is an exact copy of a single clause

B<-Al&k...An.

Declaratively, the list of control alternatives is equivalent to this
single implication. Procedurally, it represents Jjust a single
alternative for the execution of a procedure call <-3'., If B' unifies
with B atmost one of the control alternatives in the 1ist can be used
for the execution of the call. Which one is used, is determined by the
nAn_ mom  agnnotations attached to terms in the procedure head of each

copy of the clause,

These annotations specify extra constraints that must be satisfied by
the unification of B' and B before that copy of the clause can be used.
Roughly speaking, the annotated term "t?" is used to specify that t has
the role of an input template, and the annotation "t*", to specify that
t has the role of an output template.

More formally:

(1) An occurence of a variable annotated "v?" must have the role of an

input arpgument of the procedure. During the unification this occurrence
o e varlable must have been matched against, and consequently bound
to, a non-variable. In this context, a variable of the call that
appears in some partial result gensrated by a currently suspended
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V1oacnmq is treated as a :o:lqmﬂpmuwmﬂ. te shall ecall such a variable a
data variahle of the call.

(?) A non-variable annotated "t?" must be matched against a term t' that
is a substitution instance of t. In other words, t is used to select
the components of some incoming data structure.

va»uouac1msnoqucm1wmdummaaonmnwns<>=a=uncmm:ocv:ﬂ m1mcam=n
of the procedurs. During the unification this occurence of the variable
must have besn matchad against a variable of the call which is not a

data variable.

(4) A non-variable annotated "t"" must been matched against and become
the binding of a variable of the call. t is the first approximation to
some output binding that will be produced by the execution of this
procedure.,

fxamples
The annotated procedure head in
R(x?,2")<-Q(x,y)&P(y,2)

restricts the use of the control regime that executes Q then P to the
case when x is given and z is to be found.

The annotations in the head of
append({u.x)?,y?,(u.2z)")<-append(x,y,2)
restrict the use of the procedure to calls where the pattern u.x is used
to select the head and tail of the list given as the first argument,
where y is bound to a non-variable, and where u.z gives the first

approx imation to the final output of the execution of the procedure.

Selection rule

When an annotated procedure is one of a list of control alternatives
it can be used only when the call unifies with its head atom and all the
extra constraints specified by its head annotations are satisfied. The
first alternative that can be used is the one which is used. If the
unification succeeds, but none of the input/output constraints of the
control alternatives 1% satisfied, there 1s a control error.

2.3 Changing the control

We shall exemplify the sort of computational changes we can bring
asout by varying the control component of a logic algorithm by looking
at different control specifications for the example programs of Chapter
1. We shall use the control notation of IC-PROLOG, and assume back-

1

The variable will actually be bound to a process descriptor

recording a currently active consumer,
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tracking search.
Back-tracking as iteration

The data base program of Chapter 1 comprised a set of assertions about
the fathered and married relations. The order in which these assertions
are written defines their try order, in other words, it gives the order
in which the assertions will be searched when they are accessed by the
calls of the goal clause

<-Tom fathered x &% x married Jane.

This goal clause, coupled with the computation rule control implicit in
the order of its calls, defines the search algorithm

for each <u,x> listed as u fathered x
if u=Tom,
for each <x',v> listed as x' married v
if x'=x & v=Jane, exit with x;

fail.

The left to right order of the calls determines the nesting of the
iterations. If we change the order, we invert the loops. Thus, the
logically equivalent goal clause

¢-x married Jane & Tom fathered x,

o ot e

defines the retrieval algorithm

for each <x',v> listed as x' married v
if v=Jane,
for each pair <u,x> listed as u fathered x
if u=Tom & x=x', exit with xi

fail.

The second algorithm will generally find the binding for x more
quickly. Since Jane can have at most one husband the inner loop will be
executed at most once. In the first algorithm, unless the son of Tom
married to Jane 13 listed first, its inner loop will be executed more
than once. Execution time i3 one of the factors the logic programmer
must take into account when he considers what control to specify for his
logic progra=.

Effect of indexing

Both the above algorithms can be significantly modified by indexing
the assertions. Moreover, the extent of the indexing will effect which
ordering of the calls of the goal clause defines the bestter retrieval
algorithm. If only the fathered relation i3 indexed, say on the first
argument , we should use

¢-Tom fathered x % x married Jane.

With the search control given by this level of indexing, this ordering
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of the calls gives us the retrieval algorithm

for each x such that Tom fathered x
for each <x',v> listed as x' married v
if v=Jane & x=x', exit with x;
fail.

The restriction of the first loop to those x's that Tom (fathered
reflasts the fact that the evaluator now has direct access to this
sublist of the fathered assertions. Of course, we have paid for this
faster execution time by the space overhead of the index. Decisions
about sush trade-offs are part of the pragmatics of the loglc + control
approach to algorithm construction. But note that the switch to use the
faster algorithm is painless to implement. The programmer just requests
indexing on the first argument of the fathered relation.

If the married relation is also indexed, say on both arguments, the
evaluation of the above goal clause corresponds to the retrieval
algorithm

for each x such that Tom fathered x
if x married Jane, exit with x;
fail.

The test "x married Jane" has replaced the search over the list of

married assertions because checking if the given x is married to Jame is
an index access that involves no search.

Giving control alternatives
Suppose that we extend the data base program by adding the clause

x is grandfather of z <- x fathered y & y fathered z.

The retrieval and test algorithm represented by this PROLOG procedure
will give acceptable behaviour for the cases where x and z are both
given, or when just x is given. However, when z is given and x is to be
found, it 1is not very efficient. It will iterate through all the

fathered assertions, and for each child check if it is the father of the

glven z. To do this, it must again iterate nxﬂomms the entire list of
assertions. The retrieval time is of the order n". It would be better
to find the father of 2z first, doing one search through the list of
assertions, and then find the father of the father of z by one more
search, The retrieval time is then of the order 2n.

What we need is an order of execution dependent upon the input/output
use. We specify this by the list of control alternatives

[x? is grandfather of z <~ x fathered y & ¥ fathered z,
x~ 1s grandfather of z <- y fathered z & x fathered y 1.

—_—

The control for the case when both x and z are to be found is covered by
the second control alternative. For this case, either ordering of the
calls gives us much the same retrieval algorithm.
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Osing most general answers
The logic program for the "front" predicate comprised the clauses:
front(n,x,z)<-length(x,n)%append(x,y,z)

length{Nil,0)<~
length(u.x,s(n))<-length(x,n)

append (N1l ,x ,x) <=
append(u.x,y,u.z) <-append(x,¥,2)

With the control implicit in the text order of these clauses, 1its
exesution for calls in which both n and z are given corresponds to the
algorithm

construct a 1ist of n variables and assign to x;
until x=Mil,

if z=N{il, fail

else assign the head of z to the head of x;
repeat with <tail of x,tail of 2> as <x,z?

This was the computational use we described when we introduced the
program. The execution of the call length(x,n) constructs the list of n
variables. The computation of the logic algorithm will be essentially
iterative because of the tail recursive calls.

Back-tracking with recursion

By changing the execution order of the calls of the "length®™ procedure
we can effect a radical change of algorithm. By using the logically
equivalent clause

front(n,x,.z)<-append(x,y,z)&length(x,n),

we implicitly define the following algorithm for finding the front n
elements of a list z.

assign <WNil,z> to <X, ¥
until y=Nil
if length(x)=n, exit with x
. else repeat with <x,y> changed from ¢,..Nl,a.1> to <...a.Nil,1>5
atl.

The initialisation of x,y to Mil,z corresponds to the attempt to wuse
the "append” assertion to decompose z. It is always used first because
of the try order of the clauses. For each candidate decomposition the
execution of the program will check the length of x. If it is n, the
ecurrent binding for x is the answer. If not, the failure of the
nlength® call leads to a back-track on the last execution step of the
nappend” call, This last step will have used the "append" assertion.
Te undoing of the step will change the currently represented value for
x to a term of the form ....w by undoing the Nil binding of w. It will
also wmdo the binding y/a.l for y. The subsequent use of the recursive
"append” clause will bind w to a.w', and the next step, which will wuse
the mappend™ assertion, will bind w' to Mil and y to 1. The net effect
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of the back-tracking is to change the values of x and y from a pair of
bindings of the form <....FM1,a.1> to the pair <...a.Ni1,1>.

Osing data flow coroutining

The major shortcoming of the above algorithm is that the length of x
is recomputed for each new binding. What we should be doing 15 counting
down on ths length argument each time we make wuse of the recursive
clause for "append”. [Exactly this behavior will result if we coroutine
the comtrustion of the candidate bindings for x, given by the call
append(x,y,z), with the execution of length{x,n). We specify this by
using the annotated clause

front(n,x,z)<-append(x,y,z)&length(x?.n).

The execution of the "append™ and "length" calls are noW interleaved.
Following each use of the recursive clause for "append” there is a use
of the recursive clause for "length". This counts down on the length by
generating a recursive call in which the length argument is reduced by
1, ‘The attempt to execute this recursive call generates a data request
for a further instantiation of x. The resumed execution of the "append®
eall will first try to wuse append(Nil,y,y)<-. This will bind the
variable of the 1last partial result to Nil. The resumed length
execution can only continue by using length(Nil,0)<-. The attempt to
use this assertion is a check to see {f the length argument of the
suspended call is 0. If it is not, the attempt to use the clause fails.
Back-tracking on the last ™append” evaluation step leads to the use of
its recursive procedure. This triggers another data transfer to the
suspended "length" execution, which again counts down on the length by
1. In essential respects, we have the behaviour of

assign <Mil,z> to <x,y>:
until y=Hil
if n=0, exit with x
else repeat with <X ,¥,.n> ehanged from ¢,..M1l,a.1,p> to
¢,..8.M1,1,p-12;
fail.

2.8 A case study in algorithm construction

The above examples illustrate the fact that significant changes of
behaviour can result from minor changes to the syntax of a PROLOG
program. Moreover, these syntax changes only effect the control
component of the logic + control combination implicit in the text of the
program. They in no way change the logic component, which 1is the
declarative reading of the clauses. This enables us to adopt a two pass
approach to the development of a logie algorithm as expressed in a
PROLOG program. In the first pass we concentrate on the logile
component. Concerning ourselves primarily with the declarative reading,
we piece together a Horn clause description of the relations we want to
compute, We then address the issue of its computational use. We see if
we can re-order and annotate the text of the clauses so that, as a
PROLOG program, it express a reasonable logic algorithm.
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shall exemplify thée=two prass approach to the construction of a
logic algerithm by developing: -am IC-PROLOG program for the eight queens
problem.

Describing a solutiom to eight: .gueens problem

The answer to the problem wiill bs some term that is computed as the
answer binding for a variable. The term must denote a configuration of
eight queens on a chess board.. o the first task is to find some way of
naming such configurations.

We can simplify our task if we only consider configurations in which
each row and column contains mnly one queen, a constraint that we know
must be satisfied by any solutZion to the problem. A list of the numbers
1 to &, 1in some arbitrary worder, can be used to name such a
econfiguration of queens. We taies the ith number on the list as the
colunn number of the queen in tthe ith row.

Under this naming convention,, the set of permutations of the numbers 1
- B names the set of all t*te queen configurations that are candidatz
solutions of the problem. A sxilution is one of these permutations that
namss a safe configuration,, @ configuration in which no queen is on a
diagonal with any other. Thusi, ® safe configuration of queens is an
instance of the relation nszwed by OQueen-sol(1.2....E.Nil,y), where
Queen-sol is the relation deseribed by the clause

Queen-sol(x,y)<~Permifx.y) & Safe(y).
"Perm" names the 1ist permutatitzm relation, and "Safe" names the unary
relation whish is true of a lismt :of numbers when it names a safe placing
of quesns on consecutive rows..
Ma must give Horn clause deseriptions of the Perm and Safe relations.
The empty list is a permutation of itself. A list u.x is a permutation
of a 1ist v.z if v is on the 1%st u.x, and z i3 a permutation of u.x

pe rmutived

U sese V soes ¥V sssnsssssnsss

Fig 2.%

with v removed, Fig. 2.1 tllwstrates this recursive definition. It is
embodied in the two Horn clausesC

Perm(MNil ,N{1)<~
Perm{u.x ,v.z)<—deletelw,u.x,y) & Perm(y,z).

ndelete" names the relation thast s true when ¥ i{s the list wu.x with
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elenent v removed. The clauses:
delete(v,v.x,x)<=
deletelv,u.x,v.y)<~delete(v,x,y)

are a Horn clause description of this relation.

We now turn to the deseription of the Safe condition. An empty list
of numbers represents a safe placing of gueens on consecutive rows. A
constructed 1ist u.x names a safe placing if x names a safe placing,
and, taking into account that u is the column position for a queen one
row away, a queen in column u cannot take any of the queens placed in
accordance with the 1list x. This gives us the assertion and the
implieation:

Safe(Nil) <=
Safe(u.x)<-no-take(u,x,1) & Safe(x).

Finally, we need to describe the no-take relation. This is the
relation satisfied by a column position, u, a list of colunn positions
for consecutive rows, x, and a number, n, when a queen placed in column
u, n rows away, cannot take any of the queens placed according to the
1ist x. It is described by the set of clauses:

no=take{u,Nil,n)<=

no-take(u,v.x ,n)<-no-diagonal(u,v,n) & no-taks(u,x,s(n))
no-disgonal(u,v,n)<=v>u & v=u+w & wén
no~diagonal(u,v,n)<-u>v & uzvsw & win

Here, ™", ",.=,.+.." and "£" are assumed as primitive arithmetic
predicates, The "no-diagonal™ predicate names the relation that
includes u v and n when a queen placed in column u, n rows away, is not
on a diagonal with one placed in column v.

The above clauses constitute a Horn clause axiomatisation of the
concept of a solution to the eight queens problem. Let us now turn our
attention to their computational use.

Transformation into a logic algorithm

With an sye on this computational wuse, we have already chosen a
suitable ordering of the calls of each clause. HWe wrote the Queen-sol

clause as
Queen-sol(x,y)<-Perm(x,y) & Safe(y)

so that the Perm call would be used to generate the candidate queen
configurations which are then tested by the Safe call. However, there
is a problem with this generate and test method. Each time a
permutation is generated that is not safe, the back-tracking to produce
a modified permutation will lead to the loss of all the Safe computation
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for the previous permutation. To save some of this, we must let the
Safe(y) call have ths permutation a bit at a time. We need to annotate

the clause
Queen-s0l(x,y)<-Perm{x,y) & Safe(y?).

Let us see what computation will result., The procedures that will be
invoked by thess two calls are:

Perm(u.x,v.z)<~delete(v,u.x,y) & Perm(y,z)
Safe(u.x)<-no-take(u,x,1) & Safe(x).

A data transfer to the Safe(y?) call will take place immediately after
the unification of the call Perm(x,y) with Perm(u.x,v.z) because this
will bind y to the template "v.z", It is much better if we delay the
data transfer until the wvalue of v has been computed by the
delete(v,u.x,y) call. We do this by changing the "&" of the Perm
procedure to a ":".

Now let us consider what will happen when the Safe(x?) call 1is
executed as a result of this first data transfer. The sequential
control implicit in the text order of the procedure means that the no-
take(u,x,1) call will be executed first. At this point u will be bound
to the column position for the first gqueen, but x is the tail 1list of
queen positions that remain to be computed. The attempt to execute no-
take(u,x,1), using either of the "no-take"” procedures, will result in a
data request for the first element of this tail list of queens.

When this data request has been satisfied, execution of the no-
take{u,x,1) resumes. Its execution will generate a sequence of data
requests for each of the elements on the list x. It must have all the
quean positions on the list in order to check that the first queen is
not on a diagonal with any of them. During this interaction there will
ofecourse be back-tracking. Each time a new queen can be taken by the
first queen, the last slice of the Perm computation is undone. However,
there is no check that the newly placed queen cannot be taken by some
other queen already positioned. This no-diagonal check 1is embedded
inside the recursive call to the Safe procedure. It will only be
executed after the execution of all the no-diagonal checks for the first
queen have been completed.

The ideal behaviour would be to execute the two calls of the
Safe(u.x)<-no-take(u,x, _;mwwoﬁ_ﬁ

procedure in parallel, or rather pseudo-parallel, since we have assumed
a one call at a time evaluator. When we start the execution of the no-
take check for queen position u, we should also start to check that the
tail 1list x 1s safe. Only when both of these sub-computations are
suspended due to data requests, would we suspend the parent call. With
this control regime, each time a new gqueen position is computed, the
resumed execution of the top level Safe call will result in the parallel
execution of a sequence of no-take checks. Each of these is the no-take
check for one of the queens already placed. Each was suspended waiting
for the new queen placing. At the same time, a new no-take execution is
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started. This will check that the new queen cannot take any of the

queens that have yet to be placed.

=h a parallel control regime is feasible to implement. As a
possible annotation, we could replace the "&" ssparator of a ssquence of
calls that should be executed in parallel by a "//". So, the Safe
procedure would be re-written

Safef{u.x)<-no-take(u,x,1)//Safe(x).

Unfortunately, such a program could not be executed as an IC-PROLOG
program. It makes use of a control facility that i3 outside the control

set that we can use.

Mo matter, we can use this shortcoming of IC-PROLOG to {llustrate the
fact that we can nearly always compensate for the lack of some control
facility by modifying the logie of the program. In this case, we must
revise the "Safe" clauses so that a strietly sequential execution will
check each new queen against each of the queens already placed.

This behavioural specification leads to the set of clauses:
Safe(x)<-Safe-pair{Mil, x)

Safe-pair(y,u.x)<-no-take(u,y,1) % Safe-pair(u.y Wx)
Safe-pair(y,Nil1)<-

At each use of the recursive procedure for "Safe-pair™ the first
argument of the call is the reverse of the list of queens that have been
checked for diagonal takes, and the second argument is Lhe tail 1ist of
queens that have yet to be checked. Thus the original list of queens is
the reverse of y followed by x. For a declarative reading of the
program, we take "Safe-pair” as the name of a binary relation that is
true of a pair of lists y and x when reverse(y) concatenated with x
names a queen configuration in which no queen on the x part of the board
can take any queen on the board (see Fig. 2.2). We leave the reader Lo

reverse of

¥
placing

Mo queen on this part of
x placing the board can take any
other queen on the board

y and x are a Safe-pair of queen placings

Fig.2.2

he new "Safe" clause embodies a correct definition of a safe

check that t
the two clauses

relation in terms of the safe-pair relation, and that
mS3fe-palr™ are both true statements about this new relation. Our

for
though less obviously correct, still comprises a set

modified program,
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of true statements about the elght gueens problem,
The final, revised and annotated program {s:
Queen-sol(x,y)<-Perm(x,y) & Safle(y?)

Perm{Nil ,Ni1)<¢-
vnﬂaﬁc.x.<.uvArnmumwma¢.:.-.¢u * Perm(y,z)

delete(u,u.x x)<—
nm_Wﬂmﬁc.:,u.:.wvalnn_mnmﬁ:.x.mg

Safelx)<-Safe-pair(Nil,x)

Safe-pair(y,Nil1)<¢-
mmwmnnmuﬂﬁw.c.xvalsolnmxnnc.w.qu & Safe-pair(u.y,x)

no-take(u,Nil n)<-
:0|~mrmac.<.x.sgAnzo:numNO:mmnc.c.:v & no-take(u,x,s(n})

no-diagonal(u,v,n)<-v>u & ve=us+w & wén
no-diagonal(u,v ,n)<-udv & uzvsw & win

The execution of this IC-PROLOG program corresponds to the simple
minded back-tracking algorithm which places the queens one at a time on
successive rows. It always tries to place the next queen on the left-
most  free colunn (because of the try order for the "delete" clauses).
If it cannot place a queen on the next row in a position in which it
cannot  be taken by an earlier queen, it back-tracks and tries to move
the previcus queen to the right.

Logie vs. control

The above example in algorithm development has illustrated what seems
to be a general phenomenon, It is the trade—off between logic and
contrel, To achieve a particular algorithmiec behaviour we often have
the rchoice of using a simple, specification-style logic, with an
elaborate control, or a complex, more computational logic, with a simple
control.

The major advantage of elaborate control facilities is this ability to
execute intuitively correct deseriptions as algorithas. Kowalski[1979a]

el ahorates on this point ., In his paper entitled
"Algorithm=logic+control™ he examines the use of a much more elaborate
control componeat than we have considered here, The abstract

interpreter he treats is able to mix the top-down or recursive use of
the clauses that we have, with a bottom-up use, a use that adds new
assertions to the program when the antecedent of some clause has been
proved. By using a contral notation that can specify the appropriate
mix of hottom-up and top-down execution, he shows how very sophisticated
algorithmic behaviour can be obtained using a very simple logic.
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Chapter 3 Ron-procedural Semantics

When we write down the clauses of a logic program we usually have in
mind some intended interpretation. This is an interpretation of its
constants, functors and predicates as the names of particular objects or
individuals, particular functions, and particular relations. Relative
to this interpretation, we make sure that each clause is a true
statement, that 1is, we make sure that the intended interpretation is a
model of the program. With this same interpretation in mind, we then
compose a goal clause so that its conjunction of atoms denotes the
relation an instance of which we want to compute.

Fach successful evaluation of the goal clause will return an answer
substitution

{x1/t1,..,xk/tk)

for all the variables of the goal clause. Relative to our intended
interpretation of the program, the tuple of binding terms

<t1,..,tk>

will denote a tuple of individuals, or, if some of the terms contain
variables, a set of tuples of individuals. No matter what intended
interpretation we had in mind, we would like to be sure that the tuples
of individusls named by the answer substitution belong to the relation
named by the goal clause.

We can use this naming requirement to give a non-procedural semantics
for answer substitutions. We shall say that an answer substitution is
correct if it names a set of instances of the relation named by the goal
clause for every model of the program.

This 13 the model theory semantiecs of answer substitutions that we
develop more fully in this chapter. Following van Emdem and
Kowalski[1076], we show how it can be recast in the lattice theory
framework of the Scott fixpoint semantics. Finally, we investigate its
relationship with the procedural semantics of Chapter 1.

3.1 Interpretations and models

In the syntax of logic progams, the logiecal symbols and the implicitly
quantifisd variables have a fixed meaning. The constants, functors and
predicates are 'free' symbols to be used by the programmer as the names
of any individuals, functions and relations he has in mind. An
interpretation is the mapping from these free symbols to their
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denotations.

PEFTMITION
An interpretation comprises:
(1) A non-empty set D called the domain of the interpretation.
(2) For each constant the assignment of some individual in D.
Amv For each n-ary functor the assigrmment of some total function from
D" to D,
(U) For each n-ary predicates the assigmment of an n-ary relation over
un
if n>0, this is some subset of D",
if n=n, it {s a O-ary relation which is truth value, true or false.

There is no requirement that different names be assigned different
denotations.

Given an interpretation, each program clause, each goal clause, and
each substitution also has a denotation as follows:

Denotation of a program clause

A clause
R{t1,..,tn)<-A1&..%Am

denotes one of the truth values, i.e. it is either true or false. It is
true 1f and only If for every assignment of individuals of D o the
variables of the clause, when the antecedent Al&..&4An is true, so 1is
the consequent R(t1,..,tn).

A conjuction A1A..AAm is true if and only if each atom of the
conjunction is true.

An atom R(t1,..,tn) is true if and only if
(i) for n=0, the predicate R has the value true,
(11) for n>0, the tuple of individuals denoted by <t1,..,tn> is in the
extension given to R.

The individual denoted by a term which is a variable is the individual
assigned to the variable, that denoted by a term which is a constant is
the individual assigned to the constant, and that denoted by a term
f(t1,..,tk) 1is the value of the function assigned to f for the tuple of
arguments denoted by <t1,..,tk>.

Denotation of a goal clause

The denotation of a goal clause
<-B1%..&En

is the denotation of 1its conjunction of atoms. This is a k-ary
relation, where k is the number of variables in the clause.
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L=t x1,...,xk be these variables in lexicographical order. The
relation denoted by the clause is:
(1) for k>0, the set of tuples
{<e1,..,ek> : for the assignment xi=zel,1<i<k, Bl&..&En is true}

(11) for k=0, the truth value denoted by the conjunction of atoms
Ai&..%Fn

NDenotation of a substitution

Let <t1,..,tk> be the tuple of binding terms of a substitution ordered
by the lexicographical ordering of the variables x1,..,xk for which they
are the bindings. The substitution denotes the k-ary relation

{<e1,..,ek> ¢ <t1,..,tk> denotes <el,..,ek> for some
; assignment to its variables).

DFEFINITIONS
(1) A model of a program P is an interpretation for which each clause

is true.

(2) An answer substitution s for a goal clause C and program P 1is
correct if for every interpretation that is a model of the program
the relation denoted by s is included in the relation denoted by C.
For the special case of a goal clause without variables, the answer
true is correct if C is true for every model of P.

(3) Two answer substitutions (for the same variables) are equivalent
if they denote the same relation in all interpretations.

The definition of a correct answer substitution could be reformulated
as:

(A) for every model of P, Cs 1is true for every assigmment to its
variables.

or, as:
(P) the universal closure of Cs is a logical consequence of P.

The reformulation as (A) relies on the fact that s denotes a sub-
relation of C if and only if Cs is truve for every assignment to its
variables. The re-formulation as (B) appeals to the standard model
theory definition of logical consequsance. The universal closure of Cs
is (W1,..,yn)Cs, where y1,..,yn are all the variables of Cs. We shall
generally use formulation (B).

The definition of equivalence of answer substitutions is the standard
model theory definition of logical equivalence.

Exemple models

We shall describe three different interpretations, each of which is a
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model of the program

appand (Y141 ,x ,x) <=
append(u.x,y,u.z) <-append(x,y,z).

For eazh model we shall give the denotation of the goal clause
¢-append(x,y,A.P.NL1],

and the denotation of each of the answer substitutions
s1={x/Ni1,y/A B, Hi1)
s2={x/A.M1,y/P. M1}
s3={x/A.R. N1, y/nil}.

These are all the correct answers for the goal clause and program.

Tnterpretation 1

Domain is the set of natural numbers.

knong the assignments to the constants,functors and predicates:
TN{1" A" "B are 1,2,3 respectively.

n." is the multiplication function.

"append™ is the relation {<m,n,p> : mxn=p}.

For this interpretation the assertion of the "append™ program is the
statement that

for all numbers n, 1xn=n,
and the implication is the statement that
for all m,n,p,i, if mxn=p then (ixm)xn=ixp.
In other words, the assertion 1is the true statement that 1 is a
multiplicative identity,” and the implication is the trus statement that
multiplication is associative. The interpretation is a model of the
program.
The goal clause denotes the relation
{¢m,n> @ mxn=2x3x1} = [<1,6>,€2,3>,¢3,2>,46,1>}.
s1 denotes the singleton set of pairs [<1,6>}.

s2 denotes the singleton set of pairs {<2,3>}.

s? denotes the singleton set of pairs [<6,1>}.
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As raquired each substitution denotes a sub-relation of the goal
clause relation,

Interpretation 2

Nomain is a2 set of objects D that includes some base set of objects B,
and 1is eclosed under an object constructor function. The constructor,
cons, takes a pair of objects ol,02 into an object o3 which is different
from ol and o2 and unique to each pair of arguments.

One of the base objects is the empty list []. All the other base
objects are called atoms. A special subset of the constructed objects
is the set of finite 1length 1lists ([ol,..,0k] : k>0}. The 1list
fo1,..,0k] is the value of cons(ol,[02,..,0k]).

Among the assignments to the constants,functors and predicates:
nN{1" {3 the empty 1list ().

mE" and "P" and all the other constants are each assigned a uniqus
atom. Since each constant denotes a different atom, we can identify the
atom with the constant.

n," is the constructor function comns.
"append™ is the relation

{<{),0,0> : 0 in D}
unisn
{<fol,..,0§],(0)+1,..,0k],[01,....,0k]> : 01,..,0k in D}
union
{<fo1,..,0k],0,cons{ol,cons{02,..,cons{ok,0)}> : 0,01..,0k in D}

This is the intended intepretation for the program that we referresd to
informally in Chapter 1. We leave the reader to check that it is model
of the program.

The relation denoted by the goal clause comprises the three pairs of
11sts <[1,(4,R)>, <[A1,[B]>, <[A,8],[1>. These are the denotations of
the binding terms of 51,52 and 33 respectively. For this model, the
three answer substitutions exactly cover the goal clause relation.

Interpretation 3

Domain is the set of strings that are the terms of our logic program
syntax.

Each constant ¢ is assigned the term c.

Each n-ary functor f is assigned the function that takes the tuple of
terms <t1,..,tn» into the term f(t1,..,tn). Thus, "." is the function
that takes "A" and "Nil™ into ".(A.Nil)". (Remember that A.Nil is just

syntactie sugar for ",(A,Mi1)" ).
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"anpend" is the relation
fevil,t k> 1 t a term)
union

fC.(t1,.(t2, —,. . (tk,H1)e=) b, (L1 (t2. —. (th,t)-=)> :
t,t1,..,tk terms}

Ve leave the reader to zheck that this interpretation is a model. The
2oal clause denot=s the relation

{11, (A, (P, NI1))> , < (A, ML), (R, Mi1)>, <.(A,.(B,Ni1)),Nil>}.

Fach pair in the relation is denoted by the pair of binding teras of
axzctly one of the answer substitutions.

Covering the goal clause relation

For the 1last two interpretations the three answer substitutions
51,52,53 have together covered the corresponding goal clause relation.
To cover the goal clause relation for the first interpretation we should
need to add the substitution

sUz{x/B.Ni1,y/A. M1},

which denotes the extra tuple <3,2>. But the binding terms of this
substitution do not denote an instance of the goal clause relation for
the other two models of the program. A set of correct answer
substitutions does not necessarily cover the goal clause relation for
each model. The extent of the cover is constrained by the fact that
each sudbstitution must denots a relation that falls inside the goal
clause relation for every other model.

3.2 Berbrand interpretations

The last interpretation given above is an example of a spscial class
of interpratations called Herbrand interpretations.

NEFINITION

A Herbrand interpretation is an interpretation with domain the set of
terms which gives the constants and functors their free
interpretation. That is,

(i) each constant ¢ is assigned itself,

(11) each k-ary functor f is assigned the function that takes any k-
tuple of terms <t1,..,tk> into the term fltl,...th).

Herbrand interpretations differ only with respect to the extensions
assigned to the predicates. Moreover, the extension assigned to a

predicate R can be specified by the set of atoms

{R{t1,..,tn) : <t1,..,tn> is in the relation assigned to R}.

e can equate the set of all Herbrand interpretations with a set of all
sets of atoms,
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Rerbrand representatives

The set of Perbrand interpretations is of sp2zcial importance beczauss
they are the only interpretations that we need consider when determining
the correctness of an answer substitution. In this matter, they
represent the set of all interpretations., First, we define 3 mapping H
which takes an arbitrary interpretation ints its Herbrand
representative.

DEFIHITION
The function H from interpretations to Herbrand interpretations is
such that

H(I) = {R(t1,..,tn) : the universal closure of R(t1,..,tn) is true
for interpretation I}.

Theorem 3.1

If T is a model of some program P, then H(I) is a model of P,

Proof

Suppose that I is a model of P, but H{I} is5 not., We shall derive a
zontradietion.

Tf H(I) is not a model of P then there is some clause
B<=A14&. & Am

in P which is false for H(I). That is, for some assigrment
x1=t1,..,xkstk of terms to the variables of the clause, the conjunction
A1&k,.%Am i{s true but B is false.

The assignment of terms to the variables of the clause is 3
substitution s. B will be false for the assignment only if Es is not in
the atom set of H(I}, and the ant=scedent conjunction will be true for
the assignment only if each of the atoms of [A1k..54Amls is in the atom
set.

Ry definition of H(I), if Bs is not in the atom set then there is some
assignment yil=zel,..,yizei of elements from the domain of I to the
variables of As such that Bs is false for this assigmment. If we extend
this to an assigrment yl=ze=1,..,yn=zen to all the variables in
[R<-A1k..Am)s, we have an assigmment for which Bs is still false, but
for which each of (A1)s,..,.[Am]ls is true. Each [Ails is true for this
assignment because it is in the atom set of H(I). It must, therefore,
be true for every assignment o its variables.

Now,
Bi{x1/t1,..,xk/tk} 1is false and [A1&..4Am)(x1/t1,.. ,xk/tk} is true
for the assigment yi=ze, 1<i<n, only {f,

B is false and Alhk..%8fm 15 true
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for the assisnment xi=denotation of ti, 1<i<k.

In which case, the clause B¢(-A1&..kAm is false for interpretation I,
This contradicts the assumption that I is a model of the program.

Theorem 3.2

The universal closure of s is true for an interpretation I if and
only if it is true for interpretation H(I).

Proof

<= Assume that, for H(I), Cs is true for every assignment of terms to
its variables.

Suppose y1,..,yn are the variables of Cs. Since Cs is true for every
assignment of terms to these variables, it must be true for the
assignment yl=y1,..,yn=yn. In other words, Cs must be true of the
interpretation H(I). This means that each of the atoms of Cs is in the
atom set of H(I). By definition of H, this is the case only if the
universal closure of Cs is true for interpretation I.

=> We leave the proof of this implication for the interested reader.
It is just as straightforward.

Equivalent interpretations

The function H induces an equivalence relation on interpretations, two
interpretations being in the same equivalence class if they map into the
same Merbrand interpretation. Since H maps a Herbrand interpretation
into 1itself, each equivalence class contains exactly one Herbrand
interpretation which we can take as the representing element of the
class.

The above theorem tells us, that with respect to ﬁ:m correctness
requirement for answer substitutions, the interpretations of eazh

equivalence class are om:u¢mwn: ”

Tis, together with the fact that H maps models into models, gives us
the following theorem.

Theorem 3.3

An answer substitution s is correct if and only if the universal
closure of Cs is true for every Herbrand model of the program.

Proof

=> If s is correct, the universal closure of Cs 1is true for all
models, hence for all Herbrand models.

¢= Let M be any model. Theorem 3.1 tells wus that its Herbrand
representative H(M)} is also a model. By assumption, the universal
closure of Cs is true for model H(M). Hence, by Theorem 3.2 it is also
true for the arbitrary model M.
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3.3 Fixpoint semantics

Following van Fmdem and ¥owalski[1976) we can recast the model theory
semantics in the Scott lattice theory framework [Scott 1970]. To do
this, wa must interpret each logic program P as an equation

x = P(x),

whers P is a continuous function over some complete lattice of the
possible denotations of P. The least fixpoint of P, {.e. the least
solution of the above equation, is taken as the denotation of P. e
give a brief summary of the key concepts of the fixpoint approach.

DEFINITIONS

(1) 4 complete lattice 1s a set S over which there is a reflexive,
antisymmetric, transitive order relation, <. For each subset Xof 3
there is a least upper bound, lub(X), in S.

(2) A function P over a complete lattice S is continuwous if for every
directed subset X of 3

P(lub(X)) = 1ubl{P(x) : x in X}

(3) 4 directed set is a set which contains an upper bound for each of
its finite subsets.

The fact that a complete lattice contains a 1lub for every subset
implies that there is a top element, T, and a bottom element, j. It
also implies that every subset X has a greatest lower bound, glb(X), in
S.

That P is continuous implies that it is monotonic, 1.e. that
x<y implies P(x)<P(y).

Hence, by Tarski's fixpoint theorem for a monotonic function over a
complete lattice [Tarski 1955], the least fixpoint of P exists, and is

(&) glblx : P(x)<x}.

There is a second identification of the 1least fixpoint. By a
generalisation of the Kleene recursion theorem[Kleene 19521, it is

(8 1wirt) : 101,

For a proof, see [Stoy 1977 p.112]. It appeals to the continuity
property of P.

Lattice of Herbrand interpretations

Given a logic program P we can use it to compute a set of answer
suhstitutions for every goal clause of the form <-R(x1,..,xk), R a k-ary
predicate, Each set of answer bindings defines a Herbrand extension for
R, and by computing a Herbrand exteansion for each predicate we compute a
Herbrand interpretation. So, as the set S of candidate denotations for
the program we take the set of all Herbrand interpretations.
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llnder the partial order relation

T<I' iff the atom set. of T is included in that of I,
they are distributed over a complete lattice S. The least upper bound
of any suhsat ¥ of S is the atom set which is the union of the Herbrand
interpretations in X. The greatest lower bound of X is the intersection
of its HFarbrand interpretatimms, The top element of the lattice is the
Perbrand interpretation comprdsing the set of all atons, the bottom
element is the Herbrand interipretation with the empty set of atoms.

Wle re-interpret the program P as the equation
I =P(I)
where P is the function

P:T => [R" z B'"<-A"18_%A'm is an instance of a
clause im P such that A'1,..,A'm are all in IJ.

We shall call P the immediafte consequence function for the prograa.
If I defines the extensiom of each relation accessed by the procedure
calls of a program clause, them P(I) is the interpretation that defines
the extension of each reflstion that can be computed by the program.
This azcords with the conventiioms of the fixpoint approach, and 1is
consistent with the re-interpretation of the program as the equation

I=P(I).

Theorem 3.8
P is continuous.
Proof

Let X be a directed sst of Herbrand interpretations. To prove that P
{s continuous we must show that an atom 3' is in P(lub(X)) if and only

if 1t is in 1un(P(I):I in XP.
B' is in P(lub(X)})

iff P'¢-A'1&..4A'm is an instmmure of a clause in P such that A'l,..,A'm
are in lub(X) (definition »f P)

{ff R'¢-A'14..kA'm is an instamce of a clause in P such that A'l,..,A'm

are in interpetations I1,..,Im of the set X
(lub(X) is the union of t:h= I in X)

iff B'¢-A'1%, .4A'm is sn instamce of a clause in P such that A'l,...A'm
are in some I in X
(the if-half is trivial, ¥or the only-if half I is the lub
of 11,..,Im. Since X i= directed, and I is the lub of a
finite subset of X, T mumst be in X.)

{ff B' is in P(I) for some I :n X (definition of P)

iff R' {s in 1ub{P(I): I in ¥} (definition of lub).
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Te lattice 2 contains every Herbrand interpretation. For the model
theory semanties only those interpretations which are models are of
interesst. The following theorem characterises the Herbrand models in
terms of the function P.

Theorem 3.5
A Yerbrand interpretation I is a model of a program P iff P(I)<I.
Proof
A Herbrand interpretation I is a model of P

iff for each clause B<-A1%,.4Am in P, and for every substitution s
for its variables, whenever [Al1&..%Am)s is true Bs is true

iff for every substitution s, whenever each of [A1]s,..,[Am]s
are in I, Ps 13 Iin I

iff I contains all the atoms in P(I)
1ef IP(T).
Denotation of a program

DEFINITION
The least fixpoint of P is the fixpoint denotatiom of the program P.

Theorem 3.6

The fixpoint denotation of a program P is the Herbrand model which is
the intersection of all the Herbrand models of P.

Proof

The fixpoint denstation of the program is an interpretation I such
that I>P(I). Py Theorem 3.5, it is a model of the program.

To prove that it is the intersection of all the Herbrand models we use
the Tarski identification of the least fixpoint. It is

glb({I:DP(I)]}) = intersection of {I:1 is a Herbrand model of P},

Expressed more intuitively, the fixpoint denotation of the program is
the Herbrand interpretation that assigns the least extension to each
predicate compatible with the interpretation®s being a model of the
program.

Correct answers

The fixpoint denotation of a program P is a single Herbrand model. An
answer substitution s must be deemed correct if the universal closure of
Cs is true for this particular model. This gives us an alterpative
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definition of correctness.

DEFETNITIOMS

in answer substitution s is fixpoint correet for a goal clause C and
program P if tha universal closure of Cs is true of the fixpoint
denotation of P,

The following theorem tells us that this is exactly the model
theoretic characterisation of a correct answer recast in the [ixed point

framework.

Theorem 3.7

An answer suhstitution s is fixpoint correct iff it is correct

Proof
s is fixpoint correct

iff the universal closure of Cs is true for the fixpoint
denotation of P

iff it is true for the Herbrand model which is the intersectien
of all the Herbrand models of P (Theorem 3.6)

iff it is true for every Herbrand model of P
iff s is correct (Theorem 3.3).

Because of this equivalence of the model theoretic and fixpoint
definition of correctness we can use either as our non-procedural
semantics for answer substitutions. From now on we shall generally
appeal to the fixpoint semantics. MNote that we have yet to make use of
the identification

1ub (Pl ()): 1>0)

of tha 1least fixpoint of P. We shall use this in proving the
equivalence of the procedural and non-procedural semantics, the usual
usa for the Kleene identification of the least fixpoint.

3.5 Relation to the procedural semantics

The key intermediary in our proof of the equivalence of the procedural
and non-procedural semantics is the concept of a complete proof tree as
defined in Chapter 1. Remember that a complete proof tree is the object
constructed by a successful evaluation.

First, we shall prove that a correct answer substitution is the answer
sunstitution 'displayed' by the goal clause atoms of a complete proofl
tree. We shall prove that a substitution s is correct for C and P if
and only if the atoms of Cs are the goal clauses atoms of a finite
complete proof tree for C and P. From this it follows immediately that
every computed answer 1is correct. However, it doss not follow that
every correct answer can bes computed, for the finite proof tree that
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displays s may not be a tree that can be constructed by some evaluation.

To prove that every correct answer answer can be computed, we show
that the set of finite proof trees are the set of substitution instances
of the R-—constructed proof trees, R any computation rule. It follows
from this that every correct answer is a substitution instance of an R-
computable answer.

Theorem 3.8

An answer substitution s is correct if and only if the atoms of Cs are
the goal clause atoms of a finite complete proof tree for C and P.

Proof
We reduce the proof of the theorem to a definition and three lemmas.
DEFINITION

An atom B' is an n-level consequence of a program P if B' is in mbﬁhv
for some n>0.

Remember that P is the immediate consequence function associated with
the program, and | is the empty set of atoms.

The 1-level consequences are all those atoms that are substitution
instances of the assertions in P.

The n+1 level consequences are the n-level consequences together with
the set of atoms

{B': B'<-A'1&..&%A'm is an instance of a clause in F
and A'1,..,A'm are n-level consequences].

The following lemma can be established by a simple induction on n.

Lesma 1

An atom is an n-level consequence iff all its substitution instances
are n-level consequences.

Proof tree display

We can display the derivation of an atom B' in wzﬁkv as a tree of
height at most n. Such a tree is depicted in Fig. 3.1.

By making B' the single descendent of an unlabelled root node the tree
becomes a complete proof tree for the goal clause <-B' and the program
P. Sinece it is of finite height, by Konig's lemma it has a finite
number of nodes. Hence: .

Lesma 2

An atom B' is an n-level consequence of P iff there is a finite
complete proof tree for <-B' and P.
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AN

A iiiens A'm (n-1)-level consequances

n-level consszquence

CE
A - — 1-level consequences
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Derivation of n-level consequsnce B'

Fig. 3.1

We Xnow that a substitution s is correct iff the universal closure of
Cs 1is true for the (f{ixpoint denotation of P, iff every substitution
instance of each of its stoms is in the atom set of the least (ixpoint
of P.

The following lemma tells us that each instance of an atom B is in the
least fixpoint of P if and only if B is an n-level consequence for some
n. With lemma 2 it implies the theorem. This {s because a complete
proof tree for Cs comprises separate complete proof trees for each of
its atoms joined to a common root.

Lemma 3

Fach instance of an atom B is in the least fixpoint of P iff it is an
n-level cons=quence of P for some n.

Proof
An instance of B is in the least fixpoint of P
1ff 1t is in 1wb(P"(])} (identity (B) for the least fixpoint)
1ff it is in P"(]) for some n (definition of lub)
iff P is an n-level consequence of P (lemma 1).
Theorem 3.f has the following immediate corollary?
Corollary to Theorem 3.8

Every R-computable answer substitution is correct
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Proof

A successful evaluation using computation rule R constructs a complete
proof tree. The answer of the evaluation is the substitution that takss
the goal clause C into the goal clause atoms of this tree. By the
theorem, the substitution is correct.

In resolution terms, the above corollary tells us that LUSH resolution
is sound.

We cannot prove exactly the converse of the above corollary despite
the fact that the theorem tells us that every correct substitution is
‘displayed' on some finite complete proof tree. This 1is because not
every finite proof tree can be constructed. However, what is true, is
that every finite complete proof tree is a substitution instanze of a
constructed tree.

Theorem 3.9

If T' is a finite complete proof tree then, for any computation rule
R, there is an R—constructed proof tree T such that T'=Ts for some

substitution s.

Froof

A finite complete proof tree T' for a goal clause <-31&..%H1 is a tree
as depicted in Fig. 3.2(b). The initial proof tree for this goal
clause, Fig. 3.2(a), is a constructed tree. We can prove the theorem by
showing that, wusing any computation rule R, the initial proof tree can
be extended into a proof tree T that maps onto T' under soaxe
substitution s.

Bl.....Hn B'1l,,...B'"m some substitution
instance of B1,..,3m

initial
proof tree

(a)

(b)
complete proof tree T'

Fig. 3.2
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The initial proof tree is just a special case of a constructed proof
tree T that maps into T' as depicted in Fig. 3.3. Tnat is, it 1is a

pruned version of T!
that is Ts

constructed tree T,
a some atom on the tree

complete proof tree T!

Mapping of T into T'

Fig. 3.3

constructed tree such that some substitution s maps it into a pruned
version of T'. Let us measure the difference between T and T' by:

nunber of extra nodes on T' + number of leafl nodes on T' .,
not marked as terminal on T

By an induction on the size of this differance, we prove that every
constructed tree T that maps into T' can be extended into a coaplete
proof tree that maps onto T'.

Basis

When the difference is zero T is already a constructed complete proof
tree that maps onto T'.

Induction ste

Let the difference between T and T' be k+1. Assume that the extension
can be achieved for all T for which the difference between T and T' is k
or less,

In extending the tree T the computation rule R will select an leaf
atom B of T not marked as terminal. We know that Ts is a pruned version
of T'. As depieted in Fig. 3.4(a), there must be an atom Bs on T' that
corresponds to the selected atom B.

Since T!' is a complete proof tree it must be the case that Es is the
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B
[A1]u...[Aa]u
(a)
Extended s'
T
Av - =
By
\\\//// ‘ .
' ~
¢ %
(A" )v...[A'm)v ;u“_-.._...;au.._
(b)

An extension of T

Fig. 3.4

consequent atom of a substitution instance
[B'<-A1&..&An]u, m>0

of some clause in the program P. The atoms [A1]u,..,[Am]u will be the
immediate descendants of Bs (which is identical to B'u) on T'. Let us
call

B'<-Al&..&Am

the validating clause for Bs. & variant

B"<-A"&..kA'm
of this clause can be used to extend the partially constructed tree T,

Since Bs=B'u, B and the variant B" of B' will be wunifiable. Suppose
that ([x1/y1,..,xk/yk} is the change of variable substitution that takss
8' into B". Since B and B" have no variables in common, s union
{y1/[x1Ju,..,yk/[xk]u} will be a set of bindings for distinct variables.
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Applied to B, it will give us Bs. Applied to B", it will give wus B'u.
Hence, this substitution is a unifier of D and EBE".

The unification of B and B" will return a most general unifier w. T
will then be extended by adding A'l,..,A'm as immediate descendants of
B, or, if m=0, by marking B as terminal. The substitution v 1is tnen
applied to every node on the extended tree ((=se Fig. 3.4(b}).

The difference betwesn the extended T and T" will be x or less. To
apply the induction hypothesis, we must prmmwe that the extended T also
maps into T' under some substitution s'.

Wde know that s union {y1/[x1Ju,..,yk/[xk]ull unifies B and B". Since v
is a most general unifier of E and B", theme is a substitution s' suzh

that
vEs'zs union {y1/[x1]u,..,yk/[xklu}
s' is the substitution that will take the exfended tree into T'.

If s' is applied to each of the new nodes, which are labelled by the
antecedent atoms of

[B'<-A1&..An){x1/y1,..,x1/y1]%,
it will give us the antecedent atoms of
[B'C-A1&. . &An) [x1/y1, .. xk/yk}®(y1/LxVJu, .. ,yk/[xk]u}.

These are the atoms (AlJu,..,[Am]Ju on T'. Mprlied to Bv, and any other
atom label Av of one of the old nodes, it will produce the atoas Bs and
As respectively. Hence, s5' maps every atom of the new tree into the

corresponding atom on T' as required.

Corollary to Theorem 3.9

For each correct answer substitution s' famr a goal clause C there is
an R—computable answer substitution s =mh that Cs'=Cs*s" for some

substitution s".

Proofl

Since s' is correct, Theorem 3.8 tells us That the atoms of Cs' are
the goal clause atoms of some complete proof tree T'. By the above
theorem, we know that there is a constructatsle proof tree T that maps
snto T'. Te zoal clause atoms of T will be the atoms of Cs, where s is
the answer computed by the successful evaluation that constructs T. The
substitution s" that maps T onto T' wdll map Cs onto Cs'. Hence,

Cs'=Cs®s" as required.

In resolution terms, the above corollary wells us that LUSH resolution
is complete. It is a slight generalisatiom of the normal completeness
result which only guarantees the existence of the computable
substitution s when the substitution s"™ has binding terms without
variables. Completeness for LUSH resolumion was first proved by
Hil1[1974]. The above proof is somewhat difTferent from the one he gave.
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3.5 Independence of the computation rule

Each answer substitution denotes a relation over the Herbrand
universe. This is the set of tuples of terms that can bes obtainad by
instantiating the tuple of binding terms of the substitution. Let us
call tie union of the Herbrand relations denoted by the set of A-
computable answers for a goal clauses C, the R—computable extension of
C. The following theorem tells us that this is always the extension
given to C by the Herbrand interpretation that is the fixpoint
denotation of P.

Theorem 3.10

For any computation rule R, the R-computable extension of a goal
clause C is the relation assigned to C by the fixpoint denotation of the
progran.

Proof
We show that each extension includes the other.

The relation assigned to C by the fixpoint denotation of the program
is

{<t1,..,tk>: each atom of Cixt/t1,..,xk/tk}
is in the fixpoint interpretation]

= {<t1,..,tk>: {x1/t1,..,xk/tk] is a correct answer}.

qsmn is, a tuple <t1,,,,tk> of binding terms is in this relation only if
it is the tuple of binding terms of a correct answer. By the
completeness corollary of Theorem 3.9, <t1,..,tk> is in the Herbrand
extension of an FR-—computable answer. It follows that the relation
assigned to € by the fixpoint interpretation is included in the Herorand
extension of the set of R-computable answers.

By the soundness corollary of Theorem 3.8, each R-computable answer is
correct. By the fixpoint definition of correctness, the Herbrand
relation denoted by the answer is included in the extesnsion of the
relation assigned to C by the fixpoint denotation of the program. 3o,
the Herbrand extension of the set of R—computable answers is included in
the extension of this goal clause relation.

Corollary

The computed extension of a goal clause is independent of the
computation rule.

The above corollary is our first result concerning the independence of
the computation rule. There is a stronger result. \le can prove that
the different sets of computable answers not only denote the sane
Herbrand relation, but that they contain essentially the same
substitutions.
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Let us look again at the proof of Theorem 3.9. In the induction step,
where we extended the proof tres T at the selected atom L, we used a
variant of the validating clause of the corresponding node on T'. The
particular atom that app2ared on this node was not relevant. We can
replace T' by any other tree T" that has the same validating clause
associatea with =ach node. The tree constructed by the inductive proof

would be unchanged.

DEF INITIOW
The proof skeleton T of a proof tree T is a structurally identical
tree in which each node is labelled by the validating program clause

of the corresponding node oa T.

We leave the reader to check that in the construction of T implicit in
the induction of Theorem 3.9:

(1) The sequence of extension steps that will construct T from the
initial proof tree is uniquely determined by the computation rule and

the proof skeleton T' of T'.

(2) T' could be replaced by any other proof tree with the same skeleton.

(3) The proof skeleton of T is the proof skeleton of T'.

A proof skeleton is what is constructed by the stack implementation
described in Chapter 1 if we discard the binding environments. Ue can
summarise the above properties in the following theorem.

Theorem 3.11

For a given computation rule R and proof skeleton T tnere is exactly
one successful evaluation for the goal clause C. This constructs a most
general proof tree T with proof skeleton T. That is, T maps onto any
other proof tree with skeleton T. 2

Corollary

An answer substitution s is R-computable only if an equivalent
substitution is R'—computable, where R' is any other computation rule.

Proof

The computation of s using rule R will construct a complete proof tree
T with the atoms of Cs as the goal clause atoms. Since there is only
one successful evaluation corresponding to the rule R and the proofl
skeleton Tof T, T must be a most general proof tree for skeleton T.

For proof skeleton T and rule R' there is also exactly one successful
evaluation of C. This will compute an answer s' and in so doing will
construct a proof tree T', with the atoms of Cs' as 1ts goal «clause
atoms. This is also a most general proof tree for skeleton T.

Since T and T' are each most general proof trees for skeleton T, there
is a substitution that maps the atoms of Cs into the atoms of Cs', and
vice versa. Cs and Cs' must therefore be variants. If s and s' are Lne
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substitutions
s={x1,t1, .. 2k/tk}, s'=[(x1/t"1,.. .5/t k},
then, since x1l,..,xx are all the variables of C, thes term tuples

<tl,..,tk>», <u'l,..,t'k> must alss be variants. They therefore denote
the same relation for every interpretation.

The above coropllary is the justification for our claim that the family
of algorithms dimplicit in a given logic program are esquivalent. It
tells us that each algorithm must compute the same set of answers
(modulo eguivaleance of suhstitutions).

66

Chapter & Verification

As we stressed in Chapter 1, many logic programs double as their own
specification. Peading the clauses of the program as statements about
their intended interpretation is often all that is needed to check the
truth of each clause, hence to confirm the correctness of the program.

This is not always the case. As we saw with the eight queens progran,
we are sometimes forced to use less obvious but more computationally
useful deseriptions in order to obtain a reasonable algorithm. ‘then we
do this, we should prove that the program clauses embody a correct
description.

There is another problem. Even when the program clauses constitute a
correct description, this may be an incomplete deseription. The set of
assertions that are logical consequences of the program may not cover
all the instances of some relation that we want to compute. To prove
that it does cover all these instances, is to prove that the program
description is complete for its intended use.

—

In this chapter we address the problem of the verification of 2 logic
program. We show how the question of correctness (or completeness) of a
program can be reduced to the question of whether some verification
sentence, which 1is a sentence of first order logic, is true of a
particular interpretation. Verifying the program is then a matter of
proving that the sentence is true of that interpretsation. We shall see
that the different ways in which we might do this, correspond to
different standard methods of verifying programs.

4.1 Verification sentences

Let us try to formalise the notion of correctness of a lozie program
by looking at an example. Let us consider the "append" program

append (¥il,y,¥)<-
append(u.x,y,u.z)<-append(x,y,2),

and its use to append 1ists. This 'use' is characterissd by the set of
goal clauses of the form

<-append(t1,t2,z)

where t1 and t2 are both 'list' terms, that 1is terms of the form
£'1.t'2.-—.t'n. Ml for n>0.

The successful evaluation of such a goal clause will construct a
complete proof tree for a goal clause atom append(t?1,t2,t3). In so
doing, it will compute the answer binding z/t3 for z. t2 should name
the concatenation of the 1lists named by t1 and t2., However, suppose
that we are only interested in showing that t3 is a list ternm, that we
only want %o check that the appending use maps list terms into list
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terms, Let us see if we can state this correctness condition more
formally.

For the appending use the first tw arguments of the c¢all are non-
variable terms which belong to the set of pairs of terms

T = {<t1,£2> @ £1,t2 are 1list terms].

This set is a relation over the Herbrand universe which we shall call
the {input relation. The third argument of the call is the output
variable whose answer binding 1is sought. Suppose that w2 use
subscripted x's to name the argument positions occupled by the input
terms, and subscripted y's to name the argument positions of the output
variables, The set of appending calls can be named by the atom/input
relation pair

<append(x1,x2,y1),I>.
We shall assume that this denotes the set of goal clauses of the form
<-append(x1,x2,y 1) {x1/t 1,x2/t2,y1/z)

where <t1,£t7>» is in the relation I and 2z is a variable not appearing in
t1 or t2.

We want to show that the answer binding z/t2 is such that t3 is also a
list term. More formally, we want to show that <t1,t2,t3> are in the
output relation

N =z {<t1,t2,t3> : t3 a list terml.
We kmow that <t1,£t2,t3> is a tuple of terms in the relation

[<t1,t2,£3> @ append(t1,t2,t3) is the goal clause atom
of some complete proof treel}.

Let us call this the append relation computed by the program. It
follows that the use <append(x1,x2,y1),I> will be correct for the output
relation 0 if it is true that

for all terms t1,t2,t3
<t1,t2> in the relation I

and
<t1,t2,t3> in the append relation computed by the program

implies
<t1,t2,£t3> in the relation O.

Using the language of first order logic, this is just the condition
that the sentence

(¥x1,x2,y 1)[T{x1,x2)4append(x1,x2,y1) => 0(x1,x2,¥1)]

should e true of the Herbrand interpretation in which "I"™ is the input
relation, "0O" the output relation, and "append" the append relatlon

computed by the program.
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Botation

Pafore we give a pgeneral definition of correctness «e nzed some
notation.

Yla shall us= x to denote a s2t {x1,..,xm] of m distinet (input)
varisbles and y to denote a different set {y1,..,yn] of n distinct
(output.) variables.

R(x,y) is the atom R(x1,..,xm,y1,..,yn).

q(x*y) is some atom obtained from R(x,y) by permuting its argument
variables.

R(t"z) is mﬁuamuﬁxa\ed....xaxﬂs.*d\ua....wsxuaw where z1,..,zk are
variables not appearing in t=<t1,..,tm>.

I is some m-ary (input) relation over terms.
0 1is some (men)-ary (output) relation over terms.

Correctness

DEFINITIONS
(1) The R-relation computed by a program P is the set of term tuples

[<t1,..,tk> : R(t1,..,tk) is a goal clause atom of a
complete proof tree for P}

(2) A use of a program is denoted by a pair <R(x"y),I>. It comprises
the set of goal eclauses of the form

¢-R(t"z), t in the relation I.

(3) T™e use <R(x"y),I> is correct for an output relation O if the
correctness sentence

(Ve,y)[T(x)&R(x"y) -> O(x,¥)]
is true of the R-relation computed by the program.

Tn our definition of correctness, we have implicitly assumed that the
interpretation for which the correctness sentence is true is the
Herbrand interpretation in which the predicates "I" and "0" denote the
input and output relations respectively.

Let us check that this definition captures the idea of correctness.
The use <R(x"y),I> is a set of goal clauses of the form

¢-R(t"z), t=<t1,..,tm> in I.

Ve have assumed that the purpose of evaluating such a clause is to

compute an answer substitution
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[z17t'1, .., Zn/t ' n)

that mives us an output tuple t' that corresponds to the input tuple t.
To do this, the evaluation of <-R(t"z) must construct a complete proof
tree for the atom P(t7t?).

The truth of the correctness sentence ensures that
T{E)LR(L"L") -> O(t,t")
is true of the F-relation computed by the program. B3But, I(t) is true by
assumption, and R(t"t') is true by the ‘proof' of the computation of t'.

It follows that O(t,t') must be true, 1.2, that t" is related to t by
the output relation.

Termination
Correctness does not guarantee that some answer tuple for 2z will be
computed. To guarantee this, we must knmow that some atom R(t"t') is in

the P-relation computed by the program whenever I(t) is true. In other
words, we must know that

Yzl T(x) -> JyR{x"y)]
is true.

DEFINITION
A program terminates for a use <R(x"y,I> if the termination sentence

¥x[I(x) -> JyR(x Y]
is true of the R-relation computed by the progranm.

Let us check that the truth of this sentence =2nsures termination.
Consider some goal clause

¢-R(t"z) , t in I

of the use <R(x"y),T>. Since t is in I, the termination sentence tells
us that there is some t' such that R(t"t') is the goal clause atom of a
complete proof tree. This atom is a substitution instance of R(t"z).
Py Theorem 2.0 we know that there is a successful evaluation of <-R(t"z)

using any computation rule.

Completeness

The truth of both the correctness sentence and the termination
sentence guarantees that there is always a successful evaluation of the
goal clause

<-R(t"z), t in I

that computes some t? such that <t,t®> is in the relation 0. If we want
to make sure that we can compute every t! related to the input t by 0,
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than the program must be complete for the relation C.

DEFINTTINY
& use <R(x"y),I> of a program is complete for an output relation O if
tha completeness sentence

(¥, ) [T(x)&n(x,¥y) -> R(x"y)]
is true of the R-relation computed by the program.
Consider the goal clause
<-R(t"z), t in I.
e leave the reader to check that the truth of the completeness sentence
ensures that every &' related to t by O is an instance of some

computable answer binding for z. This is another application of Theorem
7,0,

Total correctness

The correctness sentence can be reformulated as the logically
equivalent sentence

Ry  (¥x,7)[I(x) -> [R(x"y) => 0(x,7)]].

Similarly, the completeness sentence can be reformulated as the
logically equivalent sentence

(R) ¥z, y) [I(x) -> [O(x,¥) -> R(x"¥]].

The conjunction of (A) and (B) is equivalent to the conditional
equivalence

(¥z,y)[(T(x) -> [R(x"y) <-> O(xz,y)]].

If this sentence is true of the program computed relation, then every
term tuple t' in the O relation to some input tuple t can be computed,
and, conversely, every computed t* is in the 0 relation to the input
tuple. It is the strongest verification condition.

DEFINMITION
A use <R(x"y),I> of a logic program is totally correct for an output
relation O if the total correctness sentence

(¥x,y)[I(x) -> [R(x"y) <=> O(x,7)]]

{s true of the R-relation computed by the program.

Tha total correctness sentence tells us that wunder the restriction
twat certain arguments lie in some relation I, the relation computed by
the program is the relation O.
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3,2 The theory of the program computed relations

The above definitions have reduced the proolf of each of several
verification properties %o the proof that some sentence is true of a
particular interpretation. One of the most straightforward ways of
showing that a sentence is true of some interpretation is to show that
it can be derived from a set of sentences that are obviously true of
that interpretation. #s dapicted in Fig. 4.1, this means showing that
the sentence is a theorem of some theory of the interpretation, the
axioms of the theory being the sentences that are unquestionably true.

Theory of the interpretation

St of sentences that are 'axiomatic'
of the interpretation.

formal deduction

Theoren

Sentence that must also be true
of the interpretation.

Fig. 4.1

Let us pursus this approach. Let us build up a little theory of the
Herbrand interpretation in which a predicate R that appears in a logic
program P denotes the R-relation computed by the program. To this
theory we add axioms desecribing the input and output relations I and O.
T™is gives us a theory of the Herbrand interpretation for which a given
verification sentence must be true. We can then attempt to prove that
the sentence is true by trying to derive it as a theorem of this theory.

Ve shall assume that the reader is familiar with the idea of a first
order theory, and with the language of first order predicate logic with
equality. [Pendelson 1964] is a suitable introduction. We also assume
some familiarity with natural deduction style inference rules, and the
informal presentation of proofs (see [Quine 1964]) or [Suppes 19571).

The identity theory

The interpretation we want to describe is a Herbrand interpetation.
This gives the constants and functors their free interpretation. Each
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‘of the following axiom schemas is true of this free interpretation.

z £ ety ¢ and e' different constants
¢ £ f(x), ¢ any constant, [ any functor
f(x) # aly), { and g different functors
£

tix] # x, t{x] any term in whizh x appears

fix) = Wn%u ->xX =9y

As with program clauses, each axiom 1is assumed to be implicitly
universally quantified with respsct to its variables., We adopt this as
a convention for axioms.

The first schema tells us that different constants denote different
individuals: the second that the denotation of a constant is never the
value of a function; and the third that different functors denote
fimetions with disjoint ranges. The fourth schema tells us that no
composition of functions maps an individual into itself. The last tells
us that each function is a one-to—one mapping of the domain.

Let us call this set of axiom schemas the identity theory for a
Herbrand interpretation. In deseribing the Herbraad interpretation
comprising some set of program computed relations, we can use any axiom
of this identity theory.

Equivalence implicit in the program clauses for R
Consider again the "append™ program

append (Nil,y,y)<=
append(u.x,y,u,z)<-append(x,y,2).

The clauses of the program are axioms for the relation it computes.
This is because Theorem 2.8 tells us that the append relation computed
by the program {s the just the relation assigned to ™append" 1in the
fixpoint denotation of the program, which is a model of the program.

They are, however, quite weak axioms. They tell wus only that this
fixpoint interpretation is such that

an atom append(t1,t2,t3) is in the interpretation
il
t1=Nil and t2=t3

or
there are terms t,t'1,t'3 such that ti=t.'1, t3=t.t'3 and

append(t'1,t2,t'3) is in the interpretation.

In terms of the program associated transformation P, the program clauses
tell us only that the fixpoint denotation is an interpretation I such

that P(T)<T.

We know that it is an interpretation such that P(I)=I. In other
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words, we know that it is an imterpretation such that
append(t1,t2,t3) is truue

if, and only if,
t1=Nil and t2=t3
or
there are terms t,t'1,2°3 such that ti=zt.t'1, t3i=t.t'3 and
append(t'1,£2,t'3) is wrue.
Using the language of first owder logic, this 1s the statement that
append(x,y,z) <-> x=zBiliy=z. w (Ju,x',z')[x=u.x'&z=u.z'&append(x',y,z"')]
is true of the program computexi relation.
lore generally, suppose that
R(t1,..,tn)<-Al&..&8p
is some program clause for a predicate R. Let wul,..,um be all the
variables of the clause and L=t x1,...,xn be n variables not appearing in

any clause for R. We can reformulate the clause as the egquivalent
implication

R(x1,..,xn)<-But,..,wn)Ix1=t1&, . &xn=tnkAlk. . LAp].
Let us call this the general fform of the clause.
Now suppose that

R(x1,..,xn)<=E1

R{x1,..,xn)<-Ek
are the k general forms of each of the program clauses about R. To say
that the Herbrand interpretation of all the program computed relations
is a fixpoint of the program associated transformation P, is to say that
R(t'1,..,t"n) i{s true
if, and only if,

El1f{x1/t'l,..,.xm/t"'n} is true
or .

or Ex{x1/t'1,..,xmrft 'n} is true,

Hence, the equivalence

R{x1,..,xn) <=2 E1 v .. w Ex
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is true of the program computed relations to which it refers. We call
this the R-equivalence implicit in the set of clauses for H.

Equivalence implicit in a single clause

We can always use the equivalence implicit in the set of clauses for a
predicate as an axiom of our theory of the program computed relations.

However, when we are interested in proving poperties of a particular use
<R{x"y),I>, it is often more convenient to use a set of slightly weaker
axioms which are equivalences implicit in the individual clauses.

Each clause about R will be of the form
R(E™L?) <- Al&..%Am

where t is some tuple of input templates and t' is some tuple of output
templates. Let us suppose that the tuple of input templates is unique
to this clause, or, more formally, that the tuple of terms t will not
unify with the corresponding tuple of terms of any other clause for R.
When this is the case, the equivalence

R(E"y) <=> (Jul,..,uk)[y=t'&A1&. .&Am]

is true of the program computed relations te which it refers. tere,
ul,..,uk are all the variables of the program clause that do not appear

in t.

Ve can argue that the equivalence must be true by appealing to the
definition of the program associated transformation P and noting that an
atom which is a substitution instance of R{t,y) will be in P(I} iff the
righthand side of this equivalence is true of I. BNot surprisingly, it
can also be inferred from the equivalence implicit in the set of clauses
for R using the identity theory.

The following example will illustrate this derivation of an
equivalence for an individual clause.

Example

The two "append" clauses

append(Nil,y,y) <~
append(u.x,y,u.z)<-append(x,y,z)

treat disjoint input tuples <Nil,y>, <u.x,y? for the appending wuse of
the program. The two equivalences

append(Nil,y,z) <=> 2=y
append(u.x,y,z) <=> 3z'[z=u.z'&append(x,y,z")]

are therefore true of the append-relation computed by the program. Each

can be derived from the equivalence

append(x,y,z) <-> x=Nilkz=y ¥
(Ju',x',z')[x=u' .x'&z=u' .z " dappend(x’,y,2z")]
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using the axioms

u.x#Nil
u.x=u' x'=Jusu'&x=x'

of the identity theory. We shall give the derivation of the second
equivalence.

Derivation

—

Instantiating the two clause equivalence we get

append(u.x,y,z) <=> u.x=Nildy=z v
(Ju',x',z")(u.x=u'.x"&z=u" 2" Lappend(x',y,2') ].

Using u.x#Nil and u'.x'zu.x-du'sukx'sx from the identity theory,
together with the general substitutivity property of equality, the right
hand side reduces to the equivalent

<=> (Ju',x",z")[usu'&x=x"bz=u'.z"dappend(x',y,2") ],

Using the equivalence Jx'(x=x'&W[x'])<->H(x] which holds for any formula
W, this can be further simplified to

<-> Jz'(z=u.z'&append(x,y,z')].
This is the equivalence we require.
Induction schemas

To use a set of equivalences as axioms for the program computed
relations is to exploit the fact that we know that the interpretation
comprising the set of program computed relations is a fixpoint of the
program associated transformation P. le alse know that it is the least
fixpoint, that it gives each relation the smallest possible extension.
If we make use of this fact, we can strengthen our axiomatisation with
induction schemas.

Consider, once more, the append program. We know that the append
relation computed by this program is the smallest set of triples of
terms that includes all the triples of the form <lil,t,t> and which, for
any t, includes <t.t1,t2,t.t3> whenever it includes <t1,t2,t3>.

Now, suppose that W[x,y,z] is a formula with free variables «x,y,z.
For any Herbrand interpretation, Wix,y,2] will denote some ternary
relation over terms. If this relation includes all the the ¢triples of
the form <Nil,t,t>, in other words if

(Vy)WINi,y,y] (A)

is true, and if it dincludes <t.t1,t2,t.t3> whenever 1t includes
<t1,t2,t3>, i.e. if

(Yu,x,y,z)(Wlx,y,z)=->[u.x,y,u.z]) (B)

is true, then the relation denoted by Ulx,y,z] includes all the triples

5.2 The theory of the program computed relations 76

of terms in thez append relation computed by the program. This 1is
because this latter relation is the smallest relation with these

properties., In other words,
(¥x,y,z)(append(x,y,z)=->4[x,y,z])

is true of the append relation computed by the progran and any Wlx,y,2]
for wnich (A) and (B) are true. Absorbing these conditions on HWlx,y,z]
in a single implication, we get the induction schema

for any Wlx,y.,zl
(¥y)WINI1yy] & (Yu,x,y,z) (Wlx,y,z]-2Wlu.x,y,u.2]) =>
(¥x,y.z)(append(x,y,z)}-2Nlx,y,2]).

More generally, suppose that the set of clauses {C1, ..k} about an
n-ary predicate R embody a recursive description of the R—computed
relation in terms of some more primitive program computed relations
R1,..,Em, That is, each of the other predicates R1,..,fm appearing in
the antecedents of the clauses C1,..,0k mwm described by a set of
clauses that do not refer to the predicate R'.

Let ¥C'i denote the universal closure of the clause Ci in which each
occurrence of the predicate R has been replaced by the formula variable
W. The induction schema

for any Wlx1,..,xn)
¥C'"1 & ..& ¥C'k -> (¥x1,..,xn)(R{x1,..,xn)=->W[x1,..,xn])

is true of the program computed relations to which it refers. It is
true because the R—computed relation has the least extension that can be
assigned to the predicate R such that C1,..,Ck are true of the programs
computed relations R1,..,Hn.

Note that this axiom is Jjust the 5Scott computation induction
rule[deBskker & Scott 1969] expressed as a first order induction schema.
Together with the program clauses for the predicate R, it gives us the
strongest axiomatisation of the R-relation computed by the program that
we can express in first order logic. The equivalence implicit in the
set of clauses C1,,.,,Ck can be derived as a theorem.

This excludes the case where the set of clauses about R are part
of a mutually recursive description of several relations.
Although the induction schema is still true of a relation given
such a mutually recursive deseription, it is not the strongest
induction schema that we can give. Tne strongest schema replaces
each predicate involved in the mutual recursion with a formula

variable.
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4.3 Some example verifications

example-1
The appending use of the append program terminates if the sentence
(¥x,y)[1ist(x)&list{y) -> Jzappend(x,y,z)]

is true for "append™ the relation computed by the program and "1list" the
relation comprising the set of terms

{t1.—.tn.M1 : n30}.

As our axioms for append we can use any axiom of the theory of this
program computed relation. To these we must add axioms describing the

list term relation.

The set of list terms is the smallest set of terms that includes Nil
and which includes a term of the form t.t' whenever it includes the term
t'., 1In other words, it is the relation computed by the logic prograa

list(Mil)<-
list{u.x)<=list(x) (A).

It follows that these clauses, and the equivalences

1ist(x) <=> x=Hil v (Ju,x'){x=u.x'&list(x')]
list(u.x) <=> list(x) (B,

and the induction schema

for any W(x]
WIHE1) & (Vu,x)[W[x)->W[u.x]] => ¥x[lisc(x)->4(x]] (C),

can all be used as axioms for the relation.

Note that the two program clauses (A), the induction schema (C), and
the two axioms

u.x#Nil
u.xzu' . x'-du=u'bx=x'

of the identity theory, are the analogues of the Peano axioms for the

natural numbers. They are the axioms for the list-term data structure
in our little theory of the relation over list terms computed by the

append program.
Proof of termination

To prove the termination sentence we use the clauses of the appand
program and the list induction schema with Wlx] as

¥yllist(y)->-zappend(x,y,z)].

The proofl is an induction over the input relation.
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Proof of correctness
To show that the concatenation use is correct for the output relation

O={<t1,t2,£3>: t3 a list term},

we must prove the correctness sentence
(¥x,y,2)[list(x)&list(y)kappend(x,y,z)->list(2)].

Since this can be reformulated as either
A<x.w.n_Hw»maagvlvhpnmﬂnwvmauvnznﬁx.<.n_|vwwunﬁquu (D)
(¥x,y,2z)[append(x,y,z)->[1ist(x)&list(y)->list(2z)1) (E),

We can use either the list induction schema or the append induction
schema to prove correctness.

Method 1

We prove (D) using the append equivalences

append(Nil,y,z)<=>z=y
append(u.x,y.z)<=>3z'[z=zu.z"'kappend(x,y,z')],

and the list induction schema with W[x] as
YyVz[list(y)&append(x,y,z)=->1ist(z)].
We give the proof as an illustration.

Basis: W[Nill

We need to prove
¥y¥z[list(y) & append(Nil,y,z) => list{z)].

Assume list(y) and append{(Nil,y,z)} for arbitrary y and Z. Using the
"append" equivalence

append(Nil,y,z) <-> y=2

we can infer y=z. With list(y) this implies the list(z) that we need.

Induction step: (¥u,x)(W[x] => Wlu.x])

Assume
Wix): Wy'Vz'[list(y') & append(x,y',z') -> list(2')] (ind. hypothesis)
and the antecedents
1ist(y), append{u.x,y,.z),

of Wlu.x] for arbitrary x,u,y and z. We try te derive tLhe conclusion
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list(z) of Wlu.x].
Using append{u.x,y.z) and the equivalence
append(u.x,y,z) <> Jz'[z=u.z'%append(x,y,z') ],
we can infer
zzu.z' and append(x,y,z') are both true
for some particular z., Using append(x,y.,z'), assumption 1list{y), and
the induction hypothesis, we can infer list{(z'). This, together with
z=u.2z' and "list" axiom
list{u.x)<=1ist(x),
imply the list(z) that we require.

Method 2

We prove (E) using

list(Nil1)
list({u.x)<=>list(x),

and the append induction schema

¢qsﬂzww.m.qu & (VYu,x,y,2)[Wlx,y,z]=-W[u.x,y,u.2] =>
(¥x,y,z)[append(x,y,z)->Wlx,y,2]]

with Wlx,y.z] as
(list(x)&list(y)=->1list(z)].
The structure of the proof is similar to that for method 1.
Method 1 is an induction over the input relation, and method 2 a
computational induction on the append program. MNote that in this case

the induction over the input relation is also a computational induction
over the "list™ logic program that computes the relation.

Some example verifications 8o

example-2
Consider the lozlc prozram

perm({Nil, Nil)<-
perm{u.x,v.z)<-delete(v,u.x,y)&perm(y,z)

delete{u,u.x ,x)<=
delete(v,u.x,u.y}<-delete{v,x,y}

and its use <perm(x1,y1),list(x1)> for permuting list terms. Let us try
to prove that this is totally correct with respect te the output
relation

PERM = {<tl.—.tn.Nil,t'1,—,t'm.Nil> [ n=m &

each t'i=tj for some )
& each tj=t'i for some i}.

To do this, we must prove the total correctness sentence
¥x¥y[list(x)=>(perm(x,y)<->PERM(x,y)}].

Axiomatising the input relation

Firstly, let us address the question of the most suitable
axiomatisation of the input relation. The most straightforward
axiomatisation is the one that we used for example-1. However, 'looking
ahead', we can see that the proof of the total correctness sentence

using the induction schema
WINil] & YuVx(W[xJ->W[u.x]) => ¥z(list(z)=>W[z]),
will require us to show that

¥y[perm(x,y)<-> PERM(x,y)] (induction hypothesis)

implies
¥yl perm(u.x,y)<=>PERM(u.x,y)].
To prove this implication we would have to use the equivalence
perm(u.x ,W)<->(3v,z,y) [w=v.zkdelete(v,u.x,y)&perm(y,z)]

implicit in the perm program. However, this relates the permutation of
u.x not to the permutation of x, which would enable us to use the
induction hypothesis, but to the permutation of some y related to u.x by
the program computed delete relation. This y is not a simple
substruecture of u.x. However, it is 'smaller'. It contains one less
element. We could use an induction hypothesis which referred to smaller
1ists. We therefore need an inductive characterisation of the set of
list terms based on length instead of structure.
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khat we have here 1s an example of a logic program that recursively
computes an output for each term in some inpur relation I by:

(1) having one or more non-recursive clauses which together cover all
the inputs that are bottom elements of I under some wezll-founded

ordering <<.

(2) having one or more recursive clauses winich together cover all the
non-bottom elements of I, and which have recursive calls in which the
input argument is reduced relative to <<.

In our case the well-founded ordering i3 the ordering of all the list
terms based on the number of elements. 2 digress, temporarily, to
discuss well-founded orderings and their associated induction schemas.

Well-founded orderings

DEFINITIOHN

<< is a well-founded ordering of some set I if it is an irreflexise
and transitive relation over I such that ewery non-empty subset A of 1
contains a bottom element. e is a bottom element of A if there is no

e' in A such that e'<{<e.

For each well-founded ordering << of a set I there is an induction
principle.

Induction principle

If a set I' is such that it includes any & in I whepever it includes
all the e'<<e, then I' includes all the elements in I.

Proof

Suppose not. Then the subset A of I that eontains all the elements in
I not in 1I' is non-empty. Since << is well-founded, this subset must
contain a bottom alement e, Because it is a bottom element of A, all
the e'<<e must be in I'. In which case, by our assumption zoncerning
the relationship between I and I', e must be in I' and not in A, This
is a contradiction. I' must include all of I.

Formulation as an induction schema

Let W(xz] be any formula with free variables x, and let I be some
(input) relation over terms., Relative to amy Herbrand interpretation,
Wlx] will denote a set I' of tuples of terms. HNow suppose that << is a
well-founded ordering of the set of tuples of terms that comprise the
relation I. The above induction principle tells us that

for any W[x]
¥x(I(x) & Yy[y<<z->W(y)l->W[x])
=>¥z(I(z)->Wlz])

is a true statement about I and this well-founded ordering <<. Hote
that this is just Burstall's structural imduction principle [Burstall

1969 ] expressed as a first order schema.
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example~2 (continued)

Returning to our example, the relation
€< = {<tlie-.tm. Nil,t"1,==.t'n.hil>: m<n}

is a well-founded ordering of the input relation of all the list terams.
Hence,

for any W[(x],
¥x[list{x) & ¥y(y<<x->Wlyl) => Wlx]) => ¥z(list(z)->u(z])

is true of the list input relation and this ordering of its extension.
We can use it as an extra axiom about list terms.

To be of any use, we must also have some axioms describing the order
relation. We shall us=:

x<{<{Nil <~> false
to tell us that Nil is a bottom of all the list terms, and
y<€u.x <=> y=Nil v (Jv,y")[y=v.y'4y"'<<x]
to tell us which list terms are less that some non-bottom list u.x.
The axiom x<<Nil<->false, and the equivalence
list(x) <=> x=Nil v (Ju.,x')[x=u.x'&list(x)],
enable us to transform the new induction schema to

for any W(x],
WINLl) & Vu¥x[list(x)&V¥y(y<<u.x=->W[yl)->Wlu.x]]) =>
Yz(list(z)=->k[z]).

This is the form that we shall use to prove the total correctness
sentence.

Axiomatising the output relation

This takes care of the axiomatisation of the input relation. Let wus
now address the problem of axiomatising the relation

PERM = {<tl.—.tm.Nil,t'"1.—.t'n.Nil> ! n=m & each

each t'i=tj for some j &
each tj=t'i for some i}.

To do this, we must translate the above set theoretic definition into a
set of equivalences.

First of all, the condition n=m is satisfied by two list terms

xst l.==.tm.Nil, y=t'l.--.t'n,Hil
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if and only if
¥pllength{x,p)<->length{y,p)]
is true of x and y. "length" is the relation
length = ~Anﬂ.|l.n=.zmw.u=ﬁouv : n20).
Similarly, the condition
each t'i=tj for some j, each tjst'i for some i,
is satisfied by x and y iff
Yu(on(u,x)<->on(u,y)]
is true. "on" is the relation
on = {<t,tl.—.tn.Nil> : t=ti for some i}.
Hence, as our top-level definition of the PERM relation, we can use
PERM(x,y) <=> list{(x) & list(y) &
¥pllength(x,p)<->length(y.p)] &
Yulon(u,x)<->on{u,y)].
We add to this axioms for the length and on relations. We shall use:

length{Hil, 0)
length{u.x,s(n)) <-> length(x,n)

on(u,Nil) <-> false
on{u,v.x) <=» usv v on{u,x).

Proof of total correctness

We shall simply sketch the proof. We use our new list induction
schema with W[x] as

Yyl perm(x,y)<->PERM(x,y)].

Remember that we can use any axiom of the theory of the program computed
relations.

Tne base case is the proof of
¥y{perm(Nil,y)<->PERM(Nil,y)) (A).
The induction step is the proof that
list(x) & Ywlw<<u.x => ¥y[perm(w,y)<->PERM(w,y)]
(B)

implies

¥y[perm(u.x,y)<=>PERiA(u.x,y}].
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(A) is easily proved using the axioms for perm and PERM. To prove (E)
we need to use whe following lemmas:

(Yu,x,v,z3[list(x)->[PERM{u.x ,v.2) <=2
Jy(delete(v,u.x,y)SPERII(y,2)) 1] (cy

(¥v ,x,y) [delete(v ,x,y)=>y<<x] (D).
(C) 15 a 'qualified' total correctness result for the "delete"™ program.
It can be proved using the simple induction schema for lists. (D} can

be quickly proved using the "delete” induction schema implicit in its
pair of clauses.

4.4 Proving otler properties

We have used the theory of the program computed relations to prove
correctness, termination and total correctness. ke are not restricted
to proving just these properties of programs. We can use the theory of
the computed relations to prove any property that can be expressed by a
sentence of first order logie.

For example, smappose that we want to prove that sll calls of tne
"append" program of the form

<-append{t,Nil,z), t any term

will, if they successfully terminate, result in 2z being bound to L.
This will be the case if the sentence

¥x¥ylappend(x,y,z)=>(y=Nil=>2=x)]
is true of the program computed relation.
Using the induction schema implicit in the append program, the proof

of this sentemre is very straightforward. We wuse the schema with
Wix,y.z) as x=Ril-D>z=y.

Functionality

Another property of the append program that is of interest is the fact
that it is a fumction on its first two arguments. The sentence

(¥x,y,z.u)[append(x,y,z)&append (x,y ,W)=>zzW].
expresses this fact. To prove it, we use the equivalences

append (Ml ,y,z)<=>y=2
append (w.x,y,z)<->3z'[z=u.z" kappend(x,y,2) ],

the identity theory axiom

u.xzu' . &"-Dusu'&x=x",
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and the "append" induction schema with Wix,y.z] as

¥Yalappend(x,y,w)->y=z].

Associativity

The computed relation should also be associative. If we want to
append three list terms t1,t2,t3 it should not matter if we first append
t1 and t2, and then append the result to t3, or, 1f we first append te
to t3, and then append t1 to the result. The associativity property

holds if
H¢s.m.n.:.m.ﬂvkuwmsuAx.z.muwmvum:aﬁu.n.twmvaQzan%.n.uvlvmvvmzuﬁx.n.LVH

is true. To prove this we can again use the "append" induction schema.
We need to appeal to the above functionality result.

Indirect proofs of program properties

Using the induction schema implicit in the program is the direct
method of proving these ‘algsbraic' properties of a program computed
relation. We can sometimes give indirect proofs of these properties by
first proving some total correctness result. We then prove that the
output relation has the properties in wiich we are interested.

As an example of this approach, let us see how we might use the total
correctness theorem

¥x[list{x)=->[perm(x,y)<->PERM(x,y)1]

for the program computed perm relation. Because of this conditional
equivalence, it follows that any theorem we can prove about PEZRH applies
to the perm relation when its first argument 1s & list term. It
actually applies without this restriction. This is because

(¥x,y)[perm(x,y)->list(x)]

is a theorem that we can prove using the "perm" and "delete" induction
schemas implicit in their respective clauses.

We leave the reader to check that each of the following are 2asily
proved theorems about the PERMN relation:

¥xPERM{x,x)
¥x¥y [PERM(x,y)->PERM(y,x]
¢u¢u¢nﬁ1mm=ﬁn.quvmmzﬁg.uv|vamzﬁx.ngu i

Because PERY has an explicit definition, we do not need to use an
induction. It follows that the same theorems hold when *PERN" is
replaced by "perm", i.e. that the perm computed relation is reflexive,

symmetric and transitive.
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4.5 Consequence verification

Let us look again at the problem of showing that some use <R(x"y),I>
is correct for an output relation 0. We have to show that

(¥x,y) [R(x"y)=>[I(x)=>0(x,y)]]
is true of the progran computed relation.

In section 4.3 we tackled this problem by deriving the sentence as a
theorem of the theory of the program computed relations. There is
another method. By Theorem 3.8, w2 know that any atom R(L"t*) in the
program computed relation denotes an instance of the relation assigned
to "R" in any model of the program. Suppose that w2 can shoWw that the
Herbrand interpretation in which "R" is assigned the relation

{€£"t®> : t and t' any term tuples, but
if t is in I then <t,t'> is in O}

is a model of the program. It follows that if R{(t"t") is in the program
computed relation, then

[I(t)->0(t,t")]

is true. In other words, it follows that the correctness sentence 1is
true.

To show that the interpretation in which ™R" is assigned the above
relation is a model of the program we can again make use of the truth
preserving property of first order inference. We show that each of the
program clauses are theorems about the relation characterised by the
definiticon

R(x"y) <=> [I(x) => O(x,y)]

and a set of axioms for the relations I and O.

Programs as theorems

This indirect method for proving that a correctness sentence 1s Lrue
is just an application of a more general method for proving that the
atoms of some program computed relation only denote instances of some
particular relation B&. As depicted in Fig. 4.2, we prove this by
showing that each of the program clauses are theorems of the theory of
an interpretation I in which "R" names the relation R, The
interpretation I need not be a Herbrand interpretation.

MNote the contrast with our previous method of proving correctness.
There, the program clauses were used as axioms; now tney are derived as
theorems. Decause the program clauses are consequences rather than
assumptions, we call this method consequence verification. Its
justification rests on the fact that each atom R(t1,..,tn) of the R-
relation computed by the program is, indirectly, a logical consequence
of the axioms of the theory. It follows that the universal closure of
R(t1,..,tn) is true for any model of the axioms. DBy assumption, Iis a
model of the axioms. Hence, for interpretation I, <t1,..,tn> denotes a




4.5 Consequence verification 87

Axioms

Set of first order axioms which are
all true for an interpretation I in
which "R" denotes the relation R.

Verification
derivation

Horn clause theorems

Program clauses as theorems about R

.—(ﬁ Computational derivation

Computed relation

Each R(t1,..,tn) of the program computed
relation is such that, for interpretation
I, <t1,..,tn> denotes a set of instances
of the relation E.

Fig. 4.2

set of instances of the relation R.
Relation to fizpoint induction
Fixpoint induction([Park 1969] is the proof rule
P(I) <1 implies Ho <1, Ho the least fixpoint of P.

It is a direct application of Tarski's fixpoint theorem. By Theorem
3.5, the antecedent of this rule is the condition that I is a Herbrand
model of P. 50 we can re-express the rule

I is a Herbrand model of P implies each R(t1,..,tn) computed
by P is true for I.

Consequence verification is the generalisation of this proof rule to

I a model of P implies wuniversal closure of each R(t1,..,tn)
computed by P is true of I.

Although conssquance verification has a direct justification in teras of
the model theory of first order inference, it can also be derived from
the fixpoint rule by appealing to the model preserving property of the

mapping H.
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Applications of consequence verification

example-—1
The set of sentences

list(Nil)
list{u.x) <=> list(x)

append(x,y,z) <-> [list(x)&list(y) <-> list(z)]

are true of the Herbrand interpretation in which "list" denotes the set
of list terms and "append™ denotes the relation

{<t1,£2,£3> : t1,t2,t3 any terms, but t3 is a list term
if t1 & t2 are, and conversely t1 and t2
are list terms if t3 isl.

If we can derive each of the program clauses

append (Nil,y,y)}<-
append(u.x,y,u.z)<-append(x,y,z)

as theorems, we will prove that the appanding use of this program, and
the decomposition use, both map list terms into list terms.

Derivations

We instantiate the append definition for the tuple of terms treated by
each program clause and try to reduce the definiens to the antecedent of

the clause.
append(Nil,y,y) <-> [list(Nil)&list(y)<->list(y)]
using axiom list(Nil) (1)
<=> [list(y)<->list(y)]

(2)
{=> true.

S0, append(Nil,y,y) is a theorem.
append(u.x,y,u.z) <=> [(list(u.x)&list(y)<->list(u.z)]
using list{u.x)<=>list(x) (3)
<~> [(list{x)&list(y)<->list(z)] i
<~ append(x,y.z).
Hence,

append{u.x,y,u.z)<-append(x,y,2)

is a theorem.
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liote that the proof steps (1),(2),(3) and (4) are just the proof steps
that we would need to prove

(¥x,y,z)[append(x,y,z) => [list(x)&list(y)<=>list(z)]]
using the append induction schema. Tne only difference is the meta-
theory that justifies the claim that the display of these proof steps
proves something about the "append" program.
example-2
The sentences

append(x,y,z) <=> length(z)=zlength(x)+length(y)

length(Nil)=0
length(u.x)=s(length(x))

O+n=n
s{m)+nz=s{men)

are all true of an interpretation in whicn:

"length" denotes a function which maps a list term
t1.--.tn.Nil into the number n,

"+" is the number addition function,

"0" is the number zero,

"s" 1s the function which adds 1 to any number,

"append" is a subset of the set of triples of list teras

that includes <t1,t2,t3> only if the length of
t3 is the sum of the lengths of t1 and t2.

By deriving each "append" program clause as a theorem of this append
relation, we show that the relation it computes has this length addition
property for list term argunents.

example~3
The equivalence
append(x,y,z) <=> [y=Nil=>x=z]

is true of the relation over the Herbrand universe which includes any
triple of terms <t1,t2,t3> for which t14Nil. However, it includes a

triple of the form <t 1,Nil,t3> only if ti1=t3.

By deriving the "append" program clauses as theorems, we prove that
the computed relation 1is a subset of the relation defined by this
equivalence, 5o the computed relation 1is also restricted by the
condition that append(t1,MNil,t3) is true only if ti=t3.

f
t
[
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8.6 Hotes and references

The method of verifying a Horn clause program by proving theoreas in
the theory of the relations it computes was first investigated in ([(Clark
& Tarnlind 1977). It is similar to the method used by #“eCarthy[1977]
and Cartwright[1677] to verify LISP programs, and by Burstall[1969] to
verify programs in an ALGIL subset., In each case, thesorems are proved
about the program computsd relations in a first order theory of these
relations. The advantage that logic programs nave, is that the aapping
from program to axioms of the theory is trivial.

The consequence verification method for verifying logic programs was
first investigated in [Clark 19771].
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Chapter 5 Deductive program construction

At the end of the last chapter we investigated a method of verifying
logic programs that involved deriving each clause as a theorem of the
theory of the relations it was supposed to compute. We can think of the
axioms of this theory as the specification of the program. Suppose that
we start with the specification rather than the program, and suppose
that by systematically deriving computationally useful Horn clause
theorems we manage to plece together a logic program. This 1is a
deductive program construction.

In this chapter we look at this deductive approach to the construction
of a logic program. First, we describe and exemplify a method for
systematically searching for a set of Horn clause theorems about a
relation. This method 1s an extension of the Darlington and Burstall
techniques [Darlington 1975, Bustall & Darlington 19751, for deriving
programs specified and written in recursion equations, to the domain of
programs specified in predicate logic and written in the "Horn clause
subset. We then show howWw we can sometimes piece together several
different programs for a given relation by combining different theorems
of the same specification. Finally, we show how we can apply our
program derivation methods to the task of transforming a given program
into a program with a quite different recursive structure. We give two
examples of this, In each case we transform a given program P into a
program P' such that a strictly sequential execution of P' emulates a
coroutining execution of P,

5.1 Searching for Horn clause theorems

We want to find a set of Horn clauses that can be used to compute some
subset of a relation B which is large enough for us to be able to prove
that the program terminates for one or more intended uses. Using the
full expressive power of first order logic, we can invariably find scme
formula W[x1,...,xk] which, for some interpretation, constitutes an
intuitively correct description of the relation. We can then specify
the relation using the definition

R(x1,..,xk) <=> W(x1,..,xk]

and a set of axioms for the relations and functions referred to by the
definiens Wlx1,...,xk].

We know that each clause of a logic program for R will be an
implication with a consequent atom R(t1,..,tk). The tuple of terms
<t1,..,tk> will denote some candidate set of instances of the relation
and the antecedent of the clause will expresses some condition on
t1,..,tk which ensures that it only denotes instances of the relation R.
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Let <t1,..,tk> be a tuple of terms for which it is reasonable to
assume there are instances thamt Tall inside the specified relation. The

definition instance
R(t1,..,tk) <=> Wlt1, —natk]

gives us exactly the conditiom that the tuple of terms must satisfy if
they are to denote only ZIinstances of B. If we could 'reduce' this
condition to a conjunction of mtoms, we would have derived a Horn clause

theorem.

We can try to reduce it to @ conjunction of atoms by engaging a step-
by-step transformation of tthe definiens Wlit1,..,tk]l. At each step we
use a specification axiom or = dogical manipulation to produce a new
formulation of W[t1,..,tk] ‘which, if not equivalent to the previous
formulation, at least implies::it. This implication constraint ensures
that if we do manage to meduce W[t1,..,tk] to a conjuction of atoms
Al&k..&An, then

R(t1l,..,tk) <- Al&..&&m
is a Horn clause theorem.

Fold substitutions

One transformation step is ¥ special significance. It is the one
which enables us to derive Tecursive clauses. Suppose that we have
managed to reduce W[t1,..,tkl to a formula of the form

LAW[E', .., tTk]

in which a new instance of W[=a1,..,xk] appears as a sub-formula. By our
definition of R, W[t'1l,..,t™k] is equivalent to R(t"1,..,t'k)}. We can
therefore transform

LAWIETY, ., ETKIE..
into
LL&R(E'1, ..t K)&..

and in so doing derive a recuwmive implication
R(t1,..,tk) <= ..&R(E"1,..,t'K)&..

'Fold substitution' is the mame given to this transformation step by
Darlington and Burstall. TErying to factor out the W(t'1l,..,t'k] in
order to apply the fold subsititution will be a major goal of the
transformation for any <tFa..,tk> for which we can expect to find a
recursive theorem. As a metheud for deriving recursive programs from
their specifications, it was aeveloped, independently, by Darlington and
Burstall(1975] and by Manna amd Waldinger[19751].
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5.2 An example program derivation

Let us consider the problem of constructing a program to compute the
min relation, the relation that holds between a list of elements x and
an element u when u is the least element on x unier some total order
relation < for elements. Mthough the derivation of a program to
compute this relation is relatively straightforward, the task is complex
enouzh for us to be able to {illustrate several of the most useflul
derivation strategies.

Specification

We must find a set of axioms that constitute an intuitively correct
description of the min relation. As our top-level definition, we shall
say that u is the minimum of x iff u is on x and it is a lowerbound of
x. Formalising this gives us the equivalence

min(u,x) <=> on{u,x)&lowerbound{u,x) (A1),

Something u 1s a lowerhound of x iff it 1is less than or eqgual to
everything on x.

lowerbound(u,x) <=> Ywlon(w,x)->usw] (A2).

Mothing is on the empty list Nil, and something is on a constructed list
v.x iff it is v or it is on x.

on{u,Nil) <-> false (A3).
onf{u,v.x) <= u=v v on{u,x) (AL),

That < is a total order relation over some set of objects called
elements, is specified by the set of axioms:

element(u) -> u<u (45)
element(u)&element(v) -> udv v v<u (RE)
uCvAVOW => udw (AT)
udvav<u => usv (AB)
u¢v => element(u)telement(v) (AG).

We shall assume that there already are logic programs for the predicates
"element” and "<". The axioms (A5)-(A9) express a set of properties of
the relations computed by these programs that we can make use of in our
derivation. These relations have the role of parameters of the
specification.

Derivation

We know that any instance of the min relation must be named by a pair
of terms that are a substitution instance of <u,v.x>. This is because
there are only minimum elements of constructed 1lists, We shall
therefore try to derive a simple recursive characterisation of sone
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subset of instances of this form by transforming the definiens of
min(u,v.x) <> on(u,v.x)&lowerbound{u,v.x).

Using axiom (AU), we can expand this to

min(u,v.x) <=> [u=v v on(u,x)] & lowerbouwnd(u,v.x},

which is equivalent to

min(u,v.x) <-> u=vilowsrbound(u,v.x) v on{u,x)&lowerbound(u,v.x).
Dropping the only-if, this gives us a pair of implications

min(u,v.x) <- u=v & lowsrbound{u,v.x) (T1)

min(u,v.x) <- on(u,x) & lowerbound{u,v.x) (T2).

(T2) already has one of the conditions, on{u,x), that define min(u,x).
If we could reduce lowerbound{u,v.x) to some conjuction involving
lowerbound(u,x), we could apply a fold to get a recursive clause for

min.

Using definition (A2), we can expand the antecedent of (T2) to give
the equivalent implication

min{u,v.x) <- on(u,x) & Ywlon(w,v.x)->ulw].

Applying (AY4) again, this becomes

min(u,v.x) <- on(u,x) & ¥u[(w=v v on{w,x))=>udw].

Using the logical laws
[AwB -»C] <> [A->C] & [A->C]
¥x[ARB] <-> ¥xA & ¥xB

this can be further transformed into
min(u,v.x) <= on{u,x) & Ywlw=v->uiw] & Ywlon(w,x)->uswl.

The formula Wilon(w,x)->u<w] is the definiens of lowerbound(u,x) that
we require, We can therefore fold using the lowerbound definition, and
then fold again using the min definition. This gives us

min(u,v.x) <= ¥uwlwzv->u<w] % min(u,x).

Let us now look at the condition W(lwsv->udw]. It is equivalent to the
condition u<v. This is because, for any formula W(x], ¥x[x=u->W[x]) is
equivalent to Wlul. Applying this last simplification gives us the horn

clause theorem
min{u,v.x) <= u<v & min(u,x) (T3).

As a component of a logic program for the min relation, it would cover
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the case where the minimum appeared on the tail of the list.

Let us see if we can effect a similar transformation of (T1).
Fxpanding lowerbound(u,v.x) as in the derivation of (T3) will eventually

give us
on{u,v.x) <- uzv & udv & Yulon(w,x)=>udw].

In the contex: u=v, the condition udv can be simplified to element(v).

This is because the conjunction :n:ﬂ:M< is equivalent to the conjunction
u=viv<v by the substitutivity property of equality. Axiom (AS) tells us

that “v<v is implied by element(v). Trading u<v for element(v), and
folding using the definition of lowerbound, will give us

min(u,v.x) <- u=v & element(v) & lowerbound(u,x).

'Anding' in extra conditions

This time we have not managed to factor out the complete definiens of
min(u,x), but we do have one component. Suppose that we add the extra
condition on{u,x) to the antecedent. This strengthening of  the
antecedent by 'anding' in extra conditions is a legitimate
transformation step., It produces a new antecendent that implies the
previous antecedent as required. Moreover, strengthening, in order to
apply a fold substitution, often leads to a computationally useful
recursive deseription. Let us see what it produces in this case.

minf{u,v.x) <= u=vkelement(v)&on{u,x)&klowerbound{u,x) (stengthening)
min(u,v.x) < u=vielement(v)imin(u,x) (folding)
This c¢lause could be used as part of a logic program for min. Its major

drawback 1s that it would only succeed, when used to find the minimum
element, if the minimum is the head of the list and it reappears on the

tail of the 1list. We would be better served by a recursive theorem
which did not insist that u appeared on x. Let us go back to

min(u,v.x) ¢- us=vkelement(v)&lowerbound(u,x)
and try again,

Generalising the antecedent

In order to introduce a recursive call in which the element argument
i{s not u we must first generalise the condition lowerbound(u,x) to
lowerbound(w,x)}, W some new variable. Unfortunately, if we just replace

u by w, the new antecedent
uzvielement (v)&lowerbound(w,x)
will not imply the previous antecedent
uzvielement (v)tlowerbound(u,x).

This flaunts our implication constraint. We can only generalise
lowerboumd(u,x) to lowerbound(w,x} il we simul taneously introduce
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another condition R(u,w) such that
R(u,w)&lowerboumd{w,x) => lowerbound(u,x).

This generalisation subject to a constraint is another very useful
transformation step. In this case, the extra condition we need is ugw.

The implication

ugwilowerbound(w,x) -> lowerbound(u,x)
iz eclearly true of the lowerbound relation of our intended
interpretation. We could assume it as an extra axiom., However, this
would be redundant. It can be derived as a lemma using the lowerbound
definition and the transitivity axiom for <. Using this implication to

justify our transformation, we can generalise as required. This gives
us

min{u,v.x) <= cu¢m¢Mtuuo:d1co:3aa=.xg.

Motice that we have also dropped the condition element(v). This is
because, by axiom (A9), v<w implies it.

We can now try our stengthening strategy again. We can 'and' in the
cond ition on{w,x), and then fold, to give

min(u,v.x) <- uzv&v<wimin(w,x) (TY).
Our two Horn clause theorems (T3) and (TY4) together cover the two cases:

{1} minimum is the front of the list
(2) minimum is on the tail of the list.

To make them into a terminating program we ne=d some base case non-
recursive clause. The obvious base case is unit lists. To complete the
program we need the clause

min(u,u.Ml) <- element(u).
We leave the reader to check that a transformation of

min{u,u.Nil) <-> on(u,u.Nil)&lowerbound(u,u.Nil)
quickly confirms that this is a theorem. Alternatively, we could assume
it as a redundant axiom, since it is obviously true of the min relation

we have tried to specify. The preconditioen, element(u), restricts the
unit 1ist instances of the min relation to lists of elements, which is

what we intended.
Bringing together our Horn clause theorems, we have
min{u,u.Mil) <- element(u)
min{u,v.x) <= v<v & min(u,x)

minu,v.x) <- usv & v<w & min{w,x).
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Termination

Te above set of clauses are necessarily a correct program for
computing the min relation as specified. As a logic program, tney can
be used for finding the minimum of a list of elements, confimimg that
some element 1is a minimum of such a list, even for generating lists on
which a given element appears as the minimum. The usual use will be to
find a minimum. Using the induction schema

for any Wix) )
(element (u)=>W[u.M1]) & ¥Yu(element (u)&W[x]1->W[u.x])
~>¥x(1ist-of-els(x)->Wlx])

as the axiom characterising non-empty lists of elements, we can easily
prove that the use <min(y,x),list-of-els(x)> terminates. In fact, for
this use, we can drop the condition element(u) of the base case clause.
It is implied by the input relation., Thus, the set of clauses

min(u,u.Nf1) <~
min(u,v.x) <= ugv &% min{u,x)
min(u,v.x) <= usv & v<w & min(w,x)

are a correct, terminating program for finding the minimum of a non-
empty list of elements,

Comversion into a logic algoritim

Let us now address their computational use as a PROLOG program to find
minimums. We need to rearrange the antecedent atoms of the recursive
clauses to specify the best computation rule contrel. However, there is
a more serious problem. Each recursive clause always computes the
minimum of the tail of the 1list, but, in general, only one of these
clauses will succeed. Ho matter how we order the clauses, there will be
cases when the minimum of the tail is computed redundantly. To avoid
this redundancy, we must find a single clause that subsumes the two

clauses.
Fortunately, this is not too difficult to achieve. The clause
min{u,v.x) <= u¢v & min(u,x)
is lozically equivalent to
min{u,v.x) <~ u=w & wlv & min(w,x).

This means that the pair of recursive clauses are equivalent to the
non=-clausal implication
min{u,v.x) <= (uswiwiv v E:T.Mr& & min{w,x)

To raduce this to a clause, we factor out the disjunction making it the
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definiens of a n2w relation smaller{(u,v,w):
smaller(u,v,W) <=> uzw&w<v v u=vivi{w.

Mefinition introduction, in order to obtain a Horn clause implication,
is another standard derivation strategy. It corresponds to the decision
to compute some condition using an auxiliary logic program to be derived
by transforming the introduced definition.

In this case the derivation of the auxiliary program is trivial. We
just drop the only-if, and expand the resulting implication onto the
pair of clauses

smaller(v,v,w) <- v{w
smaller(w,v,w) <- wlv,
The relation computed by these clauses is exactly the defined relation.
Our final logic algorithm is expressed by the list of clauses:

min{u,u.Nil) <-

min(u,v.x) <= min(w,x) & smaller(u,v,w)

smaller(v,v,w) <= viw

smaller(w,v,w) <- Wlv

together with the PROLOG control implicit in their text order.

5.3 Different program=different set of theorems

From a single specification we can sometimes derive a redundant number
of computationally wuseful theorems, When this happens, we can often
piece together different programs by taking different subsets of these
theorems,

An example of this is provided by the range of useful Horn clause
theorems that we can derive from the following specification of the
input/output relation of a logic program to manipulate ordered labelled
trees.
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Specification

insert{x,u,y) <=> | [ordered(x)<->ordered(y)] &
¥y[label-of(v,y)<->(v=u ¥ label-of(v,x) 1}

ordered(Nil)

ordered(t(x,v,y)) <-> ordered(x) Lordered(y)
supperbound(v .x;uo:n_.uo_.an:q.wu

lowerbound(v,x) <=2 1...:.mcma..on.n:.xulvi:u
' upperbound(v,y) <=> ¥w[label-of(w,y)=>wlv]
label-of(u,Nil} <=> false
label-of(u,t{x,v,y)) <> usv ¥ 1abel-of{u,x) v label-of(u,y)

axioms specifying that < i3 a relation which is a total strict
order relation for a set of objects called labels -

nterpretation for these specification axioms the
the tree with no labels and the functor "t"
e x, a label v, and

In the intended i
constant "Nil" denotes
denotes a tree constructor that takes a labelled tre

2 labelled tree y into a labelled tree t{x,v,¥y). So,
t(t(Mil,a,Mil),b,K11) denotes the tree \a/
a Hil
/N
Nil  Nil

names a relation that includes a labelled tree
x, a label u, and a labelled tree ¥ iff the label u and all the labels
sn x appear on y, but no other label appears on y, and, if either tree
is ordered so 1is the other. The predicate nordered" denotes this
ordered set of labelled trees., A tree {s ordered iff its root label 1is
an upperbound of all the labels on its left subtree, and a lowerbound of
all the labels on its right subtree, and its two subtrees are themselves
ordered. Our upperbound and lowerbowund definitions require a lowerbound
of some labelled tree to be strictly less than every label on the tree,
and an upperbound to be strictly greater than every label on the tree.
Mote that this means that an ordered tree only has one occurence of any
label. Finally, the predicate niabel-of" denotes the relation that
includes a label u and a tree X iff u is some label on X, and the
predicate "<" names the strict order relation for labels for which we

assume there is some logle program.

The predicate "insert”

ic program comprising a set of

The specification is such that any log
he potential to be used both for

theorems of the specification has t
inserting and deleting l1abels on ordered trees.
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The insert use will be some moal clause of the form
<¢-insert(t,1,y), t a twee term, 1 a label not on L.

If t denotes an ordered tree, ‘then any answer binding computed for ¥
must also denote an ordered %ree. MHoreover, it will denote an ordered
tree that is some reconfiguratiion of the input tree with the new label
added .

The delete use is a goal clamse of the form
¢-insert(x,1,t), t a tree term, 1 a label on t.

Again, if t denotes an orderedi tree, then any answer binding computed
for x must denote an orderedi tree which is some reconfiguration of the
input tree with the label 1 deflmted,

The specification imposes nm structural constraints on the possible
reconfigurations of the inpuct tree for either use. If our derived
program computes the full extemnsion of the relation as specified, there
will be many possible output brimdings. For termination, we only need to
be able to compute one outputt hinding. UWhat this means, is that w2 can
get away with a logic program that computes quite a small subset of the
specified relation.

Ye can restrict ourselves tom =uch a subset, and at the same time
impose some structural constmmints on the reconfigurations of the lnput
tree for either use, by only Imoking for Horn clause thecrems with a
consequsnt atom of the form insert(t,u,t') where t and t' share
variahles. Thus, an attempt 1o find a Horn clause theorem with
consequent atom

insert(t(x,u,y),v,.t{xqo,¥"))

{s an attempt %o find a clause: whose insert use will put the new label
in the right subtree. An attemmpt to find a theorem with consequent atom

insert(tix,u,¥),v, et u,¥") v, y")

is an attempt to find a clause wwhose delete use will remove a root label
and promote its left descendamtt to the root. It is reasonable to assume
that there are instances of & insert relation that satisfy these
structural constraints. Wrat we  must find is a recursive
characterisation of such a resstricted set of instances of the relation.

By making these sorts of Zuemses about the structural relations that
might he satisfied by varitous subsets of the insert relation, and by
transforming the corresponding; instance of our insert definition, we can
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derive each of the following theorems:
insert(t{x,u,y),v,t(x,u,y")) < udvkinsert(y,v,y') (1)
insert(t{x,u,y),v.t{x',u,¥)) <~ v<udinsert(x,v,x") (2
inssrt(t(x,u,y),v,t(tlx,u,y") ,v,¥y")) <= udvéinsert(y,v,t(y’',v,y")) (3)
insert(t(x,u,¥),v,t(x' v, t(x"u,y))) < v<ulinsert(x,v,t(x',v,x")) (%)
insert{Nil,u,t(Nil,u, ,Mil))} <- (5)

The derivations are more complex than those for the min program, but not
unduly so.

Different programs

By taking different subsets of these theorems we get the following
programs.

Program 1
Clauses (1),(2) and (5) constitute a terminating program for the uses:
<-insert(t,l,y), t a tree term, 1 a label not on t
¢-insert(x,l,t), t a tree term, 1 a leaf label of t.
The insert use will generate an output binding identical to the input

term except for the addition of the new label at the end of some branch,
i.e. as a leaf label.

Program 2
Clauses (3),(4) and (5) constitute a terminating program for the uses:
¢-insert(t,l,y), t a tree term, 1 a label not on t
<¢-insert(x,l1,t), t a tree term, 1 the root label of t.

The insert use will gesnerate an output binding in which the new label is
the root of the tree,

v10m1ms 3
Clauses (1)-(5) constitute a terminating program for the uses:
¢-insert(x,l,t), t a tree term, 1 any label on t.
They will delete any label that appears on the input tree.
We leave the reader to check that they are terminating programs for

each described wuse. For each program we know that the output binding
must denote an ordered tree if the input term denotes an ordered tree.
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5.3 Program transformation

The set of equivalences implicit in the clauses of a bhorn clause
program can b2 used as axioms describing the selL ol relations thal the
program computes. By treating these egquivalences as specification
axioms implicitly given by the program clauses, we can apply our
transformation/fold techniques to try to derive a new set of clauses.
Since these clauses will be theorems of the theory of the relacions
computed by the given program, the new prograa must compute a subset of
each relation computed by that program. To prove that it computes
exactly the extension of some particular relation, we need a separate
inductive proof.

example-1

For our first example of this type of program transformation let wus
look again at the logic program

front(n,x ,z)}<-append(x,y,z)&length(x,n)

length(Nil,0)<~
length{u.x ,s{n))<-length{x,n) (&)

append(Hil ,x ,x) <~
append{u.x,y,u.z)<-append(x,y,z)

that we considered in Chapters 1 and 2. This program implicitly
provides us with the definition

front(n,x,z) <-> Jylappend(x,y,z)&length(x,n}]

for the froant relation that it computes. Let us see if we can find an
alternative recursive description of the relation.

To do this, we apply our transformation/fold techniques to this
definition. However, since we are dealing with a definition implicitly
given by a program clause, we can indirectly transform the definition by

evaluating the goal clause
<~front(n,x,z).

Each partial evaluation of this goal clause which reduces it to a
derived goal clause <-C is the derivation of the Horn clause implication

(front{n,x,z)]s <= C, s the composition of unifiers of
the evaluation path to C

from the program clauses. To try to find a recursive description of the
front relation we should try to reduce <-front(n,x,z) to a goal clause
of the form

¢-..append(t,y',t')..length(t,t").. ,

where y' is a variable that does not appear in any other atom of the
clause, nor in [froat(n,x,z)})s. If we can do this, we have derived an
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implication of the form

{front{n,x,z}]s <~ ...wq.ﬁmuumzuﬁa.x..ﬂ.ymposmﬂ:na.ﬂxwu..

to which we can apply a fold substitution.

onstructed search tree for tne evaluation of
coroutining computation rule that alternates
The branch leading to

Fig. 5.1 is a partially ¢
¢-front(n,x,z) wusing the
between the append and length sub-computations.

¢-frontin,x,z}

<-append(x,y,z)&length{x,n)

[x/Nil, y/z} {x/u.x',z/u.z'}
<-length(Nil,n) Almnumauﬁx..m.u.uppnsmasﬁc.x_.au
{n/0} {n/s(n')]

success Almvvm:nﬁx..x.u.gmuoawﬂ:nu_.s.v

recurring pattern of evaluation

Fig. 5.1

the success node is the derivation of the assertion
front (0, Nil,z)<- .

That leading to the clause
Anmvuonnﬁu_.w.n_uwwm:mw:Ax..:.u

is the derivation of

froat(x,y.z) {x/u.x',z/u.z' ,n/s(n") K-
mqﬂmuumanﬁx.q.u.vmwoamﬁ:nx..a.u?

Applying a fold substitution, we get the recursive clause

nﬂosaﬁmhn_u.c.n_.c.n.uAnmuoswﬂz..x_.u.v.

Completeness of the new program

The pair of clauses

front{0,Nil,z}<- (B

wno:nﬁuﬁs.u.n.x.c.u.gAlwﬂcaﬂﬁz..x..n.y

are necessarily a correct progran for computing instances OH. the front
relation computed by our original program. This is Umom:um it comprises
a pair of theorems of the theory of that relation. 52 the front
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relation computed by the new program is included in the front relation
computed by the original program. To prove the converse result, that
the front relation computed by the new program (B) includes that
computed by the original program (A), we can use either of two
arguments.

1: Induction on the structure of the complete search tree

The two clauses (B) were derived by exploring the construction of some
search tree for the goal clause <-front(n,x,z). The partial
construction that lead to their derivation actually displayed a
recurring pattern in the construction of this search tree. The complete
search tree generated by the coroutining computation rule used to
construct Fig. 5.1 has the form depicted in Fig. 5.2. The set of

<~front(n,x,z)

\

AlJannnnx.w.nvaonmn:ﬁu.au

,
success Anwuuaanﬂs_.m.n.gmumamnaﬁx_.=.v

node 1 s ///
s
,

success <-append (x",y,z")&length{x" ,n")
node 2 4
N\ /
’ \
success \
node 3 *

N

A|wuvﬂwnﬁxx.q.uxumwoamwsﬁax.
£

. h
success N
node kK

AY

Fig. 5.2

answer substitutions given by the success terminating branches of this
complete search tree are the set S of answer substitutions that can be
computed for <-front(n,x,z) using this computation rule and program (A).
Each of these answer substitutions 1is the answer given by the path
ending in success node k, for some k. By an induction on k, we can
prove that every answer substitution in 5 can be computed by evaluating
the goal clause <-front(n,x,z) using program (B). Since the Herbrand
extension of the set of answer S is the front relation computed by
program (A) (Theorem 3.10), it follows that this relation is inecluded in
the front relation computed by the new program (B).
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2: Induction in the theory of the camputed relations
The front relation computed by program (A) is the relation

uimunma&fu.uuﬂgmg?.gz.

To prove that the front relation computed by program (B) includes this
relation, we can prove that

2.5.“:NVTwmmv_umsn?,w..uu&o:mws?.u:b?ozn?.x.N: (c)
is true of the relations computed by the set of clauses

append(Mil,y,y)<-
append(u.x,Yy,u.z)<-append(x,Y,z)

length(Nil,0)<-
length(u.x,s(n))<-1length(x,n)

front(0,HNil,z)<~
front{s(n) ,u.x,u.z)<-front(n,x,2).

To do this, we derive (C) is a theorem of the theory of these relations.
Using the append induction schema implicit in its program clauses, and the
equivalence axioms

length(MNil,n)<=>n=0

length(u.x,n)<=>3m{n=s(m)&length(x,m)]
for the length relation, we can give an inductive proof of the equivalent
sentence

(¥n,x,y,2z)[append(x,y, z)=>[1length(x,n)=>front(n,x,2)1].

This proves that the front relation computed by (B) includes that computed
by (A).

Comparison of algorithms

For the use <front(x1,y,x2),number(x1)&list(x2)>, the sequential execution
of program (B) corresponds to the data flow coroutining execution of
program (A) that we described in Chapter 2. This is because the recursive
clzuse of (B) freezes the recurring pattern of this coroutining execution.

example-2

In the above example we were lucky. The recurring pattern of evaluation
involved the conjunction of atoms that defined the relation for which we
sought a recursive description, When this is not the case, We have to
modify the given program by introducing some new relations.

An example of the need to do this is provided by the transformation of the
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eight queens program:
Queen-sol(x,y)<-Perm(x,y) & Safe(y)

Perm(Nil,Hil)<-
Perm(u.x,v.z)}<{-delete(v,u.x,y) & Perm(y,z)

delete(u,u.x,x)<-
delete{v,u.x,u.y)<-delete(v,x,¥)

Safe(x)<-Safe-pair(Nil,x)

mmﬁm:vmu..l%.zﬁ:n
Safe-pair(y,u.x)<-no-take(u,y,1) & Safe-pair(u.y,x)

no-take(u,Nil, n)<-
no-take(u, v, x,n)<-no-diagonal(u,v,n) & no-take(u,x,s(n}))

no-diagonal(u,v,n)<-v>u & v=u+w & wén
no-diagonal{u,v,n)<-udv & u=v+w & wén.

The recurring pattern of the coroutinin i

I g execution of this program does not
involve the Perm and Safe calls of the Queen-sol npw_._mmm. It is &
recurrence of Perm and m,mn,mn_um:. calls. To capture this as a recursive
nmmnw.p_uﬁ,wo_._. we must first modify and then generalise the Horn clause
description of the Queen-sol relation,

Clearly, a change of the above Queen-sol clause to
Queen-sol(x,y) <- Perm(x,y) & Safe-pair(Nil,y)

will not effect the relation computed b
ikl falic . ) pute y the program. We can then

Queen-sol(x,y,2z) <- Perm(x,y) & Safe-pzir(z,y) (1).

This makes the wmpmﬂon computed by the original program the relation
o_._wmgumoia.w.zwt. We need to generalise on the "Nil" in this way since
this argument of the Safe-pair call is changed during the computation. We
must therefore have a variable in this position if we are to smf.m any
chance of deriving a recursive description of the Queen-sol relation.

We can now apply the same derivation strate

_ gy as for the front program. We
explore the evaluation of <{~-Queen-sol(x,y,z) using the computation rule
ﬁ..m..o coroutines _cmwcmnn the Perm and Safe-pair sub—computations. Fig. 5.3
depicts the partial construction of the corresponding search tree.
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<-Queen-sol(x,y,z)

¢-Perm(x,y)&Safe-pair(z,y)

{x/Kil,y/Nil} {x/u.x',w/v.z'}

(-Safe-pair(z,HNil) <-delete(v,u.x',y")&Perm(y',z')&Safe-pair(z,v.2")

success
¢-delete(v,u.x,y")&Perm(y",2')

&no-take(v,z,1)&Safe-pair(v.z,z")

Fig. 5.3
The success branch records the derivation of the assertion
Queen-sol(Nil,Nil, z)<- (2)
The non-terminated branch records the derivation of the clause

Queen-sol(u.x',v.z",z) <- delete(v,u.x* ,¥')&no-take(v,z,1)
&Perm(y',z')&Safe-pair(v.z.z').

Folding, using the Queen-sol equivalence implicit in clause (1), gives us
the recursive clause

Queen-sol(u.x',v.z",z) <= delete(v,u.x',y')&no-take(v,z,1) (3)
ZQueen-scl(y',z',v.2).

ngu.._.oroaomu

Clauses (2),(3), together with the original program clauses for the delete,
no-take and no-diagonal relations are 2 correct, complete alternative to
the original program, Correctness again follows from the fact that Hmu_ and
(3) are theorems of the theory of the relations computed by the original
program. To prove completeness, we can give an inductive proof that each
of the answer substitutions computed by completed version of the search
tree of Fig. 5.3. can also be computed using the new program.

Alternatively, we can prove that
(Vx,y,z)[Perm(x,y)&Safe-pair(z,y) => Queen-sol(x,y,z)]

is true of the Perm, Safe-pair and Queen-sol relations computed by the
program comprising the clauses of the original program E:&. (1) deleted and
(2) and (3) added. This will be an inductive proof using either the "Perm"
or "Safe-pair" induction schemas implicit in their respective program

clauses.
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Camparison of algorithms
For the evaluation of the goal clause
<-Queen-sol(1.2...8.Nil,y,Nil),

a strictly sequential execution of the new program eorresponds to the data
flow coroutining execution of the original program.

5.5 Notes and references

The application of the Darlington & Burstall transformation techkniques to
the problem of deriving Horn clause programs was first investigated,
independently, by Clark and Sickel (Clark[19771, Clark & Sickel[1977]) and
by Hogger[1977]. Hogger then went on to make a tthorough study of this
approach to the deductive construction of Horn clawse programs, which he
reported in his thesis[Hogger 1978]. This contains many examples of the
derivation of programs. His approach is a little:mpore formal than that
presented here.

Bibel[ 1976,1978] has also investigated broadly simillar methods for deriving
logic programs, although his logic programs are ncit sets of Horn clauses.
More recently, Hansson and Tarnlund[1979] have investigated a quite
different method for deriving Horn clause programs. They do not make use
of the transformation/fold method. They first guess am inductive structure
for the program, and then derive the clauses that fiit that structure using
2 natural deduction style inference system.

in [Clark & Darlington 1980] several different sortt programs are derived
from the same specification. Like the insert programs, they each comprise
a different set of theorems. In this case the diffierence is not that they
compute different subsets of the specified relation. It is that they
embody different logical reformulations of the specification. These result
from the use of different lemmas, and the use of alternative transformation
steps, during the program derivation. These differemces in the derivation
history are used to classify and compare the (sequential control)
algorithms implicit in the different sets of theorems.

Transformations of Horn clause programs, particularily transformations that
can be proved to preserve equivalence of some program computed relation,
have not been widely investigated. There is a weakk @nalogy here with the
transformation of a context free grammar that presemves equivalence of the
language generated from a particular non-terminal.. However, if there is
anything to the analogy, there may be some normal ¥orm results for Horn
clause programs that fall out of some general theorems concerning
equivalence preserving transformations.
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