Multi-tasking Robotic Agent Programming in TeleoR

Keith L. Clark
Department of Computing,
Imperial College London

Abstract

We informally introduce the syntax, operational se-
mantics and implementation aspects of a concur-
rent multi-tasking extension, TeleoR, of Nilsson’s
Teleo-Reactive (TR) rule based robotic agent pro-
gramming language. For both languages programs
essentially comprise sequences of Guard ~>Action
rules grouped into parameterised procedures. The
Guard is a deductive query to a set of rapidly
changing percept facts generated from the most re-
cent sensor values. The Action is either a tuple of
primitive actions of robotic resources, to be exe-
cuted in parallel, or a single call to a TR procedure,
which can be a recursive call.

TeleoR, extends TR in having: types and higher
order features; extra forms of action rules that
temporarily delay the firing of another rule in the
same procedure call until some condition is infer-
able; automatic re-execution of ballistic actions that
have not achieved their intended effect in the ex-
pected time; rules with belief store updates and
message send actions; a flexibly typed fully inte-
grated higher order LP/FP programming language,
called QuLog, for BeliefStore inference; support
for the high level programming of multi-tasking
agents that interleave the use of subsets of a set of
independent robotic resources, with deadlock and
starvation free guarantees.

The focus of this paper is on the multi-tasking fea-
tures of TeleoR.

1 Introduction

Nilsson’s Teleo-Reactive (TR) [Nilsson, 2001] agent pro-
gramming language is a mid-level robotic agent program-
ming language. It assumes lower level routines written in
procedural programming languages such as C. Some will do
sensor interpretation, particularly for vision, and others will
implement quite high level robotic resource control actions
such as moving a jointed arm to a given location, or to be
next to a recognisable object. TR is a language for decid-
ing to make such an arm move because doing so will achieve
some sub-goal of a current task.

Peter J. Robinson
School if ITEE,
University of Queensland, Brisbane

TR programs are sequences of
Guard ~>Action
rules clustered into parameterised procedures, each procedure
being of the form:
p(Xll . -ka){
G1 ~> A

Gp ~> Ap

}
A rule Guard is a conjunctive queries, possibly with negated
conditions evaluated using the negation-as-failure inference
rule [Clark, 1978], to a set of rapidly changing percept facts
that are the agent’s internal representation of sense data anal-
ysis. For example, see (bottle,left, 30), a percept
recording simple bounding rectangle analysis of a camera im-
age where bottles are all the same size and of fixed colours.
The Guard may access the percepts via rules defining higher
level ‘interpretation’ relations, and query fixed facts about the
environment. A rule Action is: a tuple of robotic resource ac-
tions to be executed in parallel, for example move (4.5),
turn(left,0.5); or a single call to a TR procedure,
which can be a recursive call.

In each called procedure there is a current fired rule. At the
top of the call stack the fired rule always has robotic resource
actions. They, and any previous executed actions, are used to
generate control actions dispatched to the resources to effect
changes in the agent’s environment. There are both discrete
and durative actions. The latter continue until modified (e.g.
move (4.5) is modified to move (4.0)), or are terminated
because the next tuple of actions does not include that action
(e.g. turn (left, 0.5) is terminated).

Typically, initially called TR procedures query the percepts
facts through several levels of defined relations. Via proce-
dure call actions, they usually cascade down to a TR proce-
dure that directly queries the percept facts. For TR programs
the interface between deliberation and reaction is procedure
calling.

When each new batch of percepts arrives, perhaps via a
ROS [Quigley et al., 2009] interface, the percepts handler
thread atomically updates the agent’s BeliefStore. This trig-
gers the TR evaluation thread to atomically reconsider all the
rules that it has fired starting with the initially called proce-
dure working up the call stack. As soon as a call is found that

fires a different rule, or re-fires with different variable bind-
ings the last fired rule, the rest of the call stack is discarded
and a new extension built until a rule firing with robotic re-
source actions. These new actions are compared with the
last determined tuple of actions and appropriate start, stop or
modify actions are dispatched. There is no new percepts up-
date until the new actions are determined, or it is determined
that there is no new rule firing in any current procedure call.

A key desirable feature of the sequence of Guard ~>Action
rules of a TR procedure call is that when a rule other than the
first rule is fired, its action, whether a TR procedure call or a
tuple of resource actions should normally, eventually, bring
about a state of the resource environment such that a new
batch of percepts coming from the sensors enable the guard of
an earlier rule of the procedure call to be fired. Nilsson calls
this the regression property. It means that the guards of a TR
procedure can be put on a sub-goal tree routed at the guard of
the first action rule. This guard is the goal of the procedure
call. The action of the first rule is often the empty (do nothing
action) but it is sometimes and action that maintains the rules
guard. If in addition the guards together cover all the situa-
tions that can arise when the procedure is called, Nilsson calls
this a universal procedure for its goal. When executing, there
is always a rule that can be fired and its action will normally
make progress towards the goal of the call.

1.1 New features for programming single task
agents

The TeleoR extension of TR was created in two stages. The
first stage was to make the language more suited to program-
ming single task agents controlling real robotic resources,
perhaps via a ROS interface. To this end TeleoR was made a
typed language and the TR Prolog like BeliefStore inference
language was made a flexibly typed higher order integrated
logic and functional programming language, with modes of
use specifications for the relation definitions. So, a TeleoR
procedure must be given a type declaration of the form:

p: (tll '-rtk)

In addition, the predicates and argument types of the percepts
must be declared, as well as the names and argument types
of the discrete and durative actions. Every function has the
types of its arguments and value declared, and every defined
relation has each argument typed and moded.

For simple BeliefStore inference the primary modes are
ground input (variable free term of specified type or a sub-
type), signalled by a ! annotation on the argument type, and
ground output, signalled by a ? type annotation. The latter
means the relation can be queried with a variable, or term of
the required type containing variables, in that argument posi-
tion but that the argument twill become a ground term when
an instance of the relation call is found. Functions always re-
turn ground values. This typed and moded BeliefStore rule
language is called QuLog [Clark and Robinson, 2015a]. Us-
ing this moded type information, the TeleoR compiler can
check that every rule action will be ground when the rule is
fired, and correctly typed. In particular, it can check that re-
source actions when dispatched will be fully instantiated and
type correct. It can also ensure that primitives, such as arith-

% declaration of the argument types of p

metic functions, will not generate run-time errors due to in-
correctly typed or uninstantiated arguments, which is a quite
possible with Prolog.

Message send and BeliefStore updates were added as aux-
iliary actions that can be linked with a rule firing, to be ex-
ecuted once when the primitive actions (eventually) deter-
mined by that firing are executed. The former enable the
programming of collaborative robotic agent applications and
make use of the Pedro publish/subscribe + addressed mes-
sage router [Robinson and Clark, 2010]. The latter enable the
remembering of which actions were executed and when.

Repeatable timed action sequences of the form

Al for Tl;...; An for Tn
where each Ai can be a tuple of resource actions or a
TeleoR procedure call, were added to handle changes of
behaviour triggered by a lapsed time rather than a sensor
percept, such as random walking. The sequence is repeated
while the rule remains a fired rule.

The last action extension was the while/repeat action, pri-
marily for use with discrete resource actions. It has the form
Action wait T repeat N, where N is a natural number
between 1 and 5. T is the time by which Action should
have succeeded and the Guard of the rule above, which is
Action’s acheivement goal, should have become inferable.
If not, the evaluator should re-do the action by sending a new
control signal to the robotic resource. This wait/repeat cy-
cle should be repeated N times. After a final wait of T sec-
onds and error (Action,wait T repeat N) should
be added to the agents BeliefStore. This adding of the error
belief is like an throw. The catch can be done in the initial
TeleoR procedure that is called for the robotic task. It has
the form:

task_wrapper: trcall, pedro_handle
task_wrapper(ProcCall,Help){
error (Action,wait T repeat N) ~>
help (Action,wait T repeat N) to Help
true ~> ProcCall

}

Now, instead of «calling a TeleoR procedure
such as collect.bottle directly, the call
task_wrapper (collect_bottle,ag@bill_phone)
is executed. The first argument is a term of the system gen-
erated meta-type trcall, the second is a Pedro email style
address for an agent process.

When the task_wrapper call is executed there will be
no error belief in the BeliefStore so the second default rule
will fire. However, if ever Action wait T repeat N
should cause the error belief to be added, since all rule firings
are reconsidered starting with that of the initial call, the first
rule of task_wrapper will be fired sending a message to
ag@bill_phone).

Assume this is a personal agent on a cell phone and that
Bill helps by fixing the resource, such as a gripper, used
in Action. When fixed, via his agent process, Bill sends
backa retry (Action) message to the agent executing the
task_wrapper call which is handled by its message han-
dler thread as depicted in Figure 1. This has to have been
programmed to respond to such a message be removing the

error (Action, ...) belief. Immediately, the task pro-
cedure will be re-called using the second default rule. If the
robot resource has not been moved the Act ion will be im-
mediately re-tried.

All the TeleoR single task extensions of TR are described
in [Clark and Robinson, 2015b]. Other extensions are new
forms of rules that were added to facilitate the semantically
clean programming of certain safety critical systems tasks.
There is an unt i1 rule of the form

Guard until UCond ~>Action
that will inhibit the firing of an earlier rule in a procedure
call until UCond is inferable. This is used to allow Action to
over-achieve the guard of the earlier rule that can be fired, to
prevent a too early need to re-achieve that guard. Its dual is
the while of the form

Guard while WCond ~>Action.

This is used to inhibit the firing of rules below, which would
normally be fired, depending on circumstances, to re-achieve
Guard if Guard becomes non-inferable. This prolongs the
continued execution of Action until both Guard and WCond
are not inferable. The while and until conditions can
be combined and further constrained my amin T condition
that gives a minimum time that the inhibition should continue,
after rule firing.

1.2 TeleoR procedures
The most general form of a TeleoR procedure is therefore:

p:(t1,-.,tr) % declaration of the argument types of p
p(Xll --IXk){
Gi1 while WCy min WT; until UCy min UT;

~> Ap

G, while WC,, min WT, until UC,, min UT,
~> A,

where components are dropped if they contain vacuous con-
straints such as a WC that is true, or a min time that is 0.
Here, each 2; is one of: a tuple of resource actions, a sin-
gle call to a TeleoR procedure, a timed action sequence, a
wait/repeat action.

The TeleoR single task agent architecture is naturally
multi-threaded and extra capabilities such as SLAM or ab-
ductive reasoning can be added as extra threads accessing and
updating the agents belief store, using a common ontology.
The outputs of such reasoning threads, and new beliefs added
due to incoming messages, incrementally affect control be-
haviour. Earlier rules in procedures that query the facts that
may be added by the extra threads become fireable and take
over from later default rules that just deductively query the
percept facts.

This corresponds to an agent architecture as depicted in
Figure 1. All incoming messages are handled by the message
handler and both it and the percepts handler atomically up-
date the agent’s it BeliefStore, the former by adding
or removing told facts. Both told facts and percepts may be
queried in rule guards allowing for the smooth integration of
the two sources of data. The told facts can be percepts of
other robotic agents.

BeliefStore

Atomic updates

Atomic updates

queries\

) Percepts|| Message|

Interpreted | Handler || aHa@nﬂloeSrt
Sensor Il 9 |

readings
AL / N\ / /
I messages

Figure 1: Multi-threaded TeleoR Agent Architecture

| Abductive |

TR |
Evaluator ‘ ‘Relatlonal Reasoner
|

SLAM
|

/

Robotic resource
actions

By using typed and moded QuLog, and by declaring the
argument types for each Te1leoR procedure and for the prim-
itive resource actions, one can guarantee at compile time that
each TeleoR rule action will be correctly typed and fully
instantiated (ground) if the rule is fired. By exploring the de-
fined relation dependences one can determine which percept
updates are likely to change the outcome of a guard evalu-
ation. This, and meta-information about how percept predi-
cates have been updated, added to the BeliefStore by the per-
cepts handler, enable us to skip reconsideration of rule firings
for certain procedure calls. This is an important optimisation
when initially called procedures have guards that do complex
inference, but which depend upon percepts that change rela-
tively slowly.

1.3 Multi-tasking and task atomic procedures

The second phase of extension of Nilsson’s TR, and arguably
the more important, were changes to the language and the
way it is compiled to allow the relatively easy programming
of multi-tasking agents dynamically sharing multiple robotic
resources, in much the same way that an operating systems
shares hardware resources between processes. This second
phase is the primary subject of this paper.

The granularity of the interleaved sharing of resources
is specified by the declaration of certain procedures as
task_atomic and the declaration of which procedures can
be the start procedures of a task. We leave the details to the
later sections. We exemplify their use with a program for a
multi-tasking block tower building robotic agent using two
robot arm resources with blocks distributed over three tables.
Each arm can only reach two tables and they must both be
used to reach to the one table they can both reach to avoid a
clash. The TeleoR program has a similar sub-goal structure
to the one arm, one tower builder of [Nilsson, 2001], but is
much more general.

We conclude by mentioning related work, and plans
for further extensions. We assume familiarity with
logic programming [Levesque, 2012], multi-agent systems
[Wooldridge, 2009], and robot behavioural programming

[Jones and Roth, 2004],[Mataric, 2007].

2 Informal TeleoR Single Task Evaluation
Algorithm

We can describe the evaluation cycle of a task executing a
start TeleoR procedure call T'askCall with the following 8
step informal algorithm.

FrdRules is the set of indexed active procedure calls.
Each element of FrdRules is a 4-tuple of the form
(Dp, Call, R, 0) where Dp — 1 is the number of intermediary
procedure calls between C'all and T'askCall, R is the num-
ber of the partially instantiated rule of the procedure for C'all
that was last fired, and 6 is the set of generated bindings for
all the variables of the action of that rule. Dp is the index of
the tuple.

1. LActs = {};FrdRules :=
1; Call :== TaskCall.

2. Index > MaxDp: A call-depth-reached failure.

3. Evaluate the guards for the rules for C'all, in turn,
to find first rule K ~> A, number R, with an infer-
able guard, with 6 being the first returned answer
substitution for variables of eK.

Add (Index,Call, R,0) to FrdRules. No such
rule: a no-fireable-rule failure.

{}; Index =

4. A0 is a procedure call.
Call := A0; Index := Index + 1; Go to step 2.

5. Af is a tuple of primitive actions.
Compute controls C'Acts to change Acts to A6,
Execute C'Acts; LActs:=A0.

6. Wait for a BeliefStore update. Index:=1;

7. (Optimisation) We can determine that rule R of
Call, where (Index,Call,R,0) in FrdRules,
must continue as the fired rule of Call with firing
substitution #, without re-evaluating guards.

If Index = #FrdRules goto step 6
else Index := Index + 1; repeat step 7.

8. Otherwise, evaluate the guards for the rules for
Call, in turn, to find first rule K ~> A, number R/,
with an inferable guard, with 6" being the first re-
turned answer substitution for variables of eK.

(a) No such rule: a no-fireable-rule failure.

(b) If R = R and ¢’ = 6 (same rule firing for
Call):
If Index = # FrdRules goto step 6
else Index := Index + 1; goto step 7.

(¢) If R' # Ror ¢ # 6 (new rule firing for Call)
FrdRules := {(Dp, N, C,v) |
(Dp, N,C,v) € FrdRules A Dp < Index}
U {(Index,Call, R',0")}; Go to step 4.

The call tuple with index Dp + 1 is the offspring of the call
tuple with index Dp and the Call component of the (Dp +

1)*" tuple is the fully instantiated procedure call action of the
rule fired in the Dpt" tuple. Steps 1 to 5 of the algorithm will
effectively generate a call stack of procedure call descendants
of T'askCall using the initial state of the BeliefStore. The
last entry in F'rdRules with index #FrdRules when step
5 is executed will record the firing of a rule with primitive
actions, control actions for which will be executed by step
5. MaxDp is the maximum number of allowed active calls.
Acts is the last tuple of determined actions for T'askCall,
initialised to (). Step 1, followed by an iteration of steps 2 to
4, generate the initial set of FrdRules for TaskCall for the
initial state of the BeliefStore. This initial iterative generation
terminates successfully when a rule is fired with a tuple of
primitive actions Af. LActs = {} and the set of actions of
A6 are then used to generate the initial control actions C Acts
that are executed in step 5. LActs is updated to the new set
of actions.

The algorithm then suspends at step 6 until the BeliefStore
is updated. It then sets Index to 1 and checks each tuple
in F'rdRules one at a time, starting at the initial entry with
Dp = 1, to see if a different rule, or a different instance of the
same rule, should be fired. Step 7, occasionally augmented
with step 8(b) when guards of rules need to be re-checked,
is repeated until there is a change of rule firing. Step 7 on its
own is an optimisation that uses information about which per-
cepts have been changed as discussed in Section ??. The 7,
8(b) iteration terminates when either Index = #FrdRules,
or step 8(c) finds that there should be another rule firing for
some call, or for some call there is now no rule that can be
fired (an error condition).

Note there is a new rule firing when a different rule is fired,
or the same rule is fired with a different set of bindings 6’
for the variables of the rule’s eK, resulting in different action
Af'. The Index entry of FrdRules is then replaced and all
entries on F'rdRules above this entry are discarded. The al-
gorithm then switches into the steps that add new entries into
FrdRules when we have a sequence of new rule firings with
procedure call actions (iteration of steps 4, 2, 3). This con-
tinues until a rule is fired with primitive actions (step 5) and
new control actions are executed. It then re-suspends at step
6 until there is another BeliefStore update.

In other words, on each BeliefStore update either there is
no change to F'rdRules, or some entry is replaced by a new
tuple which records the firing of a primitive actions rule, or a
new sequence of tuples are added recording the firing of rules
with procedure call actions until a last entry is added that fires
a rule with primitive actions. Whenever there is a change of
FrdRules new control actions are computed and executed
unless one of the two possible error conditions occurs.

We have step 7, that explicitly tests whether the previously
fired rule of Call must continue. Using the meta-beliefs
added by the percepts handler about what has been changed,
we are sometimes able to determine that this is the case with-
out re-evaluating rule guards of its procedure call.

3 Multi-tasking with multiple resources

An agent that can concurrently execute several tasks using
multiple resources has an architecture as depicted in Figure 2.

All the tasks threads are active and on each percepts update
they reconsider all their fired rules.

The waiting tasks, which will each be waiting to enter some
task atomic call with resource arguments, do this in case a
changed rule firing somewhere in their call chain results in
a task atomic procedure call with different resource needs.
This may mean that the waiting task can acquire the resources
it now needs. It will know which resources are being used
because there are resources. facts recording which re-
sources are being used by each running task.

BeliefStore | i Task4 \\
(o [Waiting for)
Fixed & ’ TR procs. ‘ R1,R5/
Facts & ‘ }r\ -
Rules - ‘ —
‘ / 7 Task3 "\
y [Waiting for |
Dynamic o {kR1’R3/
Facts = ’Q, N
j \\ // \\
= TaskT fr== Task2)

: Using / Using/“
(Percepts) \\J:SVB,Z/ \\w,,,R:f’,/ TR Eval.

Threads

\\Handler/ Control
~—— actions for
Sensor different
data robotic

resources

Figure 2: Multi-task TeleoR Agent Architecture

Similarly, running tasks - the tasks with acquired resources
- may have a new rule firing resulting in an exit of their current
initial task atomic call. If this happens, a running task will re-
lease its resources by forgetting its running. co-ordination
fact. It will now want to re-enter some new initial task atomic
call, unless it has achieved its task goal. So, normally the for-
mer running task will become the most recent waiting task
with a resources_ co-ordination fact in the BeliefStore
recording the resources for which it is now waiting.

To avoid deadlock, the task atomic call that each waiting
task wants to enter must have as a resource parameter each
resource that might be used by a call to the procedure. This
constraint is checked by the compiler. It means that a running
task will only be suspended after its initial task atomic call
has been terminated and the resources acquired for that call
released. We cannot have two running tasks suspended, each
with unreleased resources waiting, for a resource acquired by
the other task - which is deadlock. It also means that, unless
the task ‘decides’ to prematurely exit an initial task atomic
procedure call before its goal is achieved, that acquired re-
sources will be retained until the stable sub-goal of the task
atomic call has been achieved.

To avoid starvation, a waiting task can only become a run-
ning task if none of the resources it needs is in use, or is
needed by another waiting task that has been waiting for a
longer time. In Figure 2, if we assume that Task3 has been
waiting for its resource needs longer than Task4, then even if
Task1 exits its initial task atomic procedure call and releases
resource R1, Task3 cannot acquire R1 even if released by
Task1 as it is needed by Task 3, that has priority. If, on the
next percepts update, Task3 wants to enter a different initial

task atomic call with R3 and R6 as resource arguments, and
Task4’s resource needs stay the same, it can then jump the
queue and start using the free R1 and R5.

To ensure a degree of fairness, after each percepts update
we constrain the task threads so that no waiting task gets to
respond to the update until all running tasks have responded,
possible releasing resources. In addition, no waiting task can
respond until all tasks that have been waiting longer have re-
sponded to the update. This means that waiting tasks get to
change their minds about resources in wait queue order.

In the above scenario, Taskl and Task2 will respond in
any order and Task1l will release R1 and R2. Task3 will
now respond and switch to needing R3 and R6, updating its
resources_ co-ordination fact accordingly. Its wait start
time is unchanged. Task4 will next be able to check if there
is a change in its needs. If there is no change it can acquire
R1 and R5 as both are free and the only task ahead of it in the
wait queue does not now need either resource.

Task4 will ‘know’ that the other three tasks have re-
sponded to the latest percepts, and that it can now respond,
as on each update the percepts handler updates a t ime_ fact
in the BeliefStore recording the time of the update. When a
task T has responded to the new percepts it updates a seen_
fact that records that T has seen the percepts added at the time
recorded in the current t ime_ fact.

4 A TeleoR tower builder program for an
agent controlling two independent robotic
arms

arm1 arm2
[6 | [4]
s
5 (]
table1 shared table2

Figure 3: Two Arm Multi Tower Building

The tower building task is as depicted in Figure 3. We
need to write a TeleoR program that can be used by several
concurrent tasks building towers of different blocks either on
tablel or table?2. These are the home tables of arml and
arm2 respectively. An arm can reach its home table and the
shared table. A task building a tower on tablel will mostly
use arml, and a task building on table2 will mostly use
arm2. Actions of the two arms can often be executed in par-
allel. Occasionally, a task T building on tablel will need
a block on table2. In which case it must wait to acquire
arm2 to first transfer the block from table2 to shared
releasing arml for use by another task only needing a block
from tablel or shared. When T has acquired arm2 and
transferred the block it needs to shared, it again waits to
acquire arml for the final move from sharedto tablel.

This ability by both arms to reach over to shared means
there is a risk that one concurrent task will try to use arml to

fetch a block from shared at the same time as another task
uses arm2 to put down or pickup a block using shared. The
arms will then clash. We can avoid this by making shared
a resource that must be acquired before a task can access it,
and by assuming that after putting a block down on the shared
table an arm swings back to its home table. For uniformity of
programming we will make all three tables resources.

The percepts will be facts telling us which blocks are di-
rectly on a table and which blocks are on top of other blocks
located on some table. We also need percepts telling us if
an arm is holding a block. We need a recursive sub_tower
definition that holds when each block on a list of blocks is
directly on the next block, except for the last block that is di-
rectly on a particular table. A tower is then a sub_tower
that has a clear top block - a block with no block on top of it.
We will have durative pickup and putdown that include
the arm and table resources that are used - the source table
for pickup and the destination table for putdown. So we
will have actions such as putdown (arml, 2, 3, tablel)
when tablel is the table resource location of block 2, but
also putdown (arm2, 6, shared, shared) when block
6 is to be putdown on location shared. The second occur-
rence of shared names the table resource needed, the first
the destination location for block 6.

block ::= 1..10

arm::= arml|arm?2

tab ::= tablel|table2]|shared
loc ::= table] |block

percept on: (block, loc),holding: (arm,block)

% Definitions of relations. can_reach_block:(arm,block),

% can_reach_table:(arm,table), some_where_on:(block,table)

% subtower:([block],table), clear(block), tower:([block],table),
resource arm| |tab % resource is a reserved type name
durative pickup: (arm,block, tab)

durative putdown: (arm, loc, tab)

task_start makeTower: (arm, [block], table)
makeTower (Arm, [Blk, . .Blks], TowerTab){
tower ([Blk, ..Blks], TowerTab) ~> ()
sub_tower ([Blk, ..Blks], TowerTab) ~>
makeClear (Arm, Blk, TowerTab)
~> moveAcrossToLoc (Arm,
Blk, TowerTab, TowerTab)
tower (Blks, TowerTab) &Blks=[TopBlk, ..]~>
moveAcrossToLoc (Arm,Blk,
TopBlk, TowerTab)
true ~> makeTower (Arm,Blks, TowerTab)
}
moveAcrossToLoc: (arm,block, loc, tab)
moveAcrossToLoc(Arm,Blk,Loc,LocTab){
on (Blk, Loc) ~> ()
can_reach_block (Arm,Blk,BlkTab)
while holding (Arm, B1k) ~>
moveToLoc (Arm, Blk,BlkTab, Loc, LocTab)

Blks=[]

can_reach_block (OArm,Blk,B1lkTab)
while holding (OArm,Blk) ~>
moveToLoc (OArm, Blk,BlkTab,
shared, shared)
true ~> ()

}

task_atomic moveToLoc
moveToLoc: (arm,block, tab, loc, tab)
makeClear: (arm,block, tab)

The new makeTower procedure has the same number of
rules as the one arm version. The guards of the first, third
and fourth rules identify the table TowerTab on which the
tower or sub-tower is located, the home table of the used Arm.

Instead of calls to the task atomic moveToLoc procedure
rules 3 and 4 have calls to a procedure moveAcrossToLoc
that will use the other arm if need be, and two task atomic
moveToLoc calls, to transfer B1k from wherever it is lo-
cated - on TowerTab, shared or the other home table, to
put it onto its required destination location on TowerTab.
For rule 3 this is TowerTab, for rule 4 it is TopBlock, the
top block of tower Blks.

As always the rules of a call to moveAcrossToLoc
will be tested in before/after order. The first rule is its
goal achieved rule. The second covers the two cases of
Blk being located on the home table of the Arm being
used, or shared, as both a reachable by Arm. The guard
can_reach_block (Arm,Blk,BlkTab) will check this
and bind BlkTab to the table on which Blk is lo-
cated. The action of the rule is a task atomic call to
moveToLoc (Arm, Blk,BlkTab, Loc, LocTab). This
will move B1k from wherever it is located on the Arm reach-
able B1kTab to the reachable Loc on LocTab. It will first
make both B1k and Loc clear if need be. Before entry to
this task atomic call the Arm resource, and the two table re-
sources B1kTab and LocTab, must be acquired. The table
resources may be the same table.

Notice that this rule has a while condition
holding (Arm, Blk). This is because as soon as
Blk is picked up, and new percepts have arrived, the
guard of the rule will no longer be inferable. However,
holding (Arm,Blk) should be inferable from the new
batch of percepts. A while rule is one of our TeleoR
single task extensions to TR. It allows one to give an
alternative to the guard that may only be used after the
rule has been fired. In this case, it allows the action of
the second rule to continue and to complete the transfer
providing the call to moveAcrossToLoc remains active,
i.e. unless outside interference means that the task decides
to no longer continue with the block transfer call. This will
happen if rule 4 of makeTower has been fired and the
TopBlk is removed from the top of the tower Blks. The
grandparent makeTower call will take over, terminating the
moveAcrossToLoc call and its parent makeTower call,
to put back the removed top block of B1ks.

The third rule of moveAcrossToLoc deals with the case
of B1k being on the other arm’s home table. Because the
guard of rule 2 will not be inferable, the guard of rule 3 will
only succeed with OArm\=Arm. It uses a moveToLoc call
to move Blk to shared, to achieve the guard of rule 2. This
call must wait to acquire OArm, B1kTab, shared.

5 Related and Future Work

A comprehensive survey of extensions and applications of the
teleo-reactive paradigm is given in [Morales et al., 2012].

[Benson and Nilsson, 1995] describes a multi-tasking ar-
chitecture in which TR procedures are represented as trees
with the regressions represented by branches in the tree.
There is a fork in the tree when there are different ways of
achieving the guard sub-goal at the fork. Tasks are run one at
a time until they achieve a stable sub-goal of their task goal.
They all use a single resource, or all the available resources -
there is no parallel use of resources.

[Choi, 2009] describes an extension of the logic based re-
active skill description language Icarus [Choi ef al., 2004]
for a single task. The extension has concurrent execution of
tasks with constraints used to allocate the resources to tasks.
[Kinny, 2002] describes an abstract multi-tasking agent pro-
gramming language with unordered event triggered rules with
logic queries as guards. There is concurrent task execution
but no independently useable resources.

ConGolog [Giacomo et al., 2000] is a concurrent agent
programming language based on the situation calculus. Ex-
ecution can interleave inference selection of actions from a
non-deterministic program with additional planing genera-
tion of actions.

[Thielscher, 2005], [Kowalski and Sadri, 2012], [Hindriks,
2009], [Destani, 2008], [Levesque and Pagnucco, 2000]
present logic based approaches to programming single task
software agents that either have been (the last two), or could
be used for robotic agents with varying degrees of efficiency.

None of the above approaches appear to offer compile time
guarantees of type and mode safe inference, and of type cor-
rect and ground actions. However others, [Ricci and Santi,
2013], [Baldoni et al., 20141, see the need for type safe agent
programming languages.

Future Work

The main planned future work is the incorporation of con-
cepts from the BDI concept language AgentSpeak(L)[Rao,
1996] and its implementation in Jason [Bordini et al.,
2007]. We will extend TeleoR rules so that they can have
achieve Goal actions as well as direct procedure calls.
An extra non-deterministic top layer of option selection rules
of the form

achieve Goal :: BSQuery ~~> ProcCall

is then used to find alternative calls for these goal actions,
dependent upon current beliefs when the Goal need to be
achieved. As in Jason, these same selection rules can be used
when the agent is asked to achieve a goal. They enable inter-
agent task requests at the level of a common environment on-
tology and do not require other agents or humans to know the
names of the task procedures and their argument types. We
will also add similar rules for starting tasks in response to sig-
nificant BeliefStore update events. Failure of a chosen option
can now lead to selecting another option, using the option se-
lection rules, adding another more course grained recovery
mechanism to TeleoR.

References

[Baldoni et al., 2014] M. Baldoni, C. Baroglio, and F. Ca-
puzzimati. Typing Multi-Agent Systems via Commit-
ments. In Proc. of the 2nd Int. Workshop on Engineering
Multi-Agent Systems (EMAS 2014), 2014.

[Benson and Nilsson, 1995] S. Benson and N. Nilsson. Re-
acting planning and learning in an autonomous agent. In
K. Furukawa, D. Michie, and S. Muggleton, editors, Ma-
chine Intelligence 14. Oxford University Press, 1995.

[Bordini et al., 2007] R. H. Bordini, J. F. Hubner, and
M. Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason. Wiley-Interscience, 2007.

[Choi et al., 2004] D. Choi, M. Kaufman, P. Langley, N. Ne-
jati, and D. Shapiro. An architecture for persistent reactive
behaviour. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multi-agent Sys-
tems, volume 2, pages 988-995, 2004.

[Choi, 2009] D. Choi. Concurrent execution in a cognitive
architecture. In Proceedings of the 31st Annual Meeting of
the Cognitive Science Society. Amsterdam, Netherlands:
Cognitive Science Society, 2009.

[Clark and Robinson, 2015a] K. L. Clark and P. J. Robinson.
Engineering Agent Applications in QuLog. Springer, 2015.
To appear.

[Clark and Robinson, 2015b] K. L. Clark and P. J. Robinson.
Robotic Agent Programming in TeleoR. Proceedings of In-
ternational Conference of Robotics and Automation, 2015.
To appear.

[Clark, 1978] K. L. Clark. Negation as failure. In J. Minker
and H. Gallaire, editors, Logic and Data Bases. Plenum,
1978.

[Clark, 2014] K. L. Clark. Video of robotic agent control-
ling 2 arms concurrently building 4 block towers, 2014.
Accessible via: teleoreactiveprograms.net.

[Destani, 2008] M. Destani. 2APL: A practical agent pro-
gramming language. Autonomous Agents and Multi-agent
Systems, 16:214-248, 2008.

[Giacomo et al., 2000] G. Giacomo, Y. Lesperance, and
H Levesque. ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intelli-
gence, 1-2(121):109-169, 2000.

[Hindriks, 2009] K. V. Hindriks. Programming Rational
Agents in GOAL. In Multi-Agent Programming: Lan-
guages and Tools and Applications, pages 119-157.
Springer, 2009.

[Jones and Roth, 2004] J. Jones and D. Roth. Robot pro-

gramming: a practical guide to behavior-based robotics.
McGraw-Hill, 2004.

[Kinny, 2002] D. Kinny. The ¢ calculus: An algebraic agent
language. In Intelligent Agents VII. Springer, 2002.

[Kowalski and Sadri, 2012] R. Kowalski and F. Sadri. Teleo-
reactive abductive logic programs. In Alexander Artikis,
Robert Craven, Nihan Kesim, Babak Sadighi, and Kostas

Stathis, editors, Festschrift for Marek Sergot. Springer,
2012.

[Levesque and Pagnucco, 2000] H. Levesque and
M. Pagnucco. Legolog: Inexpensive exper-
iments in cognitive robotics. In Cognitive
Robotics Workshop, ECAI 2000, 2000. At:

http://www.cs.toronto.edu/cogrobo/Papers/crw(00.pdf.

[Levesque, 2012] H. Levesque. Thinking as Computation.
MIT Press, 2012.

[Mataric, 2007] M. J. Mataric. The Robotics Primer. MIT
Press, 2007.

[Morales et al., 2012] J. L. Morales, P. Sanchez, and
D. Alonso. A systematic literature review of the teleo-
reactive paradigm. Artificial Intelligence Review, 20(1),
2012.

[Nilsson, 2001] N. J. Nilsson. Teleo-Reactive programs and
the triple-tower architecture. Electronic Transactions on
Artificial Intelligence, 5:99-110, 2001.

[Quigley et al., 2009] Morgan Quigley, Brian Gerkey,
Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. ROS:
an open-source Robot Operating System, 2009.
At:www.robotics.stanford.edu/~ang/papers/icraoss09-
ROS.pdf.

[Rao, 1996] A. S. Rao. AgentSpeak(L): BDI agents speak
out in a logical computable language. In Seventh European
Workshop on Modelling Autonomous Agents in a Multi-
AgentWorld, LNAI, pages 42—-55. Springer, 1996.

[Ricci and Santi, 2013] A. Ricci and A. Santi. Typing Multi-
agent programs in simpAL. In Promas, volume 7837 of
LNAI. Springer, 2013.

[Robinson and Clark, 2010] P. J. Robinson and K. L. Clark.
Pedro: A publish/subscribe server using prolog technol-
ogy. Software Practice and Experience, 40(4):313-329,
2010.

[Thielscher, 2005] Michael Thielscher. Reasoning Robots:
The Art and Science of Programming Robotic Agents.
Springer-Verlag, 2005.

[Wooldridge, 2009] M. Wooldridge. An Introduction to
Multi-Agent Systems. Wiley, 2009.

