Multi-threaded communicating agents in
Qu-Prolog

K.L. Clark!, P. J. Robinson?, and S. Zappacosta Amboldi!

! Dept. of Computing, Imperial College, London
2 School of ITEE, The University of Queensland, Brisbane

Abstract. In this tutorial paper we summarise the key features of the
multi-threaded Qu-Prolog language for implementing multi-threaded com-
municating agent applications. Internal threads of an agent communicate
using the shared dynamic database used as a generalisation of Linda tu-
ple store. Threads in different agents, perhaps on different hosts, commu-
nicate using either a thread-to-thread store and forward communication
system, or by a publish and subscribe mechanism in which messages are
routed to their destinations based on content test subscriptions.

We illustrate the features using an auction house application. This is fully
distributed with multiple auctioneers and bidders which participate in
simultaneous auctions. The application makes essential use of the three
forms of inter-thread communication of Qu-Prolog. The agent bidding
behaviour is specified graphically as a finite state automaton and its im-
plementation is essentially the execution of its state transition function.
The paper assumes familiarity with Prolog and the basic concepts of
multi-agent systems.

1 Introduction

Qu-Prolog is a multi-threaded Prolog designed specifically for develop-
ing distributed rational agent applications in which each agent can be
multi-threaded. It started as a variant of Prolog for building interactive
theorem provers and is the implementation language of the Ergo the-
orem prover [1]. We then added multi-threading and inter-thread com-
munication via manipulation of the shared dynamic database and asyn-
chronous messages [2] allowing the implementation of rational agent ap-
plications [3]. The final stage was to link Qu-Prolog with the Elvin [4]
content-based message router to give us broadcast communication with
message routing based on message pattern subscriptions. This also gave
us a message interface to applications written in imperative programming
languages such as C and Java since Elvin has APIs to many programming
languages.

A key discriminator between object and agents is that agents have
their own thread of control [5]. We go further, and believe that they are

naturally multi-threaded. Each thread is used to encapsulate a key be-
havioural component of the agent. For example, we can have a thread for
each other agent with whom the agent is interacting via messages. Each
conversation thread then accesses and updates a shared belief store. On
occasion it suspends waiting for a key update to be made by some other
thread. Thus, an agent’s internal threads coordinate using a Linda style
belief store [6], which in Qu-Prolog is the database of dynamic clauses.
There is a Qu-Prolog primitive, thread wait_on_goal, which causes a
thread to suspend until some goal dependent upon the dynamic database
succeeds, usually after a clause is asserted or retracted. This generalises
the Linda rd lookup operation but its implementation is very efficient as
the dynamic database is internal to the agent.

Agent communication languages such a KQML [7] and Fipa ACL [8]
assume agent to agent asynchronous communication. In Qu-Prolog this is
supported by a thread to thread communication model. Each thread has
a message buffer and a unique name similar to an email address. Messages
sent to an internal thread are copied to the destination thread’s buffer.
Communication between threads in different Qu-Prolog processes uses
McCabe’s ICM [9] store and forward communication servers to route the
message between processes, which can be on different hosts. Various mes-
sage receive primitives enable a thread to periodically search and remove
from its message buffer messages of interest. If need be it can suspend,
with a timeout, until an acceptable message is received. Since we can have
a thread for each conversation, a conversation thread can suspend waiting
for a reply to its last outgoing message. It is automatically resumed when
a reply is received.

Some agent applications require broadcast communication. That is,
an agent wants to send a message to any other agent interested in the
message content without knowing the agent’s identity. An example is the
contract net protocol [10]. For this style of communication, it is better to
use a communications server that routes messages based on content rather
that destination identification. Qu-Prolog’s primitives for connecting to,
subscribing, and sending notifications to an Elvin [4] server give us this
facility. A thread registers content test subscriptions with the Elvin server.
Any notification message sent to the server that satisfies one of these
tests is then automatically routed to the thread and placed in its message
buffer.

In this paper we illustrate the use of these three forms of inter-thread
communication, and their utility in building agent applications. The ap-
plication we use is an auction house with multiple simultaneous auc-

tions comprising bidding agents and auctioneer agents. The application
makes essential use of the three forms of inter-thead communication in
Qu-Prolog. Bidding agents participate in multiple simultaneous auctions,
each one conducted by its own auctioneer agent. A bidding agent starts
with a wish list of items it wants to purchase with a maximum price
it will pay for each item. It also has a limit to the total amount it can
spend purchasing items in all the auctions. The bidding agents are multi-
threaded with a thread for each auctioneer. Each bidder agent has its
desires (the items it wants to buy), beliefs (about its purchases and un-
spent and committed funds) and intentions (its concurrently executing
bidding threads). The application thus serves as an exemplar for the im-
plementation of simple BDI agents concurrently executing intentions.

In the next section we sketch the structure of the auction application
and the multi-threaded architecture of each bidding agent. In the section 3
we give an introduction to Qu-Prolog’s thread spawning and inter-thread
communication primitives illustrating their use with fragments of code
from the application. In section 4 we specify the crucial bidding behaviour
as a finite state automaton in which the state transitions are triggered by
messages. In section 5 we show how the bidding agents and the auctioneers
are implemented in Qu-Prolog. As we shall see, the bidding behaviour is
essentially an execution of the finite state automaton transition function
defined as a three argument relation. We summarise and mention some
related agent implementation languages in section 6.

2 Auction application

The overall architecture of the application and the architecture of each
bidding agent is depicted in Figure 1. Each auction is conducted as an
ascending English auction. In each round the auctioneer calls for bids at
a certain price. The sender of the first bid received at that price level
becomes the potential purchaser. The auctioneer then raises the bid price
and calls for bids at the new level. If no bids are received within a certain
time limit the item is sold to the potential purchaser. The application
is fully distributed, each bidding agent and each auctioneer runs as a
separate Unix process, possibly on separate hosts.

An auctioneer agent broadcasts its bid calls, sold and withdrawn mes-
sages as notifications to an Elvin server. These are routed to the bidding
thread for that auctioneer within each bidding agent because of subscrip-
tions lodged by these threads with the Elvin server. Bids are sent directly
to the auctioneer as ICM messages.

Bidding

Dynamic data base recording agent tom
desires, bid requests,

unspent and committed funds

bid rgquests
retracted
funds ppdated

A bid requests asserted
funds updated

. . ”I
bid bidding bidding | 1 bidding |
o thread thread i threads
arbitration for fo_r ! for other
thread auction- auction- . auction-
eer eer \ eers f
bill mary ' /
\ 1
\ ;
\ ’
A ’
\\ 7
T
\ I’
forwarded if sgbscription message sent
for that itefn if auctioneer

difect bids sent

if funds available ' received the

.) . .
, elvin first bid from
server) tom

.
-7 bid calls Ss.

.-~ +sold and withdrawn >~

- notifications

auctioneer auctioneer
bill mary

Fig. 1. Auction Architecture

Before sending a bid each bidding thread must check that there are
available funds. Funds are reduced each time a bidding thread wins the
auction for an item. Funds are provisionally committed when a bid is
made, and released if the bid does not result in a purchase at that bid
level. In the later stages this means that a bidding agent may have to
wait before bidding in one auction until committed funds are released
from another, and it may even have to skip a bidding round. This is
because the agent cannot overspend its initial allocation.

The amount of the unspent and committed funds are held as dynamic
clauses inside the agent. To allow the agent to make an overall judgement

about which item it should continue bidding for when funds become tight,
and more than one item of interest is currently being auctioned, the de-
cision to commit funds for a particular bid call is made by a separate
bid arbitration thread. When the auctioneer specific thread receives a bid
call at a price below or at its maximum price for the item, it informs the
agent’s bid handling thread that it wants to make a bid by asserting a
bid request fact.

The bid arbitration thread suspends until there is at least one bid
request. Its role is to find and process pending requests for which there are
sufficient avaliable funds as quickly as possible so as not to miss a bidding
round. If there is such a request for which there is sufficient remaining
budget taking into account provisionally committed funds, it removes the
request, atomically increases the committed funds by the value of the bid,
and immediately sends the bid to the appropriate auctioneer indicating
that any response should be sent to the thread that posted the request.
A response will be sent only if the bid was the first one to be received by
the auctioneer at the current call price. If the arbitration thread cannot
find a request for which there are sufficient available funds it re-suspends
until either a new bid request is asserted (because this may be at a lower
price that is within the available funds), or committed funds are released
by one of the auctioneer linked threads. This behaviour is achieved using
a thread_wait_on _goal call as illustrated in 3.1.

The entire application has been implemented with a Tcl/Tk GUI vi-
sualisation, which is illustrated in Figure 2.

3 Threads and Inter-thread Communication

Qu-Prolog has several predicates for creating and controlling threads. The
predicate thread_fork(Name, Goal) creates a new thread and executes
Goal within the thread. For the thread executing the fork the call is
deemed to always succeed and the forking thread immediately continues
with the next call. The forked thread is terminated when Goal terminates
(either with success or failure). If Name (an atom) is supplied then this
name can be used as part of the address of the thread when using ICM
communication. If it is not supplied, the system generates a name for the
thread and unifies it with Name.

The predicate thread_exit(Name) terminates the thread with the
given name. If Name is not supplied then the current thread is terminated.

Sometimes, one thread may need to carry out a computation (such as
making several changes to the database) before giving control to other

~~ Christheby's Auctions Ltd.

% Welcome to Christheby's Auctions!

mary 420-140-440 - 360-440-450
|

[239 | 2239

S

Fig. 2. Application Visualisation

threads. This can be achieved by using thread_atomic_goal (Goal).
When a thread enters such a call, no other thread will be given a time
slice until Goal finishes executing (either in success or failure).

There are three mechanisms Qu-Prolog uses to communicate between
threads. If the threads are within the same process then the threads can
communicate using the dynamic database. Threads (in the same or dif-
ferent processes) can also communicate via messages using either ICM
[9] or Elvin [4]. We now look at these in more detail.

3.1 Communication using the database

All threads within the same process share the dynamic database of the
Qu-Prolog process and so when one thread asserts or retracts a clause,
the effect is immediately visible to all the threads.

In some agent applications, the agent is implemented as several coop-
erating threads. One or more of these threads may be designed to wait
for certain changes to the database before continuing with their execu-

tion. To achieve this behaviour we can use the single solution meta-call
thread_wait_on_goal (Goal). If Goal fails, thread_wait_on_goal (Goal)
suspends until the dynamic database is changed in some way. Goal is then
retried and will be retried on each update of the dynamic database until it
succeeds. Of course, the call may never succeed, in which case the thread
executing the thread_wait_on_goal call suspends forever.

We can often specify exactly what dynamic database predicates Goal
depends upon. In this case thread_wait_on_goal(Goal, PredList) can
be used. This will only be retried if some change is made to at least one
of the dynamic predicates in PredList. These are the watch predicates
of the call.

The code for the arbitration thread within a bidding agent which is
responsible for making bids on behalf of the bidding threads uses both
thread_wait_on_goal/2 and thread_atomic_goal/1. The threads com-
municate by asserting and retracting bid_requests/3 facts and by chang-
ing the committed/1 and budget/1 facts.

handle_bid_requests :-
repeat,
thread_wait_on_goal(choose_bid, [bid_request/3,committed/1]),
fail.

choose_bid :-
thread_atomic_goal(

bid_request (Auctioneer, Item, Price),
budget (Budget) ,
committed (Committed),
Price =< Budget - Committed,
retract(bid_request (Auctioneer, Item, Price)),
retract (committed (Committed)),
NewCommited is Committed + Price,
assert (committed (NewCommitted)),
send_bid(Auctioneer, Item, Price)

The committed/1 fact keeps track of the funds needed to cover sent bids
that are not yet known to have succeeded or failed. The budget/1 fact
records funds that have not been spent. This is decreased only when the
bidder wins the auction for some item and is changed by the bidding
threads.

The two dynamic relations bid_request/3 or committed/1 determine
whether or not the call to choose_bid succeeds. If there are no outstand-
ing bid_requests, or if the value of the committed funds is such that

no such request can be covered from the remaining budget, the call to
choose_bid suspends.

The call is resumed if either of these dynamic relations is updated
(budget/1 is never changed without committed/1 being changed in the
same atomic transaction). If the change was a new bid request, this may
be for an amount that can be covered. If it was because the committed
funds were reduced by a bidding thread when it learned its last bid did
not result in a purchase at that price, funds may now be sufficient to
cover a previous request.

The body of the choose_bid rule is executed as an atomic goal so
that each time the call is entered or resumed no changes can be made to
the dynamic database by the other bidder agent threads until it either
succeeds or suspends; and, so that when it does succeed, the other threads
will see a consistent update to the database. On success, a bid will have
been sent, the bid_request that it has satisfied will have been retracted,
and committed funds will have been increased by the amount of the bid.
The repeat/fail iteration in the handle_bid _requests rule will now
result in a new call of choose_bid inside the thread_wait_on_goal. It
may immediately find another request it can satisfy. If not, it suspends
until there is a change to one of the two dynamic relations it is watching
for.

3.2 ICM Messages

The high-level peer-to-peer communication support of Qu-Prolog is based
on the ICM. The ICM consists of one of more icm processes that act as
message routers and an API that provides applications with ICM func-
tionality. Using this, a process can register its name with an icm process
and then send and receive messages via the icm processes.

ICM addresses have three main components: a thread name, a process
name, and a machine address (the home of the process). An icm process
uses the process name and home fields to determine the message desti-
nation. The process itself is responsible for managing the thread name
field.

The Qu-Prolog implementation provides library support for the ICM
API and manages an incoming message buffer for each thread within a
Qu-Prolog process. The library provides two layers of support for ICM
messages: a lower-level layer that provides the basic send and receive
primitives, and a higher-level layer that further simplifies communication.
In this paper we focus on the higher-level support.

In the higher-level layer the message send predicate is

Message ->> Address reply_to RTAddress

where Message is any Qu-Prolog term and Address is a Qu-Prolog term

representing an ICM address. The reply_to part is optional and is used if

the recipient of the message should forward a reply to some other thread.
The most general form for a Qu-Prolog address is

ThreadName : ProcessName@HostName

where the home part (HostName) can be dropped if the message is to
another process on the same host. The process name (ProcessName) can
also be dropped if the message is to another thread within the same
process. The special address self can be used for a thread to send a
message to itself. For agent applications, where each agent is a separate
Qu-Prolog process, the process name is the agent name. Communication
to local threads of a process does not use the ICM servers. The message
is immediately placed at the end of the message buffer of the internal
thread.

If a message is sent to a process that does not exist, one of the icm
processes will store the message until the process is created. Similarly, if a
message is sent to a thread that does not exist within a running process,
the process will store the message until the thread is created.

In the handle_bid_requests clause given earlier, the send_bid action
is defined by the clause:

send_bid(Auctioneer,Item,Price):-
auctioneerAddress (Auctioneer,AuctioneerICMAdress),
bid(Item,Price) ->> AuctioneerICMAddress reply_to Auctioneer,
bid_sent(Item,Price) ->> Auctioneer.

Auctioneer is the name of the bidding thread that has made the bid
request. The bidder has a relation, auctioneerAddress that stores the
ICM address of the message interface threads of each auctioneer. It has
facts such as:

auctioneerAddress(tom,thread0:tom@’zeus.doc.ic.ac.uk’)

Here the name of the bidder thread tom is the name of the Qu-Prolog
process that is the auctioneer agent.

The bid message is sent to the auctioneer agent, which will be on
another host, with the reply_to set to be the bidding thread that made
the request. This is so that the response the auctioneer will send, if this
is the first bid received at that price, will go directly to that thread. In
addition, a bid_sent message is put in the requesting thread’s message
buffer to alert it to the fact that a bid has been sent.

3.3 Elvin Messages

The high-level subscription/notification communication support of Qu-
Prolog is based on Elvin. An Elvin notification is a list of field name, value
pairs and is sent to an Elvin server that determines which processes are
subscribed to this notification, and sends the notification to each of these
processes. A process can subscribe to notifications they are interested
in by using the Elvin subscription language. A subscription is a logical
formula describing properties of notifications of interest - for example,
notifications that contain a particular field or a particular value for a
field.

Qu-Prolog threads can subscribe to Elvin notifications and any match-
ing notifications are placed in that threads incoming message buffer. In
order to distinguish Elvin notifications from ICM messages in the threads
incoming message buffer, the sender and reply-to addresses are both set
to the atom elvin.

Unlike ICM, Elvin has no memory of past notifications. A thread only
receives those notifications satisfying a subscription that are posted after
it has registered the subscription with the server.

In the auction application the bidder thread corresponding to auc-
tioneer tom will send subscriptions to Elvin such as:

elvin_add_subscription(auctioneer==tom && item==10t2239)

The Elvin router will then forward any notification that contains an
auctioneer field with value tom and an item field with value 10t2239 to
this thread.

The auctioneer broadcasts to interested bidders by posting Elvin no-
tifications with calls such as:

elvin_add_notification(
[message_type=call,item=10t2239, price=204, auctioneer=tom])

The receiver of such a notification must make no assumption about
the order of field=value pairs which may be changed by the Elvin server.
So, a Prolog recipient must extract pairs from the message list using the
member/2 list membership relation.

3.4 Processing the Message Buffer

There are several predicates that process the incoming message buffer for
a thread. The simplest of these are:

Message <<- Address reply_to RTAddress
Message <<= Address reply_to RTAddress

where the reply-to fields are again optional.

A <<~ call removes the first message in the message buffer and tries to
unify the arguments with information contained in this message (includ-
ing the addresses). It suspends of there is no message, to be resumed when
a message arrives. It fails if any of the unifications fail. A <<= call searches
the message buffer looking for a message that unifies with the supplied
patterns and removes the first such message. If no (unifying) message is
found, the call suspends until a new message arrives. The second message
receive never fails. Both are single solution calls.

Qu-Prolog also has a powerful message_choice operator that provides
case analysis search of the message buffer with different response calls
linked to different messages patterns. The program below is called by the
auctioneer to handle bid messages in a bid round after it has broadcasted
a bid call for an item Item at price Price.

handle_bids(Item, Price) :-
message_choice (
bid(Item, Price) <<- _ reply_to Bidder ->
accept_bid(Item, Price, Bidder)

bid(I,P) <<- _ :: (I\=Item;P\=Price) ->
handle_bids(Item, Price)

timeout (7) ->
bid_timeout_for (Item)

The argument of the message_choice operator has the same structure
and similar semantics to the if-then-else construct in Prolog except that
each test is a message pattern with an optional test following the ::
operator.

The first => rule matches any message of the form bid(Item,Price)
which is a bid for Item at the current call price Price. The reply_to as-
sociated with the message, the address of the bidding thread within the
bidder for this auctioneer, is assigned to the variable Bidder. It is used by
accept_bid to record the bidder’s identity and to send an acknowledg-
ment message. The sender is ignored since this is the bidder’s arbitration
thread. The second -> rule matches any bid message for a different item
or a different price. This it so that such a message - usually a late bid for
a previous round - can be discarded. The handle_bids program is then

recalled to search for, and if need be wait for, the first valid bid for this
round. The last rule specifies a timeout in seconds on how long the auc-
tioneer will wait for a message that can be handled by the first two rules.

If no such message has arrived within seven seconds then bid_timeout/1
will be called.

Use of a timeout rule is optional, and if it is not supplied, message_choice

will block until some message that can be handled by one of its rules ar-
rives.

4 Bidding behaviour

Figure 3 is a finite state automaton which characterises the bidding be-
haviour of a thread A within a bidding agent monitoring the announce-
ments of auctioneer AA. The thread starts by posting Elvin subscriptions
as given in section 3.3. These ensure that whenever AA broadcasts a mes-
sage via Elvin about an item I the bidder wants to buy that message will
appear in the thread’s message buffer. Auctioneer announcements about
items the bidder does not want to buy are not seen.

A then behaves in accordance with the finite state machine of Figure
3 starting at the desire(I,MP) node. MP is the maximum price it is
prepared to pay for item I. It stays in that control state until it receives
a message concerning any such item I. The state transitions are triggered
by messages that A receives either via Elvin or directly. In the figure all
messages are denoted as simple functor terms such as call(I,P) even
though the actual message may be a list of attribute value pairs.

If the bidder agent has arrived at the auction after auctioneer AA has
started, the first message it receives could be a wd(I) (withdrawn) or a
s01d (I) message for the item I. In this case the bidder enters the exit (I)
state for the auction of I and then re-enters the finite state machine at
the desire node to wait for a bid call for another item it wants to buy.
It enters the exit (I) state whenever it receives either of these messages
regarding item I. We assume that the auctioneer always starts the bidding
at the reserve price for an item so that a withdrawn message is only sent
when there are no bids received in the time the auctioneer allows for a
bid response to a call.

More usually, the initial state is left when a call(I,P) message is
the first message received asking for bids for item I at bid level P. If
P>MP the behaviour moves into the exceed_ max (I) state and subsequent
bid calls for item I are ignored. The bidding behaviour moves into the

call(L,P),P=<MP bid_sent(I,CP)

update bid request

Call(I,P),P=<MP
CP:=P
assert bid request

Cpc.{“(l'P)'P:<MP first(I,CP)

assert bid re(']uest wd(I);sold(I)

wd(I);sold(T)

wd(I);soldLI)
»

desire(I,MP) skip_call(I,MP,CP)

call(I,P),P>MP
retract bid request

call(I,p),P>MP

sold(I)

call(L,P),P>MP

exceed_max(I)

call(I,P),P>MP

call(I,_)

wait_sold(I,MP,CP)

Fig. 3. Bidding behaviour

exceed_max (I) state whenever a bid call is received for I at a price above
the bidder’s maximum price MP.

The other transition from the initial state is to the wait_bid (I ,MP,CP)
state. This happens if call(I,P) is received and P=<MP. CP just records
the current bid price P. As part of the state transition the thread will
also assert a bid_request(A,I,CP) fact. This is a request to the bid ar-
bitration thread to send a bid (I,CP) message to the auctioneer AA on its
behalf. The arbitration thread executes the program discussed in section
3.1.

In the wait_bid(I,MP,CP) state thread A may receive a bid_sent (I,CP)
internal message from the arbitration thread. The arbitration thread
places this message in A’s message buffer immediately after sending the
bid to auctioneer AA as an ICM message. In that case, the behaviour

moves to the made_bid (I,MP,CP) state. Alternatively, it may first get a
new message from its auctioneer concerning item I. This happens if the
auctioneer AA has received a bid at the current bid price CP from another
bidder, or no bids were received at this bid level within the auctioneer’s
time limit, and either event occurred before the arbitration thread decided
to send a bid for item I and to inform A by inserting a bid_sent(I,CP)
in its message buffer.

If the time limit was reached, auctioneer AA may broadcast a so1d (1)
message, indicating a sale to another bidder - the one that got in the first
bid at the previous bid call price, or it broadcasts a wd (I) message (when
no bids were received in time in response to its first call for bids for I).

If a new call(I,P) message is the first message to be received in the
wait_bid(I,MP,CP) state, another bidder has got its bid in first. Thread
A retracts its bid_request (A,I,CP), if it is still there. Then, if P=<MP, CP
is updated to be the new P value, and a new bid request fact is asserted
at the new CP level for consideration by the arbitration thread. If P>MP,
the behaviour moves to the exceed max(I) state.

The previous bid request fact may no longer be in the dynamic database
because it has been retracted by the concurrently executing arbitration
thread prior to sending A a bid_sent message and a (too late) bid to auc-
tioneer AA. In this case the arbitration thread will also have added CP to
the committed funds, so these will have to be reduced by this amount. As
part of this roll back operation, the sent_bid(I,CP) message, that will
have been placed in A’s message buffer by the arbitration thread, might
as well be removed from the buffer. If not, it will be repeatedly skipped
over and ignored.

If a bid_sent (I,CP) message is the first message received in the state
wait_bid(I,MP,CP), the behaviour moves into the made_bid(I,MP,CP)
state to wait for a possible first(I,CP) message to be received from
auctioneer AA letting it know that the bid (I,CP) message that was sent
by the arbitration thread was the first bid received. If it gets this message,
the behaviour moves into the skip_call(I) state as the bidder is now a
potential purchaser of I and will win the auction if no one bids in response
to the next bid call for T at the raised price. Receipt of the next call(I,_)
message simply moves the behaviour from the skip_call(I) state to the
wait_sold(I,MP,CP) state. In this state, a sold(I) message broadcast
by the auctioneer indicates that no bids were received in response to
the last bid call and hence that thread A has won the auction for item
I. In the resulting transition to the exit(I) state, the committed and

unspent funds are both decreased by amount CP, this double update being
performed atomically.

The other message that might be received in the wait_sold(I,MP,CP)
state is a new call(I,P) message. This will be broadcast by the auction-
eer if it has received a bid in response to the raised price call. Bidding
thread A has therefore not won the auction at price level CP. It now either
moves into the exceed max(I) or the wait_bid(I,MP,CP) state, with CP
updated to the new call price P, depending upon whether or not P ex-
ceeds its maximum MP for item I. In either case, it decreases its committed
funds by amount CP, releasing the allocation that was made for its last
bid.

5 Auction implementation in Qu-Prolog

5.1 The bidding agents

Each bidding agent program has facts for the predicates:

auctioneer (A,AH): AH is the ICM handle for auctioneer A
desire(A,I,MP): Bidder wants item I from A at max. price MP

giving housekeeping details about the auctioneers and the purchasing
desires of that bidder. It also has initial facts for dynamic predicates:

budget(B) : B is amount left to spend in all auctions
committed(C) : C is amount currently committed in outstanding bids

The initial budget fact records the total amount each bidder has to spend
when they arrive at the auction. The amount initially committed will be
0.

Each bidder agent starts by executing a call to the program:

bidder :-
thread_fork(arbiter, handle_bid_requests),
forall (auctioneer (Auctioner,_),
thread_fork(Auctioneer,
(post_subscriptions_for (Auctioneer),
monitor_auction)).

The first thread fork launches the bid arbitration thread executing
the program given in section 3.1. The forall then launches a bidding
thread for each auctioneer with the name of the auctioneer. This thread
starts by posting subscriptions to the Elvin server as exemplified in 3.3
so that it will be sent just those Elvin messages for items it wants to buy
from its auctioneer. It then executes the program monitor_auction.

monitor_auction :-
bidding_behaviour_from(desire(I,MP)),
monitor_auction.

The bidding behaviour_from(desire(I,MP)) call is to a program
that will follow the behaviour described by the finite state machine of
section 4, starting at the state desire(I,MP). At this stage values of I
and MP are unknown. They will be bound when the first message has been
processed.

The call will terminate when the behaviour reaches the state exit (I).

The monitor_auction program then recurses to re-enter the bidding be-
haviour at the state desire (I,MP)!.

The bidding behaviour_from program is just a recursive program
that walks over the finite state automaton of Figure 3 until the exit
state is reached. We assume that the state transitions of the machine are
defined by a next_state/3 relation.

bidding_behaviour_from(exit(_)).

bidding_behaviour_from(State) :-
essence_of _next_message(State, M),
next_state(State, M, NxtState),!,
bidding_behaviour_from(NxtState).

An example rule for essence_of next message is:

essence_of _next_message(desire(I,MP), Msg):-

ElvinMsg <<= elvin,

member (item=I, ElvinMsg),

thread_symbol(A), % get auctioneer name of this thread

desire(A, I, MP), % find bidder’s max price for I

(elvin_call_message(ElvinMsg, P), Msg=call(I,P)
elvin_sold_message(ElvinMsg), Msg=so0ld(I)
elvin_withdrawn_message (ElvinMsg) , Msg=wd(I)

).

where:

! Our running auction implementation has the auctioneer broadcast an auction_over
notification when it has no more items to auction. The above monitor_auction pro-
gram suspends if the auctioneer just stops sending out calls for bids. It will terminate
in failure, and hence cause the bidding thread to terminate, if an auction_over no-
tification is broadcast.

elvin_call_message(ElvinMsg, P) :-
member (message_type=call, ElvinMsg),
member (price=P,ElvinMsg) .
elvin_sold_message(ElvinMsg) :-
member (message_type=sold, ElvinMsg),

In the desire state only an Elvin message can be received. Its ‘essence’
is one of the terms used in the finite state machine of Figure 3. The term
constructed for the Elvin message

[message_type=call, item=1lot2239, price=204, auctioneer=tom]
is

call(1ot2239,204) .
Example next_state rules are:

next_state(desire(I,MP), call(I,P), wait_bid(I,MP,P)):-
P=<MP,
thread_symbol(4),
assert(bid_request(A, I, P)).
next_state(desire(I,MP), call(I,P), exceed_max(I)):-
P>MP.
next_state(desire(I,MP), M, exit(I)):- M=so0ld(I); M=wd(I).

next_state(wait_bid(I,MP,P), bid_sent(I,P), made_bid(I,MP,P)).
next_state(wait_bid(I,MP,P), call(I,NewP), wait_bid(I, MP, NewP)):-

NewP=<MP,

thread_symbol(A),

thread_atomic_call(

(remove_bid_request(A, I, P), assert(bid_request(A,I,NewP)).

next_state(wait_bid(I,MP,P), call(I,NewP), exceed_max(I)):-

NewP > MP,

thread_symbol(4),

thread_atomic_call(remove_bid_request(A, I, P)).

remove_bid_request(A, I, P):-
(retract(bid_request(A, I, P)) -> true
; % retract failed, request already retracted by arb. thread
retract (committed(F)),
NewF is F-P,
assert(committed (NewF)),
bid_sent(I,P) <<= arbiter)).

A remove_bid request(A,I,P) call removes P from the committed funds
if the bid request message has already been deleted by the arbitration
thread (the retract fails) and it also discards the bid_sent message
which will be in its message buffer, as per the discussion in section 4.

As these example rules show, it is relatively easy to produce the
next_state rules from the finite state machine and the discussion of sec-
tion 4.

5.2 The auctioneers

Each auctioneer program has facts for the predicate:
item(I,RP): Item I has reserve price RP

detailing all the items that the auctioneer has to auction. The reserve
price is the minimum price at which the item can be sold and is the price
used to start the bidding. Each auctioneer program also has a fact for
my_name/1, recording the auctioneer’s name.

Compared to the bidding agents, the auctioneers execute a quite sim-
ple behavioural program. Each executes auction.

auction :-
(retract(item(Item,RPrice)) -> send_bid_call(Item,RPrice) ; true).

send_bid_call(Item,Price) :-
myname (Name) ,
elvin_add_notification([message_type=ca11,item=Item,
auctioneer=Name,price=Price]),
handle_bids(Item,Price).

where handle_bids is the program given in section 3.4.

As discussed there, this invokes accept_bid(Item,Price,Bidder) if
the first bid received at the Price was from Bidder, and this was received
within seven seconds of the call notification. This program asserts the fact:

potential_purchaser(Bidder,Item,Price)

after retracting any other such fact about Item. Bidder is now the poten-
tial purchaser of Item at Price. accept_bid also sends a first message
directly to Bidder to inform them of this. It then increments Price by
a fixed amount to give a new call price NewPrice and then executes
send_bid_call(Item,NewPrice).

At some stage the timeout rule of handle_bids will be triggered when
no bids are received in time. This invokes bid_timeout_for (Item). If a
potential purchaser has been recorded for Item an Elvin notification is
sent that the item has been sold and the potential purchaser fact is

replaced by a purchased fact; else a notification is sent that the item has
been withdrawn. The latter only occurs if no bids are received in time
following the first bid call. The auctioneer program then iterates with a
new call to auction. It terminates when there are no more items to be
auctioned.

6 Concluding Remarks

We trust we have demonstrated the expressiveness of Qu-Prolog for pro-
gramming distributed agent applications in which the agents are subject
to real time constraints, such as timely reaction to a bid call, and where
agents may have to concurrently interact with several other agents tak-
ing into account limited shared resources, such as money to spend. Such
agents can be programmed using multiple internal threads communicating
via the shared dynamic database, or via messages, in order to co-ordinate
access and use of the resources they must share.

In the case of our bidding agents a separate arbitration thread is in
charge of allocating the shared money resource, and shared dynamic pred-
icates and message passing are used to co-ordinate the threads. The pro-
gram for the arbitration thread uses a simple strategy to allocate funds.
It allocates to the first bid request it finds for which sufficient funds are
available at that time. It is quite easy to change this to take into account
preferences for items, and, say, the difference between the current call
price and the maximum price the bidder is prepared to pay. It can then
choose the pending request with maximum utility computed as a function
of its preference rating and the price differential.

Qu-Prolog’s interface to the ICM message servers enables us to seam-
lessly perform private agent to agent communication across the internet
using symbolic names for threads similar to email addresses. Our appli-
cation uses the ICM system to send private bid messages and acknowl-
edgments for first bids. Using proxy servers, the ICM system [9] allows
messages to be routed through fire walls and to be automatically down-
loaded to agents on mobile devices, such as laptops, when they connect
to the network.

The interface to Elvin enables us to quickly build agent applications
that need to use a message broadcast mechanism with messages routed
to agents based on receiver subscriptions. It also gives us a mechanism
for quickly building hybrid applications. One such might be an agent
monitoring application in which sensor software written in Java or C posts
notifications routed to the monitoring agents. The role and function of the

monitoring agents can be changed without changing the sensor software
simply by changing subscriptions.

Lodging appropriate subscriptions or sending notifications to the Elvin
server gives an easy method for an agent to join an existing community
of agents and components. Posting subscriptions is the joining mecha-
nism for bidding agents at the auction. Posting notifications is the joining
mechanism for the auctioneers.

To join the community an agent needs to know the message format be-
ing used. In open agent applications KQML or Fipa ACL based messages
may be being used. The structure of Elvin notifications allows almost
direct representation of such messages, which are also based on a list of
attribute/value pairs. If the application uses KQML messages, the Elvin
server takes over some of the role of a KQML facilitator [7].

The features of Qu-Prolog that support the writing of non-resolution
inference systems are illustrated in [3] but they are more fully explained
in the Qu-Prolog User Guide. The system and its documentation are
down-loadable from:

http://www.itee.uq.edu.au/ "pjr/HomePages/QuPrologHome .html

Qu-Prolog is used as the programming language used for a course on
multi-agent systems at Imperial College and it was the language used by
one of the winning submission [11] for the Agent Programming Competi-
tion of CLIMA VI. It is also being used in the ARC Center for Complex
Systems at the University of Queensland for the simulation of insect be-
haviour, and for the proto-typing of free flight air traffic control in which
aeroplane agents negotiate over flight levels and flight paths to avoid
near misses and collisions. Currently the language does not have a finite
domain constraints but it does have delayed calls linked to unbound vari-
ables and primitives to retrieve the delayed calls. We plan to add finite
domain constraints using these features.

6.1 Some Related Languages

SICStus-MT [12] is a multi-threaded version of SICStus Prolog in which
threads each have a single message buffer, called a port. As in Qu-Prolog,
a thread can scan the buffer looking for a message unifying with a given
message pattern, suspending if no such message is found. However, port
communication is restricted to threads within the same Prolog process.
SICStus Prolog does have a Linda package, but the Linda store is for

external communication between different Prolog processes, or between a
Prolog process and a process implemented in another programming lan-
guage, not for internal thread coordination. For communication between
processes in different languages we would use Elvin or the ICM API.

BinProlog[13] is a multi-threaded Prolog with a tight coupling to Java
and communication between threads in Prolog or Java via Linda tuple
stores. It also supports mobile agents via thread migration between dif-
ferent BinProlog processes.

QuP** [14] is an object oriented extension of Qu-Prolog that allows
a class structure with multiple inheritance to be used to construct multi-
threaded agent applications. In QuP ™™ a class instance is an active object
with at least one thread of control. This thread handles messages from
other objects, can launch new internal threads, and can create new active
objects.

Mozart-Oz[15] is a multi-paradigm distributed symbolic programming
language with support for logic programming, functional programming
and constraint handling. It is being used for distributed agent applica-
tions. Mozart-Oz is multi-threaded with the threads sharing a common
store of values and constraints. The store is used for inter-thread commu-
nication. Constraints are posted to the store and the store can be queried
as to whether some particular constraint is entailed by the current con-
straint store. A thread executing such a query will suspend until the store
entails the constraint.

The CTAO system [16] uses the dynamic Prolog database for commu-
nicating between threads in the same process. Whereas Qu-Prolog uses
assert and retract to update the database and thread_wait_on_goal/2
to wait for changes to named dynamic predicates, the CIAO system re-
quires the dynamic predicates that can lead to a thread suspension to
be declared as concurrent. Changes to clauses for concurrent predicates
are used for stream communication between threads. A normal call to a
concurrent predicate will suspend if it cannot succeed, even on backtrack-
ing. Thus, a thread will suspend when a call to a concurrent predicate
has ‘seen’ all the clauses for the predicate that have so far been asserted
by the other threads. This allows the dynamic database to be used to
communicate a stream of data between threads, as an incrementally as-
serted set of facts, with automatic suspension of consuming threads that
run ahead of the producers. In Qu-Prolog we would achieve this by using
ICM or Elvin message communication.

April [17] is a multi-threaded hybid functional /imperative program-
ming language that also uses ICM servers to communicate messages be-
tween threads in different applications.

Erlang [18] is a functional multi-threaded language with a single mes-
sage buffer for each thread. The message_choice operator of Qu-Prolog
is modeled on the message receive primitive of Erlang.

Go! [19] is a multi-threaded multi-paradigm functional, logic and OO
programming language in which threads can communicate using mail-
box objects, or dynamic relation objects that act as Linda stores. Each
mailbox, which is typically private to a thread, can have any number of
linked dropbox objects that can be shared with other threads and used
by them to post messages to the mailbox. A thread will suspend waiting
for a particular message to be posted to a mailbox.

References

1. P. J. Robinson. Ergo Reference Manual. Technical report, ITEE, University of
Queensland, http://www.itee.uq.edu.au/~pjr/HomePages/ErgoFiles/cover.html.

2. Keith L. Clark, Peter J. Robinson, and Richard Hagen. Multi-threading and mes-
sage communication in Qu-Prolog. Theory and Practice of Logic Programming,
1(3):283-301, 2001.

3. P. J. Robinson, M. Hinchley, and K. L. Clark. Qu-Prolog: An Implementation
Language with Advanced Reasoning Capabilities. In M. Hinchley et al, editor,
Formal Appraches to Agent Based systems, LNAI 2699. Springer, 2003.

4. B. Segall et al Content based routing with elvin4. In Pro-
ceedings AUUG2K. Canberra, Australia, Downloadable from
http://elvin.dstc.com/doc/papers/auug2k/auug2k.pdf, 2000.

5. M. J. Wooldridge and P.Ciancarini. Agent Oriented Software Engineering: the
State of the Art. In P.Ciancarini and M. J. Wooldridge, editors, Agent Oriented
Software Engineering, volume 1957 of LNCS, pages 1-28. Springer-Verlag, 2001.

6. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, 1989.

7. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communi-
cation language. In Proceedings 3rd International Conference on Information and
Knowledge Management, 1994.

8. FIPA. Fipa communicative act library specification. Technical report, Foundation
for Intelligent Physical Agents, www.fipa.org, 2002.

9. F.G. McCabe. ICM Reference Manual. Fujitsu laboratories Ltd. Downloadable
from: http://sourceforge.net/projects/networkagent/, 1999.

10. Reid G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. In Alan H. Bond and Les Gasser, editors, Readings
in distributed aritficial intelligence, pages 357-366. Morgan Kaufmann, 1988.

11. S. Coffey and D. Gaertner. Using pheromones, broadcasting and negotiation for
agent gathering tasks. in this volume. 2006.

12. Jesper Eskilson and Mats Carlsson. SICStus MT—A Multithreaded Execution
Environment for SICStus Prolog. In C. Palamidessi, H. Glaser, and K. Meinke,

13.

14.

15.

16.

17.

18.

19.

editors, Programming Languages: Implementations, Logics, and Programs, volume
1490 of Lecture Notes in Computer Science, pages 36—53. Springer-Verlag, 1998.
Paul Tarau. BinProlog 9.x Professional Edition: User Guide. Technical report,
BinNet Corp., 2002. Available from http://www.binnetcorp.com/BinProlog.

K. L. Clark and P. J. Robinson. Agents as Multi-threaded Logical Objects. In
T. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Be-
yond. LNAT 2699, Springer, 1998.

Peter Van Roy and Seif Haridi. Mozart: A programming system for
agent applications. In International Workshop on Distributed and Inter-
net Programming with Logic and Constraint Languages. http://www.mozart-
oz.org/papers/abstracts/diplcl99.html, 1999. Part of International Conference on
Logic Programming (ICLP 99).

D. Cabenza M. Hemenegildo and M. Carro. On the uses of attributed variables
in parallel and concurrent logic programming systems. In L Sterling, editor, Pro-
ceedings of ICLP95, pages 631-645. MIT Press, 1995.

F.G. McCabe and K.L. Clark. April - Agent PRocess Interaction Language.
In N. Jennings and M. Wooldridge, editors, Intelligent Agents, pages 324-340.
Springer-Verlag, LNAI, 890, 1995.

J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.
Prentice-Hall International, 1993.

K. L. Clark and F. G. McCabe. Go! — a Multi-paradigm programming language
for implementing Multi-threaded agents. Annals of Mathematics and Artificial
Intelligence, 41(2-4):171-206, 2004.

