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Abstract. We propose a simple event calculus representation of con-
tracts and a reactive belief-desire-intention agent architecture to enable
the monitoring and execution of contract terms and conditions. We use
the event calculus to deduce current and past obligations, obligation
fulfilment and violation. By associating meta-information with the con-
tracts, the agent is able to select which of its contracts with other agents
are relevant to solving its goals by outsourcing. The agent is able to
handle an extendable set of contract types such as standing contracts,
purchase contracts and service contracts without the need for a first-
principles planner.

1 Introduction
Multi-agent systems is a growing research area and has already started to find
application in industry in web services and the semantic web. There is also
increased interest in agent coordination and choreography. Our approach sees
contracts as a means of formally describing the relationships between agents
in terms of obligations and permissions, as well as providing a coordination
function.

By expressing the terms and conditions of a contract as a set of event-based
rules – and so long as the participating agents agree on the history of events
relevant to their contracts – an agent is able to obtain a completely unambiguous
and indisputable view of the state of the contract at any given point in time.

We claim that the AgentSpeak(L)[11] architecture, with relatively few ex-
tensions, enables an agent to behave in a reactive manner (as is the case with
service agents, where they react to obligations imposed on them) or a proactive
manner where it makes use of agreed or newly proposed client contracts in order
to impose obligations on other agents to do things for it. It may do this both
to satisfy its own goals, or to discharged obligations it has arising from other
contracts.

Starting off with a description of how contracts may be represented in the
event calculus, we give an example of a short-term contract to conduct a pur-
chase and a long-term standing contract to set-up short-term purchase contracts.
In section 3 we discuss how the agents may communicate with each other and in
section 4 we show how these communications can be used to effect the contract
state (such as established facts, obligation fulfilment and violation). Section 5



briefly presents the AgentSpeak(L) architecture and how we have used and ex-
tended it to incorporate reasoning about contracts. We give the plan libraries
for the customer and vendor agents which are able to monitor a general class of
purchase and standing contracts, of which the contracts presented in section 2
are instances. Finally we review related work and concluding remarks.

2 Contract Representation

The core of the contract representation language is the event calculus [10], where
communications are events and the contract rules specify how the events initiate
and terminate obligation fluents. We make an implicit assumption that an agent
is permitted to perform any communication that, taking into account the history
of the use of the contract up to this point, will initiate an obligation on another
party to the contract. This assumption has been sufficient for the examples
studied so far, however, we do intend to investigate explicit representation of
permissions in future work. In this paper we are using the Prolog variable syntax
convention where variables begin with an uppercase letter.

We are using the full event-calculus[12] without the releases predicate since
the examples we have considered so far do not require the use of non-inertial flu-
ents. We also dispense with the initiallyP and initiallyN predicates by provid-
ing a contract start event, and writing initiates(start, F, T) and terminates

(start, F, T) respectively. Figure 1 summarises the axioms of the event calcu-
lus.
holdsAt(F,T) ↔ happens(E,T1) ∧ T1<T ∧

initiates(E,F,T1) ∧ not clipped(T1,F,T).

notHoldsAt(F,T) ↔ happens(F, T1) ∧ T1<T ∧
terminates(E, F, T1) ∧ not declipped(T1,F,T).

clipped(T0,F,T1) ↔ ∃T[T0≤T ∧ T<T1 ∧ terminates(E,F,T)].

declipped(T0,F,T1) ↔ ∃T[T0≤T ∧ T<T1 ∧ initiates(E,F,T)].

Fig. 1. Event Calculus Summary

The body of a contract is represented by a binary relation, contractClause,
between the label of the contract and the clauses belonging to the contract.
Variables can be shared between the contract label and the clauses – those
appearing in the label are conceptually parameters to the contract. If we were
representing the contracts directly in Prolog, there would be one contractClause

definition for each rule of the contract. For example, Figure 2 shows the first
rule of a short term contract about a purchase transaction.
contractClause(

customerVendorContract_purchase(customer1:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS, item:I, price:P),

initiates(start, oblig(V, achieve(value(invoice-no, _)), T+100), T).

Fig. 2. Contract Clause as Prolog

1 To aid readability we employ the syntax field:Value to indicate a named field or
parameter.



The label of the contract is customerVendorContract purchase(...). The pa-
rameters to the left of the | are the principals of the contract, usually the offeror
and the offeree in a normal two party contract. The rule reads that at the
start of the contract, the vendor (V) is obliged to announce the invoice number
(invoice-no) relating to the purchase within 100 time units. start is the event
marking the start of the contract’s lifetime. oblig is a 3-place fluent relation
between the bearer, the goal to be performed and its deadline. achieve indicates
a state of affairs is to be achieved. value is a binary fluent relating contract
variables to their values.

For ease of presentation, we adopt a more compact syntax, where the label is
written once at the beginning of the contract, and the rules are written inside the
following brace delimited block. Macro definitions for frequently used terms are
written in small caps and marked with ≡ and should be textually substituted
by the reader as they occur.

2.1 Short-term Contracts

Figure 3 shows the full text for a purchase contract, parameterised by the item
being purchased, the price, the vendor, the customer, the vendor’s and customer’s
bank, and a delivery service.
customerVendorContract_purchase(

customer:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS, item:I, price:P) {
Paid(R) ≡ paid(payer:C, payee:V, price:P, reference:R).

Delivered(R) ≡ delivered(item:I, destination:C, invoice-no:R).

InvoiceOblig(DL) ≡ oblig(V, achieve(value(invoice-no, _), DL).

PayOblig(R, DL) ≡ oblig(C, achieve(Paid(R)), DL).

DeliverOblig(R, DL) ≡ oblig(V, achieve(Delivered(R)), DL).

initiates(start, InvoiceOblig(T+100), T).

initiates(E, PayOblig(R, T+100), T) ← initiates(E, value(invoice-no, R), T).

initiates(E, DeliverOblig(R, T+300), T) ← initiates(E, value(invoice-no, R), T).

initiates(E, owns(owner:C, item:I), T) ←
holdsAt(value(invoice-no, R), T) ∧ initiates(E, fulfilled(PayOblig(R, _))).

terminates(E, owns(owner:V, item:I), T) ←
holdsAt(value(invoice-no, R), T) ∧ initiates(E, fulfilled(PayOblig(R, _))).

authoritative(V, value(invoice-no, _)),

authoritative(VB, Paid(_)).

authoritative(CB, Paid(_)).

authoritative(DS, Delivered(_)).

}

Fig. 3. Simple Purchase Contract

The first initiates rule, as described above, obliges the vendor to determine
an invoice number and to signal this as an event notification for the contract.
The vendor does this by sending an inform message to the customer (see sections
3 and 4.1). When the invoice number has been notified, the second and third



initiates rules oblige the customer to concurrently pay within 100 time units
and the vendor to deliver within 300 time units and to signal completion as
contract related events.

The last initiates and the only terminates rule indicate that the customer
will become the new owner of the item when the payment obligation has been
fulfilled.

The authoritative clauses indicate which agents are authoritative for which
fluents. The concept is related to controllable propositions[7] — the difference
being that in our work the controlled proposition is limited in scope to a specific
contract, rather than to the entire agent society. In the example, only the vendor
has the authority to notify an invoice number. A notification by the customer
would not be considered a contract event.

This mechanism is also useful to identify trusted-third parties: the banks are
authoritative for the paid fluents (that is any payment from customer to vendor)
and the delivery agent is authoritative for the proof of delivery fluent. An agent
that is not authoritative for a fluent may attempt to communicate it, but the
communication would have no effect in this contract.

2.2 Long-term Contracts

It is useful to agree a contract about what contracts may be agreed in the future.
In Figure 4 we give an example standing contract specifying prices for rolls of wire
mesh, fixing screws and sheets of tin roofing. The vendor agent is constrained
by the standing contract to accept any purchase proposals matching the agreed
criteria. The purchase proposal is a reference, by means of the contract label, to
the simple purchase contract presented above.
customerVendorContract(customer:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS) {

initiates(E, oblig(V, do(X, replyTo(X, E)), T+100), T) ←
proposeEvent(E, C, V, _).

initiates(E, oblig(V, do(X, acceptEvent(X, E), T+100), T) ←
proposeEvent(E, C, V,

customerVendorContract_purchase(customer:C, vendor:V |

vendorBank:VB, customerBank:CB,

deliveryService:DS, item:I, price:P)) ∧
agreedPrice(item:I, price:P).

agreedPrice(item:wiremesh(width:10, height:10, gauge:10), price:10.00).

agreedPrice(item:fixingscrews(gauge:5, amount:1000), price 6.99).

agreedPrice(item:tinroofing(width:6, height:9), price 4.00).

}

Fig. 4. Standing Contract

The first initiates rule specifies that the vendor must reply to proposals
(of any kind) from the customer within 100 time units. The important syntax
here is the do(...) notation which indicates that the agent must bring about an
event satisfying a particular constraint. In this case the event must satisfy the



replyTo constraint, meaning that it must be a valid reply to the accept event (i.e.
an accept or a reject). The following section defines the replyTo, proposeEvent
and acceptEvent predicates, which are common to all agents. Similarly the sec-
ond initiates rule specifies that the vendor must accept proposals meeting the
agreedPrice criterion.

3 Communication

In our system, events are the act of sending messages. The messages are inter-
preted by the agents according to a shared ontology, the domain independent
part of which is described here and in section 4. Only recorded events that are
relevant to a contract may progress the contract state. Real world events, such
as “the car leaving the drive way”, may be put in the context of a contract by
an inform event (or reported event, see below) to that effect.

We require that the events are observed by all contract principals because
the state of the contract depends on the history of events relevant to it. In a two
party contract, this requirement is trivially satisfied when one principal sends a
message to another.

Although the exact format of a message and its transport details will vary
from application to application and agent society to agent society, a well-formed
message should include a time-stamp, a unique message identifier, a field identi-
fying the message to which it is a reply (if any), message sender, message receiver,
a message content, context and the interaction protocol or conversation identi-
fiers. Messages relevant to a contract should include a context field corresponding
to the contract label. This information can be inferred if the received message is
in reply to an earlier message that was properly context-tagged. Figure 5 gives
an example representation of an accept event for the long term contract between
the customer and vendor (see Figure 4).

We list some predicates that can be used in the contract language and agent
code either as tests on received messages, or as constraints on messages about to
be sent (this commonly occurs when an agent is obliged to do a communication
subject to some specified constraints). The predicates are implemented in terms
of constraints on the message attributes above.

contractEvent(E, C) event E is in the context of contract C.
proposeEvent(PE, X, Y, P) PE is a propose event from X to Y for a proposal

P. Proposals take the form of contract labels. Propose events must specify
the propose protocol, which restricts the valid replies to accept or reject
events.

acceptEvent(A, PE) A is an acceptance event in reply to a proposal event, PE.
Accept events must specify the propose protocol. According to the protocol
rules (see replyTo below), there can only be one reply to a proposal, so if
there are any further accept or reject events they should be ignored. The
receiving agent should check the validity of the proposal event.

rejectEvent(R, PE) R is a reject event in reply to a proposal event, PE. Like
acceptEvents, rejectEvents should specify the propose protocol.



informEvent(IE, X, Y, F) IE is an inform event from X to Y that F is true.
F is normally a fluent. Only agents that are authoritative about the fluent
(see subsection 4.1) may establish it in the context of the contract.

replyTo(R, E) R is a reply to event E. If E specifies a protocol, replyTo con-
strains R to be a valid response in the protocol. R and E must share the same
context and must agree on the protocol attribute. R’s in-reply-to attribute
must equal E’s message identifier.

reportEvent(RE, E) indicates that RE is a report of an actual event E. This is
most useful when E is an inform event from another contract that something
has been achieved. Only events which actually occur may be reported – this
constraint might be enforced by the requiring event senders to digitally sign
their events.

requestEvent(E, A, F) E is a request event for agent A to bring about that F
is true. A successful response is an inform event that F is now true.

accept(

time:20050121144600, identifier:cv123, in-reply-to:cv122,

sender:sales@wiremeshRus, receiver:jak97@imperial.ac.uk,

content:propose(

time:20050121130100,

identifier:cv122,

sender:jak97@imperial.ac.uk,receiver:sales@wiremeshRus,

content:customerVendorContract(

customer:jak97@imperial.ac.uk, vendor:sales@wiremeshRus,

vendorBank:finance@bank1, customerBank:finance@bank2,

deliveryService:deliver@pforce),

protocol:propose),

protocol:propose).

Fig. 5. Possible representation of an accept event

4 Contract Evaluation
An agent may have many contracts active at the same time. It is important
to be able to consider the contracts independently of each other (for example
to determine a contract’s state), and also their combined effect (for example
when outsourcing goals). For this reason we define a meta-interpreter predicate,
selon2, which evaluates queries relative to a specified contract. Subsection 4.3
describes how the individual contract effects are combined into the agent’s belief
store.

Figure 6 shows the core of the meta-interpreter. The first parameter is the
contract label, and the second is the formula to be evaluated. The agent can
now query what obligations are current with respect to a contract by asking
selon(C, holdsAt(oblig(A, G, DL), Now)) where Now is a time point representing
the current time and C is the label of an active contract.

The symbols not, ∧ and← are overloaded. Where they occur in a functional
context (in the second argument to selon), they should be read as functional
2 From the French, selon, meaning ”according to”



selon(C, happens(E, T)) ← happens(E, T) ∧ contractEvent(E, C).

selon(C, happens(start, T)) ← happens(E, T) ∧
initiates(E, activeContract(C), T).

selon(C, R) ← contractClause(C, R ← S) ∧ selon(C, S).

selon(C, P ∧ Q) ← selon(C, P) ∧ selon(C, Q).

selon(C, not P) ← not selon(C, P).

selon(C, holdsAt(F, T)) ← selon(C, happens(E, T1)) ∧ T1<T ∧
selon(C, initiates(E, F, T1)) ∧ selon(C, not clipped(T, F, T1)).

selon(C, clipped(T0, F, T1)) ← selon(C, happens(E, T)) ∧ T0≤T ∧ T<T1 ∧
selon(C, terminates(E, F, T)).

Fig. 6. Contract meta-interpreter

terms; where they occur in a logical context (as part of the definition of selon)
they should be read as logical connectives. Further meta-interpreter rules are
presented below defining the concepts of authoritative agents, reported events
and obligation fulfilment and violation.

4.1 Authoritative Agents

In the simple purchase contract, the vendor was authoritative for the invoice
number. We capture this authority with an extension to the meta-interpreter:

selon(C, initiates(E, F, T)) ←
selon(C, authoritative(X, F)) ∧ informOrReportedEvent(E, X, F).

selon(C, terminates(E, G, T)) ← selon(C, incompatible(F, G)) ∧
selon(C, authoritative(X, F)) ∧ informOrReportedEvent(E, X, F).

informOrReportedEvent(E, X, F) ← informEvent(E, X, _, F) ∨
(reportEvent(E, I) ∧ informEvent(I, X, _, F)).

In the simple purchase contract, the delivery agent is authoritative for the
delivery fluent. The delivery agent is not a principal of the contract, however,
so in order for any delivery notification to have effect, it must be reported by
one of the principals (in this case the customer or the vendor). Direct or indirect
reporting of an inform event from the authoritative agent is deemed to be a valid
contract event by virtue of the last rule.

We have borrowed the incompatible predicate, which states which fluents
must be terminated in response to one being initiated, from the original event
calculus[10].

4.2 Obligation Fulfilment and Violation

We adopt a similar semantics to Dignum et al.[6] with respect to deadlines. An
obligation is fulfilled if the deadline has not yet expired. If the obligation was
to achieve a state of affairs represented by a fluent fulfillment has to have been
notified by an event that initiates the contract fluent. Where it was a more direct
obligation to bring about an event characterized by a constraint, that the event
has occurred is checked by showing that the constraint is now satisfied.



An obligation is violated if the deadline has elapsed and it has not been
fulfilled. For simplicity’s sake, we omit rules allowing a violation to be repaired
(by meeting its sanction). We need three meta-interpreter rules to capture this:
two for achieve and do fulfilment and one for violation.

selon(C, initiates(E,

fulfilled(oblig(X, achieve(F), DL)), T)) ←
selon(C, holdsAt(oblig(X, achieve(F), DL), T)) ∧
T<DL ∧ selon(C, initiates(E, F, T)).

selon(C, initiates(E,

fulfilled(oblig(X, do(E, Constraint), DL)), T)) ←
selon(C, holdsAt(oblig(X, do(E, Constraint), DL), T))

∧ T<DL ∧ selon(C, Constraint).

selon(C, violated(oblig(X, G, DL), T)) ←
selon(C, holdsAt(oblig(X, G, DL), T)) ∧ DL<T ∧
not selon(C, holdsAt(fulfilled(oblig(B, G, DL)), T)).

4.3 Imported Fluents

Event calculus is used not only within the contract language definition, but also
by the agent at the top-level to manage its beliefs. We need some rules to model
that certain contracts have effects on the agent society outside of the contract
itself. An example of this is the simple purchase contract which concludes with
the transfer of ownership of the item from the vendor to the seller: reasoning
solely with respect to the purchase contract will not allow the agent to realise
that it does not own the item after selling it in the future. Since we need to
track the ownership changes over the course of several contracts, we pool the
ownership fluent into the agent’s own belief store:

initiates(E, F, T) ← importedFluent(F) ∧
holdsAt(activeContract(C), T) ∧ selon(C, initiates(E, F, T)).

terminates(E, F, T) ← importedFluent(F) ∧
holdsAt(activeContract(C), T) ∧ selon(C, terminates(E, F, T)).

importedFluent(owns(_, _)).

importedFluent(activeContract(_)).

The importedFluent predicate selects which contract fluents should be im-
ported into the agent’s belief store. activeContract is a fluent predicate indicat-
ing which contracts are active. Marking it as an imported fluent allows contracts
to spawn sub-contracts.

5 Agent Architecture
We now describe an agent architecture in the style of AgentSpeak(L) to enable
agents to respond to events related to all their active contracts in a timely
fashion. We give a brief introduction to a simplified version of AgentSpeak(L),
and then propose a plan library for the customer agent that will allow it to make
use of the standing and purchase contracts. AgentSpeak(L) is chosen as a basis
because it has a well understood operational semantics and there are available
implementations such as [16] and [4].



5.1 AgentSpeak(L)

An AgentSpeak(L) agent architecture can be viewed as multi-threaded event-
triggered interruptible logic programming system [11].

There are two kinds of events, belief updates and new goal events. Belief
updates are represented as +b or -b depending on whether the particular belief,
b, is now true or false. Belief events model the changes in the environment as
perceived by the agent. New goal events are represented as +!g, where g is the
goal to achieve.

At the beginning of the agent cycle, the agent picks an event to handle from
the set of unhandled events. The plan library is consulted to see if there are
any plans that are triggered by the event. Each plan in the plan library has the
syntax: event:condition <- actions.

For example, +temperature(T) : T > 90 <- switch(heater, off). is a plan
from an environmental control agent. The plan is relevant to changes in temper-
ature, and applicable when the temperature rises beyond 90 degrees. The action
is to switch the heater off.

If the event in the head of the plan unifies with the selected event, the plan
is said to be relevant. The condition is a formula in terms of the current beliefs
of the agent and acts as a guard: the relevant plans whose condition formula
evaluates to true are said to be applicable. Finally, one plan is selected from the
applicable plans and an intention is created to monitor it.

The agent then picks an intention to execute, which involves executing the
plan body (actions) one step at a time. A step may be either a physical action,
an achieve goal (written !goal) or a test (written ?test).

Goal achievement is handled by suspending the intention and adding a new
goal event to the set of unhandled events. Future agent cycles will pick up the
new goal event, and look in the plan library (as before) for an applicable plan
to achieve it. The plan is then stacked on top of the intention that issued the
achieve goal action, so that once the goal has been achieved, execution of that
intention may continue.

Tests are queries to the agent belief store, and result in a set of variable
assignments which are substituted into the remaining plan steps.
5.2 Extensions to AgentSpeak(L)

We extend the AgentSpeak(L) in the following ways:

– Plans may include belief update steps, of the form +b or -b. This effects the
belief store of the agent in a similar way to Prolog’s assert and retract.

– An agent may have an initial set of desires, which can be selected and posted
as new goal events.

– In the example plan libraries below, we have also included some Prolog style
horn clauses to ease readability. Since these definitions can be folded directly
into the AgentSpeak(L) rules, they do not affect the operational semantics.

– “Fire and forget” goal execution, written !!goal. Instead of stacking the plan
for the goal on top of the existing intention, create a separate intention for
the achievement of the goal. This is useful when the agent requires simply
to start off a process to achieve a goal, but not to wait for its achievement.



– The textually first applicable plan is selected if there is a choice and the
agent commits to that plan.

– We implement the following physical actions:
notify sends a message to all the principals of a given contract (see section

3), and logs it as a communication event.
waitReply waits for a reply to a given notification message to be received,

subject to a timeout.
waitContractEvent waits for an event that is relevant to the specified con-

tract. This is either an incoming communication event, or the lapsing of
any of the current obligations’ deadlines.

fail abandons an executing plan and marks it as failed.

5.3 Meta-information about Contracts
Instead of writing a set of plans to address specific contracts, such as customer-

VendorContract, we can write plans that address a general class of standing and
purchase contracts. We do this by abstracting common behaviour into agent-
specific meta-information about the contracts. We define a binary relation isa

which is true iff a particular contract belongs to a more general class of con-
tracts. The schematic rules below we say that customerVendorContract purchase

as an instance of purchaseContract and customerVendorContract as an instance of
standingContract that can be used to create new customerVendorContract purchase

contracts, so long as the item and price information match up with the agreed
prices in the standing contract.

customerVendorContract_purchase(X) isa purchaseContract(X).

customerVendorContract(Y ) isa standingContract(PC) :-

PC isa purchaseContract(Y , item:I, price:P)

selon(customerVendorContract(Y ), agreedPrice(item:I, price:P)).

It is also useful to know when a contract is complete. This is dependent on
the specific type of contract. For example, the standing contract above is open
ended - it is never completed, whereas the purchase contract ends successfully
with ownership of the item. complete is a binary predicate, first argument is the
contract and the second argument is the time of evaluation.

complete(PC, T) :-

PC isa purchaseContract(customer:C, _, item:I, _, _, _, _),

selon(PC, holdsAt(owns(owner:C, item:I), T)).

5.4 Plan Library for Contract Execution
We now describe a plan library for executing arbitrary contracts. For each active
contract, C, the agent must ensure that there is an intention to abide by it, by
invoking a plan for the goal monitor(C).

In the case of the vendor, we assume an initial desire to abide by their
standing contract, which will result in the goal to monitor it. However, as this
standing contract does impose any obligations on the customer agent, it is not
necessary for that agent to actively monitor it. As we shall see, the customer
may instead make use of the contract to achieve an ownership goal by creating
an active purchase sub-contract that it will monitor.



+!monitor(C): now(Now) & complete(C, Now) <- true.

+!monitor(C): now(Now) & selon(C, holdsAt(oblig(Self, G, DL), Now)) &

not(observed(C,oblig(Self, G, DL)))

<- +observed(C,oblig(Self, G, DL)) ; !G by DL in C ;

!monitor(C).

+!monitor(C): now(Now) & selon(C, holdsAt(fulfilled(Oblig), Now)) &

not(observed(C,fulfilled(Oblig))

<- +observed(C,fulfilled(Oblig)) ; !obligFulfilled(C, Oblig);

!monitor(C).

+!monitor(C): now(Now) & selon(C, violated(Oblig, Now)) &

not(C,observed(violated(Oblig)))

<- +observed(C,violated(Oblig)); !obligViolated(C, Oblig) ;

!monitor(C).

+!monitor(C): true <- waitContractEvent(C) ; !monitor(C).

The conditions of the above plans query the state of the contract using
the selon predicate. The now predicate gives the current time. When the con-
tract is complete, as defined by the complete predicate in the contract meta-
information, the first rule is applicable and the execution plan terminates.

The second rule states that if there is a new obligation on the agent, a goal
of the form G by DL in C is posted. This goal event will be handled by other
plans in the plan library (see customer and vendor agent’s plan libraries below).
When the plan to achieve the goal completes, the monitor(C) goal is reposted to
carry on contract execution.

The third and forth rules monitor the contract for obligation fulfilment and
violation. obligFulfilled and obligViolated goals are posted, which may be
handled elsewhere in the agent’s plan library to keep track of, for example, the
reliability and reputation of the contract participants.

The last rule states that if the contract is not yet complete, the agent waits
for a communication event or for the earliest outstanding obligation deadline
to lapse before consulting the contract again. Although the condition of the
last plan is always true, our plan selection function selects the textually first
applicable plan.

5.5 Plan Library for Customer Agent

The role of the customer agent is to respond to desires to own an item. These
desires are manifested by achievement goals, which gives rise to intentions to
satisfy them. We show how the agent may make use of standing contracts (or
other means of achieving ownership) in an example plan library.

+!owns(owner:Self, item:I) :

now(Now) & not(holdsAt(owns(owner:Self, item:I), Now)) &

holdsAt(activeContract(SC), Now) &

SC isa standingContract(PC) &

PC isa purchaseContract(customer:Self, vendor:V, item:I, price:P,

vendorBank:VB, customerBank:SelfBank, deliveryService:DS) &

reliable(V), reliable(DS) &

fairPrice(item:I, price:P)



<- ?proposeEvent(Proposal, Self, V, PC) ;

notify(SC, Proposal) ;

waitReply(Reply, Proposal, Now + 100) ;

!enact(Reply, Proposal).

+!enact(timedOut, Proposal) : true <- +noResponseTo(Proposal).

+!enact(Reply, Proposal) : rejectEvent(Reply, Proposal) &

rejectEvent(Proposal, Self, V, _) <- +rejected(Proposal).

+!enact(Reply, Proposal) : acceptEvent(Reply, Proposal) &

proposeEvent(Proposal, Self, V, PC) <- !monitor(PC).

The plan above is applicable to the goal of achieving ownership of a particular
item, if the agent does not already own it, and there is an agreed standing
contract mandating an acceptable price for the item with a (believed) reliable
vendor and delivery service. The plan body constructs a proposal event and
sends it to the vendor in the context of the standing contract, waits for a reply
and then acts on that reply. The vendor agent is obliged to respond with an
accept event within 100 time units, and should they fulfill that obligation the
resulting purchase contract will be monitored by the customer. If no response
comes in time, or the proposal is rejected, a belief to that effect is stored effecting
the customer’s future reliability estimate of the vendor.

There is only one possible obligation on the customer arising from the pur-
chase contract, and that is to pay for the item. We make the simplifying assump-
tion that the customer has enough money in his account:

+!achieve(paid(payer:Self, payee:V, price:P, reference:R)) by DL in PC :

now(Now) & holdsAt(activeContract(BC), Now) &

BC isa bankContract(customer: C, bank:B)

<- ?requestEvent(Request, SelfBank, paid(payer:C, payee:V, price:P,

reference:R)) ;

notify(BC, Request) ; waitReply(Reply, Request, Now + 100);

?reportEvent(Report, Reply);

notify(PC, Report).

After instructing the bank to transfer the money (in the context of the con-
tract between the customer and their bank), the customer waits for an acknowl-
edgement that this has been done and forwards it to the vendor in the context
of the purchase contract. It is this reported event that causes the paid fluent
to become established, and consequently for the customer to have fulfilled the
payment obligation to the vendor (see section 4.1).
5.6 Plan Library for Vendor Agent

The following plan library enables the vendor to accept and reject proposals for
purchase contracts. If the vendor is obliged to accept it, then by the generic
contract execution plan library, a goal will be posted to of the form do(X,

acceptEvent(X, E)) by DL in SC which is handled by the plan below.

+!do(X, acceptEvent(X, E)) by DL in SC: proposeEvent(E, C, Self, Proposal)

<- ?acceptEvent(X, E) ; notify(SC, X) ; !!monitor(Proposal).



The condition of this plan extracts the proposed contract from the content
of the message, and the plan body constructs an accept event and sends it the
customer in the context of the standing contract. A separate intention is then
created to monitor the proposed contract. The plan for rejecting a proposal is
similar, except no intention is created to monitor the proposed contract.

Now we consider that the standing contract also obliges the agent to reply to
a proposal even if it is not obliged to accept it. We define two auxiliary predicates
obligedToAccept which is true iff the vendor is obliged to accept the proposal,
and shouldAccept which is true iff the it is in the vendor’s interest to accept the
proposal. shouldAccept includes checks like there is available stock, taking into
account already committed stock, and that the proposed price of the item is at
least twice the cost price.

obligedToAccept(SC, E, T) :-

selon(SC, holdsAt(oblig(Self, do(X, acceptEvent(X, E)), DL), T)).

shouldAccept(Proposal, T) :-

Proposal isa purchaseContract(customer:C, vendor:Self | price:P,

vendorBank:SelfBank, customerBank:CB, deliveryService:DS),

costPrice(item:I, price:CostPrice),

warehouse(item:I, availability:Warehouse),

committed(item:I, level:Committed),

Warehouse - Committed > 0,

P >= CostPrice * 2.

The following two plans make use of the predicates to decide whether to
accept or reject the proposal. The plan bodies are simply goals to accept or
reject which will be handled by the plans as the start of this subsection.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &

now(Now) & shouldAccept(Proposal, Now) &

not(obligedToAccept(SC, E, Now))

<- +!do(X, acceptEvent(X, E)) by DL in SC.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &

now(Now) & not(shouldAccept(Proposal, Now)) &

not(obligedToAccept(SC, E, Now))

<- +!do(X, rejectEvent(X, E)) by DL in SC.

There are two obligations that may result on the vendor during execution of
the purchase contract. The first is an obligation to announce an invoice number,
and the second is to arrange for delivery of the item.

+!achieve(value(invoice-no, _)) by DL in PC : true

<- -invoiceNo(Last) ;

?New is Last + 1; +invoiceNo(New) ;

?informEvent(E, Self, value(invoice-no, New)) ; notify(PC, E).

To achieve a fresh value for the invoice number, the vendor increments a
belief atom, invoiceNo, and then creates an inform event asserting its value to
send to the customer in the context of the purchase contract, PC.



+!achieve(delivered(item:I, destination:C, invoice-no:R)) by DL in PC :

PC isa purchaseContract(customer:C, vendor:Self | price:P,

vendorBank:SelfBank, customerBank:CB, deliveryService:DS) &

now(Now) & holdsAt(activeContract(DC), Now),

DC isa deliveryContract(customer:V, deliveryService:DS)

<- ?requestEvent(Request,DS,delivered(item:I,destination:C,invoice-no:R)) ;

notify(DC, Request) ; waitReply(Reply, Request, Now + 100) ;

?reportEvent(Report, Reply) ; notify(PC, Report).

The vendor agent has no built-in capability to achieve delivery, so it must
make use of a third party. The above plan checks that its has an active contract,
DC, with the delivery service DS mentioned in the purchase contract (which we
assume it will have).

The vendor must create a request event to achieve the delivery and sent it
to DS in the context of DC. If successful, the delivery service will reply with
an inform that the item has been delivered, which is then forwarded by the
vendor to the customer in the context of the purchase contract, thus fulfilling
the vendor’s obligation to deliver the item.

6 Related Work
Our architecture shares the concepts of plan library, beliefs, intentions with
AgentSpeak(L). The addition of contracts not only reifies the concept of obli-
gations, but also extends the built-in behaviour of the agent by allowing it to
outsource goals that it cannot achieve itself.

In Agent0[13], agents are programmed by specifying a set of capabilities
(commitment rules). Instead of building the commitment rules directly into the
agent, our architecture allows these rules to be specified in the contract in the
form of event calculus initiates and terminates rules.

Verharen’s cooperative information agents [14] [15] are based on the language
action perspective. The architecture specifies three main categories of activities:
tasks (plans to achieve tasks organised with dependencies between the tasks),
transactions (message sequences organised with temporal ordering constraints),
and contracts, which are represented as deontic state machines of transaction
transitions. Our system does not mandate such a conceptual break down, rather
we envisage that higher level contract languages may be translatable into our
simpler event calculus syntax.

Social integrity constraints[1] can be used to specify and verify agent inter-
action protocols. The constraints express expectations on events that ought to
(or ought not to) occur given the occurrence of a previous triggering event. Each
expectation has an associated priority such that those with higher priority are
more ideal. The concept is related to obligations, but their focus is different:
social integrity constraints focus essentially on constraining the event history,
whereas obligations focus on constraining a particular agent behaviour. It would
be an interesting to attempt the expression of the one in terms of the other.

Artikis et al[2] describe a system for animating and specifying computational
societies. The system takes a global perspective, and so in order to make infer-
ences about the state of the society all the events relevant to it must be known.



This is in contrast to our work, where conclusions are reached relative to each
contract rather than the society as a whole.

Kollingbaum and Norman describe a system of supervised interaction[8]
where agents are supervised by a third party called an authority. The authority
registers contracts between the agents, witnesses the communications between
the agents and enforces the norms specified in the contracts. Our system does
not require this infrastructure, although it does admit a logging agent should
the particular situation demand it. Furthermore the agents themselves are re-
sponsible for enforcing the contractual norms.

It is important that the contract is carefully constructed so that prohibitions
do not completely prevent the fulfillment of obligations. It is feasible to statically
check contracts for these kinds of potential conflicts[3]. The NoA architecture[9]
solves conflicts by prioritising permissions over prohibitions — obligation con-
sistency is determined by considering the action effects of plans to handle the
obligation. If all plans include actions that are prohibited or interfere with other
obligations, the obligation is found to be inconsistent and is not adopted.

Conflicts between obligations and desires may also emerge, and if so conflict
resolution will be important. The BOID architecture[5] describes a method of
resolving these conflicts. Beliefs, obligations, intentions and desires are repre-
sented as separate components with feedback loops between them. Each compo-
nent builds extensions (closure under logical consequence) of their propositional
theories, and conflicts between the components are resolved by prioritising the
components one over the other.

7 Conclusion
Contracts are a powerful and high level approach to programming agent be-
haviour. Furthermore, specifying the contractual relationships between agents
separately to the agents’ capabilities is not only good software engineering, be-
cause concerns are separated, but also facilitates analysis and verification since
the contracts are represented in a formal language, the event calculus. Event
calculus is especially suitable for contract language representation because the
semantics are unambiguous and, given a reliable log of events, the conclusions
derived cannot be disputed.

Finally, our agent architecture provides a simple, powerful, extensible means
to implement passive (by monitoring fulfilment and violation of obligations),
reactive (by reacting to new obligations), proactive (by taking advantage of con-
tracts to oblige other agents) and opportunistic (by accepting proposals that are
in the agent’s interest, but not necessarily obliged to accept) behaviours.
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