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Abstract: An ageing population with increased social care needs has provided recent impetus for research into assisted
living technologies, as the need for different approaches to providing supportive environments for senior citi-
zens becomes paramount. Ambient intelligence (AmI) systems are already contributing to this endeavour. A
key feature of future AmI systems will be the ability to identify causes and explanations for changes to the
environment, in order to react appropriately. We identify some of the challenges that arise in this respect,
and argue that an iterative and distributed approach to explanation generation is required, interleaved with di-
rected data gathering. We further argue that this can be realised by developing and combining state-of-the art
techniques in automated distributed reasoning, activity recognition, robotics, and knowledge-based control.

1 INTRODUCTION
Electronic health services give opportunities for

providing better care, particularly for the elderly. But
their development gives rise to a number of research
challenges, for example in terms of privacy, user-
friendliness, conviviality and security. A prominent
area of research and development has been in Ambi-
ent Intelligence (AmI) systems, in particular for as-
sisted living environments. The long term vision of
the AmI research community is to provide systems
that intelligently and unobtrusively assist human in-
habitants with tasks in their everyday environment.
This environment is dynamic and complex, and in or-
der to operate effectively, an AmI system must have
some ability to identify and explain the events occur-
ring within it, sometimes in the face of incomplete,
uncertain or seemingly inconsistent information.

Humans have a number of key abilities and strate-
gies for coping with events in their environment. One
is the ability to quickly filter out events of interest or
that need a response from the normal (and changing)
environmental background. Another is the ability to
quickly identify possible causes or explanations for
such events, and then act appropriately to eliminate
or confirm them. This often involves taking action to
obtain further information. In this paper we propose
an approach to AmI systems that mirrors these abil-
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ities, using state-of-the art techniques in automated
distributed reasoning, activity recognition, robotics,
and knowledge-based control. Our particular focus
is on directed data gathering, triggered by the gener-
ation of tentative explanations. We argue that robots
are a particularly useful tool in this respect, because
of their multi-functional and mobile capabilities.

The research questions we wish to address are: (1)
how to identify events of interest, e.g. ones that could
lead to emergency situations, (2) how to determine
the causes of these events, and (3) how to then decide
what to do. Although traditionally these problems
are handled separately and sequentially, we propose
an iterative process which interleaves these activities,
using a knowledge-based approach underpinned by a
distributed, abductive inference engine.

The remainder of the paper is structured as fol-
lows. Section 2 illustrates the challenges in address-
ing the above questions with an example scenario.
Section 3 summarises the current state of the art, Sec-
tion 4 presents our proposed methodology for han-
dling the challenges we have identified, and Section 5
concludes and outlines our next steps.

2 OUR VISION
2.1 Running Example
Eighty-year-old Wally lives alone, with health de-
clining. An intelligent, agent-based home care sys-



tem has been installed to help him, including an
alarm connected to a local call centre that Wally can
trigger himself while at home, and two humanoid
Robotic Care Assistants (RoCAs). These small,
gentle-looking mobile humanoid robots rest at charg-
ing stations unless tasked by the system. One day
at 11am the automated Home Care Agent (HCA) re-
ceives an input indicating that Wally has pressed his
alarm button. The HCA queries the help centre to ask
if the operators there have managed to communicate
with Wally via his home or mobile phones. They have
not, and so are waiting the pre-agreed 10 minutes for
the system to generate explanations on which to act.

The HCA therefore tries to generate explanations
for the alarm. It asks the two RoCAs (one upstairs,
one downstairs) to try to locate both Wally and the
alarm button. The latter is painted with a distinc-
tive pattern that the robots can easily recognise. At
the same time the HCA tries to locate Wally’s mo-
bile phone, which is integrated into the system as an
agent, using GPS. It locates this 0.5km away, moving
up Fairtree Road at 30km/hr. The mobile’s log does
not show any recent outgoing calls, and confirms that
an unanswered call was made from the call center. It
also indicates that the mobile has been set to “silent”.

The HCA’s profile of Wally contains the following
information: (i) Wally habitually switches his mobile
to silent and does not answer calls while on public
transport, (ii) a list of places that Wally often vis-
its, including the house of his friend Ernie. Wally’s
profile states that he habitually takes the no. 27 bus
along Fairtree Road when visiting Ernie, so the sys-
tem generates and ranks the following explanation as
highly likely: The alarm was triggered erroneously or
is faulty, because Wally is on the bus to visit a friend.

Meanwhile, neither robots nor house cameras
have been able to locate Wally. A house camera re-
ports a location for the alarm button, but a nearby
robot checks then refutes this. So the HCA sends a
message to the help centre with Ernie’s contact details
and a suggestion that they call him to ask if Wally is
visiting. Ernie confirms that a visit is planned, and
shortly after phones back to confirm Wally’s arrival.
An expensive ambulance call-out is thus avoided.

Finally the HCA double-checks via a text ex-
change with Wally that he did not press his alarm,
then sends a text to the alarm system maintenance ser-
vice asking for an appointment to check the system.

2.2 Research Challenges
In cases like the running example, answering the three
questions we posed in Section 1 brings about several
research challenges. Although in this example the in-
put indicating that Wally has pressed the alarm but-

ton can easily be identified as an event that requires
further investigation, identifying events of interest is
not always straightforward. Furthermore, detecting
the causes of such events, and deciding how to react
to them in such complex environments requires han-
dling challenges such as:
• How to decide which from the possibly large

amount of available information is relevant to the
event. In our example: how can the system de-
termine that the fact that Wally’s mobile phone is
silent is relevant to explaining the triggered alarm.

• How to collect the relevant information. In the
running example locating the alarm button inside
the house requires the two robots to move and
search in places that may not be reached by static
sensors, and to recognise the distinctive pattern
painted on the alarm button.

• How to combine the available information to gen-
erate possible explanations, especially when this
information comes from diverse sources and in
different formats. In our example, the conclusion
that Wally took bus 27 to visit Ernie is based on
a combination of different types of information
such as Wally’s location, recent calls and habits,
coming from different sources, i.e. Wally’s mo-
bile phone and the HCA.

• How to deal with imperfections in the available
information, e.g. inaccuracy, incompleteness or
conflicts. In the running example, the house
camera and a robot report conflicting information
about the location of the alarm button.

• How to make the system robust to failures. In our
example, the system should be able to generate
sensible explanations for the triggered alarm even
if one of the RoCAs or Wally’s mobile phone fails.

• How to protect the privacy of all involved people.
In our scenario, Ernie must have given his consent
to Wally’s HCA to share his contact details with
the help centre in case of emergency.

• How to react to events taking into account the in-
dividual requirements of all involved parties. In
our example, apart from the overall goal of tak-
ing care of Wally, Wally may wish to keep his
personal information private, while the system
managers may be required to run the system ef-
ficiently.

3 STATE OF THE ART
In the literature, one can find several proposals for

reasoning with imperfect information in AmI envi-
ronments (Bettini et al., 2010). Many of them use
Machine Learning (ML) techniques such as Bayesian
Networks (Petzold et al., 2005), Time Series predic-
tions (Das et al., 2002), Markov Models (Gellert and



Vintan, 2006) and Neural Networks (Pansiot et al.,
2007) for specific reasoning tasks such as identifying
a particular user activity. Most recently, the use of Re-
inforcement Learning has been proposed to provide
an “implicit feedback loop” between context predic-
tion and actuation decisions (Boytsov and Zaslavsky,
2010). Although ML solutions are acceptably accu-
rate, due to the lack of an explicit knowledge rep-
resentation, they cannot provide high-level explana-
tions for automatically chosen actions, nor can they
be easily extended and modified in a modular fashion
by the users or managers of an AmI system. More-
over, they cannot cope with run-time dynamicity, as
any enhancement to the system or changes to the en-
vironment necessitate re-training of the system.

Rule-based reasoning approaches overcome some
of the above mentioned limitations. A variety of de-
cidable and tractable formalisms can be used to create
knowledge-based domain models, thus facilitating ef-
ficient, formal reasoning about context (Broda et al.,
2009). The formality, expressiveness, modularity and
extensibility of these models allow them to better sat-
isfy the needs for interoperability among heteroge-
neous components, adaptability to changes in the en-
vironment, and maintainability of large knowledge
bases (Bikakis and Antoniou, 2010b). Furthermore,
rules can easily be modified by developers, and are
easy to understand. Ontology-based models are now
standard in pervasive systems (Bettini et al., 2010),
and are readily integrated with rule-based models.

Most current rule-based solutions adopt a cen-
tralised approach for their reasoning, but the need
for distributed reasoning has also been acknowledged
for several reasons such as better scalability and ro-
bustness (Viterbo and Endler, 2012). However, re-
cently proposed solutions for distributed reasoning in
AmI are either not fully decentralised, e.g. knowledge
is distributed, but reasoning is local and agents do
not interact to exchange context information (Román
et al., 2002); or are distributed but limited in their rea-
soning capabilities. For example, the reasoning ap-
proach in (Viterbo and Endler, 2012) is distributed in
that different computational nodes have to cooperate
to infer a global context state; the reasoning process
is however limited to ontology-based inference (i.e.
inference of ground tuples via simple rules), and is
not resilient to missing, conflicting or imprecise in-
formation. Finally, all existing knowledge-based ap-
proaches to reasoning in Ambient Intelligence assume
a single direction information flow: from sensor in-
put, through to data analysis and decision-making,
and then to reaction and control, irrespective of the
extent to which each of these phases are decentralised
(Snchez-Garzn et al., 2012; Valero et al., 2013).
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Figure 1: Top Level Architecture

4 PROPOSED APPROACH

The proposed approach would integrate (1) com-
putational logic techniques for distributed reasoning
and explanation generation in the presence of partial
knowledge, inconsistency and noisy data, (2) control
procedures capable of performing proactive and ro-
bust responses of the system in an interleaved man-
ner with the event-driven knowledge-based inference
and (3) enhanced cognitive-driven robotic capabilities
such as visual scene understanding and privacy and
security awareness. Figure 1 illustrates our top level
architecture, where ‘S’s and ‘A’s signify various sen-
sors and actuators in the environment.

4.1 Distributed Defeasible Abduction
The first component of our proposed system would
extend the DAREC engine, proposed in (Ma et al.,
2010; Ma et al., 2011), with contextual defeasible in-
ference (Bikakis and Antoniou, 2010a; Bikakis et al.,
2011). DAREC is a general-purpose system that
permits collaborative reasoning between agents over
decentralised incomplete knowledge. It is particu-
larly suited to compute collaboratively explanations
of given observations. For instance, in cognitive
robotics it can be used to collectively abduce expla-
nations, in terms of descriptions of the world, from
sensor data. Agents can recruit other agents on-the-
fly, based on their local knowledge and reasoning
capabilities, and recover from other agents’ failures
during a distributed computation task. The DAREC
distributed algorithm is flexible and efficient, able
to perform constraint satisfaction and customisable



with application-dependent coordination strategies to
better balance collaborative inference and inter-agent
communication according to the particular domain
and computational infrastructure. However, one of
the main underlying assumptions is global consis-
tency. An explanation has to be guaranteed to be
consistent with respect to observed information, con-
straints and local knowledge of the agents involved
in the collaborative inference. In practice, conflict-
ing information may occur when integrating informa-
tion from different sources. Contextual Defeasible
Logic (CDL), on the other hand has been used, also
in a decentralised manner, to tackle the issue of dis-
tribute deductive inference in the presence of incon-
sistent information using nonmonotonic inference and
priorities among the conflicting chains of reasoning
(arguments) (Bikakis and Antoniou, 2010a; Bikakis
et al., 2011). Such priorities may represent different
levels of confidence in the content of the arguments
or different levels of trust in the information sources.
These approaches, however, cannot compute collabo-
rative explanations from distributed observations. We
propose overcoming these two limitations by refor-
mulating the DAREC distributed abductive inference
mechanism in CDL. The main idea is to be able to
collectively compute explanations of distributed ob-
servations but also determining the contextual infor-
mation for which that explanation is plausible. This
would for instance enable the generation of an expla-
nation from the sensor data, that Wally is not in the
house despite the camera reporting an indoor location
for the alarm button.

4.2 Knowledge Representation
To communicate effectively, the agents of our pro-
posed system would need to share a common vocab-
ulary and ontology for referring to objects in their en-
vironment and the relationships between them. De-
veloping such an ontology, and expressing sufficient
“commonsense” knowledge about the environment
with it, is itself a major research challenge. The on-
tological framework for expressing such knowledge
should facilitate basic spatial, temporal and causal
reasoning. For example, the system might at some
point need to utilise the knowledge that spilling boil-
ing water onto an electrical device (e.g. Wally’s alarm
button) typically damages the device, and causes it
to be hot and wet, and to remain wet for some time.
The Event Calculus (EC) (Kowalski and Sergot, 1986;
Miller and Shanahan, 2002) is a prime candidate for
this type of knowledge representation and reason-
ing. The EC is a logical mechanism for inferring the
cumulative effects of a sequence of events recorded
along a time line, or (used abductively (Shanahan,

1989)) inferring possible causes of a temporal se-
quence of observations (e.g. sensor readings). The
EC has been extended with several features that are
particulaly relevant in the present context. One is
the ability to infer compound or “high level” events
(e.g. ‘Wally has gone upstairs’) from a sequence of
“smaller” events (e.g. the triggering of movement sen-
sors in sequence from the bottom to top of the stair-
case) (Artikis and Paliouras, 2009; Alrajeh et al.,
2013). Another is the ability to reason epistemically
about the agent’s own future knowledge should it per-
form sensing or data-gathering actions (e.g. phoning
Ernie will result in knowing whether Wally is visiting
him) (Ma et al., 2013). For these reasons, our pro-
posed system would embed EC-style ontology inside
the agent’s knowledge.

4.3 Knowledge Based Control
To address the first three challenges in Section 2.2 our
proposal would allow for proactive multi-agent ex-
planation generation and evidence gathering. As de-
scribed in Section 4.1, distributed defeasible abduc-
tive reasoning would enable multi-agent computation
of context-dependent explanations to distributed ob-
servations in the presence of uncertainties and con-
flicting information. This process would be most ef-
fective when done proactively and in an interleaved
manner with multi-agent evidence gathering. Our
underling infrastructure of sensors/actuators network
and mobile service robots would be capable of per-
forming proactive data gathering: responding to re-
quests for specific data gathering, deemed by the
knowledge-based inference to be relevant for compu-
tation of more likely explanations. It could also trig-
ger requests for inference tasks for knowledge-driven
control.

Knowledge-driven control can be achieved using a
multi-thread agent architecture that embeds Nilsson’s
Teleo-Reactive (TR) procedures (Nilsson, 1994) for
robot control. A TR procedure is an ordered sequence
of condition-action rules, in which the conditions can
access the current agent’s store of observed and in-
ferred (i.e. deduced or abduced) dynamic beliefs: sen-
sor percepts, told and remembered beliefs about the
environment and its inhabitants. The rule actions are
either device control actions, calls to TR procedures
including recursive calls, or forking of information
gathering or distrubuted reasoning threads. In each
called procedure the first rule with an inferable guard
is fired eventually resulting in device actions or thread
forking. Device actions typically continue until new
device actions are determined. The belief store of an
agent is continuously and asynchronously updated as
the (reactive) control procedures execute. On each up-



date the last rule firings are reconsidered starting with
the firing of the initially called procedure of each task
thread. This unique operational semantics means that
TR control is robust and opportunistic. If helped a
TR controlled robot will automatically skip actions,
if hindered it will redo actions.

Reasoning about the expected effects of control
gives the system a means for intelligently monitor-
ing its own performance. For instance, integration
of sensing/actuation and knowledge-base inference
may enhance the visual perceptions of mobile robots.
Computer vision tasks (e.g. 3D reconstruction, object
recognition and tracking), can be complemented with
knowledge inference to provide the service robot with
the ability to draw conclusions, generate plausible ex-
planations from what it sees and gain real-time vi-
sual scene understanding. The robot would be able
to reason about the objects in the environment and its
inhabitants, explain current observations, or even re-
construct a narrative of the scene by deriving and us-
ing information that it cannot see, thus making more
intelligent decisions about its actions.

Communication between multi-agent components
could make use of an agent acquaintance model ac-
quired using publish/subscribe (Robinson and Clark,
2010) to recruit agents likely to be able to contribute
to an inference task. As new agents are added to the
system, they subscribe for event notifications of in-
terest to them, updating subscriptions to reflect focus
of interest. These agents then exert control over the
monitored system by posting action request notifica-
tions to be routed to other agents and devices. No
component needs to know the identities of other com-
ponents, or even what other components there are. All
that has to be decided is the ontology for notifications
and subscriptions.

4.4 Robotics
In applications such as ours, hardware considerations
have to be taken into account. To satisfy the system
requirements our service robots would include differ-
ent kinds of capabilities from efficiency and cost to
conviviality (Caire et al., 2011). So we need to ex-
amine a range of potential service robots which could
fulfil the requested tasks.

For example, to provide the basic functionality of
looking for Wally in case of emergency, the simplest
robot could consist of a Kinect camera attached to
a mobile robot platform. For a more sophisticated
robot, a tablet attached to a pole could be added as
a feature. This would enhance its interactions with
Wally, and provide a basis to be used as a healthcare
assistant. A higher end robot could consist of a hu-
manoid robot, with more subtle and varied interaction

capabilities, possibly equipped with 3D camera. Such
a service robot could be potentially be used as Wally’s
personal companion at home.

4.5 Privacy and Security
Of course, and particularly in AAL and scenarios
such as ours, privacy and security issues are always
a concern. Our approach in this domain is to first,
ensure that communication on the health network
is encrypted. Any secure method, such as Trans-
port Layer Security (TLS) and Secure Sockets Layer
(SSL) would be appropriate. The TLS protocol al-
lows distributed applications to communicate across
a network in such a way as to prevent eavesdropping
and tampering, while the SSL ensures confidentiality,
integrity, and authenticity of individual packets.

Second, strict access policy can be put in place
to ensure that, for example, only doctors have direct
access to patients. Provisions could then be set to,
for example, relax the strict policy and allow doc-
tors to, under certain conditions, share access, or part
of it, with others, e.g. nurses. Approaches such as
Role-Based Access Control or Attribute-Based Ac-
cess Control could be used, e.g. (Kateb et al., 2014).
The latter method offers the interesting perspective
whereby a subject’s requests to perform operations on
objects are granted or denied based on the attributes
of the subject, the object and the environment.

In our scenario, the robots only navigate within
the house. Privacy with respect to video and sound
is therefore not a problem. Furthermore, they trans-
mit video and sound solely when there is an emer-
gency. Areas such as the bathroom, could by default,
i.e. when no emergency has been triggered, be de-
clared no-go areas. In all other cases the video and
sound data would only be used locally by the robot,
namely, to interact with its environment. This should
not cause any issues.

As for the recording devices themselves, blurring
filters may be used on cameras to allow only a general
view of the scene, i.e. no details. This could be used
in some cases, such as alarms, to check whether Wally
is in the bathroom. As for microphones, switches
have to be implemented with an off default setting.
Indeed, it is preferable to keep microphones switched
off at all times except for emergencies, e.g. where the
robots are looking for Wally.

5 CONCLUSION
In this position paper we argue that the ability

of an AmI system to explain the causes of perceived
events in its environment is key to its success, and that
this is best achieved by an iterative process of tenta-
tive explanation generation interleaved with directed



evidence gathering. We further argued that a num-
ber of recently developed knowledge-based technolo-
gies and methods could be extended and combined
into a next generation of AmI systems in the area of
assisted living, in particular utilising the latest genera-
tion of mobile robots acting as agents in a distributed
computational setting. We outlined some of the re-
search challenges that such an endeavour would en-
tail, and described a composite approach to their solu-
tion using the latest methods in distributed abductive
reasoning, defeasible reasoning, teleoreactive control,
and event-based ontologies and knowledge represen-
tation. Such a system would capitalise on the ad-
vantages of a distributed, knowledge-based approach,
such as transparency of computation, easy adaptabil-
ity, e.g. to users, and extendability via knowledge-
base rules, no single point-of-failure, and closeness
of fit with human-level reasoning.
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