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Abstract: Collaborative Filtering systems suggest items to a user because it is highly rated by some other user with
similar tastes. Although these systems are achieving great success on web based applications, the tremendous
growth in the number of people using these applications require performing many recommendations per sec-
ond for millions of users. Technologies are needed that can rapidly produce high quality recommendations for
large community of users.
In this paper we present an agent based approach to collaborative filtering where agents work on behalf of
their users to form shared “interest groups”, which is a process of pre-clustering users based on their interest
profiles. These groups are dynamically updated to reflect the user’s evolving interests over time. We further
present a multi-agent based simulation of the architecture as a means of evaluating the system.


1 INTRODUCTION


The huge amount of Information available in the
currently evolving world-wide information infrastruc-
ture can easily overwhelm end-users, a situation that
is likely to worsen in the future, unless the end user
has the ability to filter information based on its rele-
vance. Content-based filtering systems infer a user’s
profile from the contents of the items the user previ-
ously rated and recommend additional items of inter-
est according to this profile. In contrast, Collabora-
tive filtering systems (Herlocker et al., 1999), (Maes,
1994), (Kautz et al., 1997), (Terveen et al., 1997),
work by collecting human judgements (known as rat-
ings) for items in a given domain and correlating peo-
ple who share the same information needs or tastes.
These systems generally have the following problems.
They rely on an overlap of user rated items (i.e if the
user’s did not rate any common items then their pro-
files can not be correlated). The enormous number
of items available to rate in many domains makes the
probability of finding user’s with similar ratings sig-
nificantly low. Since, recommender systems are used
by a large number of users, correlation based algo-
rithms need to search through a large neighbourhood
of user’s in real time. An alternative approach and one
that we use is content based collaborative filtering


techniques. Such systems (Basu et al., 1998), (Clay-
pool et al., 1999), (Good et al., 1999) combine both
the content and collaborative information. We utilise
the content of the items the users have rated to in-
fer their interest profile and we then use these profiles
to dynamically form interest groups which are contin-
uously updated with changing user interests. These
interest groups are smaller to analyse compared with
the correlation based algorithms where a large neigh-
bourhood of users need to be analysed every time a
collaboration recommendation is to be given.


The paper is structured as follows. We first present
the multi-agent architecture of our system, along with
a brief description of the functionality of the agents
involved. We then explain the method of construct-
ing and updating a user’s interest profile. This is fol-
lowed by a description of the collaborative filtering
framework, in which we present our algorithm for dy-
namicaly updating the different interest groups. This
is followed by an overview of the multi-agent based
simulation of the framework.


2 SYSTEM OVERVIEW


The personalised TV recommender provides the
user with recommendations from online TV guides
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and other web accessible TV program information. It
creates, learns and modifies the user profile automat-
ically based on user feedback on the programs that
they have already seen.


A recommended list of programs is displayed to the
user upon request or regularly on a daily basis. The
user can also request more detailed descriptions or re-
views of the recommended programs. The user can
decide to watch recommended programs or make his
own entirely different selection. The user is asked to
give feedback on the programs that they watched the
next time they view a new recommendation.


A network of agents work behind the scenes, com-
pletely hidden from the user to model and learn user
preferences in order to provide the program recom-
mendations. A pictorial overview of the agent archi-
tecture is given in Figure 1. For each user interacting
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Figure 1: Overview of the agent architecture


with the system there is an associated interface agent
and a recommender agent. The interface agent han-
dles all user interactions with the system. It is also
able to map user requests and actions into a form un-
derstandable by the recommender agent. The recom-
mender agent, on the other hand, does not directly in-
teract with the user but it is the only agent in the sys-
tem that knows about the user’s viewing preferences.
Since the recommender agent has to accomplish nu-
merous complex tasks related both to the user and the
other agents, it needs to have a picture of the current
state of affairs. In particular its knowledge component
has a representation for:
• the user’s world, the kind of viewing habits a user


has, his current viewing interests and his past his-
tory with respect to the viewed programs. This in-
formation is represented in the form of a user pro-
file.


• the available agents and their capabilities. It is
able to coordinate a number of agents and knows
what tasks they can accomplish, what resources
they have and their availability.


The system also supports a collection of information
sites. The notion of an information site is used to de-
scribe a logical entity that contains a set of WWW
sites. At each site there is an extractor agent and an
information agent. The role of the former is to ex-
tract Television guide information, the role of the lat-
ter is to maintain a database of extracted information.
For all the sites there is only one information facilita-
tor agent that is able to accept queries from the net-
work of recommender agents. It is then able to route
these queries to the information agents that are able
to answer the query. The inter-agent communication
is based on standard Knowledge Query Manipulation
(KQML) (Finin et al., 1997) performatives.


For the collaborative recommendation component
one collaboration agent exists for each program cat-
egory. Recommender agents register their user’s in-
terest profile with these agents. Collaboration agents
use these registered interest profiles to automatically
and dynamically create and maintain interest groups
within each program category. For example, there is a
set of interest groups for situation comedies, another
set of interest groups for documentaries and so on.
When one of the users reports that they have unex-
pectedly enjoyed a program (unexpectedly because
the program was not recommended by their agent)
their recommender agent will immediately inform the
collaboration agent for that program category. This
will then route this information to all the recom-
mender agents in the same interest group. Each of
these agents will recommend this new program to its
user if the user hasn’t yet seen it. They can then catch
the program on a repeat or on its next episode, if it is
a series or a serial. More generally, each time the user
gives feedback on the programs they have watched
the recommender agent updates the user’s profile us-
ing descriptions of the viewed programs. This in turn
causes the interest groups to be updated. It may be the
case that an updated user profile is moved from one
interest group to another by the collaboration agent,
or it may be used to form the nucleus of a new group-
ing.


3 USER PROFILING


In this section we briefly describe the format of a
user’s interest (or viewing) profile. Each user’s pro-
file is divided into categories corresponding to pro-
gram categories such as dramas, comedies, in total
we have 29 fixed categories that a profile can be di-
vided into. Each category in turn is represented as
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weighted tuples of keywords (actually word stems)
produced from the descriptions of programs the user
has liked and disliked. For instance Table 1 is an il-
lustration of a user’s preferences in the drama cate-
gory (i.e the types of drama programs the user likes).
The fact that this user has a drama category in his pro-
file indicates his interest in drama programs in general
but the existence of “hospital” (i.e hospit) in his pro-
file indicates his high interest in hospital drama pro-
grams. This type of keyword representation of the


Table 1: User’s drama profile


drama murder doctor victim hospit


user interests has the problem that small amounts of
training data will lead to selection of keywords that
accidentally appear in the data and that are really ir-
relevant in discriminating between interesting and un-
interesting programs. Using irrelevant features makes
the learning task much harder and leads to a lower
classification accuracy. As a solution to this problem
alternative methods have been proposed to initialise
the user profile. For instance in (Pazzani and Billsus,
1997), these keywords are elicited explicitly from the
user. However, this process of profile initialisation is
too tedious for the user and will often result in a user
being unable to specify the words that best describe
his interests in a particular domain, especially if the
user is unfamiliar with this domain. To overcome this
problem we use a rapid profile initialisation method
where the agent automatically and continuously ex-
tracts web accessible program information and deter-
mines the informative terms that most frequently oc-
cur in the descriptions of TV programs for each pro-
gram category. This is done in the following way.
Textual content of program descriptions for different
categories are extracted from web sources. The con-
tent is then parsed and all stop-words (or non informa-
tive terms such as “a”, “the”, “and”, “to” etc.) are re-
moved. The words are then stemmed using the Porter
stemming algorithm (Porter, 1980) such that the word
“computers” and “computing” both stem to the word
“comput”. We use the expression below to calculate
the weight wj for a word kj appearing in the descrip-
tion of a particular program category cp with an anal-
ogous expression for the weight of a word for a pro-
gram not in that category (i.e cp). cp is the union of
all the program descriptions in categories other than
cp.


wj = (P (cp|kj)− 0.5)× fabs(sig) (1)


Here, P (cp|kj) is the probability of a program de-
scription belonging to the category cp given that it
contains the word kj , this is calculated from the sim-


ple Bayes formulation


P (cp|kj) =
P (kj |cp)P (cp)


P (kj |cp)P (cp) + P (kj |P (cp))P (cp)
(2)


where, P (kj |cp), is the probability that the program
description contains the word, kj given that it belongs
to the category cp. P (cp) is the probability that pro-
gram is in category cp (i.e, the ratio of programs in
category cp to all programs in all the other categories).
Similarly P (kj |cp), is probability that the program
description contains the word, kj given that it belongs
to cp and P (cp) is the probability that a program is not
in cp


The sig value is calculated by the formulation:


sig =
h1


n1


− h2


n2
√


(


h1+h2


n1+n2


)


×
(


1− h1+h2


n1+n2


)


×
(


1


n1


+ 1


n2


)


(3)
where, h1 is the number of times word kj occurs in
the set of program descriptions in cp, h2 is the num-
ber of times word kj occurs in the set of programs of
cp. n1 and n2 are respectively, the number of words in
the set of programs in cp and cp. These words are then
sorted according to their weights and the top scoring
words are selected as the representative keywords for
each category. The higher the weight the more signif-
icant the word.


As a result of this process each category is de-
scribed with a set of informative terms (keywords).
Table 2 shows some of the keywords which have
been automatically extracted from the content of
random selection of drama program descriptions.
Recommender agents then use these sets of pre-


Table 2: Feature words


secret disast suspens hostag doctor
terrifi mysteriou affair drama polic
evil trial victim emergen hospit
crimin murder viciou scam danger


defined keywords to initialise a user profile using user
feedback. At first registration the user is asked to
rate some programs he has seen within the past two
weeks. The agent then uses the descriptions of the
programs the user rated and the list of pre-defined
keywords to initialise the user profile. For instance
consider the program description illustrated in Figure
2, further consider that this program was liked by the
user. To initialise the user’s profile the agent repeat-
edly searches for occurrences of the pre-defined key-
words from Table 2 within the description of this rated
program to produce the subset of keywords of Table 1.
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Each time a keyword from Table 2 is found its count
is incremented by 1. Finally, a probability is deter-
mined for each found keyword using the total number
of times it appears in the set of programs which has
been liked with the total number of times the keyword
appears in the descriptions of any program which has
been viewed, and rated for that program category. The


Murder On The Hour.
Lighthearted drama about a hospital doctor
who uses his sleuthing skills to help the crack
baffling cases. A serial killer appears to be
selecting victims who had recently come close
to death, but were on their way to making full
recoveries. In addition, every murder is taking
place on the hour.


Figure 2: A description of a drama program


advantage of the prior keyword selection process is
that a user need only rate a few items for the agent
to be able to determine which keywords to select for
representing in the user profile.


Later on, as the user gives more feedback, the
agent uses this feedback to update the user profile to
reflect the users changing interests. This involves an
updating of the prior probabilities of the keywords
within the user profile. For this we use conjugate
priors (Pazzani and Billsus, 1997). Conjugate priors
are a traditional technique from Bayesian statistics to
update probabilities from data (Heckerman, 1996).


Classifying new programs
We use the naive Bayesian probabilistic classifier
(Duda and Hart, 1973) to determine the probability
that a given program description will belong to the set
of programs liked or to the set of programs disliked in
any given category, given the feature values of the of
the program description. To determine the probability
that a program description belongs to either the liked
or disliked subset of a category, we use Equation 4,
which is the naive Bayes probabilistic classifier.


vNB = arg max
vj∈{like,dislike}


P (vj)
∏


i


P (ai|vj) (4)


where, vNB denotes the target value of the naive
Bayesian classifier, P (ai|vj) is the probability that a
program description contains the word ai given that it
was liked or disliked. The naive Bayesian probabilis-
tic classifier has been chosen since previous research
suggests that it is faster at learning than other classifi-
cation methods (Pazzani and Billsus, 1997).


4 BUILDING AND MAINTAINING
INTEREST GROUPS


In our system the collaboration agent clusters user’s
into interest groups based on the similarity of their
profiles for each interest category. Users are not clus-
tered based on their entire profile contents since it
may be the case that two users have similar tastes
in comedies but quite different tastes with respect to
sports programs.


For the process of clustering we adapted the Hi-
erarchical Agglomerative Clustering (HAC) algo-
rithm (Everitt, 1980), (Rasmussen, 1992), (Willet,
1988), to cluster user profiles. The HAC process re-
peatedly merges the two most similar clusters until
only one cluster remains. This results in a single hier-
archy or dendrogram to use the correct terminology.


Our adaption of this algorithm for clustering users
based on their profiles is as follows. The first phase in-
volves initialisation where each separate interest pro-
file is represented as one element cluster. There then
follows the process of merging the two most similar
clusters until one of the two possible termination con-
ditions are satisfied. Either, the similarity of any two
clusters is less than 0.7 or only one cluster remains.
For the similarity measure between clusters, we use
vector similarity (Salton and Buckley, 1988). Fig-
ure 3 is the pseudo-code of our algorithm for clus-
tering the user profiles in a given category. Figure
4 shows the clusters formed for three different cat-
egories of interest. At present we keep the similar-
ity levels fixed for every category. One of our fu-
ture plans is to determine experimentally the opti-
mal similarity levels for the different categories. For
the formation of the interest groups, the collabora-
tion agent generates the clusters that have an internal
profile similarity greater than 0.7. In Figure 4 the
drama category has three clusters (clusters are deter-
mined by horizontal lines in the dendrogram). These
are {d1, d2, d3, d4}, { d5, d6}, {d7, d8, d9} where,
d1, d2, d3, d4, d5, d6, d7, d8, d9 are the individual in-
terest profiles for the drama category of nine peo-
ple. For maintaining the interest groups the agent re-
clusters the profiles on a weekly basis. As a result
of re-evaluating the clusters, the clusters are updated
to reflect the user’s changing interests. This may re-
sult in new clusters being formed or existing clusters
being augmented.


5 SYSTEM EVALUATION


The collaborative recommendation component
based on viewing recommendations that come from
users with similar tastes requires a reasonable large
community of users. We have not got the resources
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Input


P={p1,p2,..pN }


Initialise


– start with clusters that contain a single user pro-
file
C={c1,c2,..cN } a set of clusters
ci={pi} for 1 ≤ i ≤ N
S = 0


• Repeat the following steps iteratively until there is
only one cluster left or S ≤ 0.7


for k = N − 1 to 1 do


• identify the two clusters that are most similar


S = (cj , cm) = arg max sim(cj , cm)


where, sim(cj , cm) is the cosine similarity


~cj • ~cm


|~cj | × |~cm|


• merge them to form a single cluster


c∗ = {cj ∪ cm}


• update the clusters


Ck = Ck−1 − {ci,j , ci,m}+ c∗


Figure 3: Pseudo-code of our clustering algorithm


for such a field trial of the system, so instead we de-
cided to simulate such a large user community, rep-
resenting each user as an agent (see figure 5). This
presents the problem of how to represent the viewing
tastes of each user, tastes that have to be approximated
to by the user’s recommender agent, as it develops its
user model. We decided that the way in which the
recommender agent models the user, by weighted tu-
ples of words for liked and disliked types of programs
in each program category, was a reasonable way to
model a user in their simulating agent. This model is
hidden inside the simulating agent and is used by that
agent to give viewing feedback to its recommender
agent which is trying to learn this model.


This approach reduced the problem of simulating a
user community to the need to generate a set of dif-
ferent user profiles, each of which was reasonable in-
ternally consistent, to represent some plausible com-
munity of viewers. We did this by randomly choos-
ing for each program category, a set of programs that
some viewer might have liked and disliked over a
three months viewing schedule. Text descriptions of
these programs were then used to build the same user
model for that program category that would be built
by a recommender agent. We then rejected those pro-


0.9


0.7


0.5


0.3


0.1 Drama SportComedy


d1 d2 d3 d4 d5 d6 d7 d8 d9 c1 c2 c3 c4 c5 c6 c7 c8 c9 s1 s2 s3 s4 s5 s6 s7 s8 s9


User Profiles in different categories


Si
m


ila
ri


ty


Figure 4: Profile hierarchies for different categories


Interest 
Group 2


Partial user


Partial user Complete user
profile


Recommender
Agent


Recommender
Agent


Schedule
Viewing 


feedback
user
Simulated


feedback
user
Simulated


Group n
Interest 


Agent
Collaboration


Group 1
Interest 


Complete user


Update
profile


Update 
profile


profile


profile


profile


Agent
Simulated User


Simulated User
Agent


Figure 5: Agent architecture of the simulation process


files in which the liked and disliked profiles were too
similar. This is so that simulated user profiles have
differing likes and dislikes to represent each interest
category. We then constructed a complete user model
by randomly selecting a set of likes and dislikes pro-
files to cover all the program categories.


The next process is to simulate the user feedback
process which is used by the recommender agents
to learn the user profiles. We start by having the
simulated user agent use its assigned user model to
classify as liked or disliked each program in a three
week viewing schedule and to give this information to
its recommender agent. The recommender agent uses
this to build a partial model of its user which it then
sends to the collaboration agents. The collaboration
agents use these partial user models to form the
interest groups. The recommender agent also uses
its partial user model to recommend new programs
to the simulated user agent. The recommended
programs are then classified by the simulated user
agent using its more complete user model and
feedback is given to the recommender agent so that
it can update its partial model. These updated partial
models are used by the collaboration agent to update
the interest groups. In order to test the collaborative
recommendation component we make the simulated
user agent randomly report non-recommended pro-
grams as liked. These are programs which were not
recommended by the recommender agent but are
similar to the complete user model, this in effect
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is same as having the user report serendipitous
discoveries. We can then observe whether and how
this new program is disseminated amongst the user
recommender agents. By building such a simulation
community we were able to evaluate the collaborative
recommendations process by observing the accuracy
of the recommendations given. Accuracy is the
ratio of recommended programs classified as being
liked by the simulated user agent to all programs
recommended by the recommender agent.We could
also observe how the partial user model evolves over
time to become a near complete user model and also
to observe how these changes will be reflected in
formation and updating of the interest groups.


Experimental Results
We conducted a number of simulation experiments to
assess the validity of our architecture. One of which
was to observe the performance with the changing
user interests. To do this we observed what would
happen to the performance when there is a sudden
change in the user profiles. Figure 6 shows results
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Figure 6: Results of the simulation


of the simulation experiments performed within the
drama category. We report the average accuracy of
the predictions given to all the interest groups over
45 iterations. At each iteration the partial profiles
are re-clustered (i.e the interest groups are updated).
After iteration 13 we purposely got the simulated
user agents to report programs that are different to
the partial profiles. This is like having user’s discover
new programs that were not recommended to them
by their recommender agents. Only some of the sim-
ulated user agents had their complete profiles updated
with this new program information. At iteration 14
this rapid change within the simulated user’s profile
is indicated as a sudden drop in the average accuracy
of the predictions. But this is followed by a steady
increase in the accuracy of the predictions with the
other iterations indicating recovery of the interest
groups as they are dynamically updated.
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