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Abstract— We present an extension, TeleoR, of Nilsson’s
Teleo-Reactive (TR) rule based robotic agent programming
language[22]. For both languages programs essentially comprise
sequences of Guard ∼>Action rules grouped into parameterised
procedures. The Guard is a deductive query to a set of rapidly
changing percept facts generated from the most recent sensor
values. For TR, the Action is either a tuple of primitive robotic
actions, to be executed in parallel, or a single call to a program
procedure, which can be a recursive call, or a BeliefStoreupdate.
TeleoR has extra forms of action. The procedures encode goal
(teleo) directed reactive task and sub-task behaviours of robotic
agents. TR/TeleoR programs are robust and opportunity
grabbing, and so are well suited to human/robot or robot/robot
co-operative tasks requiring flexible behaviour.
TeleoR, extends TR in having: types and higher order

features; extra forms of action rules that temporarily inhibit
other rules in the same procedure; repeatable sequences of
time capped actions; wait/repeat re-start of failed actions; belief
store update and message send actions linked with any rule; a
flexibly typed higher order LP/FP programming language for
BeliefStore inference; support for the high level programming
of multi-tasking agents that interleave the use of subsets of a
set of independent robotic resources. All the extensions were
driven by application needs. The use of QuLog enables us to
guarantee by compiler analysis that all guarded rule actions
will be fully instantiated and correctly typed when sent to a
robot, perhaps via a ROS interface. The focus of this paper is
on the extensions for single task communicating robotic agents.

Our goal was to extend TR without losing the elegance and
simplicity of Nilsson’s language. We also wanted to be able
to give the extended language a formally defined operational
semantics, building upon one we had given for TR.

The extensions, their semantics, and their implementation
were developed in parallel. A methodology we can recommend.

I. INTRODUCTION

Nilsson’s Teleo-Reactive (TR) [22] agent programming
language is a mid-level robotic agent programming language.
It assumes lower level routines written in procedural pro-
gramming languages such as C that do sensor interpretation,
particularly for vision, and others that implement quite high
level robotic control actions such as moving a jointed arm to
a given location, or to be next to a recognisable object. TR
is a language for deciding to make such an arm move, given
that the object has just been ‘seen’, because doing so will
opportunistically achieve some sub-goal of its current task.
TR programs are sequences of guard∼>action rules clus-

tered into parameterised procedures. The guards query, some-
times via rules defining ‘interpretation’ relations, a set of
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rapidly changing percept facts that are the agent’s internal
representation of the lower level sense data analysis. A rule
action is: one or more robotic actions to be executed in
parallel; or a call to a TR procedure, which can be a recursive
call, or a BeliefStore update action. In each called procedure
there is a current fired rule - always the first rule with a guard
instance inferable from the current percepts. At the bottom
of the call hierarchy the fired rule always has robotic actions
that are dispatched to the physical devices to effect changes
in the agent’s environment.

In each procedure, the guard of the top rule is a percepts
query that determines that the goal of a call of the procedure
has been achieved, with an action that maintains the goal,
often do nothing. Lower rules should be such that when they
are fired the instantiated action should, providing the rule
remains the fired rule of the call and the call is still active,
normally bring about changes in the environment such that
the guard of an earlier rule becomes inferable. Nilsson calls
this the regression property.

If the action of the rule is a procedure call, the inferability
of the guard of the rule, and the non-inferability of earlier
rule guards, is then a context condition we can assume
holds throughout the execution of the call. For each context
condition of a call of a procedure, it should be the case that
there is always a rule that can be fired in the procedure, often
achieved by having a last default rule with guard true. If
this is the case, and it satisfies the regression property, it
is a universal procedure for its goal, for every call in the
program.

Typically, initially called TR procedures query the per-
cepts facts through several levels of defined relations. Via
procedure call actions they eventually invoke TR procedures
that directly query the percept facts and have robotic actions.
This corresponds to a two tower and two thread architecture
as depicted in Figure 1. For TR the interface between
deliberation and reaction is procedure calling.

When each new batch of percepts arrives, perhaps via a
ROS [26] interface, the percepts handler thread atomically
updates the agent’s BeliefStore. This triggers the TR eval-
uation thread to atomically reconsider all the rules that it
has fired, starting with the initial procedure call and working
down the call chain. If there is no change of fired rule in any
procedure call the last actions continue. If there is a change
in some ancestor A of the last procedure call this last call,
and all other descendant calls of A, are terminated and a
new call chain below A is unfurled until a rule with robotic
actions is fired. These new actions are used to update the last
set of actions, with some left unchanged, or modified (e.g.
speed), or terminated or started.



TR’s unique operational semantics means the behaviour
that a TR program encodes is robust and opportunistic. It
automatically recovers from setbacks, redoing actions if need
be. It skips actions, if helped. This makes TR well suited for
human/robot and robot/robot collaborative applications.

Using various compiler optimisations it is possible to make
this reconsideration of fired rules very fast, of the order
of milliseconds, because the re-evaluation of rule guards in
particular calls can often be safely skipped. Even when this
is not the case, real robotic devices, often being mechanical,
run very slowly compared with processor speeds so the
sensor data transmission rate will often be such that all
reconsideration can be concluded before the next sense data
arrives. As a safeguard, the architecture ensures that all
reconsideration of guards is concluded before the percepts
handler gets to update the BeliefStore. This is because the re-
evaluation response to new percepts is an atomic call within
the evaluator thread. This means that the guard re-evaluation
of each procedure call sees the same BeliefStore state. In
the worst case some sense data may be lost. This should
only result in a tens of milliseconds response delay on the
assumption that the next sense data reading is similar to the
lost one.
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Fig. 1. Double Tower Architecture

The reconsideration down the call chain gives TR its a
unique operation semantics. Procedure calls remain active
even when the action of their fired rule was a procedure call.
They have no stop or exit action. Procedures do not terminate
themselves, they get terminated when an ancestor fires a
different rule instance. This operational semantics evolved
out of Nilsson’s work on Shakey [21], particularly the
triangular representation of Shakey’s plans, with influences
from Brooks’s subsumption concept in his robot behaviour
language [3].

Each modification or extension in TeleoR was motivated
by an application need and we will motivate most of them
by identifying shortcomings in an example TR program. The
extensions are:
• procedures and the BeliefStore language are typed and

higher order. This enables compile time guarantees that
no guard inference will hit a runtime error due to
incorrect use of a primitive, and that the robotic actions
sent out to robots will be correctly typed and fully
instantiated, a very important safeguard. The BeliefS-
tore language is the typed and moded LP/FP language
QuLog[8]. Giving details of QuLog is beyond the scope
of this paper.

• timed sequence actions that are sequences of time
limited durative actions, including procedure calls, for
micro-behaviours where the actions do not achieve a
sub-goal that can be tested by a percept query, but
calibration can give us a good estimated time of when
the sub-goal should be achieved.

• wait/repeat actions that may be repeated when they have
not resulted in the firing of another rule after a specified
wait time, indicating a possible jammed device.

• two new forms of rule that, when fired, temporarily
inhibit the firing of rules below and rules above in the
same procedure call, which can be combined:

– a while rule used to delay the re-achieving of the
guard of the rule when fired, in case the guard
becomes false, and to allow its action to continue
while a continuation query in inferable,

– a dual until rule, which allows a rule action to
continue in order to over-achieve the guard of a
rule above by continuation of the rule’s action until
some condition holds and the rule’s guard remains
inferable.

• the ability to link BeliefStore updates, and message
send actions to other robotic agents, with any rule
action. These may not be executed immediately. They
are executed when the robotic actions finally determined
by the rule’s use are executed.

If an agent can send messages it must also be able to
receive them. To achieve this we add another thread in the
base agent architecture, a message handling thread, which
is the public interface of the agent. Such a thread can also
handle queries, and task start and task terminate requests. The
extended architecture is depicted in Figure 2. All incoming
messages are handled by the message handler and both
it and the percepts handler atomically update the agent’s
BeliefStore, the former by adding or removing told facts.
Both told facts and percepts may be queried in rule guards
allowing for the smooth integration of the two sources of
data. The told facts can be percepts of other robotic agents.

Extra capabilities such as SLAM or abductive reasoning
can be added as extra threads accessing and updating the
agents belief store, using a common ontology. The outputs
of such reasoning threads, and new beliefs added due to
incoming messages, incrementally affect control behaviour.
Earlier rules in procedures that query the facts that may be
added by the extra threads become fireable and take over
from later default rules that just deductively query the percept
facts.

Pedro [24] is a publish/subscribe and addressed mes-
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Fig. 2. Three Thread Communicating TeleoR Agent Architecture

sage router using Prolog technology. When an agent pro-
cess is launched it registers a host unique name such as
collector1 with a Pedro server on the same or another
host. It can then be sent messages using a Pedro handle
of the form collector1@HostName and send messages
to other agents using similar email style names if they
are registered with the same Pedro server. An agent can
lodge subscriptions with the server that are of the form
Ptn::Test where Test is a Prolog query using only Pe-
dro supported primitive relations. An agent can also publish
a notification as a message term Notify. It will be routed to
all agents with a current subscription Ptn::Test such that
Notify matches Ptn and the linked Test, which typically
tests values of variables in Ptn bound by the match, is
inferable by Pedro.

After the Related Work Section, we describe Nilsson’s TR
language. We give a summary of TR’s simple rule syntax
(slightly modified from that of [22]), the guidelines for
how one writes a TR program, and further detail of TR’s
unique operation semantics via an informal algorithm for
evaluating a TR procedure call. A straightforward elaboration
also applies to a TeleoR procedure call for a single task
robotic agent. We exemplify the TR language by giving a
program for an agent controlling one robot to collect bottles
in an obstacle free space.

We then introduce TeleoR and its more elaborate syntax.
We exemply its use by modifying the example TR program
to a program for use by each of two robot controlling agents
with a joint task of collecting a given number of bottles in
the same space. The agents communicate so that they both
‘know’ when the joint total is reached. They also communi-
cate to compensate for poor visual processing capabilities, in
order to avoid collisions with minimal deviation from current
paths.

The TeleoR language we present in this paper enables us
to program single task, goal directed, robust communicating

robotic agents with significant extra behaviour control than
is possible, or as transparently programmed, in the original
TR language.

We assume some familiarity with logic programming [19],
robot behavioural programming [15], particularly with an AI
component [25], and guarded action rules [10], [13].

II. RELATED WORK

A comprehensive survey of extensions and applications of
the teleo-reactive paradigm is given in [20].

In [1] a quite elaborate agent architecture is described that
makes use of TR procedures represented as trees. There is a
fork in the tree when there are different ways of achieving
the guard at the fork. Special and nodes signal that several
sub-gaols need to be achieved and may be achieved in any
order, allowing for a more flexible rule firing strategy.

A extension of TR programs called TR+ is described in
[32]. It has constructs for indicating parallel or sequential
execution of actions. In addition different logical operators
are used to indicate sequential or parallel evaluation of the
components of rule guard, and the frequency with which
a rule guard should be evaluated can be specified. The
language is implemented on a network of computers using
PVM. It is used as part of a robot control architecture that
also has components for path planning and localisation.

[5] is an action skill representation system with the skills
invoked in response to perceptions. Skills can invoke sub-
skills which can be executed sequentially and conditionally.
The skills are goal directed and reactive.

[16] presents a language for cooperative control that is
typed, uses Dijstra style guarded commands, and has commu-
nication between control processes. It has a formal semantics
but no concept of goals and sub-goals. [11] uses structured
Engish to specify a required robotic behaviour as a set of
action rules. This is mapped into linear temporal logic from
which a control program is generated.

[28], [17], [9], [14], [12] and [30] present logic based
approaches to programming software agents that either have
been (e.g. [18] and [9]), or could be used for robotic agents
with varying degrees of efficiency. None appear to offer
compile time guarantees of type and mode safe inference, of
type correct and ground actions, or optimised implementation
avoiding unnecessary inference.

III. NILSSON’S TR PROGRAMS

TR programs comprise a set of optionally parameterised
procedures each comprising a sequence of guard ∼>
action rules. A procedure p with k parameters has the
form

p(X1,..,Xk){
G1 ∼> A1 % Read ∼> as do
.
.
Gn ∼> An

}

The order of the rules is important. Higher rules have priority.
So the implicit guard of the ith rule is

Gi & not ∃ Gi−1 & ... not ∃ G1



where the ∃ indicates existential quantification with respect
to all the variables of the guard except the procedure param-
eters X1,..,Xk.

When a TR procedure is called, either as the initial proce-
dure of some task or as a sub-task action, all the parameters
X1,..,Xk are given ground (variable free) values. This
results in a sequence of partially instantiated rules Gi ∼>Ai

in which the parameter variables X1,..,Xk are replaced by
their values.

Robotic actions can be durative - often continuing indefi-
nitely unless explicitly changed or stopped, such as moving
forward at a certain speed - or they are discrete (aka ballistic)
- usually short duration action that cannot be modified or
prematurely stopped - such as opening a gripper or sounding
a beep. Opening a gripper would be durative if it could be
stopped during execution.

1) Example TR procedures: Here are two procedures
from a bottle collection control program for a robot with
a camera with very simple image processing, and a gripper
with sensors for detecting when it is open and when holding
something. We use the Prolog convention that alphanumeric
names beginning with an upper case letter or underscore are
variable names. Underscore on its own is the anonymous
variable. Repeated occurrences of denote different unnamed
variables. Comments are preceded by %.

get_next_to(Th){ % Used when Th is bottle or drop
at(Th) ∼> ()% Goal of the call achieved, do nothing
Th=bottle&next_to(bottle,Dir) ∼>

turn(Dir,0.1)
% Dir is left or right. Turn slowly to get bottle in centre view

close(Th,Dist)&forward_speed(Th,Dist,Fs)
∼> approach(Th,Fs,0.2)

% Very near to Th, approach with gradually slowing speed
near(Th) ∼> approach(Th,0.5,0.2)

% near(Th) holds, approach
% at constant slow speed to achieve close to(Th,Dist)

see(Th,_) ∼> approach(Th,1.5,0.1)
% see(Th, ) holds, approach Th quickly to achieve near(Th)

true ∼> turn(left,0.5)
% Th not in sight, turn hoping to see it

}
approach(Th,Fs,Ts){

% Will only be called when see(Th,..) is inferable
see(Th,centre) ∼> move(Fs)

% whilst see(Th,centre), move forward
see(Th,Dir) ∼> move(Fs),turn(Dir,Ts)

% Parallel actions, swerve in Dir direction
% to get Th back into centre view

}

move(Speed), turn(Dir,Speed) are durative
robotic actions, actions such as open gripper and
close gripper are discrete robotic actions. at(Th),
close(Th,Dist), near(Th) and see(Th,Dir) are
defined relations that query changing percept facts of the
form see colour blob(Col,Size,Dir), as well as
fixed facts. For example, see is defined as

see(Th,Dir) <=
colour(Th,Col) & see_colour_blob(Col,_,Dir)

at, near and close are similarly defined but they
ignore the Dir argument and have an inequality condition
on the Size argument of see colour blob. This is the
size of the bounding rectangle of a dense array of pixels (a
blob) of the given colour. close requires the area to be
larger than does near. Dir is an indication of whether it
is on the left, centre or right side of the camera image. We
shall assume that different things of interest have different
colours, and that each class of thing has the same size. This
is how we can ‘interpret’ a blob of colour of a certain size
as a particular thing at a certain distance away. Comments
in the two procedures give further explanation.

2) Universal procedures: Both the above procedures are
universal procedures for their goals. get_next_to always
has a rule that can be fired as it has a last default rule
with guard true. approach similarly always has a rule
that can be fired assuming it is always called, as from
get_next_to, when see(Th, ) is inferable. The rules
of both procedures also satisfy the regression property.

As an example, see(Th, ) should normally become
inferable when see(Th, ) is not inferable and the durative
action turn(left,0.5) is executed. This is assuming
Th will be within camera range of the mobile robot and
there are no obstacles that might block its seeing Th. Simi-
larly, the concurrent actions move(Fs),turn(Dir,Ts),
assuming both Fs and Ts are positive, should normally
result in see(Th,centre) being inferable from future
percepts when it is not inferable from current percepts but
see(Th,Dir), where Dir6=center, is. The normally
caveat is because the agent might be continually thwarted
by outside interference (an approached bottle gets moved), or
because actions of faulty robotic devices fail (turning fails),
or, because of environment conditions, are not effective (oily
surface causes wheels to slip).

The get next to procedure has a special rule for
Th=bottle. This is because at(bottle) is inferable
only if see(bottle,centre) is inferable from the
latest facts for the see colour blob percept, whereas
at(drop) is inferable even if the centre line of the blob
of blue does not lie in the range -10 to +10 degrees of the
forward direction of the camera, the range mapped into the
centre direction. We need the bottle to be seen more or
less head on so that a close gripper action is more likely
to succeed.

No matter which of the get_next_to rules is fired
first, it should normally progress one at a time up the rule
hierarchy. It will skip rule 4 if rule 5 has been fired and
someone quickly moves the bottle to be close to the robot.
Conversely, if the bottle is then moved so as to be out of
camera view, the procedure will immediately revert to firing
its last rule to locate the moved bottle, or a different bottle,
by turning on the spot.

IV. INFORMAL TR TASK EVALUATION ALGORITHM

To make more precise the unusual operational semantics of
both TR and TeleoR, we give the following 8 step informal
evaluation algorithm for a start procedure call TaskCall.



FrdRules is the set of indexed procedure calls. Each ele-
ment of FrdRules is a 4-tuple of the form (Dp,Call, R, θ)
where Dp − 1 is the number of intermediary procedure
calls between Call and TaskCall, R is the number of the
partially instantiated rule of the procedure for Call that was
last fired, and θ is the set of generated bindings for all the
variables of the action of that rule produced by the inference
of the rule’s guard from the BeliefStore. Dp is the index of
the tuple.

1) LActs := {};FrdRules := {}; Index := 1;
Call := TaskCall.

2) Index > MaxDp: A call-depth-reached failure.
3) Evaluate the guards for the rules for Call, in turn, to

find first rule G ∼> A, number R, with an inferable
guard, with θ being the first returned answer substitu-
tion for variables of A.
Add (Index,Call, R, θ) to FrdRules.
If no such rule: signal a no-fireable-rule failure.

4) If Aθ is a procedure call.
Call := Aθ; Index := Index+ 1; Go to step 2.

5) Else Aθ is a tuple of primitive actions.
Compute controls CActs to change Acts to Aθ;
Execute CActs; LActs:=Aθ.

6) Wait for a BeliefStore update. On update resume.
Index:=1.

7) If we can determine that rule R of Call, where
(Index,Call, R, θ) in FrdRules, must continue as
the fired rule of Call with firing substitution θ, perhaps
without re-evaluating guards.
If Index = #FrdRules goto step 6
else Index := Index+ 1; repeat step 7.

8) Otherwise, evaluate the guards for the rules for Call,
in turn, to find first rule G ∼> A, number R′, with an
inferable guard, with θ′ being the first returned answer
substitution for variables of A.

a) No such rule: signal a no-fireable-rule failure.
b) If R′ = R and θ′ = θ (same rule firing for Call):

If Index = #FrdRules goto step 6
else Index := Index+ 1; goto step 7.

c) If R′ 6= R or θ′ 6= θ (new rule firing for Call)
FrdRules := {(Dp,N,C, ψ) |
(Dp,N,C, ψ) ∈ FrdRules ∧Dp < Index}
∪ {(Index,Call, R′, θ′)}; Go to step 4.

Steps 1 to 5 of the algorithm will effectively generate a call
stack of procedure call descendants of TaskCall using the
initial state of the BeliefStore. The last entry in FrdRules,
with index #FrdRules, will record the firing of a rule with
primitive actions, control actions for which will be executed
by step 5.

A more formal state transition operation semantics of
TR programs is given in Chapter 7 of [7]. It is elaborated
in a later chapter of the book to make more precise the
continuation test of step 7 of the above algorithm, which is
necessary to give the operational semantics of TeleoR. [7]
also gives a non-algorithmic state transition semantics, and
identifies optimisations that can be made if we pre-compute

the percept dependencies of the guards of each procedure
rule, both negative and positive.

Another optimisation is to have the relatively low level
defined relations such as close, near etc have all their
instances inferred each time the percepts are updated. This
saves repeated use of their rules, but also helps regarding
the optimisations to avoid re-evaluating rule guards. This
is explained in [7]. The percent handler’s inference and
remembering of all instances of these rule defined relations
is a special form of tabling [29]. In TeleoR we signal this
should be done by declaring these rule defined relations as
percept relations. All such relations must be independent
of one another and not recursively defined.

V. COLLABORATING BOTTLE COLLECTING AGENTS
PROGRAMMED IN TeleoR

A. TeleoR procedure syntax
The most general form of a TeleoR procedure is:

p:(t1,..,tk) % declaration of the argument types of p
p(X1,..,Xk){

G1 while WC1 min WT1 until UC1 min UT1 ∼> A1

.

.
Gn while WCn min WTn until UCn min UTn ∼> An

}

where rule components are dropped if they contain vacuous
constraints, such as a WC that is true, or a min time that
is 0. Here, each Ai is one of: a tuple of robotic actions, a
single call to a TeleoR procedure, a timed action sequence,
a wait T repeat n action.

We give the key procedures of this program as well as
the type definitions and declarations we need for type safety,
ground action guarantees, and optimised compilation. The
main task procedure is used by each of two agents controlling
their own robot. It has two arguments, Total, an integer
number of bottles the two agents must have their robots
collaboratively collect, and OthrAg, the Pedro handle of the
collaborating agent for sending it messages. These messages
will automatically go to OthrAg’s message handling thread.
When this thread receives an update message it will atom-
ically update its count value. So count will be updated
by two threads - the evaluator and the message handler.

dir::= left | centre | right | dead_centre
thing::= bottle | drop | robot
col::=green | blue | brown | amber | yellow

% Enumerated type defs
percepts gripper_open, holding,

see_colour_blob:(col,num,dir)
% The sensed percepts and their types

durative move:(num), turn:(dir,num)
% Actions that may be altered or stopped

discrete open_gripper:(), close_gripper:()
% Ballistic actions

int collected:=0
% Syntactic sugar for an updatable collected(0) belief fact

belief colour:(thing,col)
% Type declaration for another updatable belief predicate



colour(bottle,green)
colour(drop,blue)
percepts near:(thing),close:(thing),

see(thing,dir),next_to:(thing, dir)
% Percept decls for rule defined percepts (rules not given)
% Instances inferred by percepts handler, on each update

com_collect_bottles:(int,pedro_handle)
com_collect_bottles(Total,OthrAg){

$collected>=Total ∼> ()
% $collected is current value in collected belief

delivered while min 8 ∼>
turn(right,0.5) for 3;
forward_avoiding(1.5,centre,0)
++ collected +:= 1;update to OthrAg

% For 8 secs inhibit rules below, even though delivered will
% not be inferable soon after the turn starts, to get robot away
% from drop. Also do BeliefStore update and a message send

holding ∼> deliver_bottle
true ∼> get_bottle
}

at: (thing) % Type/mode decl. for defined relation
at(drop) <= next_to(drop,_)
at(bottle) <= next_to(drop,centre)

delivered <=
at(drop) & at(bottle) & gripper_open

forward_avoiding:(num,dir,num,pedro_handle)
forward_avoiding(Fs,Dir,Ts,OthrAg){

not near(robot) ∼>
move(Fs),turn(Dir,Ts)

see(robot,Dir) ∼>
wait_to_do_avoid_move(Dir)
++ stopped(Dir) to OthrAg

% Stop robot, tell other agent seen direction of its robot
}

wait_to_do_avoid_move: dir,pedro_handle
wait_to_do_avoid_move(Dir,OthrAg){

see(robot,CurDir) & othr stopped(MyDir) &
avoid_move(CurDir,Myir,Fs,TDir,Ts) ∼>

move(Fs), turn(TDir,Ts)
see(robot,CurDir) & CurDir\=Dir ∼>

() ++ stopped(CurDir) to OthrAg
}

avoid_move: (dir,dir,num,dir,num)
avoid_move(left,left,0.5,right,0.1)
% Move slowly in slight arc to right when see other robot on left
... % Facts giving other avoid moves

approach:(thing,num,num)
approach(Th,Fs,Ts){

see(Th,centre) ∼>
forward_avoiding(Fs,centre,0)

see(Th,Dir) while see(Th,centre) until
see(Th,dead_center) ∼>

forward_avoiding(Fs,Dir,Ts)
% When 2nd rule fired it inhibits firing of rule above

% until Th is seen dead centre, not just centre
}

get_bottle{
holding ∼> ()
next_to(bottle,centre) & gripper_open ∼>

close_gripper wait 3 repeat 2
% Repeat twice at 3 sec. intervals if no observable effect,

next_to(bottle,centre) ∼>
open_gripper wait 3 repeat 2

% Open the gripper to be ready to grab
true ∼> get_next_to(bottle)
}

colour is declared as a belief relation so that it may be
updated whilst the agent is executing. This means that if we
want it to collect brown bottles the same size as green bottles
we can send it a tell or inform message containing
the fact colour(bottle,brown). Providing we have
programmed the message handler to accept such messages
and to add the fact they contain to the BeliefStoreif not
already present, the agent controlled robot will, immediately
after message receipt, start collecting brown bottles as well
as green ones.

The collection task procedure has the goal of getting the
collected count at or above Total, an argument to the
procedure. The next rule is a while rule that inhibits the firing
of rules below for 8 seconds as it executes a timed sequence.

while and until rules both temporarily inhibit the firing of
other rules of the same procedure call and are reminiscent
of the inhibition concept in the Behavioural Language of
Brooks [3]. However, inhibiting rules were not added to
TeleoR because inhibition is in the Behavioural Language.
A UQ colleague Ian Hayes had the need of a form of until
rule to allow the semantically clean programming of a safety
critical systems test case. We weakened his until and added
the dual while rule. There is a combined while/until rule
that approximates the semantics of Haye’s until. Deciding
on the pros and cons of different rule form extensions was
considerably helped by first formulating their state transition
semantics.

A while/until with a min T condition makes any durative
actions of the rule locally ballistic for T seconds. No other
rule of the procedure call can be fired for T seconds. Of
course, firing of a different rule in an ancestor call may result
in termination or modification of these durative actions.

A simple while rule, which has the form

G while C ∼> A

temporarily prevents the re-achieving of its guard while the
condition C remains inferable, even though the guard G may
no longer be inferable.

An simple until rule, which has the form

G until U ∼> A

allows over-achieving of the guard of a rule above,
providing its guard G remains inferable, until the condition
U becomes inferable. Its purpose is to prevent a too early
need to re-achieve the guard above. In the above use, when
the centre line of the colour blob of the approached Th is
no longer in the range -10 to +10 degrees of the centre of
the camera image, the swerve correction is continued until



this line falls inside -5 to +5, which is the dead centre
range. This prevents too much oscillation between the firing
of rules 1 and 2 of the approach procedure.

The purpose of the timed sequence of the while rule is to
turn the robot through roughly 180 degrees and to move it
away from the drop to get out of the way of the other robot.
We need to use a while rule as very soon after the robot
starts turning delivered will no longer be inferable. With
no while condition, as soon as that happened the last rule of
the procedure would fire turning the robot next to the drop.
We want to move it away before it starts turning looking for
a bottle.

The while rule does not inhibit the firing of the first rule
of the procedure. So, whilst this robot is moving away from
the drop the other agent may have its robot leave a bottle
at, say, the other side of the drop area. It will then send a
update message to this agent. If this results in the message
handler increasing collected to Total, the first rule
will immediately fire and the robot will be stopped in its
tracks. The other robot will have been stopped next to its
just delivered bottle.

The wait/repeat rules are used in case the grippers get
stuck in the open or closed position. Re-doing the action
sends another signal to the motor and may free the grip-
pers. After the third attempt the TeleoR system adds an
action failure belief to the agent’s BeliefStore identi-
fying the problem action. This can be ‘caught’ by an outer
procedure that is the one called to start a bottle collection
task. It has a rule for responding to such beliefs when they
appear. An example is

bottle_task_wrapper:int,pedro_handle,
pedro_handle

bottle_task_wrapper(Total,OthrAg,Helper){
action_failure(open_gripper) ∼> ()

++ needs_repair(gripper) to Helper
...
true ∼>

com_collect_bottles(Total,OthrAg)
}

The first rule sends a message to a helper person as soon as
an action_failure(open_gripper) fact is added to
the BeliefStore by the run-time system. If and when it is fixed
- the gripper is oiled, say - the person sends a message, say
repaired(gripper) to the agent. Its message handler
should respond to that by removing the system inserted
failure belief.

This outer TeleoR procedure call has co-operatively
achieved the fixing of a fault by asking for assistance. The
call will immediately respond to the removal of the failure
fact by switching to firing the rule that calls the collection
procedure. If the robot is still next to a bottle with its gripper
open, a re-called get bottle will try to grab the bottle
using the oiled gripper. The collection task has resumed at
the point the wait/repeat failed.

The get next to procedure is more or less as given
earlier except that we would define forward speed as a
function and write its second rule as

close(Th) ∼>
approach(Th,forward_speed(Th,Dist),0.2)

The above program has an agent A1 communicate the
relative direction in which its robot R1 sees the other
robot R2 when R2 is seen as near. It does this using
a stopped(Dir) message which tells the other agent
A2 that R1 is temporarily stationary and sees A2’s robot
in the Dir relative direction. The auxiliary procedure
wait_to_do_avoid_move will determine an appropri-
ate avoidance move if similar relative direction information
in a stopped message is received by A1 from A2, and
converted into an other stopped:dir belief. This belief
is looked for in the guard of its first rule. The belief will
not be present if the other robot is actually moving away
from or across the path of the stopped robot R1, as R1
will then not be in the field of view of R2’s camera. In
that case R1 will eventually not see R2 as near, and the
forward_avoiding procedure will again fire its first rule
to start R1 moving again. This is providing an ancestor
procedure call has not fired a different rule terminating the
forward_avoiding call. This could happen if the other
robot R2 is at the drop delivering the final bottle. The
received update message will cause R1’s collected
count to be increased so that there is an immediate firing
of the first rule of com_collect_bottles.

Each agent’s message handler must handle stopped and
update messages. It is implemented using QuLog action
rules. It responds to the receipt of a stopped(Dir)
message by doing the update actions

forget othr stopped( );
remember othr stopped(Dir) for 2

after having checked that Dir is an atom of the dir
type with a run-time type test type(Dir,dir).

This message response removes any cur-
rent othr stopped belief, and adds an
othr stopped(Dir) fact to the agent’s BeliefStore.
This is automatically removed, unless updated, after 2
seconds. This is done because after 2 seconds the agents
will have started their avoiding moves, or the near collision
was a false alarm and the other robot seen as near was not
approaching the stopped one. In the latter case, the other
agent did not have near(robot) percept in its BeliefStore
whilst this agent’s robot was stopped. The automatic
removal of the remembered othr stopped means it will
not be in the BeliefStore should a near collision occur later.
The message handler responds to an update message by
executing collected +:= 1.

As an alternative to communicating seen relative
directions, we could have the robots painted with
their front half in one colour and back half another
colour. Then the left/right juxtaposition of the two



robot colours, and their relative sizes, will enable
us to generate from the image processing software
see colour blobs(Col1,Size1,Col2,Size2,Dir)
percepts. From these, we can infer crude orientation
information about a seen robot. For example, if Col1 is
the front colour and its size is quite small, the seen robot is
essentially moving away, but not directly away.

Another solution to the collision avoidance problem,
where we try to divert each robot as little as possible from its
current path in case it is approaching a bottle or the drop, is
to control both robots using one two-task agent. This agent
gets the sense data from both robots. The two task agent will
be able to infer the same relative direction information from
the see colour blob percepts that now identify the robot
source, that the two agents must exchange using messages.

VI. MULTI-TASKING IN TeleoR AND A FUTURE BDI
EXTENSION

One agent controlling the two robots bottle collecting is
a multi-tasking agent. In this case the robot resource can be
allocated to each task at the start and does not change. More
generally, we might need tasks to alternate the use of a pool
of resources. The programmer determines the granularity
of the interleaving by program structuring and declarations
that certain procedures are task atomic. The task atomic
procedures are then compiled so that the tasks co-ordinate
use of the resources themselves, using the BeliefStore as a
Linda tuple store [4]. The low level co-ordination is opaque
to the TeleoR programmer.

A major planned future extension is the incorporation of
concepts from the BDI concept language AgentSpeak(L)[27]
and its implementation in Jason [2]. We will extend TeleoR
rules so that they can have achieve Goal actions as well
as direct procedure calls. An extra non-deterministic top layer
of option selection rules of the form

achieve Goal :: BSQuery ∼∼> ProcCall

is then used to find alternative calls for these goal actions,
dependent upon current beliefs when the Goal needs to be
achieved. As in Jason, these same selection rules can be used
when the agent is asked to achieve a goal. Goal requests
enable inter-agent task requests at the level of a common
environment description ontology and do not require other
agents or humans to know the names of another agent’s task
procedures and their argument types. We will also add similar
rules for starting tasks in response to significant BeliefStore
update events. Failure of a chosen option can now lead to
selecting another option, using the option selection rules,
adding another more course grained recovery mechanism to
TeleoR.

We also intend to develop an inference supported IDE
along the lines of LTMMop of [11]. This will aid the
systematic develpment of TeleoR correct programs.

Other future extensions are to QuLog: the ability to handle
uncertainty in sense data, and constraint handling.
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