
Distributed Logic Programming using Mobile Agents

T. I. WANG
Department of Engineering Science
National Cheng Kung University

Taiwan
wti535@mail.ncku.edu.tw

K. L. Clark
Department of Computing

Imperial College
UK

klc@doc.ic.ac.uk

Abstract

This paper1 describes the use of mobile agent technolo-
gies in building a framework for supporting distributed
logic programming and remote conditional querying. A
mobile agent moves from server to server carrying its own
knowledge. When it arrives at a server it is given read ac-
cess to the some part of the server’s knowledge base. It then
answers its queries using the server’s knowledge and its
own, adding the results to its own knowledge. We can view
the mobile agent’s queries as conditional remote queries -
what answers would the server giveif the knowledge car-
ried by the agent were added to the server.

To implement a prototype framework of mobile agents
and knowledge servers we have used a new multi-paradigm
and multi-threaded programming languageGo! . This sup-
ports mobile agent’s as knowledge objects and has powerful
knowledge structuring features. The paper assumes some
familiarity with Prolog.

1 Introduction

Mobile agents are computations migrating between
hosts. They locally communicate with other agents and pro-
cesses running on each host and typically only need net-
work communication when they move. Because of this,
mobile agents consume fewer network resources and, there-
fore, the paradigm has been advocated as a network traffic
reducing technology suitable for various distributed appli-
cation domains. Use of mobile agents greatly benefits those
distributed applications that compute with simple logic and
large amounts of remote data. There have several imple-
mentations and prototype applications of mobile agents [5]
[8] [12].

1The paper was written during the first author’s visit to the Imperial
College, UK. The visit was fully supported by the National Science Coun-
cil, Taiwan

On the other hand, one of the major research themes in
Distributed Artificial Intelligence (DAI) is knowledge base
interaction. We have previously developed a distributed
logic programming language, DKParlog++ to support this
kind of application and shown how it can be used for en-
terprise modeling[2]. Each entity in the enterprise is rep-
resented as an active object or agent containing a Prolog
knowledge base and a set of methods that enable this knowl-
edge base to be queried and updated by other agents. Prolog
rules within an agent can include remote queries of the form
Ag?Cond to transparently access the knowledge of another
agent. Each remote query is implemented as a method in-
vocation using asynchronous messages.

Sometimes the evaluation of a queryQ performed within
an agentC, using its knowledgeKC , will require several re-
mote queries to another agentS to access its knowledgeKS ,
resulting in frequent message exchange. In this situation,
particularly if C is on a host with intermittent connection,
or the partKCQ

of C’s knowledge accessed byQ is small, it
is better to moveKCQ

andQ to the site ofS and to haveQ
evaluated atSagainst a combined andKS . If we do this, we
must ensure that the knowledgeKCQ

transferred toS does
not interfere with the local knowledgeKS - it should not
effect the evaluation of other queries that useKS . One way
to do this, is to embedQ andKCQ

inside a mobile agent
that is given read access toKS .

This is our approach. A mobile agent, carrying knowl-
edge as well as queries, migrates to different sites to eval-
uate its queries using a fusion of the knowledge it carries
and that of the local knowledge server. As it moves from
site to site, the knowledge it carries can be progressively
augmented with the results of the queries, and this extra
knowledge can be used in the evaluation of queries at sub-
sequently visited sites.

A prototype mobile agent framework to explore this ap-
proach has been implemented using a new multi-paradigm,
multi-threaded logic programming languageGo! [4]. It has
an imperative component of action rules and a declarative

component of function and relation rules. In addition, sets
of rules can be wrapped as labeled, parameterised theories
as in L&O[9]. These can be instantiated to produce theory
objects, and query conditions can be evaluated relative to a
theory object. Theory objects with action rule methods can
also be transformed into active objects by spawning a call
to such a method as a new thread.

We embed the knowledge carried by the mobile agent
in a theory objectMbAgKn . We then give it access to the
knowledge of each server agent it visits as another theory
object SvrKn . This keeps the server knowledge separate
and allows the mobile agent and the local agent to have
their own different definitions of some relation. The mobile
agent evaluates its queries forSvr using calls of the form
SvrKn.Cond instead of remote calls such asSvr?Cond,
which involve network communication. When it moves, it
carries forward its knowledge augmented with the results
of its queries. A mobile agents is a theory object with an
activatemethod that converts it into an active object.

Go! will be briefly described in section 2, followed by
the introduction to our mobile agent framework in section
3. Our prototypical implementation inGo! is sketched in
section 4 together with an example use. We discuss some
related work in section 5, before concluding.

2 The Programming LanguageGo!

Go! [4] is a multi-paradigm programming language that
is oriented to the needs of programming secure, produc-
tion quality, agent based applications. It is multi-threaded,
strongly typed (with type inference support), and higher or-
der (in the functional programming sense). It has been de-
signed to allow fast development of intelligent agent based
applications involving multi-threaded agents. The servers
our mobile agents visit will be multi-threaded, with an in-
terface thread for accepting new mobile agent objects and a
thread for each activated mobile agent.

Go! has relation, function and action procedure defini-
tions. Threads execute action procedures, calling functions
and querying relations as need be. They can spawn new
threads and communicate with other threads via messages
or shared objects.

Each thread has its own message buffer of unread mes-
sages that have been sent to it by other threads. The inter-
thread communication is asynchronous and is modeled on
the inter-thread communication of Erlang[1] and April[10].
A Go! application can be distributed over a network of
hosts with transparent communication between threads run-
ning on different hosts. Threads are identified by handles,
which are terms of the formhdl(Th,Rt). The second argu-
mentRt is a symbol name of a family of threads, usually all
the threads in a singleGo! invocation. We will refer to this
as theroot name. The first argumentTh is a symbol that

identifies the thread within the family. When aGo! pro-
gram is started we can set both the root and thread names
of the initial thread with command line arguments. This
gives the initial thread an assigned public handle such as
hdl(’main’,’shop’) . When a new thread is spawned it in-
herits the root name of its parent’s handle, but is given a new
local thread name.

A thread can execute a non-blocking message send:

Exp>> Rec

whereExp is an expression denoting the message to be sent
andRecis a handle-valued expression. This transfers the
value of Exp to the message buffer of threadRec, which
could be in another invocation ofGo! on another host. Any
Go! data value can be sent as a message, including higher
order values, theory objects, and data terms containing vari-
ables. Any variables in a message are replaced by entirely
new variables when it is received. Variables are not shared
across threads.

A thread can search for and remove a message from its
message buffer using a simple<< message receive action,
or by a executing a choice message receive action. A<<
action has the general form:

MsgPtn::Test<< Sender

whereTest is optional. :: can be read assuch that. This
action will suspend if there is no current message matching
MsgPtnfor whichTestis true until such a message is added
to the buffer by a communication from another thread.

To allow search for one of several messages, with an ap-
propriate action for each, a choice message receive can be
used which is a disjunction of rules of the form:

(MsgPtn1::Test1 << Sender1 -> ActionSeq1
|
|MsgPtnk::Testk << Senderk -> ActionSeqk)

The | is read as ’or’. A choice message receive operates by
examining each of the messages in the message buffer; ap-
plying each of the message patterns and tests of its disjunc-
tion of message rules to each message in turn. As soon as
a message is found that satisfies the preconditions of some
rule R, that message is removed from the buffer and the ac-
tion sequence of ruleR is executed – none of the other ac-
tions in the choice message receive will be executed. Exe-
cution of the choice message receive will suspend if there is
currently no message satisfying any of the alternative rules,
until such a message arrives. Optionally a timeout can be
specified, with a linked action.

For knowledge representation the language borrows fea-
tures from McCabe’sL&O[9] object oriented extension of
Prolog . In particular, it borrows the ability to group a set
of definitions into a lexical unit called a labeled theory. In-
heritance rules allow new labeled theories to be constructed
by extending and modifying existing theories[3].

2

A labeled theory has the form:

Label{ Def1. Def2. Defn}

where the definitions are for functions, relations, action pro-
cedures and attributes.Label may contain variables. If so,
the variables may be used in and are global to any definition
of the theory - they are parameters of the theory. A term
$Label’, whereLabel’ is an instance ofLabel in which
these parameters are given values, denotes an instance of
the theory. Logically it is a copy the theory in which each
occurrence of a parameter in a definition is replaced by its
given value. It reality it is aGo! higher order closure - a
pointer to the theory paired with the tuple of parameter val-
ues. It can be held as the value of a variable, sent in a mes-
sage, or passed as an argument. An instance of a theory can
be viewed as a theory object, with methods the functions,
relations, procedures and attributes of the theory.

The following set of definitions constitute a mini-theory
of a person:

person(Nm:string,A:number,Sx:symbol,Ls:list[string]){
name=Nm. age = A. sex=Sx.
lives(L) :- L in Ls }.

The label argumentsNm, A, Sx, Ls are parameters to the
theory which, when known, make it a theory object repre-
senting a specific person.in is Go! ’s list membership re-
lation. The parameter types are declared as string, number,
symbol and list of strings respectively. The class definition
also implicilty introduces a new typeperson. We can use
this for declaring that variables take apersonobject as their
value.

We can create aperson theory object, and query it, as
follows:

P1=$person(”Bill Jones”,23,’male’,[”London”,”Cardiff”])
P1.name returns name ”Bill Jones” of P1
P1.age returns age 23
P1.lives(Place) gives solutions:

Place=”London”, Place=”Cardiff”

A labeled theory can also contain procedures that exe-
cute actions. Below is a mini-theory/class definition of a
simple mobile agent. Instances of this theory aremobAg
agent objects. The thoery parameters are: a symbolN which
is the agent name, a handleH which is the home location, a
theory objectMbAgKn of typedesireswhich is the agent
knowledge.MbAgKn has relations characterising a set of
buying requirements and price constraints. AmobAg ob-
ject can be sent as a message to a remote site and activated
by spawning itsactivate procedure as a new local thread.
This procedure is defined by a single-> action rule taking
the name of the site as argument.

The activate procedure finds prices and catalogue de-
scriptions of items using thewants relation ofMbAgKn ,

theentry relation of theory objectCat, and theacceptable
relation of MbAgKn . Cat is supplied by the server that
launched it (itscreator) in response to a’catalogue’ re-
quest message. It is the local knowledge that the mobile
agent needs to access. This could have been passed to the
agent as an argument to theinitiate procedure but request-
ing it by a message gives flexibility. Different local theory
objects can be requested by different agents, and more than
one may be requested.

mobAg(N:symbol,H:handle,MbAgKn:desires){
name=N.

found = $dynamic[(symbol,list[symbol],number)]([]).
found(Item,Descr,Pr):-

found.mem((Item,Descr,Pr)).
activate(’shop’) -> – proc. to activate agent

’catalogue’>> creator; –request a catalogue obj
Cat:catalogue<< creator; –receive it
(MbAgKn.want(Item),Cat.entry(Item,Descr,Pr),

MbAgKn.acceptable(Item,Descr,Pr) *>
found.add((Item,Descr,Pr))); –save each answer

this>> H. – send a clone home}

Each answer to the mobile agent’s query, which is a 3-
tuple comprising a symbol, a list of symbols and a number,
is stored it in a private dynamic relation objectfound -
the prefix means it is a private. *> is Go! ’s forall op-
erator enabling an action to be iterated over all solutions
to some query. In this case the action is toadd each an-
swer as a new tuple to the dynamic relationfound. (All
Go! dynamic relations are unary, but can hold tuples of val-
ues, as here. Their argument type has to be declared.) The
linked found relation is public, and can be used for access-
ing values stored in found. mem is the accessing method
for a dynamic relation object. When the *> query itera-
tion terminates the agent sends a clone of itself (denoted
by this), containing the updatedfound, back to its home
H. It could continue execution, but in this case theactivate
procedure immediately terminates.

desires:{
want(’toaster’). want(’kettle’).
acceptable(’toaster’,,Pr):-Pr<15.
acceptable(’toaster’,Descr,Pr):-Pr<20, ’electronic’ in Descr.
........}.
shoppinglauncher() ->

$mobAg(’MobAg1’,self, $desires)
>> hdl(’main’,’shop’); –dispatch agent

Ag:mobAg :: Ag.name=’MobAg1’<< ; – await return
(Ag.found(Item,Descr,P) *>). –process results

An example use is given by theshopping launcher def-
inition: self will be the handle of the launcher thread
- the home location of the agent. We assume that the

3

shop server has been launched with the assigned handle
hdl(’main’,’shop’). When the agent returns to its launcher
thread each catalogue entry it has cached is accessed as
Ag.found(Item,Descr,Pr).

The ’shop’ server ’main’ thread will be executing a pro-
cedure such as:

shop()->
(Ag:mobAg<< -> spawn{Ag.activate(’shop’)}
|’catalogue’<< S::S=hdl(,’shop’) -> $catalogue>> S
);
shop()}.

This is a recursive procedure that will be executed as an
iteration. The body is a choice message receive contain-
ing two rules. The first acceptsmobAg objects and spawns
their activate procedure as a new thread transforming them
into active objects. This new thread will terminate when
theactivateprocedure terminates. The second accepts a re-
quest for a ’catalogue’ theory object. Notice that checking
that the sender of the request has a handle with root name
’shop’ ensures the request comes from a mobile agent that
the shop agent has spawned. As it is a local agent, it is just
sent a pointer to the ’catalogue’ theory, not a copy. Since
the server program loops immediately after it has spawned
a mobile agent there can be many mobile agents concur-
rently executing at the same time, each of which will have
’read’ access to the local ’catalogue’ theory.

3 The Mobile Agent Information Framework

The framework we propose is simple and is designed to
have an open architecture. It allows logic servers to join and
leave freely and easily. It comprises:mobile agents, logic
servers, andagent launchers.

3.1 The Mobile Agents

The components that comprise a mobile agent are shown
as in the right of figure 1. Apart fromAgent Knowledge,
agentState, there is anotherControl Part component. The
Control Part of a mobile agent determines its itinerary and
queries to be executed at each visited server. It is this part
that makes a mobile agent active and autonomous.

The activities of a mobile agent after arriving at a logic
server are illustrated in figure 1. It is launched by the server
and passed one or more theory objects defined in the server,
on request. The supplied knowledge, together with its own
knowledge and current state is used to answer queries for
that server. The results are cached in its state.

3.2 The Logic Server

A logic server provides an executing environment and
theory objects for mobile agents. Logic servers may all be

Knowledge

Part
Control

Agent
Knowledge

State

Query

A Mobile Agent

Part
Control

Agent
Knowledge

State

Query

Knowledge
Agent

Knowledge
Local

Part
Control

Agent
Knowledge

State

Query

Local

Part
Control

Query

Inference Engin

A Logic Server
(A Multi−threaded Fixed Agent)

State

Combined Knowledge

Figure 1. A Mobile Agent in Action

implemented in the same logic programming language, for
exampleGo! . In this case, the knowledge transfer to a mo-
bile agent is easier to implement. However, it is reasonable
to allow other languages and data base systems to be used
within a logic server. Then, an adapter, or bridge, has to be
deployed. It translates knowledge represented in the other
language or data base into the format used by our frame-
work, or it gives indirect access to that information through
the supplied knowledge.

3.3 The Agent Launcher

An agent launcher is a tool for creating mobile agents
and sending them to logic servers. A programmer may use
a graphic user interface (GUI) for entering queries and re-
lated information, such as the targeted logic servers of each
query, the knowledge of the mobile agent etc. This data is
then translated into an appropriate mobile agent theory an
instance of which is launched to roam the network of logic
servers.

4 A Prototype Implementation and Example

Assume there are three Logic Servers: Office, Headquar-
ters and Warehouse, with knowledge as shown. Initially,
there is no knowledge in the Office server.

Headquarter Logic Server
uprice(’t00001’,5000). uprice(’t00002’,6400).
product(’t00001’,’tainan’).
product(’t00001’,’kaohsiung’).
product(’t00002’,’taipei’).

4

Warehouse Logic Server
stock(’t00001’,300,’tainan’). stock(’t00002’,200,’taipei’).
stock(’t00001’,400,’kaohsiung’).
throughput(’t00001’,200). throughput(’t00002’,300).
available(T,F,N,UP,TP,D) :-

stock(T,D1,F), D1>= N, To=UP*N, D=0.
available(T,F,N,UP,TP,D) :-

stock(T,D1,F), D1< N, throughput(T,O),
To=UP*N, D=ceil(N-D1)/O.

The knowledge has to wrapped inside a process that imple-
ments each server. They all have a similar structure. The
following code fragment is a simpleofficelogic server.

Order = $dynamic[(string,symbol,symbol,number)]([]).
orders{order(Ord) :- Order.mem(Ord)}.
ordersOb=$orders.
office() ->

(Agent: salesAg<< S ->
spawn{Agent.activate(’office’)};

| ’orders’<< S :: S=hdl(,’office’) ->
ordersOb>> S

| NewOrd<< ->
Order.add(NewOrd));

office().

Order is a dynamic relation object which initially contains
no entries. It enables the office server to accumulate knowl-
edge over its operational life.

The office logic server loops accepting three types of
messages. The first is mobile agent object of typesalesAg;
the second is a request from a launched mobile agent for
read access to the ’orders’ theory object; the third is new
data from a sales person to add to theOrder dynamic re-
lation. 2 When a new agent object is received, a call to its
activate method is spawned as a new thread. Orders are
sent as messages such as

(”CompShop”,’harddisk’,’t00001’, 100)
from a sales person giving the customer name, product
name, type and quantity.

The sales person may later want to check out the details
of all their orders, perhaps to find out the total price for each
order and when it will be delivered. Using remote calls, the
query they need to evaluate is given as the query:

customer(Cust), order(Cust,Product,Type,Qnty)@office,
product(Type,Factory)@hq,uprice(Type,UPr)@hq,
available(Type,Factory,Qnty,UPr,TPr,DTm)@wh.

Herecustomeris a local relation on the sales person’s com-
puter. If solutions to this query are found using the normal
Prolog-style backtracking evaluation it will result in many
remote calls. For example, if there are 50 customers, where

2A more complex server would also allow removal of orders.

each has on average two outstanding orders, there will be
50 remote calls tooffice, 200 remote calls tohq and 100
to wh, even though several of the calls to the last two sites
may redundantly concern the same type of product.

salesAg(Nm:symbol,H:handle,MbAgKn:customers){
name=Nm.
order=$dynamic[(string,symbol,symbol,number)]([]).
productprice=$dynamic[(symbol,symbol,number)]([]).
ans=$dynamic[(string,symbol,symbol,number,

symbol,number,number)]([]).
ans(Cst,Prd,Tp,Qnty,Fct,TPr,Dlvry):-

ans.mem((Cst,Prd,Tp,Qnty,Fct,TPr,Dlvry)).
activate(’office’) ->

’orders’>> creator;
Ords:orders<< creator;
(MbAgKn.customer(Cst),
Ords.order(Cst, Prd, Tp,Qnty) *>

order.add((Cst, Prd, Tp,Qnty)))
this>> hdl(’main’,’hq’).

activate(’hq’) ->
’products’>> creator;
Prods:products<< creator;
(order.mem((, , Tp,)), Prods.product(Tp,Fct)
Prods.uprice(Tp,UPr) *>

productprice.add((Tp,Fct,UPr));
this>> hdl(’main’,’logistic’).

activate(’wh’) ->
’logistics’ >> creator;
Logs: logistics<< creator;
(order.mem((Cst,Prd,Tp,Qnty)),

prod price.mem((Tp,Fct,UPr)),
Logs.avaliable(Tp,Fct,Qnty,UPr,TPri,Dlvry) *>

ans.add((Cst,Prd,Tp,Qnty,Fct,TPr,Dlvry)));
this>> H}.

customers:{customer(”CompShop”).}.
launcher(Nm) ->

$salesAg(Nm,self,$customers)>> hdl(’main’,’office’);
Ag:salesAg :: Ag.name=Nm<< ;
(Ag.ans(Cst,Prd,Tp,Qnty,Fct,TPr,Dlvry) *>).

Instead of executing the query with remote calls, a mobile
agent is created and launched, which is an instance of the
salesAgclass. It visits the logic serversoffice, hq, andwh
in turn to implement the distributed query. The knowledge
it starts with is just thecustomerrelation of the sales person
wrapped as a knowledge objectMbAgKn . At theofficesite
it adds all the details of the orders for these customers and
carries this forward tohq. Here it adds factory data and unit
prices for all their ordered product types before continuing
to wh to get a total price for each order and a delivery time
from each factory at which its product type is manufactured.
Theactivateprocedure is defined by three rules.

5

5 Related Work

Jinni[11] is a lightweight, multi-threaded, Internet logic
programming language. It is a tool for gluing together
knowledge processing components and Java objects. It sup-
ports remote predicate calls without distributed unification
and is multi-threaded. Jinni supports mobile agents through
thread migration.

Milog[7] is a logic programming based infrastructure
for information gathering mobile agents. On each site is
a meta-agent which accepts mobile agents and sends agents
to other meta-agents on request from the agent. The meta-
agent encodes and decodes the agent programs and checks
incoming code. InGo! , encoding and decoding of the agent
objects is done automatically by the>> and<< primitives
which automatically checks code safety in an external mes-
sage before being transferring it to a message buffer.

The related April language[10] is used to implement a
mobile agent framework for distributed information man-
agement in [6]

6 Conclusion

Our framework is suitable for applications requiring rel-
atively coarse-grained distributed deductions. As the agent
travels it incrementally constructs the solution to the dis-
tributed query that is its mission. We have illustrated this
for an agent with just one query, but several queries can be
handled, and at each site the different queries can make use
of different local theory objects requested via messages. An
agent can also make use of the knowledge it accesses at a
server to determine what subsequent servers to visit, mak-
ing its route dynamic.

We can also handle disjunctive queries. Suppose our dis-
tributed query has the form:

Cond1@S1,(Cond2@S2 | Cond3@S3),Cond4@S4

We program the agent with four activate rules, one for each
server. But the rule for S2 finishes by sending a clone to
both S2 and S3 using:

this>> S2; this>> S3

Each clone is then activated by the rule for its new location,
each of which terminates with the action: this>> S4. The
launcher will now receive two returning agents, one with
the query answers obtained from S1,S2,S4, the other with
the answers obtained from S1,S3,S4, which it combines.

References

[1] J. Armstrong, R. Virding, and M. Williams, Concur-
rent Programming in Erlang, Prentice-Hall Interna-
tional, 1993.

[2] Keith Clark, Nikolaos Skarmeas, Tzone Wang, ”Dis-
tributed Object Oriented Logic Programming as a
tool for Enterprise Modelling”, In Modelling and
Methodolgies for Enterprise Integration, (ed Bernus &
Nemes), Chapman and Hall, 1996.

[3] K. Clark and F. McCabe, ”Ontology Representa-
tion and Inference in Go!”, Technical Report,
www.doc.ic.ac.uk/̃klc/ontology.html, 2003.

[4] K. Clark and F. McCabe, ”Go! – a logic pro-
gramming language for implementing multi-threaded
agents”, Annals of Mathematics and Artificial Intelli-
gence, Special Issue on Logic based Agent Implemen-
tation, 2004, to appear.

[5] S. Covaci, Zhang Tianning, I. Busse, ”Java-based in-
telligent mobile agents for open system management,”
In Proceedings of Ninth IEEE International Confer-
ence on Tools with Artificial Intelligence, Page(s):
492 -501, 1997.

[6] J. Dale, D. C. DeRoure, A mobile agent architecture
for distributed information management, Proceedings
of the International Workshop on the Virtual Multi-
computer 3, 1997.

[7] Naoki Fukuta, Takayuki Ito, and Toramatsu Shin-
tani, ”A Logic-based Framework for Mobile
Intelligent Information Agents”, In Proceed-
ings of 10th International WWW Conference,
http://www10.org/cdrom/start.htm, 2001.

[8] D. Kotz; R. Gray; S. Nog; D. Rus; S. Chawla; G. Cy-
benko, ”AGENT TCL: targeting the needs of mobile
computers,” IEEE Internet Computing Volume: 1 4 ,
Page(s): 58 -67, 1997.

[9] F. McCabe. L&O: Logic and Objects. Prentice-Hall
International, 1992.

[10] Frank McCabe and Keith Clark, ”April: Agent Pro-
cess Interaction Language,” In Intelligent Agents, (ed
Jennings & Wooldridge), LNCS, Vol 890, Springer-
Verlag, 1995.

[11] Paul Tarau and Veronica Dahl, ”A Logic Program-
ming Infrastructure for Internet Programming”, In M.
J. Wooldridge and M. Veloso, editors, Artificial In-
telligence Today - Recent Trends and Developments,
pages 431-456. Springer, LNAI 1600, 1999.

[12] T. I. Wang, ”A Mobile Agent Carrier Environment
for Mobile Information Retrieval,” 11-th International
Conference on Database and Expert Systems Applica-
tions - DEXA 2000, 05-08/09, 2000.

6

