
1

QuLog: A flexibly typed logic based language with
function and action rules

K. L. CLARK

Dept. of Computing, Imperial College, London
ITEE, University of Queensland, Brisbane

P. J. ROBINSON

ITEE, University of Queensland, Brisbane

(e-mail: k.clark@imperial.ac.uk, pjr@itee.uq.edu.au)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

QuLog is a declarative flexibly typed higher order logic programming language with syntac-
tic extensions to support strict higher order functional programming and pattern match
string processing. It has an imperative action rule language on top of this declarative
core. Its logic programming subset is both simpler and more declarative than Prolog. Its
dynamic relations may only be defined using facts.

QuLog also supports and the compiler ensures type and mode safe meta-programming.
Term lists representing sequences of relation calls and function applications, or sequences
of action calls, can be manipulated and eventually evaluated if each call conforms to the
type and mode of use constraints of the called code.

In this paper we introduce all the features of the language with an emphasis on its logic
programming subset. We do this using example definitions, a semi-formal description of
its syntax, and an example based introduction to the type and mode checking abstract
interpretation of its complier. This uses formally defined rules given in an Appendix

The paper assumes familiarity with Prolog and typed functional languages such as
Haskell.

KEYWORDS: logic programming, functional programming, hybrid declarative/imperative
languages, call log debugging, moded types, type safe meta-level programming

1 Introduction

QuLog is a hybrid higher order logic, functional and action rule programming lan-

guage which has evolved out of many years of extending, teaching and using our

multi-threaded Qu-Prolog system. QuLog code is typed and moded using type dec-

larations. Its type system is flexible allowing a mix of compile and runtime type

checking.

Its logic programming subset is both simpler and more declarative than Prolog.

Its dynamic relations may only be defined with facts. They are a sub-type of the

static relations defined by fixed facts and rules. There is no disjunction and back-

tracking control is restricted to the use of committed choice relation rule and the

use of a once operator restricting a call or conjunction to a single solution. Ex-

plicit universal and existential quantifiers must be used in negated conditions and

forall quantified implications where they would have to be used in predicate logic

for clarity of expression.

Its function rules are syntactic sugar for committed choice relation definitions

with ground input mode of use for all but one argument. Arguments to relation calls

may be function call expressions. The unification primitive evaluates expressions

and does the occurs check unless mode analysis determines it is not needed. List

and set comprehension expressions, and pattern match string and list processing,

further enhance the usability of the language.

The logic and functional declarative core of QuLog was developed to encode

the knowledge (the functions and static relations) and the perceptual and other

changing beliefs (the dynamic relation facts) of TeleoR (4) robotic agents. The

QuLog action rules, and its action primitives for dynamic fact updating, I/O, thread

forking and inter thread and inter process message communication, were added to

enable TeleoR multi-threaded agents to be implemented entirely in QuLog. Action

rules can call functions and relations, but not vice versa.

QuLog does not do type inference on code; relations, functions and actions have

to have their types declared, and relations and action arguments must have their

use modes specified by annotating their type expression. The annotations are !

(ground input), prefix ? (ground output), postfix ? or prefix ?? (unconstrained).

There is also a special mode operator @ for indicating the argument has type term

and will be left unchanged.

term and code are system types. code covers every higher order type, i.e. every

relation, function and action type. term covers the type of every other value that

can be the binding of a variable. The QuLog types lie in a complete lattice with

top, the union of code and term, as the only maximal element, and bottom, with

single element the atom bottom , as the only minimal element.

All relation, function and action definitions must be top level statements of the

program with names that have scope the entire program. There are no lambdas

or lets in QuLog. The use of such constructs can be otherwise programmed by

currying functions or relations given top level definitions. We also do not have

disjunction or conditionals, because the purpose of each can be achieved using

auxiliary top level definitions. On the other hand, we have enriched Prolog syntax

by insisting on the use of explicit existential quantification, where a default implicit

universal quantification of all the variables of a rule does not capture the declarative

semantics, and existential quantification would be required in predicate logic.

QuLog supports type and mode safe meta-programming. It does this by allowing

the name CodeNm of primitive or program defined code to be used as a value of type

atom. In the context of a call use CodeNm(Arg1, .., Argk), or when given as the

argument of another call where a code value is needed, the type checker will assign

CodeNm its code type CodeType, and will check the use is type and mode correct.

However, if CodeNm is used in a context where a none code value is required, the

type checker assigns it the type atom naming(HEType), a sub-type of atom.

We can ’recover’ the code type of an atom typed variable PossCodeNm using

2

a type test type(PossCodeNm,atom naming(PossCodeType)). The runtime test

will only succeed if PossCodeNm is the name of code of the given type. This run-

time test is possible in QuLog because type declarations for code are accessible

at runtime. The use of the type test gives the compiler’s abstract interpretation

type/mode checker the type expression PossCodeType it needs to check the use of

PossCodeNm as a higher order code value in a call PossCodeNm(Arg1, .., Argk)

following the type test, or should PossCodeNm be subsequently used as a code

argument. After the run time type test the type checker switches the type value of

PossCodeNm from term to PossCodeType.

A similar type switch happens to relation and action calls. If a relation or action

call HE(Arg1, .., Argk) is used anywhere other than at the top level of conjunctive

condition or action sequence, the call is assigned the type relcall or actcall, both

of which are sub-types of term. The ’call’ value of a variable CallTrm of type term

can be recovered, and at the same time checked for type and mode correctness,

using runtime type tests type(CallTrm,relcall), type(CallTrm,actcall). The

meta calls call CallTrm and do CallTrm may then be used to execute the term as

a relation call or action call respectively. There is a similar but less direct method

for passing around and then invoking function calls as data.

QuLog’s action rules are used to program behaviours. Actions can call func-

tions and relations but cannot be called from a function or relation. Using actions

we can perform atomic updates of dynamic relations, fork new action executing

threads, do terminal and file I/O, and do inter-thread and inter-process message

communication using ground and non-ground terms. Inter-process communication

uses the same message send action primitive using an email style address such as

robot1@loatzu.doc.ic.ac.uk. The message is then automatically routed to a de-

fault message handling thread in the identified process, providing the process is

connected to the same Pedro communications server (11). Action rules can be used

to implement communicating multi-threaded agents as illustrated in (3).

The paper is structured as follows. In Section 2 the QuLog relation subset is intro-

duced. In Section 3 its type definition syntax and runtime type checking primitives

are described. In Section 4 the use of the QuLog interpreter for developing and de-

bugging programs is illustrated. Its function and action rule subset are illustrated

in Sections 5 and 6, respectively Meta level programming is exemplified in Section

7. The primitive QuLog types and the syntax of type expressions used to define

new types is covered in Section 8, where the sub-type relation of the type lattice

is defined. This is a precursor to the description of the type and mode checking

done by the compiler in Section 9. The discription uses examples and type checking

rules given in the Appendix. We conclude with a discussion of some related work in

Section 10. The paper assumes familiarity with Prolog and higher order functional

programming, as in languages such as Haskell (10).

2 QuLog Relational Subset

Below are some simple data base style relation definitions with their type definitions.

male ::= peter | bill | john | % more alternative atom names

3

% Enumerated type giving all the names of males being used
female ::= mary | jane | rose | ... % ditto for names of females
person ::= male || female % person is the union of male and female types
age::= 0..120 % Range type giving all the legal values for an age

child_of(C,P): dyn(person,person) % Type declaration for a dynamic relation
"C is the child of P, a fact defined updateable relation"

% Above is a special remembered comment string
child_of(mary, peter)

child_of(bill,peter)

... % etc

age_is(P,A): dyn(person,age) % Another dynamic relation
"A is the age of P, a fact defined updateable relation"

age_is(peter,40)

... % etc

ancestor_of(A,D): rel(?person,?person) % A static relation
"For finding or checking ancestor pairs, A is ancestor of D"

ancestor_of(A,D) <= child_of(D,A)

ancestor_of(A,D) <= child_of(D,P) & ancestor_of(A,P)

descendant_is(A,D): rel(person,?person) % In any call first arg. must be a given
"For finding or checking descendants, A is ancestor of D"

descendant_is(A,D) <= child_of(D,A)

descendant_is(A,D) <= child_of(C,A) & descendant_is(C,D)

only_has_adult_sons(P): rel(?person)

% In a call P may be an unbound variable or given as a person atom
only_has_adult_sons(P) <=

isa(P,person) & % This checks P is a male or female, or finds one
forall C (child_of(C,P) => exists A isa(C,male) & age_is(C,A) & A>20)

Notice there are no full stop terminators for type declarations and rules. They can

be given but are ignored. Text starting at the left end of a newline is what signals

the end of the previous QuLog statement, a convention we copied from Python.

Type declarations and rules can be given over several lines just by indenting to the

right all but the first line.

QuLog has two forms of comment. Any text following a % up to the end of line is

ignored as a comment. Any text enclosed in /*....*/ brackets, that may go over

several lines, is treated as a comment. Finally, a string enclosed in "..." quotes,

immediately following a type declaration, is a comment but it is remembered and

will be displayed whenever the type declaration is displayed in the interpreter,

as illustrated in Section 4. The remembering and re-display of a specially located

comment associated with some code is another idea we borrowed from Python.

In the code type declarations the use of a call term pattern such as child of(C,P)

is optional but allows the arguments to be refereed to succinctly in comments. We

could just use the code name as in child of: dyn(person,person).

The enumerative type definitions for male and female mean that only the given

atoms can be used in the child of and age is facts. person is defined as the union

4

of these two types. age is a range type. If any fact for these relations is not type

correct there is a compile time type error.

male and female are both sub-types (≤) of person, where person ≤ atom ≤
atomic ≤ term ≤ top. top is the top of the QuLog type lattice. top is also a

direct super-type of code, a super-type of all relation, function and action types.

The dyn wrapper for the argument type tuple of child of and age is indicates

the relations are defined only by facts and that these facts can be updated by

interpreter commands and action rules. Their arguments are implicitly ? moded

allowing test or generate use for either or both arguments.

The rel wrapper indicates a static relation. These are usually defined by rules

but may be defined using fixed facts. In their type declaration we have to indicate

their allowed modes of use. The ancestor of relation use mode is test or generate

a ground value for both arguments, indicated by the ? mode annotations for each

argument type. In contrast, in calls to descendant is the first argument has to be

given as a person atom because its first argument does not have the prefix ?, so

is implicitly ! (ground input) annotated. Its definition is logically redundant but

its use for finding descendants is much more efficient than the logically equivalent

ancestor of because it will ’walk’ down the descendant chain from the given an-

cestor A whereas the ancestor_of definition will search for an ancestor by testing

if the parent of each child_of pair is a descendant. descendant is is similarly

inefficient for finding ancestors of a given descendant, but its mode prevents its

being used for this purpose. Any such attempted use will raise a mode error. If we

know that we would not need to find ancestor pairs we could use the moded type

rel(?parent,parent) for ancestor of causing a mode error when a call does to

have the second argument given.

isa is a test or generate type checking primitive for types with a finite do-

main. These are enumerated or range types, or unions of such types. Its first use

isa(C,male) in the only_has_adult_sons rule is a test or generate use. Its second

use isa(C,male) is a checking use for which we could also use type(C,male). type

is the more general type check primitive as its second argument can be any type

expression, but it may only be used for checking.

The explicit existential quantification in the consequent of the forall quantified

implication is needed in QuLog, as it would be needed in the equivalent predicate

logic universally quantified implication.

Recursive types

list is a primitive recursive parameterised data type. New parameterised recursive
data types can be defined as in Haskel. Here is a definition for a binary tree struc-
ture with root labels of any type T, with a polymorphic relation that will check or
find labels on a given ground tree.

tree(T) ::= empty() | tr(tree(T),T,tree(T))

% empty and tr are unique constructor functors of the new type
on_tree: rel(?T, tree(T)) % The tree arg. must be a ground term in any call
on_tree(Lab, tr(_, Lab, _)

on_tree(Lab, tr(Left, _, _) <= on_tree(Lab,Left)

5

on_tree(Lab, tr(_, _, Right) <= on_tree(Lab,Right)

Using run-time type tests

Our next example has a necessary type test condition. add_nums_on_any_list

can be given a complete list of any terms, including terms that are or contain vari-

ables. It may be used to find or check the sum of all the numbers appearing on the

list, ignoring non-number values and variables.

add_nums_on_any_list(TermList,Sum): rel(list(@),?num)

"TermList is a complete list of possibly non ground terms, which will

not be further instantiated by a call to the relation"

add_nums_on_any_list([E,..L], Sum) :: type(E,num) <=

add_nums_on_any_list(L,LSum) & Sum = LSum+E

add_nums_on_any_list([E,..L], Sum) :: not type(E,!num) <=

add_nums_on_any_list(L,Sum)

The @ signals the argument may be a variable or any ground or non-ground term.

It also tells us that the argument will be unchanged by a call to the relation, that

no variable will be bound.

The type test type(E,num) will only succeed if E is a given number. It fails if it is

a variable. type(E,?num), with the prefix ? on the type expression, would succeed

even if E was a variable or a number.

:: should be read as such that. The conditions before the :: are a rule’s single

solution commit test. If they hold no later rule will be used to find an instance of the

relation and no second solution of the commit test is sought even if the conditions

following the :: have no solution. Given this semantics, the last rule’s complement

test not type(E,num) may be dropped and the evaluation behaviour will be the

same.

Type expressions as arguments

Here is a relation that will filter from a list of ground terms all those terms of
a specific type, the type expression being given as the last argument.

filter_from_any_ground_list_TE(L1,L2,TE): rel(list(T1],?list(T2),typeE(T2))

"L1 is a list of ground terms, L2, which may be generated, is the sub-list

of L1 of just those members with type denoted by type expression TE"

filter_from_any_ground_list_TE:([],[],_)

filter_from_any_ground_list_TE([E,..L], [E,..FL],TE) :: type(E,TE) <=

filter_from_any_ground_list_TE(L,FL,TE)

filter_from_any_ground_list_TE([E,..L], FL,TE) :: not type(E,TE) <=

filter_from_any_ground_list_TE(L,FL,TE)

A call

filter_from_any_ground_list_TE([2,apple,7.5,-7,"hello"],FL,int)

will succeed binding FL to [2,-7] and the type checker will be able to infer that FL

will be a list of type list(int), from the fact that the type expression argument

is given as int.

Relations as arguments

6

An alternative way of achieving the same filtering is to pass in a test relation,
that is to make the filter relation higher order.

filter_from_any_ground_list_HO(L1,L2,Test): rel(list(T),?list(T),rel(T))

"L1 is a list of ground terms, L2, which may be generated, is the sub-list

of L1 of just those members satisfying the condition Test"

filter_from_any_ground_list_HO([],[],_)

filter_from_any_ground_list_HO([E,..L], [E,..FL],Test) :: Test(E) <=

filter_from_any_ground_list_HO(L,FL,TE)

filter_from_any_ground_list_HO([E,..L], FL,TE) :: not Test(E) <=

filter_from_any_ground_list_HO(L,FL,TE)

A call

filter_from_any_ground_list_HO([2,apple,7.5,-7,"hello"],FL,integerTest)

where

integerTest: rel(term)

integerTest(Trm) <= type(Trm,int)

will also succeed binding FL to [2,-7]. The drawback is that the type checker

will only be able to infer that FL is of the same type as the list given as the first

argument, which has inferred type list(num||atom||string).
The inability to infer that FL will be of type list(int) for this use of the higher

order version is compensated by the fact that we can now have any test, not just
a type test. We can filter out all the numbers between -2 and 2 for example by
passing in the test relation:

numRange: rel(term)

numRange(Trm) <= type(Trm,num) & -2 =< Trm & Trm =< 2

Comprehension expressions

Instead of Prolog’s bagof and setof there are two forms of comprehension expres-

sions, both may have existentially quantified conditions and be used as arguments

of relation, function and action calls.

adult_children_of: rel(?person, ?list(person))

adult_children_of(P,Child_List) <=

isa(P,person) &

Child_List=[C :: exists A child_of(C,P) & age_is(C,A) & A>17]

% Child_List is the list of adult children of P in order found
ages_all_adult_children: ?set(atom) % Will test or generate a ground set
ages_all_adult_children(AgeSet) <=

AgeSet = {A :: exists P, C isa(P,person) & child_of(P,C) & age_is(C,A)}
% Age_Set is the set (no duplicates) of ages of all adult children

Their general form is:

Term exists Vars SimpleConj

inside [..] or {..} brackets where the exists Vars is optional.

There are constraints on their use. All global variables of the expression - vari-

ables used elsewhere in the query or rule in which the expression appears - must

7

have ground values before the expression is evaluated. All other variables must ei-

ther appear in Term or be in the sequence of existentially quantified Vars. Finally,

all local variables appearing Term must be given ground values by the query con-

dition SimpleConj. The two ground value conditions ensure that comprehension

expressions only generate lists and sets of ground values.
There is a relational form of list comprehension, on the lines of Prolog’s findall,

that may be used to aggregate all answers to a query where some or all the answer
terms may not be ground. Its form of use is:

L listof (Term :: exists Vars SimpleConj)

where the exists Vars is optional.

common_elements: rel(list(T),list(T),?list(T))

common_elements(L1,L2,L) <= L listof (E :: member(E,L1) & member(E,L2))

defines a relation that will test or find an L that is the sublist of terms on L1 that

also appear on L2, which may include non-ground terms.

The constraints on its use regarding global and local variables not in Term are

the same as for list and set comprehension expressions. The one difference is that

shared local variables of Term and SimpleConj do not have to be given ground

values by the SimpleConj condition.

Manipulation of sets and lists

Sets and lists are different types. Literal list values are sequences of terms sur-

rounded by [..] brackets, e.g. [a,3.4,f(X),Y], and may contain non-ground

terms. Literal sets are sequences of ground terms surrounded by {..} brackets,

e.g. {a,3.4,f(3),a,"hello"}. Duplicate terms are ignored, so this set is reduced

to have only one occurrence of a.

The primitive in relation will access elements of lists and sets. It will return the

list elements in their before after order, and set elements in @< Prolog term or-

der. E in {a,3.4,f(3),a,"hello"} will generate successive bindings E=3.4, E=a,

E="hello", E=f(3).

Sets are manipulated using union, inter and diff primitives. Lists are manip-

ulated using the primitive <> function and the primitive append relation. Being a

function, <> will only concatenate ground lists whereas append has the flexibility

of use of the Prolog append.
<> does have another use for splitting ground lists. When one or more <> operators

appear at the top level of the right hand side of =? it acts as a non-deterministic
or multi-valued match operator. As an example, a call

L =? L1::(#L1>0) <> [U]::type(U,int) <> L2

will split a ground list L at each integer element U, not the first element of L

as L1 has to have non-zero length, making L2 the remainder of the list after

U. If L=[3,4.5,2,a,4] the call has solutions L1=[3,4.5], U=2, L2=[a,4] and

L1=[3,4.5,2,a], U=4, L2=[].
The above example illustrates the use of tests such as type(U,int) to constrain

the assignments to the pattern variables. The general form of such tests is

8

Var::Test(..,Var,..)

Failure of the test will cause backtracking to find an alternative value for Var. When

there are no more alternatives it causes an attempt to find alternative values for

variables appearing to the left of this condition in the pattern, ultimately resulting

in a failure of the entire =? non-deterministic pattern match. For list matching the

variable Var can be replaced by a list pattern such as [E] or [E|L] where the

associated Test can contain all the variables of the pattern.
Another example use is in the following definition.

splitsAroundE(L1,L2,E,BefE,AftE): rel(list(T),list(T),T,?list(T),?list(T))

"BelE, AftE are sublists before and after each E in L1<.L2"

splitsAroundE(L1,L2,E,OL1,OL2) <= L1<>L2 =? OL1<>[E]<>OL2

| ?? splitsAroundE([1,5,3],[8,5,7],5,OL1,OL2).

OL1 = [1]:[nat]

OL2 = [3,8,5,7]:[nat]

...

OL1 = [1,5,3,8]:[nat]

OL2 = [7]:[nat]

String pattern matching

For string manipulation we can use ++ for both string concatenation and splitting.
As a simple example,

"hello" =? S1 ++ S2

has seven different possible solutions for S1 and S2 starting with S1="", S2="hello",

then S1="h", S2="ello", and ending with S1="hello", S2="".
The pattern match

"hello" =? S1::#S1>0 ++ S2::#S2>0

excludes the first and last solutions we gave above. # is the QuLog primitive for

finding the length of a string or list, or the size of a set.

Here are some uses of string patterns to ‘parse’ strings representing sentences into

lists of string words. Such string processing can be a precursor to Definite Clause

Grammar (DCG) parsing of lists of string words.

spaces: rel(string)

spaces(S) :: (S =? " " ++ RS::spaces(RS)) % S has more than 1 space
spaces(" ") % We have a single space string

sepchar: rel(?string)

sepchar(" ")

sepchar(",")

sepchar(";")

endchar: rel(?string)

endchar(".")

9

endchar("?")

endchar("!")

sep_endchar: rel(?string)

sep_endchar(C) <= sepchar(C)

sep_endchar(C) <= endchar(C)

wordchar: rel(string) % Test only use
wordchar(S) :: 1 = #S & not sep_endchar(S)

% S is a single character string which does not contain a sep or end character

word: rel(string)

word(S) :: (S =? C::wordchar(C) ++ RS::word(RS))

word(S) :: wordchar(S) % Single char alternative for a string being a word

seps: rel(string)

seps(Seps) :: Seps =? (O::sepchar(O) ++ RSeps::seps(RSeps))

seps(Sep) <= sepchar(Sep)

words: rel(string,?list(string))

words(Str,[W]) :: Str =? (W::word(W) ++ E::endchar(E))

words(Str,[W,..Words]) ::

Str =? (W::word(W) ++ Seps::seps(Seps) ++ RStr::words(RStr,Words))

words converts a string sentence beginning with at least one word substring

terminated with an end char, and with spaces and/or any number of sep chars

between each word, into a list of word strings. An example use is

words("Hello Keith,, how are you?", Ws)

which generates the binding:

Ws = ["Hello","Keith","how","are","you"]

2.1 General form of relation definitions

These comprise a type declaration using a new relation name r, optionally immedi-

ately followed by an associated "..." string comment, and somewhere in the same

program file a sequence of contiguous facts and/or relation rules for r.

General Form of Relation Declarations

There are two forms of relation in QuLog. Dynamic relations defined only by

a sequence of updatable ground facts and static relations which are defined by a

sequence of non-changing facts and rules. A dynamic relation might not have any

facts in the program file, just a declaration.

A dynamic d relation is declared:

d: dyn(t1,....,tk)

where the ti are unmoded type expressions. A dynamic relation does not need

10

explicit mode annotations. Being defined only by facts it can be queried in any

mode.
A static relation r is declared:

r: rel(mt1,....,mtk) | rel(mt’1,....,mt’k) | ...

Here each mti, mt’i etc. is a type expression with a mode annotations or @ on its

own. The mode annotations are prefix !, ?, ??, or a postfix annotation ?. No mode

annotation is the same as prefix !. Prefix ?? and postfix ?, are alternatives.

! indicates ground input, that in a call that argument must be given and be

ground. Prefix ? indicates ground output, that in a call a variable or term containing

variables may be given but that the argument will be ground on success of the call.

Postfix ? or prefix ?? indicates unconstrained, that the call argument can be as

for prefix ? mode but is not necessarily ground on success of the call. @ indicates

unchanged, any term as argument value which will always be left unchanged by a

successful call.

If a type expression is an instance of a parameterised structure type, such as

list(int), the type expression for the structure’s elements may also be moded

with a more relaxed mode than that for the structure. Here postfix ? is more relaxed

than prefix ?, which is more relaxed than !. For example, we can have a moded

type list(?int), list(int?) or ?list(int?), meaning respectively: a complete

list which may contain variables all of which will have integer values on success,

a complete list which may contain variables not all of which may have integer

values on success, a partial list (a list such as [3,-6,N,..L] where L is a variable)

which will be a complete list, possibly containing variables, on success (for example

[3,-6,N,8]).

If only a mode annotation m is given this is equivalent to m term, e.g. ? on its own

is shorthand for ?term. The omission of a mode annotation on a type expression is

equivalent to there being a prefix !, indicating a ground argument value is required.

Generally, the ! is dropped.

The fully moded declaration test: rel(!rel(?nat,num),!atom) tells us that

test is a relation which must be given an atom second argument and a relation

first argument. The relation will be used always giving a num second argument but

the first argument may be a nat, or a variable to be bound to a nat.

A relation can have more than one type declaration. There are constraints on

the allowed alternatives checked by the compiler to ensure that when type/mode

checking a program there is always just one minimum type alternative that covers

the inferred types and groundedness of the call arguments.
The primitive append (list append) relation has the QuLog definition:

append: rel(list(T)?,list(T)?,list(T)?) | rel(list(T),list(T),?list(T)) |

rel(list(T?),list(T?),?list(T?)) | rel(?list(T),?list(T),list(T)) |

rel(?list(T?),?list(T?),list(T?))

append([],L,L)

append([U,..L1],L2,[U,..L3]) <= append(L1,L2,L3)

The five type descriptions differ only regarding modes. The first is the most general

use where all arguments can be variables or list patterns, and may each be left as

11

such terms after a successful call. The second type declaration is the appending use

of ground lists, and the fourth is the splitting use of a ground list. The third and

fifth are relaxations of the second and fourth. They treat the cases of appending

and splitting complete lists of possibly non-ground terms. Their declarations say

that complete lists will be generated, but they may contain non-ground terms.

General form of Dynamic Relation Facts

A fact for a dynamic relation d has the form

d(Arg1,...,Argk)

where each Arg1 is a ground term or code name of the required type ti of d’s type

declaration. The fact may not contain any variable.

Relation rules

QuLog has two forms of relation rules, unguarded and guarded.

An unguarded rule for a relation is written

Head or Head <= ComplexConj

where Head is a head predication of the form rel(Arg1,...,Argk), k ≥ 0. Here rel has

atom syntax but is different from any atom of an enumerated type, and any name

used as a constructor of a defined type, and no Argi contains a function call.

A ComplexConj has the form Cond1 & Cond2 & ... & Condn, n≥ 1, with Condi

• an expression predication RelExp(Exp1,...,Expk), k ≥ 0, where each Expi is an

expression - a term that may contain function calls. RelExp is an expression

returning a k-ary relation rel’ such that the values of the argument expressions

will satisfy the mode and type constraints of rel’ when it is called.

• a negated condition not (exists VarSeq SimpleConj), where VarSeq is a

sequence of local variables of SimpleConj. This is the QuLog negation-as-

failure (1) operator

• a body predication, or a (..) bracketed SimpleConj, prefixed with once -

find one solution only

• an expression value unification Exp1=Exp2

• a non-deterministic pattern match Exp =? PtnTerm

• a meta-call call Call

• a meta-call apply(F,Args,Term)

• a universally quantified implication (a forall) of the form

forall V1,...,Vj (exists VarSeq1 SimpleConj1 =>

exists VarSeq2 SimpleConj2), j≥1
The Vi variables are universally quantified over the implication. The sequence

of variables of VarSeqi are existentially quantified over SimpleConji, i=1,2.

12

A SimpleConj is a ComplexConj which does not contain any forall.

In a negated condition the existentially quantified variables are local variables of

SimpleConj, variables that do not appear elsewhere in the query or rule body in

which the negation appears. All other variable of SimpleConj, except underscore

anonymous variables, must be given ground values before the condition is evaluated.

(variables are always implicitly existentially quantified just before the predication

in which they appear.) If there are no such local variables the exists VarList is

absent. The (...) brackets are not needed if there is only one negated condition.

In a forall, each variable Vi must appear in both SimpleConj1 and SimpleConj2.

It must be a local variable of the forall. All other variables of the forall, ex-

cept the existentially quantified variables VarsSeq1 and VarsSeq1 and underscore

variables, must have ground values when the forall condition is evaluated. Each

VarsSeqi contains variables local to SimpleConj1.

The type of call is rel(relcall). relcall is a system generated term type.

For every program defined and primitive relation r : (m1t1, ..,mktk), where the mi

are modes, the system type relcall has a constructor r(t1, .., tk).

relcall is a very special type because a relcall term Call is considered ground

if the functor r is given and there is a type declaration for r that is type and

mode compatible with the arguments of Call, i.e. only the required ground input

arguments of the compatible declaration need to be ground in Call.

If Call has been generated by a proceeding call as a value of type term, or passed

into the relation in which the meta call is used as an argument of type term, the

meta-call has to be preceded by a run-time type test type(Call,relcall). This

type test checks that term Call is a compound term of the system type relcall,

and that all the arguments that must be ground are ground. The use of call and

the relcall type is illustrated in Section 7.

The type of apply is rel(T->T,T,?T). An example us is apply(+,(2,4),R)

which will bind R to 6, the value of 2+4. It allows us to invoke any function as

a relation call and is particularly useful for meta programming as illustrated in

Section 7.

The unification primitive Exp1=Exp2 evaluates its expression arguments and uni-

fies the values. It does an occurs check unless the compiler can determine that one

of the expression arguments will be a ground value when the = is evaluated, or one

argument contains only new variables outside its function calls.

The PtnTerm right hand side of a =? is restricted to three forms of patterns: a

top level sequence of ++’s or <>’s or a Functor@..ArgList term. Its use is for pattern

match decomposition of strings, lists, and compound terms.

A guarded rule for a relation has the form:

Head :: Head :: SimpleConj

Head :: <= ComplexConj Head :: SimpleConj <= ComplexConj

The first rule form is equivalent to Head :: true <= true, the second rule to Head

13

:: true <= ComplexConj, the third to Head <=SimpleConj :: true. true is the

no argument QuLog primitive that is trivially provable.

The SimpleConj between the :: and the <= is the rule’s commit test. When such

a rule is used for a call Cond, should the rule’s SimpleConj succeed, no later rule

for the predicate of Cond will be used to find solutions and only one solution to

SimpleConj is found. In Prolog terms, there is a cut after the commit test.

3 Defining New Types

There are five forms of type definition: enumerative, range, constructor, union and

macro. All program defined types must have a unique name different from any of

the primitive type names.
An enumerative type definition has the form:

typeName ::= v1 | ... | vk

where the vi are different atomic terms, not necessarily the same type. The defined

typeName is a sub-type of atomic. But it will also be a sub-type of a more specific

type, e.g. num, providing all its values belong to that sub-type.
Overlapping enumerative type definitions are allowed providing the set of values

of one is a proper subset of those of the other. This allows the type inference system
to assign a unique minimal enumerative type to any atomic value included in at
least one enumerative type. We can have partially overlapping sets of atomic values
as different types using type unions. For example:

digit ::= 0 | 1 | ... | 9

small nat ::= 0 | 1 ... | 5

small neg int ::= -1 | ... | -5

small int ::= small neg int || small nat

small int comprises the integers -5, -4,..., 0, 1. ..., 5 but is a not the min-

imal type for any of its values.
A range type definition has the form:

typeName ::= m .. n

where m and n are integers with m < n. It is equivalent to the enumerative type:

typeName ::= m, m+1, ..., n

and is subject to the same constraints regarding overlapping types.
A constructor type definition has the form:

typeName ::= c1(t1,..,tn) | c2(....) | ck(...)

or

typeName(T) ::= c1(t1,..,tn) | c2(....) | ck(...)

Here each ti is a type expression which may containg variable T in the second form

of definition. The ci constructor names are atoms. A constructor name may appear

more than once providing it has the same number of arguments with different

types. This flexibility is rarely needed. It can also be used in other constructor

type definitions which are either restrictions or extensions of this type. That is they

14

are either sub-types, having fewer constructors but with the same argument types,

or they are super-types having these types constructors, with the same argument

types, and more. A constructor type is only a sub-type of term and top.
A union type definition has the form:

typeName ::= te1 || te2 || ... || tek

where each tei is a type expression. typeName is a sub-type of any other union

type which includes a super type for each type tei.
A macro type definition has the form:

typeName ::= te

where each te is a type expression. It gives the name typeNm to that type expres-

sion for brevity. A union type definition is also a macro type definition since a union

of types is a type expression. Type expressions are described in Section 8, where

the type lattice sub-type relation is also defined.

Type test primitives

There are two general type test primitives for determining whether a data term

has a specific program defined or primitive type, type and isa.

type(trm,te) - test only use. Will succeed if trm is a term of type denoted by

the type expression te.

isa(trm,fte) - test or generate use. fte must be a type expression denoting a fi-

nite extension type. If trm is a variable it can be used to find instances of the type.

For example, isa(P,person).

Program dependent system types

There are four special program dependent types generated by the compiler:

• dyncall - A compound term of the form d(arg1,...,argk) where the program

contains a declaration d:dyn(t1, .., tk) and each argi is either of term of type ti
or a variable. That is, if type(Trm,dyncall) Trm denotes a mode and type

correct call to the dynamic facts about d. It need not be ground.

• dynfact - A dyncall term that contains no variables, it is ground.

• relcall - A dyncall term, or a compound term of the form r(arg1,...,argk)

where the program contains rules for a relation with a moded type declaration

of the form r : rel(t1, ..., tk), or r is a system defined relation with such

a moded type declaration, and each argi is either of term of type ti or a

variable, and where an argument is moded ! the corresponding argument

of r(arg1,...,argk) is ground. That is, if type(Trm,relcall) Trm denotes a

mode and type correct call to the relation r.

• actcall - A is a compound term of the form a(arg1,...,argk) where the pro-

gram contains rules for an action with a moded type declaration of the form

15

a : act(t1, ..., tk), or a is a system defined action with such a moded type dec-

laration, and each argi is either of term of type ti or a variable, and where an

argument is moded ! the corresponding argument of a(arg1,...,argk) is ground.

That is, if type(Trm,actcall) Trm denotes a mode and type correct call to

the action a.

4 Interpreter queries and commands, and watch debugging

At the QuLog interpreter prompt | ?? one can enter:

• a ComplexConj relation query, possibly prefixed with an existential quantifi-

cation of those variables whose answer bindings should not be displayed

• an expression - a list or set comprehension, an arithmetic expression, a call

to a primitive function such as cos, or a call to a program defined function

• an action sequence of the form ActOrCond1 ; ... ; ActOrCondn, n > 0

where each ActOrCondi is either a SimpleConj condition, or an action call of

the form ActExp(Exp1,...,Expk), k ≥ 0, with ActExp is an expression returning

a k − ary action, a’, such that the values of the argument expressions of the

action call will satisfy the mode and type constraints of a’ when it is called

The first and last entries are terminated by a full stop, return, the second by an

exclamation mark, return, Each will be type/mode checked. Answers are displayed

paired with their minimum type in the type lattice.

All current program type definitions and type declarations will be displayed in

response to a types action. All system type definitions and type declarations for

primitives will be displayed, along with a short comment indicating the purpose, in

response to stypes. types Nm will display the type of the code named Nm, stypes

SNm will display the type of system defined SNm, with a descriptive comment. show

Nm will display the type and the rules for program defined Nm.

The changeable default response for a relation query is to display up to five

answers at a time, each new batch being given in response to a .. input.

| ?? app([dog,..L1],[1,..L2],[U,3,V,"pear",7.5]).

L1 = [3] : [nat]

L2 = ["pear", 7.5] : list(num || string)

U = dog : atom

V = 1 : nat

| ?? 2 of exists P child_of(C,P) & age_is(C,A) & A>17.

C = mary : female % Most specific type of mary displayed
A = 19 : age

... % Displayed between different answers
C = bill : male % Most specific type of bill displayed
A = 23 : age

..

% The .. input will cause display of 2 more answers, if there are 2 more
| ?? [(C,A) :: exists P child_of(C,P) & age_is(C,A) & A>17] !

[(mary,19), (bill,23),....] : list((person,age))

% A list of pairs of persons and ages

16

The type of the list binding ["pear",7.5] for query variable L2 is list(num ||
string), a list of numbers or strings.

| ?? [qlexamples]. % Consult file in current directory named qlexamples.qlg

Consulting qlexamples.....qlexamples consulted

| ?? show app.

app: rel([T]?,[T]?,[T]?) | rel([T],[T],?[T]) | rel([T?],[T?],?[T?] |

rel(?[T],?[T],[T]) | rel(?[T?],?[T?],[T?])

app([],L,L)

app([U,..L1],L2,[U,..L3]) <= append(L1,L2,L3)

| ?? stypes cos.

cos : num -> num % Returns the cosine of radian value argument.

| ?? replace age_is(peter,A) by age_is(peter,A+1).

Type Error: A + 1 has type num but is required to be of type age in

age_is(peter, A + 1) (with age_is : (?human, ?age) <=)

of the action replace age_is(peter, A) by age_of(peter, A + 1)

Unlike the Prolog listing, QuLog show displays the rules with variable names of
the program file. replace .. by .. is a primitive action and its use has caused
a type error. This is because the type checker cannot infer that A+1 will be in the
range 0 to 120 knowing that A has that range. Indeed, A+1 might well be 121. What
is needed is a reformulation and a run-time type check to satisfy the type checker.

| ?? age_is(peter,A) ; NewA = A+1 ; isa(NewA,age) ;

replace age_is(peter,A) by age_is(peter,NewA).

The presence of the isa(NewA,age) test before the replace tells the type checker

that the new fact will be type correct. If the type test fails, the old fact is left in

place and the action sequence fails. Notice ; separates the actions and conditions.

There is a forall action iterator, useable in action rules, with the consequent an

action sequence. Apart from that, there is no backtracking in an action sequence.
There is no query trace in QuLog. Instead, a watch can be put on any number

of relations, functions and actions when using the interpreter. Then every call to
watched code is logged, no matter when called in some evaluation. The rule heads
with which it unifies or matches are displayed, as are the bindings that result. For
relations and actions these are split into input bindings for variables of the rule,
and output bindings for variables of the call. Whether the use of the rule succeeds
or fails, and the instantiated call result of a successful use of that rule, are also
logged. The watchC action will additional display the instantiated body of the rule
being used. watch invisibly inserts writes into the code which cannot be inserted by
the programmer, as they are actions. They will not be displayed by show. unwatch
removes them. Below is part of the output for the app query above with a watch
on app.

| ?? app([dog,..L1],[1,..L2],[U,3,V,"pear",7.5]).

1:app([dog,..L1], [1,..L2], [U, 3, V, "pear", 7.5])

Call 1 unifies clause 2

input U_0 = dog L2_0 = [1 |L2] L3_0 = [3, V, "pear", 7.5]

output U = dog

2:app(L1, [1,..L2], [3, V, "pear", 7.5])

.... % Similar output for recursive app call
3:app(L1_1, [1,..L2], [V, "pear", 7.5])

Call 3 unifies clause 1

input L2_2 = [1, "pear", 7.5]

output V = 1 L2 = ["pear", 7.5] L1_1 = []

17

3:app([], [1, "pear", 7.5], [1, "pear", 7.5]) succeeded

2:app([3], [1, "pear", 7.5], [3, 1, "pear", 7.5]) succeeded

1:app([dog, 3], [1, "pear", 7.5], [dog, 3, 1, "pear", 7.5]) succeeded

5 Function Definitions and Currying

The functional subset of QuLog is syntactic sugar for relations with a single mode of

use whereby all but the last argument have ! mode and the last has prefix ? mode.

Function call expressions can entered as top level queries in the interpreter and

appear as arguments of relation and action calls. Such expressions cannot appear in

the heads of relation, action or function rules. Functions allow much more compact

programs to be written.

5.1 Example Function Definitions

double: num->num

double(N) -> 2*N

flatten: tree(T) -> list(T)

"A polymorphic function for flattening a tree of labels into a list"

flatten(leaf()) -> []

flatten(tr(Left,Lab,Right)) -> flatten(Left)<>[Lab]<>flatten(Right)

fact: nat -> nat

"Returns factorial value for a natural number"

fact(0) -> 1

fact(N) :: N_Less1 = N-1 & type(N_Less1,nat) -> N*fact(N_Less1)

mapF(Fun,List): ((T1->T2),list(T1)) -> list(T2)

"Returns the list got by applying Fun to each element on List"

mapF(_,[]) -> []

mapF(Fun,[N,..Nums]) -> [Fun(N),..mapList(Fun,Nums)]

<> is the primitive list appending function. The type test of the second fact rule

both checks N>0 and assures the type checker that the recursive call is type correct.

mapF is a higher order function in that it takes a function as an argument. A call

mapF(double,[2.5,3.1,4.6]) will return [5,6.2,9.2].
If we have a function of more than one argument it is often convenient to create

a closure or partial application, a function of fewer arguments in which some of the
arguments of the original function have fixed values. For example, we may want to
pass in a function to the mapList function that multiplies each of the elements of
the argument list by some specific number N. We can do this by defining:

multby: num -> (num -> num)

multby(N)(M) -> N*M

One can now pass in to the list map function, multby(7.5), which is a function of

one argument of type num->num. This closure function will multiply its argument by

7.5. So, mapList([1.2,4,7,...],multby(7.5)) will return a list in which every

number on the list [1.2,4,7,...] is multiplied by 7.5.
We can do the same with relations.

18

a_parentOf: person -> rel(?person)

a_parentOf(C)(P) <= child_of(C,P)

a_childOf: person -> rel(?person)

a_childOf(P)(C) <= child_of(C,P)

We can pass as an argument the monadic relation parentOf(tom) whenever a
monadic relation of type rel(parent) or rel(?parent) would suffice. When ap-
plied it will test or find the parents of tom. If we pass as an argument the monadic
relation a childOf(mary), it may be used to test of find children of mary.

Currying

We can support this partial application by defining higher order functions for cre-
ating a partial application of a function or relation. This is called currying. Here
we define currying functions for two argument functions and relations but the same
technique can be used to return partial applications where there are any number
of arguments.

curry(F) : ((T1,T2) -> T3) -> T1 -> T2 -> T3 % -> is right associative
"Allows two stage invocation of F. curry(F)(X)(Y) is equivalent to F(X,Y)"

curry(F)(X)(Y) -> F(X,Y)

curryR(R): (rel(T1,T2)) -> T1 -> rel(T2) |

(rel(T1,?T2)) -> T1 -> rel(?T2) |

(rel(T1,T2?)) -> T1 -> rel(T2?)

"Allows two stage calling of R. curryR(R)(X)(Y) = R(X,Y)"

curryR(R)(X)(Y) <= Rel(X,Y)

curry(*)(7.5) is the same function as multby(7.5). curryR has alternative types

because of the alternative possible uses of the monadic curried relation - testing,

generating a ground value, generating a possibly non-ground value. Note it can be

given a relation that has a more relaxed mode for its first argument. That is, the

relation being curried need not require its first argument to be ground, because

both the prefix ? and postfix ? modes allow the first argument to be ground. More

technically, this is because the relation types rel(?T1,m T2), rel(T1?,m T2) are

both sub-types of the relation type rel(T1,m T2), for any mode m.

curryR(child of) is a function of type person -> rel(?person). It is the same

as the above parentOf.

curryR(child of)(tom) is a monadic relation of type rel(?person) that can

be passed as an argument to a higher order function or relation requiring a monadic

relation over the person type. The curried relation can be used to find or check the

parents of tom.
What is actually passed as an argument is the term curryR(child of)(tom).

When this closure is invoked, to find the age of the ’hidden’ person, the relation
rule

curryR(Rel)(X)(Y) <= Rel(X,Y)

is used to evaluate the call

curryR(child_of)(peter)(P)

19

by replacing it by child of(tom,P).

Example expression queries

| ?? fact(4)!

24 : age

% age is given as type of 24 as this is its minimal type
% because of type def. age::= 1..120 in the consulted program

| ?? curry!

curry : (T1,T2 -> T3) -> (T1 -> T2 -> T3)

% -> is right associative

| ?? curry(+)!

curry(+) : nat -> nat -> nat | int -> int -> int | num -> num -> num

% Answer just gives the type of the expression query

| ?? curry(+)(8)!

curry(+)(8) : nat -> nat | int -> int | num -> num

| ?? curry(+)(8)(7.5)!

15.5 : num

| ?? mapF(curry(*)(3),[1,7,-4])!

[3, 21, -12] : list(int)

| ?? curryR(age_is)!

curryR(age_is) : person -> rel(?age)

% The value is a function from a person to gen/test relation for the age of the person

| ?? curryR(age_is)(peter)!

curryR(age_is(peter) : rel(?age)

| ?? PetersAge = curryR(age_is)(peter) & PetersAge(A).

A = 41 : age

5.2 General form of Function Definitions

These comprise a type declaration for a new function f , optionally immediately

followed by an associated "..." string comment, and somewhere in the same pro-

gram file a sequence of contiguous function rules for f .

Function Type Declarations

A type declaration for a k-adic function f has the form:

f: (t1,....,tk) -> t

where each ti and t are type expressions.

Function Rules

20

These have two forms:

f(Arg1,...,Argk) -> Exp

f(Arg1,...,Argk) :: SimpleConj -> Exp

where each Arg1 is a variable, or a non-variable term which may not be ground, or

a code name, of the required type ti of f’s type declaration. No Argi may contain a

function call.

To evaluate a function call f(Exp1,...,Expk) the expressions Exp1, ...,Expk are

first evaluated. Then the first rule for fun with a left hand side (a head) that matches

the argument evaluated call, and which has a commit test (if present) that succeeds,

determines the call’s value. This is the value of the right hand side expression Exp,

made ground by the call/head match and the evaluation of the rule’s commit test.

The type/mode checker ensures Exp will be ground.

6 Actions

Actions are the imperative subset of QuLog. A repertoire of primitive actions may

be extended by defining new actions. When a fully compiled QuLog agent is started

it executes an action in its initial thread, typically forking new action executing

threads using the thread fork primitive. An action sequence may also be invoked by

an interpreter command. They cannot be called from relation rules, or the commit

tests of function rules.

6.1 Example action definitions

add_child(F,M,C): act(person, person, person)

"An action that atomically adds facts recording that C is a

child of F and M"

% act type tag indicates an action. all arguments implicitly ! moded
add_child(F,M,C) ∼>

atomic{remember child_of(F,C) ; remember child_of(M,C)}

birthday(P): act(person)

"Add 1 to age of P if not already at recordable age maximum of 110"

birthday(P) :: age_is(P,A) & NewA = A+1 & type(NewA,age) ∼>
replace age_is(P,A) by age_is(P,NewA)

birthday(P) ∼> writeLine([P, "already has maximum recordable age 110"])

% Above rule only used if guard of first rule fails

We can then use action calls

| ?? add child(philip,june,holly).

| ?? birthday(peter).

in the interpreter to record two new child of facts and to increment peter’s

recorded age by 1. The two remember calls of add child are enclosed in an atomic

21

{...} bracketed sequence so that when one thread executes a call to add child it

will not be interrupted until both remember calls have succeeded. No other thread

will be able to query the dynamic child of facts until both have been added. The

term argument of remember and both arguments of replace...by... must denote

ground facts for some program dynamic relation when called.

QuLog action procedure types are moded with the same mode annotations as

used for relation types. Like relation rules they comprise a Head and a Body but

with ∼> separating the two instead of <=. Also actions in the body are separated by

; rather than & to emphasise their behavioural aspect. ∼> should be read as do and

; read is next do. QuLog actions usually only have ! and ? moded arguments. ? is to

allow a terminating action to return a value to be passed to a later action. An action

procedure may be non-terminating, particularly those defining agent behaviours as

exemplified in (3).

6.2 General form of Action Definitions

These comprise a type declaration for a new action a, optionally immediately fol-

lowed by an associated "..." string comment, and somewhere in the same program

file a sequence of contiguous actions rules for a.

Action type declarations

An action type declaration has the form

a: act(mt1,...,mtk)

The moded type expressions mt1,...,mtk are as for a relation type declaration. Like

a relation, an action may have several moded types separated by |.

Action Rules

The general forms of rules for an action a are:

a(Arg1,...,Argk) ∼> ActSeq
a(Arg1,...,Argk) :: SimpleConj ∼> ActSeq

where each Arg1 is a variable, or a non-variable term which usually contains vari-

ables, or a code name of the type ti required by r’s type declaration. No Argi may

contain a function call.

SimpleConj is a relational query as in relation and function rules. The first form

of rule is shorthand for the second form where SimpleConj is true, so every rule

has a commit test. Note that this means that no action call or relation query in the

rule body should fail. If one does an error is signalled.

An ActSeq has the form

{} (the empty action sequence)

or

ActOrQuery1 ; ActOrQuery2 ; ... ; ActOrQueryn, n≥ 1,

22

with each ActOrQueryi

• an expression action ActExp(Exp1,...,Expk), k ≥ 0, where each Expi is an

expression - a term that may contain function calls. ActExp is an expression

returning a k-ary action a’ such that the values of the argument expressions

Exp1,...,Expk will satisfy the mode and type constraints of a’ when it is called.

• an expression predication, or a (...) bracketed SimpleConj preceded by the

operator ? - find at most one solution to a relation query

• an action meta-call do A, A a variable
• an iterated action (an action forall) of the form

forall V1,..,Vj (exists VarSeq2 SimpleConj ∼>
exists VarSeq2 SimpleActSeq) j ≥ 1

V1,..,Vj are universally quantified over the entire iteration. VarSeq1 is a possibly

empty sequence of different variables existentially quantified over SimpleConj and

VarSeq2 is a possibly empty sequence of different variables existentially quantified

over SimpleActSeq. (If either is empty the preceding exists is absent.) All other

named variables of the iteration must have ground values before it is evaluated.

Any anonymous variables are implicitly existentially quantified just before the

condition or action in which they appear. An existentially quantified action or

action sequence should be read as exists such that the action (or action sequence)

succeeds.

A SimpleActSeq is an ActSeq with no iterated action.

The type of the do action meta call is do: act(actcall). actcall is a program

dependent system type satisfied by any compound term that denotes a type and

mode correct call to either a primitive or a program defined QuLog action. The use

do and actcall is exemplified in Section 7.

7 Type and mode safe meta-level programming

The AI programming languages Prolog and LISP both allow fragments of program

to constructed and manipulated and then executed but to ensure type and mode safe

execution of that program fragment call specific type and mode checks (in the case

in Prolog) have to be inserted in the program fragment. If the program fragment has

been read in or sent in a message, each call must be examined to find the function

or relation being called in order to do the required checks on its arguments. QuLog

provides two system generated but program linked types, relcall and actcall,

for both the compile time and runtime checking of any relation or action call for

mode/type correctness. They access the name of the relation or action being called,

access its moded type declaration, and check that the call conforms to one of its

alternative moded types. Using these primitives considerably facilitates meta level

programming.
Prolog has a primitive =.. for decomposing and composing compound terms of

the form p(...). In QuLog this is done using the invertible @.. function. g@..[2,3]
evaluates to the compound term g(2,3). (h@..[d])@..[2,3] evaluates to the more

23

complex compound term h(d)(2,3). To use @.. invertibly, as with the invertible
uses of ++ and <>, we must use the pattern operator =?. The following queries
illustrate its use.

| ?? g(2,3) =? P@..Args.

P = g : atom

Args = [2,3] : list(nat)

| ?? h(s)(2,3) =? P@..Args.

P = h(s) : term

Args = [2, 3] : list(nat)

A very simple version of an evaluator for a list of terms naming relation calls is:

evalPosCalls: rel(list(term?))

evalPosCalls([])

evalPosCalls([Call,..Calls]) <=

type(Call,relcall) & call Call & evalPosCalls(Calls)

This checks each Call term on the list just before it is evaluated using the type
test type(Call,relcall) to ensure that at the point of its evaluation the Call
term will have functor the name of a relation r with arguments that conform to
the moded type constraints of at least one type of r. Unlike a normal type test
type(V,TypeExp) where TypeExp is unnotated or explicitly ! moded, the relcall
type test does not require the tested value to be ground. This is also the case
when testing for the actcall type. A type test type(Call,?relcall) is a further
relaxation, Call it does not need to be mode correct. If it is a compound term its
functor must be the name of a relation and its arguments must be of correct type
for one of the relation’s types. But if Call is an unbound variable, the test will
succeed. Example use is:

| ?? evalPosCalls([age_is(peter,A),apply(+,(A,1),APlus),<(APlus,111)]).

A = 40 : age

APlus = 41 : age

In the argument list of this call age is, apply, < are all being uses as constructors

of the type relcall.
Below is an analogous action evaluator of a list of action calls and ?(CallList)

single solution relation call queries.

doActs: act(list(term?))

doActs:([])

doActs(?(CallList),..Acts]) :: type(CallList,list(?term)) ∼>
? evalPosCalls(CallList) ; doActs(Acts)

doActs:([Act,..Acts]) :: type(Act,actcall) ∼>
do Act; doActs(Acts)

Example use is:

| ?? doActs([?([age_is(peter,A),apply(+,(A,1),APlus),<(APus,111)]),

replace(age_is(peter,A),age_is(peter,APlus))]).

A = 40 : age

APlus = 41 : age

success

24

In (3) more elaborate meta interpreters are defined called by actions that are

executed as non-terminating behaviours of multi-threaded agents. The agents ask

questions and request actions of one another.

8 Type expressions and the sub-type relation

The allowed QuLog type expressions are:

bottom bottom of the type lattice
atom nat int num string primitive non-structure types
atom_naming(ct) an atom naming code of type ct, sub-type of atom

atomic union of primitive non-structure types
list(t) set(t) primitive parameterised structure types
(t1,..,tk), k ≥ 0 k-tuple type
type program defined non-parameterised type
ptype(t) program defined parameterised type
compound a term of the form c(...) with a functor c and zero or more arguments
compound_naming(ct) a compound term naming code of type ct, sub-type of compound

term_naming(ct) an atom or compound term naming code of type ct, sub-type of term

term union of all the above types

rel(mt1,..,mtk), k ≥ 0 relation type
(t1,..,tk) -> t, k ≥ 0 function type
act(mt1,..,mtk), k ≥ 0 action type
code union of all relation, function and action types
t1 || t2 || ... || tk, k ≥ 0 union of k types
typeE(t) a type expression naming type t
T a type variable
top top of the type lattice

t and each ti is a type expression. Each mti is a moded type expression. As described

fully in Section 2.1, the mode is indicated by a prefix !, ?, ?? or a postfix ?, with

no mode annotation being equivalent to a prefix !. @ on its own stands for @term

moded type.

bottom is the special enumerated type that has one data value bottom_, a value

which may be returned when a function is undefined for some values of its argu-

ments.

Tuples are first class in QuLog. This is not the case in Prolog because of the asso-

ciativity of ’,’, also used as the associative ‘and’ connective. Because of this associa-

tivity, Prolog maps what should be a three element tuple (2,big,(4.7,"hello")),

containing a last element that is a pair, into (2,big,4.7,"hello"), a four element

tuple. (2,big,(4.7,"hello")) remains a three element tuple in QuLog, with a

two element tuple as last component. If we have a relation or function that has

one argument, that is a tuple, in its type declaration we use ((t1, ..., tk)). The type

expression ((atom,int))->int is for a function of one argument, that is a pair.

type is a non-parameterised program defined type. ptype is a program defined

parameterised type with a single parameter, the only form of parameterised type

allowed in QuLog.

top covers every value that can be passed as an argument or returned as a value

25

in QuLog. It includes every data term and every higher order value - functions,

relations and actions. In the TeleoR extension of QuLog there is one more code

type, that of a TeleoR procedure, of the form tr(t1,..,tk).

typeE(t) is the type of the type t. It allows us to pass a type expression as an

argument as exemplified in Section 2..

8.1 Data sub-type relation

This is a partial specification of the sub-type relation. We complete it below by
giving the sub-type relation for moded relation and moded action types, and for
function types. Here each t is a type expression, each mt is a moded type expression.
ct is a code type.

bottom < nat < int < num < atomic < term < top

bottom < atom_naming(ct) < atom < atomic

bottom < string < atomic

type < type’ if type, type’ are defined finite types and values(type) ⊂ values(type′)
listt) < list(t′) if t < t′

set(t) < set(t′) if t < t′

(t1,..,tk) < (t′1,..,t′k) if ∃ i such that ti < t′i & ∀ j 6= i, tj ≤ t′j
type < type′ if type::=te, type′::=te′, te < te′

ptype(t) < ptype(t′) if t < t′

bottom < list(t) < compound < term

bottom < set(t) < compound

bottom < compound_naming(ct) < compound

bottom < term_naming(ct) < term

atom_naming(ct) < compound_naming(ct) < term_naming(ct)
bottom < (t1,..,tk) < term

bottom < (t1,...,tk)->t < top

bottom < rel(mt1,...,mtk) < top

bottom < act(mt1,...,mtk) < top

8.2 Sub-type relationships for relations, functions and actions

Suppose a relation, function or action H has an input argument C with a code type.

The declared type Type of C is a use requirement for C, and a promise that C will

not be called by H except in conformance with the use modes of Type, and with

arguments that are no greater than the argument types of it HType. The compiler

checks that all H’s uses of C conform to that promise. It must then ensure that any

code value given as the value of C in a call of H, has at least the the same uses

required by CType. Having the same uses is the ≤ (the sub-type) relationship for

code types. It C is a ? moded argument, or is the value returned by a function, the

compiler also checks that any value given to C by H has type CType′ such that

CType′ ≤ CType.
For functions we have just one covers use rule.

(t1,...,tk)->t ≤ (t′1,...,t′k)->t′ if t1 ≥ t′1 &...& tk ≥ t′k & t ≤ t′

That is, a covering function must be able to be given for each argument a value of

26

type at least as great as the argument value type of the super-type function, and

the sub-type function must return a value no greater than that returned by the

super-type function.

For relation and action types we define the sub-type relationship with every

element of the argument type tuple explicitly moded with either prefix ! or ?, or

a postfix ?. If an argument is mode typed as @ it must be so mode typed in both

type tuples.

(mt1,...,mtk) ≤ (mt′1,...,mt′k) if mt1 ≥ mt′1 &...& mtk ≥ mt′k

mt≥!t′ if t≥t′ for test only use !t′ code of any mode m handling at least same type ok
?t≥t? for test/poss non-ground generate use t? ground test/generate ?t of same type ok
!st(mt) ≥ !st(mt′) if mt ≥ mt′

When structure will be completely given with possibly non-ground components !st(mt′)
covering relation must allow the required test or generate use for the components mt′

?st(t) ≥?st(t?) when use is test/generate of a complete skeleton of a possibly
non-ground structure ?st(t?), test/generate ?st(t) of same type ground structure ok

The covering relation or action must have the same or a greater moded type for

each of argument types of the covered relation. This ≥ relation depends on both

the type and the mode. Intuitively it means - allows all the uses of the covered

relation.

Suppose a function argument f is typed (atom,num) -> num. A function typed

(atomic,atomic)->int) allows all the uses of f, so could be passed as an argu-

ment. If a relation argument r is typed rel(!string,!int,!atom), a relation typed

rel(?string,?num,!atomic) can be used in every way r will be used, so may be

passed as an argument value for r.

The last two inequalities are for parameterised structure types like lists and trees,

where the outer structure must be complete (! mode), or will be made complete (?

mode), but values for the structure’s components, such as the elements of a list or

the labels of a tree, may be given as variables or non-ground terms.

As an example, if an argument of a relation has type rel(list(int)) (implicitly

rel(!list(!int))) then we can pass a relation of type rel(list(?num)), (implic-

itly rel(!list(?int))), as the value of that argument. However, if the argument

type is rel(list(?int)), we cannot pass in a relation of type rel(list(?num)) in

case the passed in relation is used to generate values for the list elements, which must

be of type no greater than int. We do not have rel(list(?int)≤rel(list(?num))
because we do not have ?int≥?num.

The last rule is the covering rule for a relation or action which may be used to

test, or generate, a complete skeleton structure which does not need to be ground.

It tells us that a relation typed rel(?list(?tree(num))) is an allowed value for an

argument of type rel(?list(tree(num)?)), as it does not matter that the passed

in relation will always generate a ground tree of numbers.

9 Type Checking

The type checker ensures that all function calls are given ground arguments with

a type no greater than their declared argument types, and that they will return a

27

ground value no greater than their declared value type. It checks that each relation

and action call will have, for each ground input argument, a ground value of type

no greater than the argument’s declared type. For each other argument of type T it

checks that the given argument is either a fresh variable which will be assigned the

type T, or a variable known to have already been assigned a ground value of type no

greater than T, or a variable not known to already have a ground value but which

has assigned type T, or any non-variable term of inferred type no greater than T.

The third case requires the possibly non-ground valued variable V to have exactly

the declared argument type T as the call may be being used to test an already

assigned value for V, which must be of

Here we informally describe the type/mode abstract interpretation using exam-

ples. The type checking rules it uses are given in the Appendix.

Consider the following type declarations and relation rule.

p : rel(int, ?int)

q : rel(T, ?T)

r : rel(int, ?num)

p(X, Y) <= q(X, Z) & r(Z, W) & Y = round(W)

where round is a system-defined function with type round : num -> int. We will

look at type/mode checkingb the rule.

During checking we maintain a program context set of the form

{Name1 : !T1, . . . , Namem : !Typem}

which lists the declared moded types for all user and system type declarations,

and a variable-type context set of the form

{V ar1 : ModedType1, . . . , V arn : ModedTypen}.

The variable-type context set contains the type constraints on variables produced

when type checking a rule or query. For the p rule, its initial value is deter-

mined by applying the Relation Application Type rule (2) in the Appendix) to

p(X, Y) : ! relcall. Using the p : !(rel(!int, ?int)), which will be in the pro-

gram context set, gives us

{X : !int, Y : ?int}

At this point we separately record the variables with ? mode as we need to check

that their mode has changed to ! after processing the body since they must be

grounded by the rule.

We now check the body of the rule, left to right one call at the time, using and

updating the variable-type context using the Relation Application Type rule. If

need be we use other type inference rules to reduce type constraints on compound

term arguments that contain variables, to variable only constraints. If this process

produces a new constraint V : MV TV then:

1. if MV is ! and V does not appear in the variable-type context with mode !

then fail with a mode error

28

2. else if V does not appear in the variable-type context then add this constraint

(with the mode changed to ! if it was ?)

3. else if V : !T ′
V appears in the variable-type context then check that T ′

V ≤ TV

(else fail with a type error)

4. else V : M ′
T T ′

V appears in the variable-type context (M ′
T must be ? or ??),

check if T ′
V = TV (else fail with a type error) and if MV is ? then replace

V : M ′
T T ′

V by V : !T ′
V

The intuition for (1) is that, if a call has a variable with mode ! (i.e. it is given)

then it must have been ground earlier (i.e. it is already has a ! mode). For (3) we

already know V has a (ground) type T ′
V and so it can only be used in a position

that requires an equal or larger type. For (4) if V already has a (ground) type T ′
V

(the call is for testing) then, as for (3) we require T ′
V ≤ TV . On the other hand, if

the call is generating a value then we require TV ≤ T ′
V , and so the types must be

equal.

The above only deals with single-level modes. Multi-level modes are processed in

a similar, but slightly more complex way.

Applying this step to q(X, Z) : ! relcall, we get the variable-type context

{X:!int, Y:?int, Z:!int}

T of the polymorphic type of q is constrained to be no smaller than int (from (3)

above). Because this is the only constraint on T then we instantiate it to int.

Applying the same process to the next call, r(Z, W): !relcall, we get

{X:!int, Y:?int, Z:!int, W:!num}

Now we check Y = round(W). Using the current variable-type context, and the

Function Application rule (1), the expressions on both sides have type int as re-

quired since = has moded type ??T=??T. Since the round(W) is ground, we change

the mode of Y to !. The final context is

{X:!int, Y:!int, Z:!int, W:!num}

Finally we must check that Y (since it had ? mode in the head) has ! mode. It has.
For the second, more complex example, we consider the following type declara-

tions and rule. It is concocted to illustrate checking a higher order relation and
sub-type filtering.

filter_nums: rel(list(??term) ?list(num))

gen_list: rel(int,?list(??term))

r: rel(rel(T,?list(??term)), T, ?list(num))

rel(Gen,Seed,Nums) <= Gen(Seed,GenLst) & filter_nums(GenLst,Nums)

The relation filter_nums will take a complete list of terms, some of which may

be variables or compound terms containing variables, and will extract the ground

sub-list of number terms unifying that with its second argument. Its definition

is similar to add_nums_on_any_list. The relation gen list takes an integer and

unifies its second argument with a complete list of integers or variables, as indicated

by the type expression ?[??term] for its second argument.

r’s first argument is a relation of type rel(T,?[??term]), where T is the type of

the ground input second argument. The relation argument takes a ground term of

29

type T, and must unify its second arguement with a complete list of terms, some of

which may be variables or terms containing variables (the inner ?? of ?[??term]).
Because r is a polymorphic relation, when we type check the rule we are not

allowed to instantiate T or have it appear in any ≤ constraint as this would imply
some restriction on T. The context set generated from processing the head is

{Gen:!rel(!T,?list(??term)), Seed:!T, Nums:?list(num)}

We put Nums in the variable set that must be ground at the end of body processing.
After processing Gen(Seed,GenLst) the context set becomes

{Gen:!(rel(!T,?list(??term)), Seed:!T, Nums:?list(num), GenLst:!list(??term)}

and, finally, after processing filter_nums(GenLst,Nums) the context set is

{Gen:!rel(!T,?list(??term)), Seed:!T, Nums:!list(num), GenLst:!rel(??term)}

with Nums with ! mode, as required.

We finish by type checking the query call r(gen_list, 4, N) We start with the

context set empty and end with the context set {N : ?list(num)} This requires

satisfying 4:T and gen_list:(rel(!T,?list(??term))) for some T. Using the

rules Type Order (18), Natural Type (13), Relations (38) and Moded Type 1 (41)

gives the constraints nat≤ T≤ int. Instantiating T to nat the constraint is satisfied.

10 Related Work

There are many papers (starting with (7)) treating type inference/checking for

logic programming languages. We have not come across any that has all of: func-

tion rules, sub-types, integration of types and modes, higher-order types, run-time

type checking for constraining both types and modes, type checking of meta-level

programming, a clear and clean separation between behavioural and declarative

programming. This brief survey of related is not exhaustive.

Mercury (13) has both types and modes. However, Mercury does not have Prolog

variables as first class values, nor, it appears, does it integrate reasoning about

types and modes. (9) considers types and modes for Prolog in an approach which is

close to ours, but with different motivations. His language has polymorphic types,

multi-level modes (e.g. complete lists of non-ground terms) and allows multiple

type/mode declarations of relations. However, it does not have an unconstrained

mode, nor higher order types.

Typed Prolog (12) has explicit type declarations and allows a mixture of both

dynamic and compile time type checking. lambda-Prolog (8) is based on the in-

tuitionistic higher-order theory of hereditary Harrop formulas. It has polymorphic

types and unification of lambda function expressions, but no modes or sub-typing

of data.

Esher (6) is essentially an extension of Haskel with logical variables and relations

modelled as boolean functions that can be called with unground arguments. Curry

(5) is similar, both have monadic I/O as in Haskell (10). As both treat relations as

boolean functions there is no need for modes.

Go! (2) is a multi-threaded higher order logic, functional and object oriented

language for multi-agent programming. Class instances have state manipulated by

30

action rule methods. It has data structure type definitions and type inference. It is

not moded, does not have term sub-typing nor meta-programming. It has influenced

our design of QuLog.

References

Clark, K. L. Negation as failure. In Logic and Data Bases (1978), J. Minker and
H. Gallaire, Eds., Plenum.

Clark, K. L., and McCabe, F. G. Go! A multi-paradigm programming language for
implementing multi-threaded agents. Annals of Mathematics and Artificial Intelligence
41, 2-4 (2004), 171–206.

Clark, K. L., and Robinson, P. J. Qulog: A relation, function and ac-
tion rule language for engineering agent applications, 2014. Downloadable from:
www.doc.ic.ac.uk/ klc/QLOverview.pdf.

Clark, K. L., and Robinson, P. J. Robotic agent programming in TeleoR. In Proceed-
ings of International Conference of Robotics and Automation (2015), IEEE.

Hanus, M., et al. An integrated functional logic language. Choice 33 (2003), 1.

Lloyd, J. W. Programming in an integrated functional and logic language. Journal of
Functional and Logic Programming, 3 (1999).

Mycroft, A., and O’Keefe, R. A. A polymorphic type system for Prolog. Artificial
Intelligence 23 (1984), 295–307.

Nadathur, G., and Miller, D. An Overview of lambda-Prolog. In Fifth International
Conference Symposium on Logic Programming (1998), MIT Press.

Naish, L. A declarative view of modes. In Proceedings of Joint International Conference
on Logic Programming (1996), MIT Press.

Peyton-Jones, S., et al. Report on the programming language Haskell 98, 1999. At:
http://research.microsoft.com/apps/pubs/default.aspx?id=67041.

Robinson, P. J., and Clark, K. L. Pedro: A publish/subscribe server using Prolog
technology. Software Practice and Experience 40, 4 (2010), 313–329.

Schrijvers, T., et al. Towards typed prolog. In Proceedings of the 24th International
Conference on Logic Programming (2008), pp. 693–697.

Somogyi, Z. A system of precise modes for logic programs. In Proceedings of the Third
International Conference on Logic Programming (1986), MIT Press, pp. 469–787.

Appendix: Type Inference Rules

The following type inference rules use moded types, which is necessary for checking

the modes and types of definitions. We also require checking and inference to apply

to types without modes. The type inference rules can be used simply by eliding the

modes from the rules. The rules below are used in two ways in QuLog. The first

way is when doing type inference - the type is to be deduced. In this case the rules

are tried in the order given. By doing this we obtain the minimal type for the term.

The second use is for type checking and in that case the Type Order rule can also

be used when A is atomic. The other collections of rules are used for simplification

and determining minimal types.

We use the notation Term : Type to mean that Term is of type Type and

31

T1 ≤ T2 to mean that T1 is either the same as T2 or lower in the type hierarchy

and T1 ≤m T2 to mean that T1 is less that or equal to T2 as moded types. We also

use T1 < T2 to mean T1 is strictly lower in the type hierarchy than T2.

When using these rules in practice we can introduce type variables that come

from polymorphic types. If we are checking that a term is of a polymorphic type

we don’t allow such type variables to be instantiated. On the other hand if we are

finding the type of a term that contains a subterm whose type is polymorphic then

we allow such type variables to be instantiated.

As an example of an instance of the Polymorphic Constructor Type rules below

consider the type

tree(T) ::= empty() | tr(tree(T),T,tree(T))

In this case PT (T) of the rule is tree(T), the C1 term is empty() and the C2 term

is tr(tree(T), T, tree(T)).

We consider the inference rules below to use pattern matching rather than uni-

fication. This means, for example, that the Equality rule (21) cannot be used to

bind a type variable to a type.

Type Inference Rules

In the rules below the M ’s are modes.

(1) Function Application Type:

F : ! (T1 → T2) A : !T1

F (A) : M T2

(2) Relation Application Type:

R : ! ((M1 T1, . . . ,Mn Tn)<=) A1 : M1 T1 . . . An : Mn Tn

R(A1, . . . , An) : ! relcall
(3) Action Application Type:

R : ! ((M1 T1, . . . ,Mn Tn)~>>) A1 : M1 T1 . . . An : Mn Tn

R(A1, . . . , An) : ! actcall
(4) Polymorphic Constructor Type:

PT (T) ::= (C1(T 1
1 (T), . . . , T 1

m1
(T)) | . . . | Cn(Tn

1 (T), . . . , Tn
mn

(T)))

A = Ci(A1, . . . , Ami
) A1 : M T i

1(M ′ T) . . . Ami
: M T i

mi
(M ′ T)

A : M PT (M ′ T)

(5) Enumerated Type:

T ::= (A1 | . . . |Ai | . . . |An)

Ai : M T

(6) Integer Range Type:

T ::= (N1..N2) A : int N1 ≤ A ≤ N2

A : M T

32

(7) Empty List Type:

[] : M [M ′ T]

(8) Non-Empty List Type:

A : M ′ T B : M [M ′ T]

[A|B] : M [M ′ T]

(9) Set Type:

[A1, . . . , An] : ! [!T]

{A1, . . . , An} : ! {! T}

(10) Tuple Type:

A1 : M T1 . . . An : M Tn

(A1, . . . , An) : M (T1, . . . , Tn)

(11) Bottom Type:

bottom : M bottom

(12) String Type:

A : M string

provided A is a QuLog string

(13) Natural Type:

A : M nat

provided A QuLog integer and A ≥ 0

(14) Integer Type:

A : M int

provided A is a QuLog integer

(15) Number Type:

A : M num

provided A is a QuLog number

(16) Atom Type:

A : M atom

provided A is a QuLog atom

(17) Type Type:

T : M typeE(T)

provided T is a type

Type Order

(18) Type Order:

A : T1 T1 ≤ T2

A : T2

Type Simplification

33

(19) Union Reduce:

Ai ≤ Aj ∧ i 6= j

(A1 || . . . ||An) = T

where T is (A1 || . . . ||An) with Ai removed

Type Ordering Rules

For the last four rules, if the moded types have multi-level modes then the inner

most mode is the one used and the T ’s are the types with all the modes removed.

(20) Transitivity:

T1 ≤ T2 T2 ≤ T3

T1 ≤ T3

(21) Equality:

T ≤ T

(22) Bottom:

bottom ≤ T

(23) Top:

T ≤ top

(24) Code:

(T1 → T2) ≤ code∧(T1<=) ≤ code∧(T1~>>) ≤ code∧(T1~>) ≤ code

(25) Term:

¬(T ≤ code) ∧ T 6= typeE(T1)

T ≤ term

(26) Base Types:

nat < int < num < atomic ∧ atom < atomic ∧ string < atomic

(27) Lists:

T1 ≤ T2

[T1] ≤ [T2]

(28) Sets:

T1 ≤ T2

{T1} ≤ {T2}

(29) Tuples:

A1 ≤ B1 . . . An ≤ Bn

(A1, . . . , An) ≤ (B1, . . . , Bn)

34

(30) Polymorphic:

T1 ≤ T2

PT (T1) ≤ PT (T2)

where PT is a polymorphic type name

(31) Union Type Element:

Ti ≤ (T1 || . . . || Ti || . . . || Tn)

(32) Union Subset:

∀i : (1..n) ∃j : (1..m) Ai ≤ Bj

(A1 || . . . ||An) ≤ (B1 || . . . ||Bm)

(33) Enumerated Type Element:

∀i : (1..n) Ti ≤ atom

(T1 | . . . | Tn) ≤ atom

(34) Enumerated Subset:

∀i : (1..n) ∃j : (1..m) Ai = Bj

(A1 | . . . |An) ≤ (B1 | . . . |Bm)

(35) Subrange:

N2 ≤ N1 ∧M1 ≤M2

(N1..M1) ≤ (N2..M2)

(36) Range:

(N1..M1) ≤ int

(37) Functions:

D2 ≤ D1 R1 ≤ R2

(D1 → R1) ≤ (D2 → R2)

(38) Relations:

MT1 ≤m MT ′
1 ∧ . . . ∧MTn ≤m MT ′

n

(MT1, . . .MTn)<= ≤ (MT ′
1, . . .MT ′

n)<=

(39) Actions:

MT1 ≤m MT ′
1 ∧ . . . ∧MTn ≤m MT ′

n

(MT1, . . .MTn)~>> ≤ (MT ′
1, . . .MT ′

n)~>>

(40) Procedures:

T1 ≤ T2

T1~> ≤ T2~>

(41) Moded Types 1:

T2 ≤ T1

! T1 ≤m ! T2

(42) Moded Types 2:

? T ≤m ??T

35

(43) Moded Types 3:

T2 ≤ T1

? T1 ≤m ! T2

(44) Moded Types 4:

T2 ≤ T1

??T1 ≤m ! T2

36

