UPMAIL Technical Report No. 59
March 22, 1990

Logic Programming Schemes
and their Implementations

Keith L. Clark

Dept. of Computing
Imperial College, London
\Ema.il: klc@doc.ic.ac.uk

and

Computing Science Dept.
Uppsala University
Box 520, S-751 20 Uppsala, Sweden
Phone: +46 — 18 — 182500

Abstract

This paper offers a tutorial but incomplete survey of a succession of proposed logic programming
language schemes. All of the schemes surveyed can be considered variants or descendants of the
original Kowalski (1974) scheme, now referred to as SLD. SLD is a resolution inference system
(Robinson, 1965) for Horn clauses. Some of the descendants of SLD that we survey are also
resolution systems, the others are not. Semantic properties of the schemes are discussed and
links between the abstract schemes and their implementations as logic programming languages
are explored. Familiarity with the general ideas of logic programming is assumed.




1 Introduction

It is now 16 years since Kowalski(1974) described his scheme for logic
programming based on a resolution inference system (Robinson 1965) for Horn
clauses (clauses with at most one positive literal), now referred to as the SLD (Selective
Linear resolution for Definite clauses). Unification is at the heart of the scheme, acting
as both data accessor and data constructor (see Kowalski 1974). Since then, many
extensions and variations of the Kowalski scheme have been proposed, the early ones
being the negation as failure extension of SLD (Clark 1978), now referred to as
SLDNF, and Colmerauer's rational tree scheme (Colmerauver 1982), the first non-
unification, hence non-resolution scheme. This paper is a tutorial introduction to a
succession of logic language schemes all of which can be viewed as descendants of the
Kowalski scheme. It starts with SLD and ends with the very general CLP (Constraint
Logic Programming) scheme of Jaffar and Lassez (1987).

An essential aspect of the survey is the presentation of unification as equation solving
for the Herbrand interpretation of the functors. This is an old idea that dates back to
Herbrand(1930). Colmerauer (1982), Martelli and Montanari (1982), Goguen and
Meseguer (1986) and Lassez et al (1988) have also identified algorithmic equation
solving as a key idea of logic programming. By viewing unification as equation
solving we can more easily relate the unification based schemes to their
implementations - particularly the implementations allowing and—parallg;g_l}'fsﬁm - and we
can see more clearly how the generalisation of this process of equation solving for the
Herbrand interpretation leads to the non-unification based descendants of SLD. For

This paper is a revision and substantial extension of (Clark 1988)




2 Logic programming schemes

example, if we change the interpretation for which we are solving the equations to one
in which the functors are still free but with a that domain can contain infinite rational
trees, and modify our equation solver accordingly, we get Colmerauer's (1982)
scheme.

The semantic properties of the schemes are discussed using concepts from (Clark
1978,1979). This was the first formulation that focussed on the semantics of the
answer substitutions returned by the Kowalski scheme, interpreting them as
conjunctions of equations denoting relations over the domain of the Herbrand universe
of terms. Queries denote relations and computed answers must denote subrelations of
the query relation for all allowed models of the program. This contrasts with the
original semantics of van Emden and Kowalski (1976), which focused on the
semantics of program defined predicates. These were defined as sets of ground atomic
formulae. The relation/sub-relation semantics allows us better to relate the Kowalski
scheme to the other schemes. The semantic differences between the schemes hinges on
what the allowed models of the program are, and on what predicates, with what
meaning, can appear in the computed answers returned. In SLD any model is an
allowed model and only the predicate =, denoting equality, can appear in computed
" answers. The predicates that can appear in answers we shall call the reserved
predicates. These are predicates not defined by the program but given a fixed meaning
by some pre-interpretation associated with the scheme. An allowed mode] is then some
extension of the pre-interpretation which makes each program clause true.

- Issues concerning implementation of the schemes are discussed and related to various

proposed logic programming languages. As already pointed out by Elcock (1990), .
we shall see that Absys (Foster and Elcock 1969), one of the first declarative

programming languages, can with some justice be considered the first logic

programming language. This is because it can be viewed as a partial implementation of
one of our schemes, called AGLD. We shall also see that some coroutining Prologs are

really implementations of a significant variant of SLD, even though SLD allows for a

coroutining evaluation. This is a property that was first realized by Naish (1984), who

also proposed the SLD variant. In section 4, there is a particularly detailed discussion

of parallel implementations of the AGLD scheme, since this is also the abstract scheme

for the many proposed concurrent (and-parallel) logic programming languages.

Schemes not based on first order classical logic, such as the lambda-Prolog of (Miller
and Nadathur 1986) are not covered, nor are schemes based on bottom up evaluation
such as the magic template scheme of (Ramakrishnan 1988) and others survéyed in
(Bancilhon & Ramakrishnan 1986).

1.1 Logical preliminaries
Syntax
We shall assume countably infinite disjoint alphabets P, R, F ,Vof program

predicates, reserved predicates, functors, and variables respectively. Each predicate
and functor has an associated non-negative integer arity. Functors of arity 0 we shall




Logic programming schemes | 3

also call constants. R always includes the two O arity predicates true, false and the
binary predicate =. For different schemes it may include other predicates.

A term is a variable, a constant or of the form f(t1,..,tk) where f € F is a functor of
arity k>0 and t1,..,tk are terms.

An atomic formula (or atom) is a O arity predicate or of the form p(tl,..,tk) where p
€ PUR is a predicate of arity k>0 and t1,..,tk are terms.

A literal is an atomic formula A or its negation ~A.

We shall also use the following logical connectives:
< (if conditional)
—> (then conditional)
<> (biconditional)
v (disjunction)
, {(conjunction)
As quantifiers we shall use 3 (existential), ¥V (universal). We assume the usual
definitions of (well formed) formula, free and bound variables, open and closed
formulas. In addition, we shall consider a set of atoms to be a formula.

We shall say that a term or formula is ground if it contains no variables.

The existential closure 3F of a formula Fis (3Y1,..,3YkK)F where Y1,..,Yk are all
the free variables appearing in F.

We shall use t[X1,..,Xk] to denote a term containing the variables X1,..,Xk and
FiX1,..,Xk] to denote a formula containing X1,.,,Xk as free variables.

When giving examples of terms and atoms we shall follow the Edinburgh Prolog
convention and use names beginning with lower case letters for functors and predicates
and names beginning with upper case letters for variables. The context will determine
whether a lower case name is a functor or predicate, although we shall generally follow
the normal logic convention and use f,g,h etc for functors and p,q,r etc for predicates.

An assignment is a set A of equations {X1=tl,..,Xn=tn} where Xi are distinct
variables and ti are terms (which may contain variables). For each equation X1=ti, ti is
different from Xi. tiis called the binding for Xi.

Examples: Al={X=£(Y,Z),Y=U,Z=g(W),W=b}, A2={X=£(Y),Y=g(X,d)},
A3={f(U,g(b)), Y=U, Z=g(b),W=b} g

Let A be an assignment. A variable X bound by an equation X={[X1,..,Xk] in an
assignment immediately depends on each variable Xi of its binding term.




4 Logic programming schemes

Example: In A1, X immediately depends on both Y and Z, Y immediately depends on
U, Z immediately depends on W.

Let the depends relation be the transitive closure of the immediate depends relation.
Example: In A1, X depends on Y,Z,U,W. In A2 X depends on Y, X

A Herbrand assignment is an assignment {X1=t1,, ,Xn_tn} in which no bound
variable Xi depends on itself. We shall usually use H, primed or subscripted, for
Herbrand assignments.

Example: A1 is a Herbrand assignment, A2 is not.

A substitution (sometimes called an indempotent substitution) is an assignment
{X1=t1,...Xn=tn} in which no bound variable Xi appears in any of the binding terms
tl,.,tn. We shall usually use S, primed or subscripted, for substitutions. A
substitution is clearly also a Herbrand assignment.

Example: Only A3 is a substitution.
A grounding substitution binds each of its variables to a ground term.

Application of an assignment A to a term t, or formula F, which is denoted tA,F.A,
is the replacement of each free occurence of a variable V bound in A, by the term to
which it is bound, to produce a new term or formula.

Examples:
h(X,W).Al is h(f(Y,Z),b)
p(X,Y).Al is p(f(Y,Z),U)

Interpretations

An pre-interpretation is a triple <D,F,R>. D is some non-empty set called the
domain of the interpretation. F is a function mapping each k arity functor in F intoa
k-adic function from DK to D. R is a function mapping each k arity predicate in R
into a subset of DK. R must always map true into true, false into false and = into
the equality relation for D. '

An interpretarion I is an extension <D,F,R,P> of a pre-interpretation

<D,F,R> where P is a function mapping each k arity predicate in P 1r1to a subset
of DK, i

What we have informally called the Herbrand interpretation of the functors is a D




Logic programming schemes 5

which is the set of all ground terms and an F which maps each k arity functor f into
the function <tl,..,tk> = f(tl,..,tk). This, coupled with the fixed interpretation of =,
false and true, we shall call the Herbrand Interpretation and denote it by HIL

A Herbrand interpretation is any interpretation which is an extension of HIL
Denotations

~ Let M be the function mapping ground terms to their denotations for interpretation
<D F R P> defined by: '

M(c) = F(c) for ¢ a constant

M(£(t1,..,tk)) = F(H)(M(t1),...M(tk))

A ground atom p(t1,..tk) is true for an interprctatioﬁ iff
<M(t1),...M(tk)> € P(p) whenp € P
<M(t1),..,M(tk)> € R(p) when p € R.

An existential closure of a set of atoms C is true for an interpretation iff there is some
allocation X1=d1,..,Xk=dk of k (not necessarily distinct) individuals d1,..,dk from D
as respective denotations of X1,..,Xk such that each atom in C is then true.

Let T be a tuple of variables <X1,..,Xk> and let Y1,..,Ym be all the variables of a- - -

set of atoms C not contained in T.

The k-ary relation RTC denoted by C for an interpretation I is the set
{<d1,..,dk>: for denotations X1=dl,..,Xk=dk, (3Y1,..,.Ym)C is true}.

Two sets of atoms C1,C2 are I-equivalent
iff for interpretation I, RTC}FRTCZ’ T a tuple of all the variables appearing in C1, C2.

Two sets of atoms C1,C2 are equivalent
iff they are I-equivalent for all interpretations L.

Two sets of atoms C1,C2 are Herbrand equivalent
iff they are I-equivalent for all Herbrand interpretations I

Note that these definitions also define equivalence of assignments. We assume the
normal extension of these definitions to give denotations of closed or ground formulas
(which are truth values) and to formulas with free variables (which are k-ary relations,
k being the number of free variables).

A model of a set of closed well formed formulas is any interpretation for which each
formula denotes true. ‘




6 Logic programming schemes

We shall use F for logical implication. Let F1 and F2 be formulas.

F1 k& F2 iff for every interpretation the denotation of 1 is a subset of the denotation
of F2.

false is a subset of true. We shall use false to denote the empty set extension for a
relation.

We. can now identify a key semantic difference between assignments and
substitutions and relate substitutions to herbrand assignments. '

RI1.1

The existential closure of a substitution S is true for every interpretation, or,
equivalently, the relation RTS # false for any interpretation, T a tuple of all the
variables in S
‘Proof

We can assign any elements of D to the variables {Y1,..,¥Yn} of the substitution
{X1=t1,..,Xk=tk} that appear in the terms tl,..,tk. By definition, no Xi is included in
{Y1,..,Yn}. We then assign to X1,..,Xk the resulting denotations of t1,..,tk.

R1.2

For every Herbrand assignment H there is an equivalent substitution S.
Proof _
- . Let n be the maximum length of any chain of variables Y1,..,Yj in H such that Yi
immediately depends on Yi+1 for i=1,j-1. n must be finite since there are a finite
number of variables in H and by definition no variable in H depends on itself. So there
can be no infinite chains. Proof is by induction onn. - '

If n=1, H is already a substitution.

If n>1. Assume true for any H with maximum length chain n-1. Let W1,..,Wk be
all the variables bound by H which are beginning points of chains of length n. Replace
the binding equation Wi=ti for each such variable by the equation Wi=ti.H. The new
assignment H' is equivalent to H. H' has n-1 has its maximum length chain so it can be
transformed into an equivalent substitution S. '

Example: The above proof gives us the following step by step transformation of Al to
A3. '
{X=1(Y,Z),Y=U,Z=g(W),W=b}
=> {X=f(U,g(W),Y=U,Z=g(W),W=b}
=> {X=f(a,g(b)),Y=U,Z=g(b),W=b}

R1.3

Every Herbrand assignment denotes a non-empty relation for every interpretation.
Proof '

Follows from properties 1 and 2. The existential closure of a non-Herbrand
assignment does not have this property. For example, A2 does not denote a non-empty
relation for any Herbrand interpretation. It only denotes non-empty relations for




Logic programming schemes 7

interpretations in which X=f(g(X,d)) has a solution.

2 Unification as equation solving and special purpose inference
Unification as equation solving for the Herbrand interpretation

The essential computational step of SLD as traditionally described is the unification of
one or more pairs of terms {(t1,t'l1),..(tk,t'k)}. This is the computation of a most
general unifier which is a substitution S such that for each pair (ti,t'i) ti.S is
syntactically identical to t'i.S. We refer the reader to Robinson(1979) for the definition
of a most general unifying substitution. For a thorough treatment of many of the issues
concerning unifying substitutions see also (Lassez et al 1988).

Following (Martelli and Montanari 1982) and (Herbrand 1930) we can recast the
problem of finding a most general unifier of {(t1,t'l),...(tk,t'’k)} as the problem
finding a solution of the set of equations

E={tl=t'1,t2=t"2,...,tk=t'k}

for the Herbrand interpretation HI that can be expressed as -an equivalent Herbrand
assignment

H={X1=t"1,...,Xn=t"n}
Equation solving algorithm

Algorithm 1

The following algorithm, which is a modification of that given by (Martelli and
Montanari 1982), and originally (Herbrand 1930), reduces a set of equations
E={tl=t'l,..,tk=t’k} to a set of atoms which is Herbrand equivalent to E in the context
of a Herbrand assignment H. The algorithm terminates with a Herbrand assignment
H'=HUH" (a success termination) or it terminates with a set of equations augmented
with the atom false, (a fail termination). ’




3 Logic programming schemes

Repeat the following step until E is {}, or false € H. On termination return H as the
answer.
Select any equation e in E and delete it from E.
Cases:
(a) e of the form f(t1,..,tk)=£(t'l,..,t) k). Add the k equations t1=t' 1, tk=tk to E.
(b) e of the form X=X. Do nothing.
(c) e of the form X=t, or of the form t=X, where t is not X.
Subcase (i) There is an equation X=t'in H. Add t'=t to E.
Subcase (i) No X=t' equation in H and HUu{X=t} is a Herbrand assignment,
add X=tto H
Subcase (i) No X=t' equation in H and in Hu{X=t} X depends on itself (the
, occur check), add false to H
(d) e of the form f(...)=g(...), where f and g are different. Add false to H.

The above algorithm always terminates. Notice that each step of the algorithm is such
that it transforms a set of equations into a Herbrand equivalent set of equations. Note
also that Hu{X=t} is a Herbrand assignment iff the occur check for X fails, so there is
really only one test to perform before X=t or false is added to H.

If it terminates with false added to H, the original set of equations HUE has no
solution for HI, i.e. it is Herbrand equivalent to false. :

If it terminates with a Herbrand assignment H' then the equivalent substitution $',
generated by the proof of proposition 2, is a most general unifier of E.S, S the
substitution equivalent of H. The proof is a simple extension of that given in (Martelli
and Montanari 1982) for their algorithm. However, the really important property of the
algorithm is that it generates an H' that is Herbrand equivalent to the initial HUE.

The algorithm corresponds fairly well to what happens in many implementations of
logic programming languages. These also represent the result of a unification as an
assignment rather than as a substitution. As an evaluation proceeds, unification of a
new call is performed relative to the incrementally generated assxgnment representing
the results of unifying all its ancestor calls.

Algorithm 2

We can paralielise the algorithm, providing we impose a restriction. We can allow a
subset E' of equations from E to be selected and deleted from E at each étep. We then
simultaneously apply the rules to €ach equation e in E', subject to the restriction that we
apply rule (c)(ii) to at most one equation X=t for each variable X. Any other equation
X=t'in E' is a simply added back to E.  Thus, at each step we add at most one
binding for each variable to H'. This restriction corresponds to a multiprocessor
implementation in which a variable binding is held in a single memeory_] locatlon and
assignment to this location is an atomic operation.




Logic programming schemes 9

Algorithm 3

An alternative parallelisation splits the initial set E into k+1 subsets EQ,E1,...Ek with
EO initially {} and the algorithm is applied to H,EO0,..,H,Ek independently. However,
instead of each new binding generated by the reduction of Ei being transfered to H, it is
instead transfered to a local Hi which is initialized to {}. Rule (¢) is modified so that
both H and Hi are checked for previous bindings for a variable. The modified rule is:

(¢) ei from Ei of the form X=t, or of the form t=X, where t is not X.
Subcase (i) There is an equation X=t'in HUHi. Add t'=t to Ei.
Subcase (ii) No X=t' equation in HUHi and HUHiu{X=t} is a Herbrand
assignment, add X=t to Hi _
Subcase (iii) No X=t' equation in HUHi and in HUHiU{X=t} X depends on itself
(the occur check), add false to H.

Rules (a),(b),(d) remain the same. In addition, as soon as some Ei has been reduced to
{} its corresponding Hi is added to EQ. When all EOQ,...Ek have been reduced to {},
H'=HWHO is the output of the algorithm.

This corresponds to a multiprocessor implementation in which, say, several different
calls are initially independently unified in parallel with heads of corresponding clauses
and the resulting bindings are incrementally reconciled (by being added to EO) as each
individual unification terminates.

Adding an equation X=t to an Hi amounts to broadcasting the binding to all the other
equations in Ei. It is equivalent to substituting for X in all the other equations because,
unless the algorithm previously terminates with failure, each other equation containing
X in Ei will eventually be reduced to an equation to which case (c)(i) applies. Thus the
algorithm allows only local broadcasting of bindings generated from each Ei to other
equations descended from Ei until Ei={}. The adding of Hi to EQ is the attempt to
reconcile these locally generated bindings with those generated by each other unification
process. However, the reconcilation with the bindings Hj generated from Ej begins
only when Ej has been reduced to {}.

Algorithm 4

We start the algorithm with some global Herbrand assignment H and split E into
E1,..,Ek with their local H1,..,Hk which are each initialized to {}. '

We then in parallel apply the rules of algorithm 3 to each H,Hi,Ei. The difference is
what happens when some Ei={} and its Hi is a Herbrand assignment. The following
rules can be applied in parallel to any H,Hi,Ei for which this is the case.

(e) H contains no binding for a variable bound in Hi and HUHi is a Herbrand
assignment. Transfer all the bindings from Hi to H atomically, i.e. without allowing
any other application of rule (e) to add a binding for a variable bound in H[To H.

(f) H contains no binding for a variable bound in H but Hi contains a bmdmg for a
variable X which depends on itself in HUHi. Add false to H.

(g) H contains bindings Y1=t'l,..,Ym=t'm for variables Y1,..,Ym bound in Hi by




10 Logic programming schemes

equations Y1=tl,..,Yj=tm. (These will have been added to H by rule (e) applied to
some other H,Hj after the bindings Y1,..,Ym were added to Hl) Set
Ei={t'1=tl,...t'm=tm} and delete Y1=tl,..,Yj=tm from Hi.

This algorithm corresponds o an implementation in which several calls can by
concurrently unified in a quasi independent way. However, application of rule (e)
allows early communication of the results of any unification which terminates providing
all its generated bindings are compatible with the current global set of bindings H. The
requirement that all of Hi is transferred atomically to H is the concept of atomic
unification for a scheme or a language that allows parallel evaluation of calls. We shall
return to this idea in section 4.

A further refinement would effectively anticipate apphcatmn of rule (g) whenever
bindings are added to H by rule (¢). When this happens, rule (g) can immediately be
applied to each of the other unification processes which have not yet terminated, i.e. to
which rule (e) has not yet been applied.

Unification as specialised inference from a theory of the Herbrand Interpretation

When we consider semantic properties of schemes, because they are logic
programming schemes, we will want to be able to characterize the answers computed as
logical consequences of some theory associated with the program. To this end, we
shall find it useful to interpret unification as an inference. Fortunately, we can do this.
We can axiomatise the Herbrand interpretation of F and = in such a way that equation
solving unification becomes just specialised inference from these axioms.

The following freeness axioms, FR, from (Clark 1978), characterize the Herbrand
interpretation of F.

(F1) for every functor fe F
f(X1,.,Xk) = f(Y1,..,Yk) = X1=Y1,..,.Xk=Yk
(F2) for every pair of distinct functors f,g e F
f(X1,.,.Xk) # g(Y1,.,Yn)
(F3) for every non variable term t[X] containing some variable X, X=t[X]

The following equality axioms, EQ, characterise the equality interpretation of =

X=X,

X=Y ¢« Y=X,

X=Z < X=Y,Y=X

f(X1,..,Xk) = f(Y1,..,,Yk) ¢ X1=Y1,. . Xk=Yk foreachf e F,

p(XL,...Xk) € p(¥1,.,Yk),X1=Y1,.,Xk=Yk for each p € PUR other than =

EQ+FR comprise the Herbrand equality theory HET characterizing the’” Herbrand
interpretation HI. |
Each step of each unification algorithm is a particular use of one of the axioms of the




Logic programming schemes 11

equality theory. This relationship is formalised in the result (Clark 1978):

R2.1 HETF Ry =Rl , Ta tuple of all the variables in E

H'=HUH" is the output of the unification process. That RTHU o= RTH- only needs the

general equality axioms EQ. That RTHU ECRTHr needs the freeness axioms FR.

As corollaries of R2.1 we have:

R2.2 false s H iff HET = RTpy p=false .
R2.3 H'is a Herbrand assignment iff RTHUEifalse for any I

Key properties of the equation rewrite algorithm

Unification has three very desirable properties: :
(1) A simple test on the syntactic form of the output H':_HUH“ (whether or not it
contains false) tells us whether or not E has a solution for theory HET in the context
H.
(2) In the case that it has a solution H" is a more explicit representation of the set of all
solutions than E.

- (3) Itis incremental, if we want to check whether or not some set E‘UE has a solution

for HET in context H, and we have already reduced HUE' to an equivalent Herbrand
assignment H', we can simply apply the algorithm to E in context H'.

We shall say that H produced by the equation rewrite algorithm is an incremental
solution form for any set of equations E for the theory HET.

Generalizing the equation rewrite

If we replace our equation rewrite algorithm by some other operation Q, it is desirable
to retain all three properties of the algorithm.

To ensure that the new scheme is a logic programming scheme, we must require that
O can be interpreted as checking whether or not some set of equations has a solution for
some theory T. More generally, O can be checking that some set of formulas C of
restricted form (usually atoms), containing only predicates from the reserved set R,
has a solution for the theory T. T describes the pfe-interpretation of F and R
associated with the scheme. We shall call T the reference theory for O.

In checking this property, O might generate a normalised form N for C. Minimally,
N must be T equivalent to C. In the worst case N could be just C Ideally, Nisin
some sense simpler or more exp11c1t than C. S

Finally, when O does generate a s1mpler normalised form N, it is dcswable that O is
incremental. As with our HI equation solving, we should be able to check some set
C'uC for which C' has a normalised form N' by applying a O to NUC.




12 Logic programming schemes

(Paterson & Staples 1988) present a generalised treatment of unification and
consfraint solving algorithms.

Schemes with incremental solution forms

As we shall see in detail later, (Colmerauer 1982) is an example of a logic
programming scheme in which equations are checked for solutions for an equality
theory of infinite rational trees. This scheme, which we shall call RTS, solves the
equations for this theory by an equation rewrite algorithm that generates an incremental
solution form which is an assignment A. ,

The (Colmerauer 1984) scheme generalises RTS in allowing both equations and
inequations in the set of atoms to be checked for solution. The reference theory is an
extension of that for RTS, as is the equation/inequation solving algorithm. The
algorithm also generates an incremental solution form.

The minimum requirement

As we have already indicated, the minimum requirement is that O checks for
solvability of some set of formulas C containing only predicates from the reserved set
R for some reference theory T. Without this, we will not be able to claim that
answers computed by the scheme are logical consequences of some set of first order
sentences. In the worst case, O can be the concurrent attempt to prove both 3C and
~3C from the axioms of the theory T. For this to be guaranteed to terminate, T must be
what Jaffar and Lassez(1987) call satisfaction complete. It must be the case that for all
allowed sets of formulas C, either 3C or ~3C is provable from T. This is the minimal
requirement of their CLP scheme.

As an example, HET is satisfaction complete for sets of equations. In fact, it is
satisfaction complete for any set of first order formulas C using only the predicate =.
This result is given in (Kunen 1987).

3 Schemes based on unification
3.1 SLD resolution - the Kowalski scheme

The first schematic framework for logic programming languages was given by
Kowalski (1974). This scheme is actually LUSH resolution (Hill 1974); now referred
to as SLD-resolufion.

Syntax
For SLD, the set of reserved predicates R={=, false, true}.
An SLD program is a set of definite clauses P.
" A definite clause is an implication of the form
r(tl,..,tn) ¢ Al,. Ak, k=0
where Al,..,Ak are atoms with predicates from RUP. The clause is implicitly
universally quantified with respect to all its variables. The clause is about the predicate




Logic programming schemes 13

re P. r(tl,.,in) is the head of the clause, Al,.. Ak is the body. The body atoms
we shall also refer to as calls.

Operational semantics

A computation is invoked by a query or goal which is a multiset of calls G written
as a conjunction B1,..,Bm.

A state of the computation is a pair <G,H> where G is a multiset of calls and H is
a Herbrand assignment which may contain false.

The initial state is <{B1,..,.Bm},{}>.

A success termination state is any state of the form <{},H>, false & H.

A fail termination state is any state of the form <G,Hu false >. .

The computation is a non-deterministic evaluation branching from the initial state.

The computation is controlled by a computation rule CR. This is a rule, which for
any non-terminal state <G,H> selects exactly one call B=r(t'l,..,t'k) from the multiset
of calls G. 4

The number of next states of the computation is the number of clauses in P about the
predicate r of the selected call.

Let

r(tl,..,tn) & Al,..,An
be a clause in P about r with its variables renamed so that its set of variables is disjoint
from the set of variables of the state <G,H>.

A next state is <G-{B}u{Al,..,An},H'> where H' is the result of applying equation
solving algorithm 1 to H and E={t1=t'l,..,tk=t'k}.

The search tree for a query G is the finitely branching tree routed at <G,{}>. The
offsprings of a node in the tree are all the j different states that can be generated using
the j clauses for the predicate of the call selected in that state. The strategy for
constructing the search tree is the search strategy. The strategy is fair if it does not
indefinitely postpone the construction of some branch of the search tree.

Answers to the query G are given by success terminating branches. The answer
computed by a success branch terminating in <{},H> is the substitution S which
equivalent to H (R1.2), restricted to bindings for the tuple of variables T=<X1,..,Xk>
of G. If G contains no variables, the answer is true.

Logical semantics .
The following logical properties of SLD, strengthening the soundness and
completeness results of (Hill 1974), were proved in (Clark 1979).

R3.1.1 Soundness
For every CR-computed answer substitution S for query Q and program P,
PE RTS c RTG




14 Logic programming schemes

Since for a substitution, RTg # false for any interpretation I (R1.1), this result implies
the usual but weaker soundness result :

If there is a success computation path then P (3)G

R3.1.2 Indeperidence of the computation rule
Let CR, CR' be two computation rules. For each CR- computed answer S there is an
CR'-computed answer S' which is equivalent to S.

R3.1.3 Strong completeness
For every substitution S' which binds the variables T such that P RTg ¢ RT5
there is an CR-computed answer S such that RTS > RTg for every interpretation I

The proof of R3.1.3 in (Clark 1979} uses the fact that algorithm 1 returns an H for
which the equivalent substitution is a most general unifier of the selected call and the
head of the program clause, but I am sure it can be proved using only R2.1, the key
semantic property of the algorithm.

Differences between the search trees for different computation rules

It follows from R3.1.2 that the number of success terminating branches on a search
tree is independent of the computation rule. In fact, a trivial consequence of the results
in (Clark 1979) (but proved in (Lloyd 1984)) is that the length of the success branch
computing a given answer is the same on each computation tree. As pointed out in
Chapter 5 of (Naish 1985), the search trees for different computation rules differ, if at
all, only with respect to the length and number of the failing or infinite branches. As
Naish concludes, the crucial role of the computation rule is "to avoid unnecessary
failure (and infinite) branches, as much as possible".

Possibilities for parallel evaluation

The Kowalski scheme allows for or-parallel search down the alternative evaluation
paths but only and-sequential evaluation. At each computation step only one call is
being unified. A trivial extension is to allow concurrent evaluation of any sequence of k
steps from state <G,H> that select atoms which can be independently unified with
heads of clauses in the context H. The condition that guarantees this is that each pair of
atoms B, B' of the sequence of selected atoms are such that B.S has no variables in
common with B'.S, where S is the substitution which is equivalent to H. This is
independent and-parallelism. On the issue of efficiently testing for independence see
(Degroot 1984) and (Hermenegildo & Rossi 1989).

Qualified answers

Another simple extension, is to allow the return of qualified answers. Suppose the
original goal has been reduced to a state <G',H'> where H' is a Herbrand assignment




Logic programming schemes 15

but G={}. Let S be the subset of bindings of the substitution S’ equivalent to H' that
only binds variables in query G. A qualified answer (Vasey 1986) for that computation
pathis S, G'.S'. A simple generalization of R3.1.1 tells us that

Pk RTgg sc Rl
Of course, RTg i+ g = false only if P 3(G'.S"

Types of computation rule

Let us suppose that the calls in the G component of the state are double indexed.
The first index is the computation step at which they are introduced, the second is the
position of the call in the original query or the clause body that introduced the call. So
the i'th call of the original query goal has index 0,i. The j'th call of the body of the
clause used at the k'th step down some computation path has index k,j. This indexing
corresponds to a stack implementation.

A rule that always selects a call with a highest first index is a depth first rule. The
rule that always selects the call with the lowest second index amongst those with a
highest first index is the leftmost call rule. A rule that does not always select a call
with a highest first index is a coroutining rule. With a coroutining rule the computation
can alternate between the evaluation of different calls. With a depth first rule calls are
always completely evaluated once selected, but the calls are not necessarily selected in
the order in which they appear in the given goal and in the body of the program — -
clauses.

Implementations of SLD

The first implementation was Prolog (Battani and Meloni 1973), which actually
predated the publication of the Kowalski scheme. Prolog uses the leftmost call
computation rule. It also uses a depth first search strategy trying the clauses in the
fixed order in which they are entered with backtracking on reaching a fail termination.
This is, of course, a non-fair search strategy; but it does allow efficient implementation.

A simple stack can be used to keep track of the state of the computation on the current
branch of the search tree. The i'th entry in the stack is a pointer to the clause C used at
the i'th step paired with an index <j,k>, j<i, which identifies the call with which the
head of C was unified. The current backtrack point BP for the stack, which is
separetely recorded, is the position of the most recent entry on the stack which points to
a clause which is not the last clause for its call. Usually this is the top of the stack, but it
need not be. When BP changes, its old value is remembered. When a selected call fails
to unify with the heads of any of its clauses, the stack is popped to entry BP-1, the old
value for BP is restored, and the next clause for the call of the popped PB entry is
tried. .

The great advantage of backtracking search is that at any one time:jifit;-nceds to
remember only the bindings for variables of a single branch of the séirch tree.
Variables can therefore be represented by pointers to a single memory location. When
a binding equation X=t for a variable X is added to H, the value t is stored in the




16 Logic programming schemes

location assigned to X. If X is a variable of the query, or of some clause used at a
computation step i where i<BP, X is trailed, i.e. the fact that it has been bound is
remembered. On backtracking to BP, the t binding for X is undone; X is reset to
undefined. For an introduction to Prolog implementation techniques see (Maier &
Warren 1988).

Implementations with more complex computation rules

IC-Prolog (Clark and McCabe 1979, Clark et al. 1982) was the first unplementatlon
to allow more general computation rules specified by program annotations. Like
Prolog it uses depth first backtracking search. The default rule is the leftmost call rule
but a different order of the calls in the body of a clause can be specified for different
modes of use, causing the calls to be introduced into the G component of the state with
different indices for different modes. A mode of use is an input/output pattern for the
argument positions of the call. Suppose that we successfully unify a call r(t'1,..,t’k)
in in state <G,H> with a head r(t1,..,tk). If i is an input argument position, the input
restriction is satisfied if all the bindings that result from rewriting the equation t'i=ti are”
for variables in the clause. If j is an output argument position, the output restriction is
satisfied if t'j is a variable that is not bound in H.

Implementations of courouting rules
A coroutining rule in IC-Prolog is specified by data flow annotations on variables in

calls. To understand the semantics of the annotations we need to assume a more - - -

complex indexing of calls in G. The calls are indexed by tuples of positive integers but
of arbitrary length. All the calls in the initial state have a single integer index giving the
position in the query conjunction. Then, when a call 'with index <i2,..,ik> is selected,
the i'th introduced call from the body of the used clause is given index <i,i2,..,ik>

With this indexing, the leftmost call rule is the rule that always selects an atom with a
maximal length index with the lowest first index. A depth first evaluation of acall A is a
computation that always selects a call with an index that is an extension of the index of
A, if there is such a call. An IC-Prolog computation always starts using the leftmost call
rule and, unless forced by a data flow annotation to select some other ca!l selects using
this rule.

In IC-Prolog, a ? annotation on a variable V in a call B makes B an eager consumer
of the binding for V. Suppose that before B is selected the computation rule selects a
call A and the unification with the head of the next clause for A results in the generation
of a binding equation V=t, t a non-variable. The body atoms for the clause are
introduced into the goal with their normal index but the computation rule now selects B.
It continues with a depth first evaluation of B until there are no more descendants of B,
or until some descendant B' of B demands a further instantiation of the binding for V.
In either case the computation rule switches back to select the call A’ it would normally
have selected after call A, had there not been a coroutining transfer to B,

B' demands a further instantiation of the binding for V if the unificatioirof B’ with
the head of a clause C generates a binding equation V'=t' where t' is a non-variable
and V appears in t. This binding is not added to H, indeed none of the bindings




Logic programming schemes 17

generated by the unification of B' are added to H. When the computation rule swtiches
back to A'itis as though B' had never been selected.

The eager consumer role of B for the binding of V is inherited by the descendants of
B. So, again, if some other call A" is selected before B' is selected, and the unification
of A" with some clause head adds a binding equation V"=t" to H, where t" is a non-
variable and V" is a variable in t, the computation rule switches back to the depth first
evaluation of B, restarting with B'. There is a renewed attempt to unify B' with the
head of the clause C the attempted use of which caused the earlier switch out of the
depthfirst evalaution of B. Notice that C may not be the first clause for the predicate of
B'. When B' had been previously selected, before the switch back to A', the
backtracking search might have discovered, without generating a demand for a further
instantiation of V, that all the clauses before C for call B' all lead to a fail state. In strict
accordance with the SLD scheme, when B' is now selected, the fact that it was
previously selected and then deselected should not be remembered. The backtracking
search should start by trying to use the first clause for B

The Naish HSLD scheme, that we shall describe in the next section, addresses this
point. In the Naish scheme, a resumption of the depthfirst evaluation of B could
correctly start by frying to reuse clause C for B'. The results of the earlier failed
attempts to evaluate B' are explicitly remembered in the scheme, as they are in the IC-
Prolog implementation. So IC-Prolog is really an implementation of HSLD.

The eager consumer annotation allows early incremental checking of the -
incrementally generated binding for a variable V. It can result in earlier failure, a
rejection of the binding for V before it has been completed constructed. (See the
remark above about search tree differences for different computation rules.)

A dual notion, that of a lazy producer, is specified by the annotation » on the
variable V in a call B. There is a switch ro B if a call which is selected before B tries to
bind V to a non-variable and the depthfirst evaluation of B then lazily generates the
binding. Strict one step alternation between the depth first evaluation of two or more
calls can also be specified, allowing pseudo parallel evaluation.

A weaker form of the eager consumer concept of IC-Prolog, which is easier to
implement, was independently devised by Colmerauer and colleagues and implemented
in Prolog II (Colmerauer 1982b). This is the freeze call. Instead of annotating the
variable V in a call B with 9, the call is written freeze(V,B). Suppose now that the
leftmost call computation rule selects freeze(V,B). If V is bound to a non-variable in
the substitution equivalent of the current set of bindings H, then evaluation continues
as though the call was B. If V is unbound, B is temporarily removed from the goal
component of the current state and linked with V. Other freeze calls can add to the
number of frozen calls linked with V, as can binding V to some other variable U that
has linked frozen calls. Now suppose that a non-variable binding for V is generated by
the unification of some call B' with the head of a clause A€~ Al,..,An. B and all other
frozen calls linked with V are now added to the goal component together with
Al,..,An. B and the other suspended calls are given new indices. ‘I“l':iés:e are the
indices that they would have had if they had preceded Al,..,An in the used clause.
The freeze condition is not inherited, a descendant of B will resuspend only if it is
contained inside another explicit freeze call. Note that when a frozen call in Prolog 1




18 Logic programming schemes

is reintroduced, its backtracking evaluation always starts with the first clause for its
predicate because no attempts have been previously made to evaluate the call. So use of
the freeze call is in accordance with the coroutining allowed by the SLD scheme.

If V is never bound to a non-variable, B and any other frozen calls linked with V will
never be re-introduced into the computation. So this implementation computes
qualified answers, the qualification being the conjunction of all frozen calls that are not
reintroduced. IC-Prolog does not compute qualified answers because all calls always
remain in some position in the goal component of the state.

In MU-Prolog (Naish 1985) coroutining is also implemented by temporarily
removing a call from the goal component. Here, the suspension condition is not
specified by the form of call, but by the specification of allowed modes of use of the
clauses for its predicate. Optionally, for a predicate r a set of modes of use can be
specified by a set of wait statements. A wait statement specifies a subset of argument
positions that are allowed output positions for the unification of any call for r with the
head of each clause for r. Multiple wait statements are used when there are several
possible modes of use for the same set of clauses.

When the currently selected call B is for a predicate with wait statements, the call is
suspended if the unification with the next clause C for r would result in the generation
of non-variable binding for variables V1,..,Vm which are disallowed by some by
wait statement for r. The call B is removed from the goal component and linked with
each of V1,..,Vm. Itis reintroduced with an index that makes it the next selected call
as soon as a non-variable binding is broadcast for any of the variables V1,..,Vm and
the unification with the head of clause C is retried. So, like IC-Prolog, this is really an
implementation of the HSLD scheme.

In Chapter 3 of Naish (1985) an algorithm for automatically generating wair
statements is given. These have the effect of suspending any call for which a depth
first evaluation would result in an infinite branch in the search tree.

In NU-Prolog (Thom and Zobel 1887), wait statements are replaced by when
statements which give conditions under which a call can be selected rather than
conditions for suspension. The when declaration is dummy clause for a predicate that
must succeed before any call to the predicate can be used. Its role is to check that
certain arguments are of a particular form, or are non-variable, or are ground terms. As
in MU-Prolog, they can cause a call to be temporarily removed until one of several
variables is bound to a non-variable term.

Parallel implementations

(Ciepielewski & Haridi 1984) and (Moto-Oka et al 1984) are designs for or-parallel
implementation of SLD with a leftmost call rule. (Conery 1987) has or-parallelism,
restricted and-parallelism and dynamic re-ordering of the body calls of a clause
depending upon which variables in the clause are bound by the head unification.
Warren (1987) is a survey of recent work on the or-paraliel implementatiéiié ‘of Prolog.




Logic programming schemes 19

3.2 Heterogeneous SLD - the Naish scheme

An interesting variation of the SLD, called Heterogeneous SLD (HSLD), was
proposed by Naish(1984) as the correct abstract model for coroutining backtracking
languages such as IC-Prolog and MU-Prolog. In these languages, the computation rule
may return to a previously selected call B, which was deselected because it caused a
corouting jump, and may restart the evaluation of B using other than the first clause
for its predicate. This is because before B was deselected, all attempts to use the earlier
clauses for B had resulted in failure. Unlike SLD, HSLD records the fact that the
earlier clauses have been tried in the computation state.

Syntax
Programs and queries are as in SLD.

Operational semantics

In a state of the computation <G,H>, each call in G is explicitly linked with a set of
the clauses for its predicate that can be used in generating a successor state, In the
initial state, each call of the query is linked with the set of all the clauses for its
predicate.

The HSLD computation rule, when applied to a state <G,H> returns a sequence Q
of pairs <B1,Cl1>,...,<Bj,Cj>,..<Bn,Cn> where Bjis a call in G and Cj is a clause
in the set of clauses linked with call Bj in G.

Let <Bj,Cj> be in the sequence Q returned for state <G,H>. Let new state <Gj,Hj>
be generated from <G,H> as in SLD using Bj as selected call and Cj as the clause. All
the introduced calls from the body of Cj are linked with a set of all the clauses for their
predicates. The calls in Gj that descend from G inherit their sets of linked clauses
except that in some cases clauses are deleted from the set. Suppose <Bi,Ci>, i<j, is an
earlier pair in the sequence Q. Then Ci is deleted from the set of clause linked with Bi
in <Gj,Hj>. However, Cj will appear in the set of clauses linked with the occurrence
of Bj in <Gi,Hi>, the successor of <G,H> generated using Ci on call Bi. So the order
of pairs on the sequence Q is important even though it is not intended to constrain the
order in which successor states are generated by some search strategy.

Success and fail termination states are as in SLD.

Logical semantics y

Naish proves that providing the sequence returned by the computation rule includes
all the clauses still linked with at least one call B in the state <G,H>, then the scheme
computes the same set of answers as SLD.

Implementations

Operationally, it allows a backtracking implementation which has dlscqvcrcd that all
computation paths that result from using clause C to try to solve call Bi in <G H> ends
in failure, to backtrack to <G,H>, select another call Bj in G, and subsequently to try to
solve Bi in a successor state of <G,H> without needing to reconstruct the failure




20 Logic programming schemes

subtree generated by using C to try to solve Bi. This is because in HSLD, C can be
deleted from the clause set associated with Bi in the new immediate descendant of
<G,H>.

Naish also points out that it justifies the following form of intelligent backtracking:
once a call has been found to fail, on backtracking to the current backtrack state, retry
the failed call if it is in the goal component of the state rather than the previously
selected call. Repeat this until the call succeeds or untll it is no Ionger in the current
backtrack state.

3.3 SLDNF - the Clark scheme

In (Clark 1978) an extension of SLD was proposed to allow negated atoms in queries.
and the bodies of rules.

Syntax
An SLDNF program is a set of clauses written as implications of the form

r(tl,.. tn) < L1, Lk, k 20

where L1,..,Lk are literals. The implication is implicitly universally quantified with
respect to all its variables. The clause is about the predicate r. The negated atoms in
the body we shall call negated calls.

Operational semantics

An SLDNF computation is invoked by a query which is a multiset of literals.

States of the computation are as in SLD except that the goal component is a multiset
of literals. The initial state is <G,{}> where G is the multiset of literals of the query.
The success and fail termination states are as in SLD.

The computation rule selects exactly one call from goal component. However, the
computation rule can select a negated call ~B in a state <G,H> only if B.S is ground,
where S is the substitution that is equivalent to H. Following (Lloyd & Topor 1986),
we-shall call a computation rule that obeys this constraint on the selection of negated
calls a safe rule.

Given a selected call L from the state <G,H> the possible next states are: _

If L is an unnegated call B, the next states are generated as in SLD. There are k
possible next states, k being the number of program clauses about the predicate of B.

If the selected call is a negative call ~B, then an auxiliary query evaluation is started
with initial state <B,H>. If every computation path for <B,H> ends in failure, ~B is
assumed to succeed. The next state of the main computation is <G-{~B},H>. If some
computation branch ends in success, false is added to H giving a failure state
<G,Hu{false}> as the next state of the main computation. This is the. neganon as
failure rule. :

A computation branch ﬂounders if a state <{~Al,..,~An},H> is generated which
has only negated calls and each call ~Ai is such that Ai.S is not ground.




Logic programming schemes 21

As in SLD, a computed answer is given by each success termination state <{},H>.
It is the substitution S which is equivalent to H restricted to the variables of the query.

Implementations .
Prolog is an SLDNF system but without the safety constraint on the computation
rule. It is left to the programmer fo make sure the negated calls come after positive calls
-that can be used to generate ground bindings for their variables. MU-Prolog and NU-
Prolog have safe computation rules. IC-Prolog has an unsafe rule but raises an error if
the evaluation of a negated call ~B generates a binding for a variable in B.S.

Logical semantics '

The answers computed by SLDNF are not logical consequences of the program.
Firstly, failure to unify is interpreted as proof of falsity, which is only valid for the
Herbrand interpretation of the functors. Secondly, there is an implicit assumption that
the given clauses somehow constitute a complete definition for each relation. To give a
logical semantics we must assume that the given set of clauses is shorthand for some
other, complete program.

Program completion
An SLDNF program clause has the form
(a) r(ti,.,m)¢ L1,.,Lk

The homogeneous form of the clause is
(b) r(X1,..,Xn) ¢ Xl=tl,.,Xn=tnLI1,.,Lk
where X1,..,Xk are distinct variables not in (a)

The general form of the clause is
(¢) r(X1,.,Xn) < @YL.Y)) X1=tl,..,.Xn=tn,L1,..,.Lk)
where Y1,..,Y]j are all the variables of (a).

Remember that unification between a selected call r(t'l,..,t'n) of state <G,H> and the
clause head r(tl,..,tn) is the application of algorithm 1 to H,E with E=
{t'1=t1,...,t'n=tn}. This is equivalent to the application of the algorithm to H,E with
E={X1=t'l,..,.Xn=t'n},{X1=tl,..,Xn=tn}. If we revised our definition of a
computation step, so that all n initial equations of the body of the homogeneous form of
the clause are added to the equations {X1=t'l,..,.Xn=tn} before the algorithm is
applied, computation using the homogeneous form of each clause is exactly the same
as computation using the original clauses.

Let

r(X1,..,Xn) € El

1(X1,..,Xn) < E2

r(X1,..,Xn) €< Em
be the general forms of all the clauses forr .




22 Logic programming schemes

The completed definition for r is:
r(X1,.,Xk) €< Elv E2v .v Em.
This is implicitly universally quantified for all the variables X1,..,Xk.

Example
The completed definitions corresponding to clauses
on(U,{UD
on(U,[VIZ]) < on(U,Z)
and
female(X) < person(X),~male(X)
male(tom)
male(bill)
are
on(X1,X2) < @AU) (X1=U,X2=[U]) vy @U,V,Z) (X1=U, X2=[V|{Z] , on(U,Z))
person(X) € person(X),~male(X)
male(X) € X=tomv X=bill

Program completion
Let P be a set of SLDNE clauses.
completed(P) comprises:
(i) the completed definition for every predicate that appears in the head of a clause in P,
(ii) the definition
Q(X1,..,Xk) € false k>o
for every k-adic predicate Qe P for which there are no program clauses in P.

comp(P) = completed(P)_,HET
Soundriess results for SLNDF (Clark 1978)
Let T be the tuple of variables of query G and let SR be a safe computation rule.

R3.3.1 The SR computed answer S for goal G satisfies
comp(P) = RTgc RT3

R3.3.2 If using SR every branch of the computatlon tree routed at <G,{}> ends in
failure then comp(P)  ~3G

R3.3.3 If the SR-computation tree routed at G is finite and S1,..,Sn, n>0, are all the
answers computed by the success terminating branches, then

comp(P) E RTG = RTS 1V o U RTsn ,
or equivalently

comp(P)F (VX1,.,Xk) [G> 3S1v ...v 3Sn]
where X1,..,Xk are the variables of T and 3Si is Si existentially quantified with respect
to every variable not in T.




Logic programming schemes 23

Generalisations of SLDNF

Allowing explicitly quantified negated calls

R3.3.2 will allow us to generalize SLDNF programs to have negated existentially
quantified conjunctions of literals of the form ~(3Y1,..,Yk)C in place of negated
atoms. As an example, we can allow a clause of the form: ‘

maths_major(X)<- student(X),~3Y)(maths_course(Y),~takes(X,Y))
More formally, a program clause can be an implication of the form

r(tl,..,mm) ¢ Cl1,..,Ck
where each Ciis a body call.

A body call is

(1) an atom

(2) a negated atom

(3) of the form ~(3Y1,..,Yk)C where C is a conjunction of body calls.

The program clause is implicitly universally quantified with respect to all its free
variables.

The state of the computation now contains a multiset of program calls. The safety
condifion on the computation rule is the condition that (1) a body call ~B can be
selected only if B.S is ground and (2) a body call ~@Y1,..,Yk)C can be selected only
- if @Y1,..,YK)C.S does not have any free variables.

Thus, ~3Y)(maths_course(Y),~takes(X,Y)) can be selected only when X is bound
to a variable free term p. The evaluation of maths_course(Y),~takes(X,Y), with X=p, ,
will be a proof of

~@Y)(maths_course(Y),~takes(p,Y))
if it fails.

Implementations

NU-Prolog(Naish 1986) allows such negated existentially quantified conjunctions
and enforces the generalized safety check that all free variables of such a negation are
bound to ground terms in S before it can be selected. ‘

‘Prolog allows negated conjunctions but these are not explicitly existentially
quantified. It does not impose any form of safety check, using always the leftmost call
rule. In consequence, a failed proof of any negated body call ~C is a proof of
~@Y1,..,YK)C where Y1,..,Yk are all the variables of C.S at the time. that the call is
selected.

Allowing arbitrary conditions in queries and clauses

In (Clark 1978) an example was given of how SLDNF coupled with simple program
transformation could be used as a scheme for logic programs which hay"e"hmch more
complex conditions, such as universally quantified implications, in querie-s'“éind clause
bodies. The example given was the transformation of the goal




24 _ Logic programming schemes

student(X),(VY)[maths course(Y) —> takes(X,Y)]
into the query
student(X),~non_maths major(X)
and additional program clause
non_maths major(X) €— maths_course(Y),~takes(X,Y)

for the introduced predicate non_maths_major. Alternatively,.if we allow negated
existentially quantified conjunctions as conditions, as suggested above, we can re-
express the query as

student(X),~@Y)[maths_course(Y),~ takes(X,Y)]

Lloyd and Topor(1984) have taken up this idea and generalised it to allow program
clauses of the form

AW

where W is an arbitrary first order formula. By introducing extra predicates, they show
how such a clause can be transformed into a set of equivalent SLDNF clauses.

Suspending the evaluation of a negated call with free variables _

Another extension of the negation as failure rule is to allow selection of a2 negated
call ~@AYL,..,.Yk)C from a state <G,H> where ~(@Y1,..,YK)C.S has unbound free
variables X1,..,Xn. The negation as failure rule is then modified so that its search
strategy suspends any branch of the computation of <C,H> that tries to generate a
non-variable binding for one of the free variables Xi. Xi becomes a suspension
varjable for <C,H> . _

If every branch of the evaluation of <C,H> terminates in failure without suspending,
i.e. without trying to generate a binding for one of the free variables, we have proved
(vX1,.,Xn)~@Y1,..,.YK)C.S. Hence we can simply delete the negated call from G as
for negation as failure with a safe computation rule.

If there is a success terminating path for <C,H>, which also does not bind any free
variable X1,..,Xn, we can add false to the H component of <G,H>. For we have
proved (VX1,.,Xn)3Y1,.Yk)C.S. No matter what ground bindings S' are given to
the variables X1,...Xn, @Y 1,..YkK)C.(SUS") is true, hence ~@Y1,..Yk)C.(SuS") is
false.




Logic programming schemes 25

If every other branch suspends or ends in failure, we suspend the construction of the
search tree for <C,H> and continue with the selection of some other call from state
<G,H>. As soon as a descendant <G',H'> is generated in which H' has a non-
variable binding Xi=t for some suspension variable Xi of <C,H>, the construction of
the negation as failure search tree is resumed with the binding Xi=t added to the H
component of every state of the partially constructed search tree for <C,H>. We now
treat the negated call ~(3Y1,..,Yk)C has though it had been selected in state <G, H'>
and not the state <G,H>. The resumed evaluation may of course resuspend, but it
might also terminate with some branch ending in success or with every branch ending
in failure. In the former case, false is added to H', in the latter case, we delete
~(3Y1,.,Yk)C from G' and continue with the evaluation from state <G'-
{~(3Y1,..,YK)C},H'>.

Implementation

IC-Prolog allows negated calls to be selected which contain free variables and it
interprets proof of the unnegated call which does not bind any of the free variables as a
proof of falsity. However, it raises an error instead of suspending if there is an
attempt to bind one of the free variables X1,..,Xn.

Allowing generation of values for the free variables

- R3.3.3 will also justify a negation as failure rule which genérates answers. - -
Suppose we again drop the safety condition and allow any negated condition
~3YL,..,Yk)C to be selected in a state <G,H> even if ~@Y1,..,YK)C.S is not ground
Let us now always construct the complete search tree for <C,H>, even if some of the
paths generate bindings for the free variables of ~3@Y1,..,YX)C.S. As before, if there
is a success branch that does not generate any bindings for these free variables, the call
~(3Y1,..,YK)C has failed. If all branches fail, ~@Y1,..,Yk)C has been proved true
and we can delete it from <G,H>. But suppose there are exactly n success terminating
branches ending in states <{},H1>, ...,.<{},Hn> and S1,..Sn are the substitution
equivalents of Hl,..,Hn restricted to the tuple of bindings for the free variables of
~@AY1,..,YK)C.S. A simple corollary of result R3.3.3 tells us that (3Y1,..,YX)C.S
€ 3S1lv..v3ASn. So, ~@YL,.,YK)C in state <G,H> can be replaced by the
conjunction ~381,...,~3Sn. Distributing the negation through each ~3Si will produce a
disjunction of universally quantified inequations. As an example, suppose the program
clauses for parent are:

parent(bill,john)

parent(joan,john)
A complete evaluation of parent(X,Y) will return the two sets of answers
{X=bill,Y=john}, {X=joan, Y=john} allowing us to replace ~parent(X Y) by

~(X= =bill , Y=john),~(X=joan, Y—John)
or equivalently by
{X#bill v Y#john), (Xs£joan v Y#john)

These are inequation constraints on the bindings that can be given to X by the




26 Logic programming schemes

evaluation of any other call in which X appears.

To handle these inequation constraints, we need to extend the SLDNF scheme to a
scheme for which the reserved set of predicates includes %, and for which unification is
replaced by some process that can incrementally check solvability of sets of (possibly
quantified) inequations and equations for the Herbrand interpretation. This is a non-
unification based scheme which we shall consider in section 6.

Constructive proof

As pointed out in (Clark 1978), SLDNF requires each negated atom to be
constructively proven, it does not allow case analysis proofs Thus, q is a
consequence of the completion

P p, g pv-p
of the program

P&<p g<p Q< ~p
but the SLDNF evaluation of query q will not terminate under any computation rule.
This is because the evaluation cannot make use of the law of the excluded middle,

PY ~Pp
hence it cannot show that q is true no matter what the the truth of p is.

Intuitionistic logic similarly does not allow the use of the excluded middle law. In
(Shepherdson 1985) the connection with intuitionistic logic was formalised by proving
that the soundness result R3.1.1 holds if the logical implication & is replaced by
intuitionistic provability.

This brings us to the issue of completeness of SLDNE. Clearly, SLDNF is not
complete, in the sense that it can find the all the answers that are derivable from
comp(P) for arbitrary programs P. The above is a counter example. '

Completeness results for SLDNF

There is no simple cbmpleteness result, even for the simple version in which only
negated atoms are allowed and the computation rule must be safe. The problems are
threefold.

Firstly, there is no guarantee that for an arbitrary program that the computatlon will
not flounder.

Secondly, it must be the case that everything that can be inferred from comp(P) can
be inferred ‘constructively’, without using the law of excluded middle.

Thirdly, when there is a ‘constructive’ proof of ~B.S from comp(P), we must be able
to generate a finite failure tree from <B,H> using the chosen computation rule,

The first two conditions force us to put extra constraints on the syntactic form of
SLDNF programs, which we consider below. The last one requires that the
computation rule used for each negation as failure proof be fair as well as safe.

A fair computation rule is a concept introduced into logic programming by Lassez
and Maher (1984). It is a computation rule which does not indefinitely. postpone the
selection of any call. No depth first computation rule is fair, a fair rule must be a
coroutining rule. The following program from (Clark 1978) is an example of a
program and goal that require a fair computation rule:




Logic programming schemes 27

pX) < q(¥).x(Y)

a(h(Y)) & q(Y)

r(g(Y))
With Prolog's leftmost call rule a single branch infinite search tree is generated for call
p(a). With any fair rule a finite search tree is constructed.

Hierarchical programs '

Consider the directed graph representing the relation refers to for the predicates of
program P. There is a +(-) labelled edge in the graph between predicates pand qifq
appears in a positive(negative) call in the body of some clause about p in the program.
An edge can be labelled with both + and -.

In a hierarchical program, there can be no cycles in this graph. Note that this rules
out recursion. In (Clark 1978) there was some informal discussion of completeness for
hierarchical programs. The key result concerning hierarchical programs was later given
by Shepherdson (1985):

R3.3.4 Completeness for hierarchical programs

If the program is hierarchical, every variable in a clause occurs in a positive literal in the
body, and every variable in a goal G also occurs in a positive literal of G, then any
grounding substitution S for all the varjables T of G satisfying comp(P)F G.Sis SR-
computable for any safe computation rule SR.

The conditions concerning variables ensure that the evaluation will not flounder and
that every computed answer is a set of ground bindings for all the variables of G.
(Clauses with no body conditions cannot contain any variables.) This is why we can
require S to be a grounding substitution. The hierarchical condition ensures that every
call generates a finite search tree, hence that everything can be inferred from comp(P)
consfructively.

As (Lloyd and Topor 1986) showed, the syntactic condition on program clauses
can be slightly relaxed for predicates that are only used in negated calls. For the
clauses for these predicates only variables in the body that do not appear in the head
have to appear in positive atoms, it is not necessary for variables in the head to appear
in éposiﬁve atom. Goals that satisfy Sheperdson's condition and programs that satisfy
the Lloyd and Topor conditions are called allowed. For allowed programs and goals
every computed answer is still a set of ground bindings for all the variables of the goal.

A completeness result that is of considerable importance, even though it is only the
base case of the general result that we would like, was given by Jaffar et al (1983):

R3.3.5 Completeness for negation free programs

For pure definite clause programs (i.e. programs that do no contain negated atoms in
the bodies of clauses), when comp(P) |= ~B for some ground atom B then for every
fair computation rule every branch of the computation tree for B ends in failure.

One might hope to use this result to allow negated calls in allowed programs which
are calls to predicates defined by negation free clauses. But the program we have




28 Logic programming schemes

already considered as a counter example of completeness
PP g&p g<p
has its negated call ~p defined by a negation free program.

Completeness for structured programs

A completeness result that allows recursive definitions and negated calls is given by
Barbuti and Martelli (1986) for structured programs.

A stratified program(Apt et al. 1988) is a program in which there are no cycles
containing a - labelled edge in the refers to graph of the program. This allows nested
negations and mutual recursion, but it does not allow recursion or mutual recursion
through a negation.

A structured program is a stratified program P such that: if P' is the definite clause
program that results from deleting all negated atoms in P, then for each ground atom A
either comp(P') F A or comp(P') F ~A.

The stratification condition allows an inductive proof of the completeness result. The
extra condition required for a structured program ensures that proofs from comp(P) are
constructive. The problem is that it is far from being a simple syntactic condition on the
program. The Barbuti and Martelli result is:

R3.3.6 Completeness for structured programs

Let P be a structured allowed program, SR a fair, safe computation rule and G an
allowed goal and A a ground atom.

(1) Every grounding substitution S for the variables of G such that comp(P) |= G.Sis
an SR-computable answer.

(2) If comp(P) |= ~A, then every branch of the SR computation tree for A ends in
failure.

Completeness for strict programs

The strongest completeness result, which like the Shepherdson result has the merit of
having easy to check syntactic conditions on the program and query, is given by
Kunen(1989) for semi-stricr allowed programs.

A program P is strict with respect to some set of predicates Q iff in its refers to
graph there is no pair of distinct predicates p,q & Q such that there is one path from P
to g which contains an even (possibly 0) number of - labelled edges and another path
from p to q that contains an odd number of - labelled edges. In addition, for each
predicate pe Q there is no path from p back to p with an odd number of - labelled
edges.

A program is strict (Apt et al. 1988) iff it is strict with respect to all its predicates.

In a strict program a predicate p cannot be defined directly or indirectly in terms of
positive and negative atoms for some other predicate q, or recursively through an odd
number of negations. S

A program is semi-strict (or cail consistent) (Sato 1987) iff there is no predlcatc p
in its refers graph for which there is a loop from p back to p with an odd number of -
edges.




- Logic programming schemes 29

A program P is strict with respect to goal G iff P U {q(X1,..,Xk) ¢« G}, q a
predicate not in P, X1,.,Xk all the variables of G, is strict with respect to all the
predicates of G. The Kunen completeness result is:

R3.3.7 Completeness for semi-strict programs

Suppose P is semi-strict and strict with respect to G and both are allowed.

(1) If comp(P) F G.S for some grounding substitution S, then S is an SLDNF
computable answer.

(2) If comp(P) E ~3G, then there is a finitely failed SLDNF tree for G

The strictness conditions ensures that there cannot be a non-constructive proof from
comp(P). In fact, it ensures that for every classical derivation of G.S from comp(P)
there is derivation in 3-valued logic (in which the law of excluded middle is not valid).
This is used to prove the Kunen result.

The syntactic constraint of strictness also guarantees consistency of completed(P)
(Kunen 1989).

Strict completion

An interesting alternative approach to proving completeness, presented in (Drabent &
Martelli 1989), is to change the reference theory which defines the answers that must be
computed in order for SLDNF to be complete. They argue that a more natural reference
theory is not comp(P) but comp*(P)=comp(split(P)) where split P is an SLDNEF.
program that is derived from P by a program transformation. Split and comp* have the
following properties:

R3.3.8 Equivalence of P and split P

split(G) evaluated with respect to split(P) has exactly the same set of computed answers
as G evaluated with respect to P. split(G) has a completely failed search tree for rule
SR iff G has a completely failed search tree for rule SR.

R3.3.9 Properties of split(P)
spht(P) is strict (hence semi-strict) and split(P) is strict with respect to spht(G)

These two results, together with R3.3.7 and R3.3.1 give us:

R3.3.10 Completeness relative to comp*(P) -

For an allowed program P and query G and grounding substitution S, comp*(P) k
split(G).S iff S is an SLDNF computable answer substitution for goal P and program
P. :

It remains to define the transformation split. For each predlcate r m P a new
complement predicate ' not in P is mvented Then, for each clause ",

r(tl,..,tk) < L1,..,Ln
in P, split(P) contains two clauses

r(tl,..,tk) €= pos(L1),..,pos(Lk)




30 Logic programming schemes

r'(tl,..,tk) €= neg(L1),..,neg(Lk)
where
pos(Li) = Li if Li is an unnegated atom
Li with its predicate p replaced by complement p'if Li is negated
neg(Li) = Liif Li is a negated atom
Li with its predicate p replaced by complement p' if Li is unnegated
For a goal G=L1,..Lm, split(G)=pos(L1),..,pos(Lm).

Example: For program P compnsmg the clauses
p&p

q<p

q&~p

split(P) is

p<p

p'< pf

q<p

q <7

q& ~p'

qé&~p

comp(P)isp¢> p,q€> pv~p

which is equivalent to p S
comp*(P)is p > p,p'© p,q pv~p, g pv~p
which is equivalentto q € pv ~ p',q'© p'v~p

So the problem we had before, that p was derivable from comp(P) but not provable by
any SLDNF computation does not arise with comp*(P).

The split transformation produces a program such that no proofs from comp(split(P))
can use the law of the excluded middle, hence the claim that this is a better reference
theory for SLDNF computations from P which also cannot use this law,

Other work

Other completeness results are given in (Cavedon & Lloyd) and (Apt 1990).
Shepherdson (1988) and Kunen(1988) are both excellent recent surveys of many other
results concerning the semantics, soundness and completeness of negation as failure,
for the concept seems to have aroused a lot of interest.

4 Parallel unification based schemes
4.1 GLD resolution -Wolfram, Maher, Lassez scheme
The first scheme to allow unrestricted and-parallel evaluation - ‘the: concurrent

unification of two or more calls with shared variables - was the (Wolfram ét'al. 1984)
GLD scheme.




Logic programming schemes 31

Syntax
Programs, and goals are as in SLD.

Operational semantics

States of the computation are as in SLD. The difference is the computation rule. The
GLD computation rule selects n=1 calls G'={B1,..,Bn} from the G component of state
<G,H>.

Let i be the predicate of selected atom Bi and let ny; be the number of program

clauses about ri.

Let {A1¢-Gl,..,An¢-Gn} be one of the ng1*n2*..*n;y sets of program clauses
(with variables renamed so each clause has a distinct set of variables and no clause has
any variable in common with <G,H>) such that for 1<i<n Ai has predicate ri. For
each such set of clauses there is a next state which.is

<(G-G"),G1,...,Gn,H">
where H' is result of applying one of the unification algorithms to

H E where E={B1=Al,..,Bn=An}. ‘

(We assume that the unification algorithm is trivially extended to handle the rewriting of
r(tl,..,tk)=r(t'l,..,t’k) using rule (a) where r is a predicate.)

Asynchronous GLD
. In the GLD scheme, the scope for parallelism is limited because the unification of all
the selected calls with the corresponding clause heads must terminate before goals can
be selected for the next step. The reduction of each selected goal to the body of one of
the clauses for its predicate is thus a synchronized step. The following generalization
of GLD, implicitly described by Wolfram et al but not named, allows for asynchronous
reduction of calls on different processors. It allows selection if one of the body calls
from an introduced Gi before the unification of all the selected calls with the
corresponding clause heads has terminated. It even allows selection of one of the
introduced calls in the body Gi of clause Ai ¢~ Gi before the unification of Bi and Ai
has terminated. We shall call the scheme AGLD (for Asynchronous GLD).

To allow selection of a new call before all the unifications have terminated we must
allow an AGLD state to contain equations of the form t=t' that have not yet been
reduced to a set of bindings by applying the rules of some unification algorithm.

Operational semantics

An AGLD state is a triple of the form <G,H,E> where G is the multlset of calls, H
is a Herbrand assignment which might also include false and E is a set of general term
equations. The initial state is of the form <G,{},{}>. A success termination state is of
the form <{},H,{}>, and a fail termination state is of the form <G,Hu {false},E>.

The AGLD computation rule selects k=0 calls G'={B1,..,Bk} from G, as in GLD,
but it also selects n=0 equations E'={el,..,en} from E, k+n#0. Then, o_f.t:e"fs_tep of one
of the parallel unification algorithins of section 2 is applied to H,E usihzg’ E' as the
selected set of equations from E. Thus, if we are using algorithm 2, the unification
rewrite rules are simultaneously applied to each ei € E' subject to the restriction that we




32 Logic programming schemes

apply rule (c)(ii) to at most one equation X=t for each variable X. Any other equation
X=t'in E' is a simply added back to E.

Let H'E" be the new H and E that result from this one step application of the
unification rewrite rules to each of the selected {el,..,en} from state <G,H,E>.

Let {A1¢Gl,..,An<Gn} be one of the np1*npp*. . *npy sets of program clauses
(with variables renamed so each clause has a distinct set of variables and no clause has
any variable in common with <G,H,E>) such that for 1<i<n Ai has predicate ri. For
each such set of clauses ‘

<(G-G"),Gl,...,Gk, H, E"{B1=Al,..,Bk=Ak}>
is a next state of the computation.

The definition of computed answer is as for SLD.

Logical semantics

The results of the Wolfram et al. paper show that the set of computed answers is
‘exactly the same as those computed by an SLD search tree for any AGLD computation
rule. |

Types' of computation rule

GLD is AGLD with a computation rule that selects only equations until the E

component of the state has been reduced fo {} or false has been added to H.
.. At the other extreme, we can have a computation rule that only selects equations
when the goal component of the state is {}, delaying all unification until the end of the
computation. Wolfram et al. use this rule to prove the independence of the set of
computed answers from the computation rule, which at this extreme is just a way of
collecting together the final set of equations E to be reduced to solution form by
application of an equation rewrite unification algorithm.

Consider now an intermediary computation rule which selects atoms along with
equations but which delays the selection of any of the introduced atoms Gi from the
body of the clause Ai €~ Gi used for the i'th call Bi until some future state in which
the equation Bi=Ai has been reduced to a Herbrand assignment Hi. A variant of
algorithm 3 is used with each added equation Bi=Ai treated as an independent subset
Ei={Bi=Ai} with its own local set of bindings Hi intialised to {}. When {Bi=Ei} has
been reduced to {} the computation rule can select one or more of the calls in Gi.
However, the bindings Hi are not at this stage added to EO to be compared with the
bindings Hj generated from some other call’/head equation Bj=Aj. Instead, selected
calls in Gi are unified with corresponding clause heads relative to HUHi with generated
bindings added to Hi, and calls in Gj are unified with corresponding clause heads
relative HUH] with generated bindings added to Hj. Only when there are no calls in the
state which descend from Bi is Hi added to EO to be compared with the bindings
generated by the complete solution of some other call Bj. This corresponds to an
impleméntation in which each of a set of multiple selected calls is initigi_I}; evaluated
independently as in SLD with the computed bindings for shared variables of the calls
being compared as and when each call is completely solved (has been reduced to the
empty set of calls and a Herbrand assignment Hi). The Epilog system of (Wise 1986)




Logic programming schemes 33

and the Prism system of (Kasif at al 1983) are or-parallel implementations of AGLD
(strictly a slight variant of AGLD) with this computation rule.

A sequential AGLD computation rule is one which at each step selects a single
equation or a single atom to replace. If the rule always selects equations until E is {},
this is the same as SLD.

An intermediary sequential rule generalizes SLD because it allows coroutining
implementations to do partial unification, which is not undone, before switching to
another atom. For example, a call Bi that is not allowed to generate a non-variable
binding for X can be selected and the unification rewrite of Bi=Ai pursued until a
binding X=t, t a non-variable is generated. This binding is retained in E, and not
moved to H. Some other call, perhaps the designated producer of X is then selected in
order to generate a binding X=t', t a non-variable, which is added to H. The
computation rule can now switch back to the suspended unification rewrite of Bi=Aj
using rule (c)(i) to replace X=t by t'=t.

Absys (Foster & Elcock 1969), which can with some justification be considered the
first Jogic programming language (see Elcock 1990), is essentially an implementation of
AGLD with a sequential rule. Terms are restricted to variables, constants and lists and
programs are entered in a syntactic variant of the completed definitions of section 3.3.
The computation rule never selects an equation of the form X=Y, X and Y distinct
variables. Such variable/variable equations remain in E. A success state of the
computation is a state <{},H,E> in which H is a Herbrand assignment and E= ={}orisa
--set of variable/variable binding equations of the form X=Y. Each X=Y left in E is thus .
a qualification to the computed answer.

Data flow computation rules

Let us assume that steps of unification algorithm 2 are being applied to the selected
set of equations E'. For SLD, we discussed the idea of a data flow computation rule
which selected another call, the designated producer of X, if the unification of a call Bi
with the head of one of its clauses Ai would generate a binding equation X=t. X is
treated as an inpuz variable of Bi and its selection must be delayed until a binding X=t'
has been genereted by the producer.

In AGLD, the analogue of this sequential data flow rule, is a parallel computation rule
which will leave a binding equation X=t generated by rewriting Bi=Ai in E if X is an
input variable of call Bi. That is, the computation rule cannot select this equation for
transfer to H. Transfer to H would amount to communication of the binding to all other
calls. Instead, the equation will remain in E until another binding equation X=t'is
added to H by the unification rewrite of some other call/head equation for which X is
not a designated input variable of the call. At that point, X=t can be selected for
application of rule (c)(i). Bindings generated by the rewrite of Bi=Ai for variables not
designated as input variables of Bi can be transferred to H.

If need be, we can distinguish between occurrences of variables, preventing transfer
of binding equation X=t from Ei to Hi only if the binding is generated -'B'gfjtewx*iting
some particular term in Bi. Let us call such variable occurrences, however specified,
input variable occurrences for the call Bi. Only binding equations generated by the
rewrite of Bi=Ai for non-input variable occurencies of Bi can be globally broadcast by




34 Logic programming schemes

being transferred from E to H. We shall call these the allowed bindings for the call.

Atomic unification

Suppose that steps of algorithm 4 are used instead of algorithm 2. That is, E is
divided into subsets El,..,Ek where each Ei is a set of equations resulting from the
rewrite of some call/head equation Bi=Al that was added to E. In addition, each Ei has
an associated Hi of local bindings. This algorithm does not transfer binding equations
directly from E to H, instead all bindings go first to Hi. The same constraint on
bindings for input variables of the call Bi can apply. No equation X=t generated and
added to Ei for an input variable occurence of X in Bi will be transfered to Hi. Instead
this will be left in Ei until some binding X=t' is added to the global set of bindings H.
For algorithm 4, bindings can transferred from Hi to H when E is empty. Then,
providing H does not by now contain bindings for variables bound in Hi, all the
bindings in Hi must be selected and transferred atomically to H. This is atomic
unification of Bi and Ai.

If atomic unification is coupled the extra constraint that no call in Gi is selected until
Ei and Hi are both {}, this is atomic test unification.

In a multiprocessor implementation, atomic unification requires synchronization of
the global broadcasting of variable bindings. A given processor must get binding
permission for each of the variables bound in Hi before broadcasting the bindings. It
must be prepared to relinquish the given binding permissions if it cannot get binding
permission on them all. See (Taylor 1989) for a discussion of atomic unification on a
multiprocessor.

Programming language features for specifying the input variable occurrences of a call

The analogue of the freeze call of Prolog 11 is some sort of annotation in call Bi on the
input variable occurrences.

Concurrent Prolog (Shapiro 1983) does this by annotating the input occurrences with
7. As with the freeze call, the restriction is not inherited. That is, suppose variable V
occurs in the binding term t' of a binding X=t' added to H (by the evaluation of some
other call), where X is an ? annotated variable of the call Bi. V is not also an input
variable of Bi, unless it is also annotated with a ?. If the input variable property was
inherited, making V an input variable of Bi whether or not it was annotated with ?, and
in addition V became an input variable to all calls that descended from Bi, we would
have the data flow analogue of the IC-Prolog eager consumer.

An alternative way to determine the allowed bindings for the unification of the call Bi
with some clause head Ai, is to associate a allowed mode of use with the clause, as in
MU-Prolog.

In the Relational Language (RL) (Clark & Gregory 1981) and Parlog (Clark &
Gregory 1986, Gregory 1987), this is done by specifying an input ? or output » mode
for each argument for each k-adic program defined predicate r. These languages are
both instances of AGLD using unification algorithm 2. e

Let r(t1,..,tk) be the head of the clause Ai ¢ Gi and let r(t'l,..,t'k) be the call Bi. If
m is in an input argument position, then only bindings generated for variables in the




Logic programming schemes _ 35

clause are allowed bindings for the unification rewrite of tm=t'm. If the rewrite of
tm=t'm generates an equation V=t for any other variable, V is treated as an input
variable, and the binding cannot be transferred from E to H. Thus, the unification for
input argument terms is just input matching; for it is not allowed to generate any
binding for a variable not in the clause. We can actually compile the input argument
terms of the head of a clause into code that will do the input matching and automatically
suspend when it wants to match a variable not in the clause to a non-variable term (see
Gregory 1987) :

If n is an output argument position, all bindings generated by the rewrite of th=t'n are
allowed and can be transferred to H as soon as they are generated. Bindings
transferred to H for variables not in the clause are theoutpur bindings for the
unification. In RL and Parlog, the rewrite of equation tn=t'n is not started, that is the
computation rule cannot select the equation, until all the equations tm=t'm for the input
argument positions have been reduced to a set of allowed bindings that have all been
transferred to H. At this point, calls in Gi can also be selected. That is, the rewriting of
the equations for the output argument terms can proceed in parallel with the selection of
the body calls of the clause.

In GHC (Ueda 1985), which is very similar to Parlog, for the whole unification
rewrite of Bi=Ai only bindings for variables in the clause are allowed. In Parlog terms,
every argument position is input. All output in GHC is done by explicit = calls in the
body of the clause.

Guard calls

Parlog and GHC both allow the programmer to specify some subset T'i of the body
calls Gi as guard calls. Guard calls can be selected immediately, i.e. they can be
evaluated concurrently with the rewrite of the input argument equations. Restrictions
with respect to the transfer of bindings from E to H also apply with respect to these
guard calls. Only variables of the clause Ai ¢~ T'i,G'l and variables of clauses used to
evaluate calls in T'i can be transferred form E to H. This is the safety condition for the
guard calls. In Parlog, the program can be checked at compile time to ensure that guard
calls are safe (see Gregory 1987). This compile time check guarantees that any binding
equation they add to E for a variable that cannot be transfered to H will have been added
to E by an input match, hence will automatically be left in E. In GHC, guard calls can
be defined by programs. that may add non-transferable bindings to E by output
unification, so GHC must have a runtime test to prohibit such bindings being
transferred to H, as they normally would be. This is the main difference between the
languages. In Flat Parlog and Flat GHC only calls to primitives, i.e. non-program
defined relations can appear in the guard set of a clause. Flat Parlog and Flat GHC
evaluate programs in exactly the same way.

In both languages, the rewrite of the equations for the output argument positions of
the call' Bi and the selection of calls in G'i is delayed until (1) no call in.T'i, and no
descendant of such a call, appears in the goal component G of thie state of the
compufation and (2) no input argliment equation tm=t'm of call Bi or a descendant,
and no equation added by the evaluation of a guard call, or a2 descendant, appears in the
E component of the state.




36 Logic programming schemes

Note that this restriction on what bindings can be transferred to H during the input
matching and guard call evaluation means that we can in parallel unify with the clause
heads and evaluate the guard calls of all the clauses for Bi without trying to add
generating competing bindings for the same variable to H. All the bindings that each of
these alternative evaluations will add to H are for local variables of the clauses that they
use. This is important. It allows us to keep a single location for each broadcasted
binding even though there is or-parallel evalaluation of the input matching and guard
calls of the alternative clauses. Usually an or-parallel evaluation needs to keep multiple
alternative bindings for variables, which either delays access or requires copying of the
goal components of the state.

Committed choice

Suppose that there is a state of the computation in which the unification rewrite of all
the input argument equations for call Bi has succeeded and the evaluation of all the
guard calls T'i have successfully terminated producing a set of allowed bindings all of
which have been transferred to H. In the Relational language (the first committed
choice language), and in Parlog and GHC, the evaluation commits to the exclusive use
the clause Ai ¢~ T'i,G' for call Bi. All competing parallel unifications and guard
evaluations using other clauses for the call can be aborted. :

In Concurrent Prolog, which also has guard calls but which uses unification
algorithm 4, there is no commitment to the clause Ai ¢« T'1,G' and no call in G'i is
selected, until Bi=Ai has been completely reduced to a set of allowed blﬁdmgs that have
been transferred to the local Hi and all of these bindings have been successfully
atomically transferred to H. Note that in Concurrent Prolog, competing bindings for
the same output variable of the call must be kept in the different local Hi. In Parlog and
GHC competing output bindings for a call are never generated because the output
argument unifications that generate these bindings are only started after the commitment
to use just one clause for the call.

In programming terms there is a disadvantage to this delay in generating the output
bindings until after the commitment to use a clause. In Parlog and GHC one must
program in such a way that only one call will generate a binding for each variable, with
all other calls suspending until that binding is broadcast, or all the competmg calls must
generate compatible (unifiable) bindings. In Concurrent Prolog, one can allow calls fo
compete, with the atomic test unification making sure that only one binding is globally
broadcast (added to H) and that all other calls test the broadcasted .value before
committing to a clause. The disadvantage is the complexity of the implementation of
atomic unification and the need to record multiple bindings.

(Burt & Ringwood 1988) have recently proposed a simpler notion of atomic test
broadcasting of a single ouput binding. A single output binding is designated as the
test binding. The computation rule must select this designated output binding in E, test
that there is no binding for the variable already in H, and transfer the’ bmdmg to H at
the point of commitment to use the clause.

A recently proposed successor of Flat Concurrent Prolog, the language FCP(|,:,?)
(Klinger at al 1988), borrowing ideas from (Saraswat 1988), divides the guard calls




Logic programming schemes 37

into an ask component and a fell component. Only the rell component can generate
allowed bindings for variables not in the clause, for the unification of the call with the
head of the clause and the evaluation of the ask component only bindings for clause
variables are allowed. The tell component has a role similar to the unification with the
output argument terms in Parlog, for no allowed binding generated by the zell
component is broadcast to the head unification or the ask calls. The difference is that
in FCP(],:,?), there is no commitment to the clause until the head unification and the
guard succeed and all the allowed bindings of the re/l component have been atomically
broadcast.

(Takeuchi and Furakawa 1986) and (Shapiro 1989) both survey the family of
committed choice concurrent logic languages based on the AGLD scheme, with
examples of programming techniques. '

Suspending until only one clause will unify

An alternative computation rule, selects in each state all calls Bi for which there is
only one clause with a head Ai which will unify with Bi in the context of the global
bindings H. To implement this, heads of the different clauses must be unified with Bi
in parallel with bindings for call variables generated and added to an Hi which is
specific to the clause. If more than one Bi/head unification succeeds, the call Bi is
suspended until bindings are added to H for one or more variables bound in some local
Hi. The parallel unifications of Bi are resumed to take info account these new bindings.

... If they cause all but one of the unifications to fail, the call is reduced to the body of the

only unifying clause and all the equations of its Hi can be globally broadcast by being
addded to the H component of the state. P-Prolog (Yang & Aiso 1986) has such a
computation rule.

Parallel selection uniil all calls suspend

In any language which has suspension of calls waiting for variable bindings to be
broadcast, deadlock can arise. One can break the deadlock by picking a single call and
ignoring the suspension rules.

In Andorra Prolog (Haridi & Brand 1988), deadlock is broken in juét this way. The
computation rule selects any number of calls providing there is only' one candidate
clause for the call, calls suspend when there is more than one clause. A candidate
clause for a call is one for which the head unification succeeds generating only allowed
bindings and some set of guard calls to primitives successfully terminates. The allowed
bindings for a call are specified by wait declarations similar to the when statements of
NU-Prolog. A commit operator can make a clause the only candidate clause clause, as
in the committed choice languages. No binding is globally broadcast until a single
clause remains as candidate. The language has atomic test unification. If all calls are
suspended, due to wait declarations, or because there is more than one candidate clause
for each call, a single call is selected and alternative new states of the computatzon are
generated for each candidate clause to be pursued as or-parallel computations. The
language combines the search capability of the SLD scheme with the concurrency of
AGLD with committed choice. The penalty is a more complex implementation than is




38 Logic programming schemes

required by either extreme.

The CP language proposal of Saraswat (1987) has committed and uncommitted
and-parallelism with the concept of a call block. A call block limits the broadcasting of
bindings to calls and their descendants in the block. The bindings are broadcast
between sibling blocks only when each call in the block successfully terminates.
Putting each call in its own block, gives the communication on termination computation
rule we mentioned above that is used in Epilog and Prism. Saraswat's language also
allows both parallel and sequential (backtracking) search of the alternative evaluation
paths.

Parallelised NU-Prolog(Naish 1988) and ANDOR-II(Takeuchi et al 1987) are other
recent proposals for mixing committed choice and-parallelism with uncommitted
exploration of alternative evaluation paths. '

S5 Schemes based on general equation solving
5.1 Equation solving over rational trees - Colmerauer's RTS scheme

Nearly all the implementations of the SLD or SLDNF schemes do not implement the
occur check of the unification algorithm. This means that assignments are generated
which are not Herbrand assignments. We can, for example, have an assignment
X=f(a,X) which denotes the infinite tree f(a,f(a,f(a,.....)}). ‘

If we allow general assignments as answers, we are not solving equations for the
Herbrand interpretation. We are solving them for the domain of infinite rational trees,
i.e. the domain of infinite trees each of which can be finitely represented by an
assignment.

Unification, or equation solving, for infinite trees has been independently studied by
Huet (1976) and others but to my knowledge Colmerauer (1982) was the first to
propose a logic programming scheme based on such equation solving. Colmerauer did
not name his scheme. We shall call it RTS, for rational tree scheme.

Syntax ,
For RTS, the reserved predicates and the syntax of programs and queries is the same
as SLD.

Operational Semantics

States of the computation are pairs <G,A> where G is 2 multiset of calls and A is an
assignment. The initial state is of the form <G,{}>, where G is the multiset of calls
from the query. A success termination state is of the form <{},A> with computed
answer A restricted to equations which contain at least one variable Y such that some
variable Xi of the given query depends on Y in A. See section 1.1.
. A failure termination state is of the form <G,A> where false € A. -

For non-termination state <G,A:> a next state of the computation is generated by
selecting one of the calls r(tl,..,tk) in G. Let r(t'l,..t’k) €= G' be some program clause
for its predicate (with variables renamed as usual). A next state is <G-




Logic programming schemes 39

{r(tl,...tk) )G A">, where A’ is the result of applying the following equation rewrite
algorithm to the pair A, E={t1=t'l,..,tk=tk}.

Colmerauer's equation rewrite algorithm

We give a modification of Colmerauer's algorithm that relates it more to our
~ unification algorithm 1. |t| denotes the number of variables and functors in the term t.
It is a measure of the size of t.

Repeat the following step until E={} or A contains false. On termination return A as
the answer.

Select any equation ¢ in E and delete it from E.
Cases:
(a) e of the form f(t1,..,tk)=f(t'1,..,t’k). Add the k equations t1=t'l,..,tk=t'k to E.
(b) e of the form X=X. Do nothing.
(b") e of the form X=Y, X and Y distinct variables.
Subcase (i) X=te A. Addt=Y to E.
Subcase (ii) No X=t € A. Add X=Y to A.
(c) e of the form X=t, or of the form t=X, where t is not a vanable
Subcase (i) X=t'e A and |t'|<|t]. Add t'=ttoE.
Subcase (ii) X=t' € A and |t|<|t}. Add t=t'to E and replace X=t'in A by X=t.
Subcase (iii) No X=t'e A. Add X=tto A.
(d) e of the form f{...)=g(...), where f and g are different. Add false to H.

Logical Semantics

What is the relationship of the assignment A' produced by this algorithm to the initial
AUE. For the unification algorithms we have the result R2.1. For Colmerauer's
algorithm we have a similar result but for a different equality theory, which we shall
name RTET (Rational Tree Equality Theory). RTET is the set of axioms of HET minus
axiom schema (F3), the schema X=t[X].

T
RS.LL RTET |= R, p=R Ty
Hence
RS.1.2 false & A'iff RTET |= RT , . = false

However, we cannot also conclude the analogue of R2.3
A'is a assignment iff RTET |= RT Aug“false

because an assignment does not denote a non-empty relation for every mterpretatmn
To get the analogous result, which confirms that A' is a solution fei- the set of
equations AUE for the domain of infinite rational trees, we must strengthen RTET with
axioms that tell us that every assignment does denote a non-empty relation for this
domain.




40 Logic programming schemes

Following (van Emden and Lloyd 1984), the simple way to do this is to add the
axiom scheme 3A , A any assignment, to RTET to give the theory 3RTET. 3RTET is
a first order theory of the infinite rational trees described in Colmerauer (1982). An
infinite rational tree contains a finite number of sub-trees but some of the sub-trees can
be infinite. In this domain, the assignment X=f(a,X) has a solution, which is the .
infinite rational tree f(a,f(a,f(a,.....))). We have the result:

R5.1.3 Ais a assignment iff 3RTET |= RT Aup+false

Soundness of the Colmerauer scheme
RS5.1.4 (van Emden and Lloyd 1984) _
For every RTS computed assignment A for goal G and program P,

ARTET, P RT, < RT; ,RT, = false

Independence of the computation rule and a result analogous to the strong
completeness result for SLD should also apply.

Extending RTS to RTSNF by including the negation as failure rule for safe
computation rules is straightforward. Since the proofs of (Clark 1978) rely only on the
use of the completed definitions and the analogue of R5.1.1, they should with slight
modification apply to RTS. In the soundness results for SLDNF we replace comp(P)
by RTET,,completed(P) to get the corresonding results for RTSNF, Appropriate
versions of the completeness results of section 3.3 should also apply. In particular,
since RTS is a special case of the scheme GLDE that we are about to describe. For
GLDE the analogue of R3.3.5 holds, so this completeness result for negation free
programs also holds for RTSNF.

5.2 Equation reduction using an general equality theory - Jaffar,
Lassez, Maher GLDE scheme

Colmerauer's scheme is SLD with the Herbrand equality theory replaced by the
theory RTET. In other words, the unification of SLD is replaced by equational
solving (generalised unification) for theory RTET.

Jaffar et al (1986) present a generalization of SLD and RTS in which the particular
theory, HET or RTET, can be any equality theory E satisfying a property they call
unification completeness. In this scheme, the ordinary unification of SL:D is replaced
by E-unification, unification or equation solving relative to the theory E. Replacing
unification by E-unification in a resolution system is an idea due to Plotkin(1972). The
property of unification completeness required by Jaffar et al is the analogue of the key
property R2.1 of unification. The scheme is actually a generalisation of GLD, hence
we shall call it GLDE.

Properties of the theory E
Let E be a set of term equations containing variables T.

E is E-unifiable if there is an assignment A such that EE RT AS RTE.




Logic programming schemes 41

Generally, there will be many assignments A satisfying this condition, possibly an
infinite number. There may or may not be maximally general assignments, the analogue
of the mgu.

The equivalent of property R2.1 for theory E can be expressed as:

EFRTg=RY 010 vaiv..)
where Al....Ai...... are all the E-unifiers of E. The o inclusion follows from the
definition of an E-unifier. The < inclusion is the condition of interest.

E is unification complete,

if EF RTE c RT( Alu...UAiu....)» Where Al,. Ai,.are all the E-unifiers of E.
When there are no E-unifiers, unification completeness enables us to conclude that

El= RTE false
This is the property needed to justify negation as failure and to prove R5.2.2 stated
below.

Syntax
As for SLD, the set of reserved predicates R={fulse, rrue, =}
A program clause is an implication of the form
H<« EG
where E is a conjunction of equality atoms (term equations) and G is a conjunction of
atoms with predicates from P. H is an atom with predicate from P. A query is the
- same form E,G as a clause body. -

Operational Semantics

A state of the computation is a three-tuple of multisets <E,G,A> where E is a multiset
of equality atoms, G is a multiset of a non-equality atoms and A is an assignment which
may contain false.

The initial state for goal E,G is the state <E,G,{}>. A success termination state is of
the form <{},{},A>. The computed answer is the subset of A related to the query as
in RTS. A failure termination state is any state with false in A.

For a non-termination state <E,G,A> the computation rule selects a subset
E'={el,..em} of E, a subset G'={B1,..,Bn} of G, m+n=0. Let

Hl < Ei, Gl ... Hn ¢ En,Gn
be n variants of program clauses with no variables in common with each other or with
the state <E,G,A> where the i'th clause is about the predicate of the i'th selected atom
Bi. Let A' be an E-unifier of Eu {Bi=H1l,..,.Bn=Hn} in the context of éfssignrncnt A.

That is, A' is such that £ k RTAQA' [ RTAUE‘U{BI=H1,..,BH=HI]}'

For each different set of n program clauses and for each E-unifier A, there is a next
state of the computation of the form:

<(E-EYWE1lu..UEn, (G-GYWGl1lu..uGn, AUA'S
If there is no such A', the next state has false added to the assignment comgﬁﬁent A

Logical Semantics
Jaffar et al. (1986) prove the following soundness and completeness result:




42 Logic programming schemes

R5.2.1If B is a ground atom, P,E F B iff there is a successful computation for goal
B using any computation rule.

RS.2.2 If B is a ground atom, completed(P),EF ~ B iff for a fair computation rule
every branch of the search tree ends in failure.

Note that the second result is not the exact analogue of R3.3.5 because the failure
computation tree can be infinite. This is because there can be an infinite number of
unifiers of a set of terms, and so the computation tree may not be finitely branching. If
we know that there are always only a finite number of E—umﬁers it is the analogue of
R3.3.5.

The importance of the scheme is that it is a very general framework in which two
crucial properties of a logic programming language, R5.2.1 and R5.2.2, have been
shown to hold. Jaffar et al (1987) show that Colmerauer's RTS is an instance of the
scheme, hence the negation as failure completeness result R5.2.2 applies to RTS.

Implementable instances of the GLDE must of course have a theory E such that there
are a finite number of E-unifiers and an algorithm computing all the E-unifier
solutions of the set AUE.

5.3 Equational Logic Programming

For an in depth treatment of equational logic programming see (Holldobler 1990).
Here we shall briefly survey some of the results and proposed language schemes that
are instances or variants of GLDE.

E-unification for equational theories

A equational theory is a theory E comprising sets of equations of the form t=t'. For
certain equational theories algorithms can be given for generating all the E-unifiers of
a pair of terms. Such an algorithm can then be used to generated E-unifiers of any set
of equations {tl=t'l,..,tk=t'k}. We simply apply the algorithm to the pair
tuple(tl, .tk), tuple(t'l,..,t'’k) where tuple is a functor not in any equation in E.

Gallier and Raatz(1989) present a scheme they call SLDE, which is a special case of
GLDE. Oaly one call or équation is selected and E-unification is relative to a set of
equations for which there is a complete procedure for generating all unifiets.

For a general survey of results on E-unification for equational theories see
(Siekmann 1984). Below we shall consider only the case where the equations define a
canonical term rewriting system. For such systems, unification can be fused with term
rewriting to give an algorithm for generating all E-unifiers. There are also specialised
equation rewrite algorithms, extensions of the Martelli and Montanan(1982) umflcatxon
algorithm, where E is a canonical term rewntmg system,

Rewrite systems




Logic programming schemes 43

A set of equations E defines a term rewrite system if for each equation t=t' in E, t
is not a variable and t' confains no variable notin t.

A reduction relation —> associated with E is defined as follows.
Let T, T' be two terms. T -> T'if

(1) t=t' is an equation in E,

(2) s is a subterm of T.

(3) Ais an assignment

(4) s is identical to t.A and

(5) T'is T with s replaced by t'.A.

Example: T=g(h(X)), T'=g(j(X)), equation is h(Z)=j(Z) and A={Z=X}.

A narrowing relation => associated with E is defined as follows.
Let T, T' be two terms. T => T'if
(1) t=t' is an equation in E with variables renamed so that there is no clash with a
variable in T.
(2) s1is asubterm of T.
(3) Ais an assignment
(4) s.A is identical to t.A and
(5) T' is T.A with s.A replaced by t'A.

Example: T=g(X), T'=g(j(Z)), equation is h(Z)=j(Z) and A={X=h(Z)}.

Let ->* be the transitive reflexive closure of ->, _
-> 18 terminating if there is no infinite sequence t1 -> {2 -> ..... ->ti->

-> 18 confluent if whenever t ->* s, and t ->* §' there is a t' such that s->*t' and
s'->*,

A term t is canonical for -> if there is no t' such that t->t'.
-> 8 canonical if it is terminating and confluent.

R5.3.1 If -> is canonical then for every term t, every reduction sequence starting a t
leads to a unique canonical form for t.

Fay(1979) gives an algorithm, later improved by Hulot(1980) and (Jouannaud et al
1983) for generating a complete set of E-unifiers for a pair of terms tt' when E is a
set of equations that define a canonical rewrite system. The algorithm is essentially a
systematic enumeration of the assignments A which are non-deterministic generated as
follows. Let pair be a functor not in E or t,t". Iteratively generate a narrowing chain
pair(tl,t'l)=>.....=>pair(tn,t'n) such that t1=t,t'I=t' and tn unifies with t'n with
assignment An. If Ai, 1<i<n-1 is the assignmement used at the’ step pair(n ti) =>
pair(t(i+1),t'(i+1)), then the composition A1.A2....An is an E-unifier of t,t"

EQLOG (Goguen & Meseguer 1986) is a language/scheme in which this procedure is
used to generate E-unifers during the computation of a program that comprises a set of




44 Logic programming schemes

(many-sorted) definite clauses and a set of rewrite equations. EQLOG actually allows
conditional rewrite equations. These are equations of the form e ¢~ el,...ek where ¢
and each et are equations but variables of el,..,ek are restricted to variables from e.
Procedures for generating all the E-unifiers for canonical conditional rewrite equations
have been given by (Kaplan 1986) and (Holldobler 1988).

Special equation rewrite algorithms

As an alternative to the above general procedure based on narrowing, Martelli at al
(1986) proposed using a modification of the Martelli and Montanari unification
algorithm for doing E-unification where E is a set of canonical rewrite equations.
Another such algorithm is given in (Holldobler 1987).

Narrowing as an alternative step in the computation

Yamamoto(1987) proposed a scheme in which E-unifiers are not explicitly
generated. Instead, narrowing, unification of = calls, and call reduction using a
homogeneous form program clause are alternative ways of generating a next state of the
computation. :

Syntax
Programs for this scheme comprise homogeneous form clauses, a set of canonical
rewrite equations and the single non-rewrife equation X=X.

Operational semantices

States are as in SLD.

The computation rule selects a call or a term within some call in the state <G,H>.

If it is a call 1(t'1,...,t'’k) to a program defined relation, let

1(X1,..,Xk) & Xl=tl,..Xk=tk,B1,..Bm
be one of the homogeneous form clauses for its predicate (variables renamed as usual).
A next state is

<G-{r(t'l,..,tk) }+{X1=t1,..,Xk=tk,B1,.. Bm},HU {X1=t'1,.. . Xk=t'k }>.

If the selected call is an equation t1=t2, unification algorithm 1 is applied to
H,{t1=t2} to produce H'. The next state is <G-{t1=t2},H'>.

Finally, if a term s is selected within a call B, this is replaced by a new term t' by
narrowing with one of the rewrite equations t=t' to give a new call B'. The term t is
unified with s in context H fo give H'. The next state is <G-{B}+{B'},H'>.

Logical semantics
Yamamoto(1987) gives soundness and completeness results.




Logic programming schemes 45

Compiling equations into clauses

A final alternative is to do away with narrowing altogether and to emulate it using a
normal SLD derivation for a ‘compiled’ form of the program in which equations are
replaced by clauses. A result concerning such emulation of narrowing for ground terms
is given in (van Emdem & Yukawa 1987). K-LEAF (Giovanetti et al 1989), is a
equational logic programming language that implements narrowmg by compiling
equations to definite clauses.

6 Schemes based on testing solvability of more  general equality
formulas

6.1 Prolog II - Colmerauer's equation, inequation scheme for rational
trees

In (Colmerauer 84) the equation solving algorithm for the RTS scheme was extended
to apply to sets E,I of equations and inequations. Programs and goals were
correspondingly extended to allow use of #. This scheme, which we shall call IRTS
(for Inequation RTS) is the abstract model for Prolog II (Colmerauer 1986).

Syntax

For IRTS, the set of reserved predicates R={true, false =, #}.

Programs are sets of definite clauses of the form

r(tl,...tk) & EILG
where G is a conjunction of atoms with predicates from P, E is conjunction of
equations and I is a conjunction of inequations of the form t=t'. The clause is about the
predicate r and is implicitly universally quantified for every variable. A goal, has the
form of a clause body.

A reduced form set of inequations only contains inequations of the form Y#t or
tuple(Y 1,..,.Ym)#tuple(t1,..,tm) where Y1,..,Yk are distinct variables.

An RT-consistent set of equations and inequations is an assignment A and a
reduced form set of inequations RI such that no variable appearing in the left hand side
of some inequation i € RIis bound in A.

Operational semantics

A state of the computation is a triple <G,A,RI>. G is a multiset of atoms with
predicates from P. A is an assignment and Rl is a reduced form set inequations
where AURI is an RT-consistent set, or it contains false.

The initial state for a goal EL,G is <G,A"RI'> where A" RI' is the RT-consistent
set produced by applying Colmerauer's equation/inequation solving algonthm given
below to EL The A,RI of the algorithm are both initialized to {}.

A success termination state is any state of the form <{},A,RI> where AURI is an
RT-consistent set and a fail termination state is any state of the form <G,A RI> where




46 Logic programming schemes

falsee AOURIL The answer returned from success state <{},A,RI> is A,RI restricted to
equations and inequations which contain at least one variable Y such that some variable
Xi of the given query G,E,I depends on Y in assignment A. _

For each non-termination state <G,A,RI>, some atom r(t'l,..,t'n) in G is selected
using a computation rule. For each program clause r(t1,..,tn) ¢ E,L,G' (with variables
suitably renamed) there is a next state of the computation <G-{B }UG‘,A',RI‘> where
A'RT' is the result of applying the algorithm below to Eu {tl1=t'l,..th=t'n}, I in the
context of the RT-consistent set AURI. : ’

Colmerauer’s equationfinequation solving algorithm

The algorithm applies to a set E of equations and a set I of inequations in the context
of an assignment A and a reduced set of inequations RI where AURI is RT-consistent,

AE is first reduced to an assignment A'or to a set of equations containing false
using the algorithm of the RTS scheme.

If an assignment A'=AUA" is generated, let

T =Iu{i: i eRI and some left hand side variable of i is bound in A"}.

For each inequation s#t € T, the RTS algorithm is reapplied to A'U{t=s}.

If this produces false, the inequality t#s is discarded (because it is satisfied by
assignment A'). If the algorithm successfully terminates without generating any extra
bindings for variables, t#s is replaced by false in I (because the absence of bindings
for the variables in t=s shows that t=s is satisfied for assignment A" for all rational
tree values for these variables, hence there is no rational tree assignment for these
variables that will satisfy t#s and equations A').

If t=s is reduced to a set of bindings Y1=t'l,..,.Ym=t'm then ts is replaced by the
single inequation tuple(Y1,..,Ym) # tuple(t'l,..,t'm) (by Y1#tl if m=1) in I (because
tuple(Y1,..,Ym) # tuple(t'l,..,t'm) iff for some i Yi#t' iff t#5). The result of the
algorithm is therefore either a set of equations and inequations containing false or
A',T' where A'is an assignment and I' is a set of reduced inequations. Note that no
variable bound in A' will appear on the left hand side of an inequation in I', so AUT' is
an RT-consistent set.

Logical semantics
The theory RTET of the RTS scheme also validates this algorithm, we have:

R6.1.1 RTET k= RTg 1 = RT4: 1, where T is the tuple of variables of E,L

Colmerauer shows that an RT-consistent set A'UI' always has a solution in the
domain of infinite rational trees, hence the name. The theory 3#RTET, which is RTET
augmented with an axiom scheme 3A,I, where A,I is any RT-consistent set of
equations and inequations, gives us the correctness result:




Logic programming schemes 47

R6.1.2 Correctness of IRTS

If AuTis a computed answer for goal E,I,G containing variables T using program P
then

P, 3#RTET &= RTp 1 c RTg 1 G, RTp,1  false

A strong completeness result for IRTS is given by R7.2 below, since IRTS is a
special case of the CLP scheme of that result.

Implementation

In an implementation of the scheme, the inequations can actually be handled by a
special negation as failure rule that returns bindings. For each inequation, s#t, an
atternpt is made to establish st by trying to show that s=t fails in the environment A",
If s=t fails, s#t is deleted. If s=t succeeds, without binding any variables in s or t, s#t
is replaced by false. If it succeeds generating bindings Y1=t'l,..,.Ym=t'm for
variables in the equation, we have proved that

RTETE RTAG fs=13=RTAU {Y1=¢'1,..,Ym=t'm}
The Yi bindings are undone (locations assigned to Y1,..,Ym have there values reset to
undefined) and

tuple(Y'1,...,.Ym) # tuple(t'l,..,t'm)
is returned as the 'answer' for the negated call s#t. This is a single inequation
representing the disjunction Y1#t'lv..vYm#t'm which we have proved to be
equivalent to s#t in the context of assignment A,

6.2 SLDCNF - the Chan Scheme

In 3.3 we hinted that result R3.3.3 could be used to allow negated calls to return
answers. The handling of inequations.in the above scheme is a special case of this.
The SLDCNF scheme of (Chan 1988) handles an answer returned by a negated call ~B
with variables. The answer is the complement of the disjunction of all the answers
returned by the unnegated call. In general, the complement contains inequations for the
variables of B. These inequations are then checked for consistency relative to any
subsequent bindings generated for the variables in a manner similar to that of the IRTS
scheme. Thus SLDNF allows early selection of negated calls, and even returns final
answers that contain inequation constraints as well as equational bindings. The answers
are always consistent for the Herbrand interpretation, they denote non-f:mpty relations
for this interpretation, as we would expect.

Syntax

R={true, false, =, #}.

Program clauses and goals are as for IRTS except that the inequation calls in the
bodies of clauses and goals can be universally quantified for some (ergali ) of their
variables. Also, any call to a program defined predicate can be negated as inl SLDNF.
The clauses are implicitly universally quantified for their free variables.




48 Logic programming schemes

Operational semantics

A state of the computation is of the form <G,H,E,QI> where G is a multiset of calls
to program predicates, H is a Herbrand assignment, E is a multiset of equations and QI
is a multiset of quantified inequations. H or QI can also contain false.

The initial state for a goal E,QLG is <G,{},E,QI>.

A success termination state is of the form <{},H,{},PI> where PI is a set of
primitive inequations for H. An inequation (VV1,..,Vn)t#s is primitive for H if it is
HI consistent with all the bindings given in S, the substitution equivalent of H, for its
free variables.

The computed answer is a normalised form of S'UPIL, where S'is S restricted to the
free variables of the query. The normalisation process removes irrelevant inequalities
(see Chan 1988 for details). In the normalised form of S'UPI each variable in an
equation, and each free variable in an inequation, is either free in the query, or it
appears inside a non-variable binding term of an equation in S'. So, where there are no
function symbols in the bindings of S', every variable in a normalised answer is a free
variable from the query.

A fail termination state has false in H or QL.

The computation rule for SLDNF can select any call Bi in the goal G, any equation
t=t'in E, or any inequation i in QI of state <G,H,E,QI>. The rule does not need to be
safe.

A selected equation is handled by applying algorithm 1 to H,{e} to produce H'. The
next state is <G,H',E-{e},QI>. '

- A selected inequation (V V1,..,Vn)s#t is tested to see if it is true or false in the
context H by a special negation as failure rule. Unification algorithm 1 is applied to
Hu{s=t} after variables V1,..,Vn have been renamed so that they do not clash with any
free variable of the state.

The inequation is determined to be true, and deleted from the current set of
inequations QI, if algorithm 1 generates false for Hu{s=t}. (We have established
that HET & ~3(s=t).S, S the substitution equivalent of H, hence that V(s#t).S.)

It is replaced by false, if the algorithm produces an assignment H' that has additional
bindings only for the renamed quantified variables V1,..,Vn. (Th'is is one of the
extensions to the negation as failure rule we discussed in 3.3.)

Unlike IRTS, the inequation is not reduced to another inequation if the algorithm
succeeds but generates bindings X1=tl,..,Xk=tk for the free variables of
(VV1,.,Vn)(s#t).S. In this case, (VV1,..,Vn)s#t is considered a primitive inequation
for H and left unchanged in QI. We have shown that (v V1,..,Vn)(s#t).S is false for
assignment X1=tl,..,Xk=tk to its free variables, hence it must remain as a constraint
that to be rechecked if H is extended with any bindings for these variables. However,
(VV1,..,Vn)s#t is consistent with H because it will be true for any extension of H
which is HI inconsistent with the assignment X1=t1,.. Xk=tk.

If a positive call B is selected, let A ¢ E',QI'G' be a clause for its p{gdii;ate (with
variables suitably renamed). :A next state of the computationi”is <G-
{B}+G" H ,EUE",QIuQI'> where H' is the result of applying algorithm 1 to
Hu{B=A}.




Logic programming schemes 49

If a negative call ~B is selected from G, a new auxiliary computation with initial state
<{~B},H,{},{}> is commenced.

If every branch of the search tree ends in failure, the next state of the main
computation is <G-{~B},H,E,QI> as with SLDNF.

If the search tree is finite, but contains success branches, the set of normalised
answers {N1..,Nk} given by the finite number of success terminating branches is
returned.  This is negated and converted into an HET equivalent set
{(E1,Q11),...,(En,QIn)} representing the set of different answers to ~B consistent with
the current assignment H.

Each (Ei,QIi) is a set of equations Ei and quantified inequations QIi. Chan gives a
procedure for generating this form as a representation of the complement of
{ N1, .., NK} '

For each (Ej,Qli) there is a next state of the computation of the form

<G-{~B},H,BUE],QluQIlj>.

Logical semantics
The correctness result given by Chan is:

R6.2.1 Correctness of SLDCNF

- If every branch of the search tree for program P and goal G is finite, and N1,..,Nk are
the set of normalised answers for all the success terminating branches,

. comp(P) k= RT = RTN1U...URTNk, T the tuple of variables of G.

Chan gives no completeness results.

Przymusinski (1989) gives a more abstract account of SLDCNF, relating it to the
more general problem of reducing a query to an equivalent equaliry formula. He gives
normal form results for equality formulas (any well formed formula that contains only
{true, false,=, #} that generalise the normal form results of Chan (1988).
Przymusinski also gives completeness results for certain restricted classes of programs.

SLDCNF with qualified answers

(Chan 1989) extends SLDNF by allowing partial development of the branches of the
search tree for negated calls. The branches of the search tree for a negated call can end
in states that have a non-empty G component. The answer returned by such a terminal
state is then a qualified normal answer, the qualification being the set of calls in G.
This allows finite sets of answers to be returned when the full SLDCNF search free for
the negated call would be infinite. In effect, the extended scheme allows coroutining
between the evaluation of positive and negative calls, and generalises the similar

coroutining between the manin and auxiliary compufations that we discussed for
SLDNE. Co




50 Logic programming schemes

Other approaches to constructive negation

(Kunen 1987) gives an alternative approach to allowing negated calls to return
answers based on the manipulation of what he calls elemenrary sets. But at the time of
writing I could not see how to present his scheme as an extension of SLD.

7 Constraint Logic Programming, the CLP scheme - Jaffar and Lassez

Jaffar and Lassez (1987) present the most general scheme yet proposed that is an
extension of SLD. It is a generalization of the scheme we discussed in 5.2. The
equality theory E becomes a constraint theory C and the unification completeness
requirement for E becomes a satisfaction completeness requirement for C. The
following is a slight generalization of the variant of the CLP scheme given by Maher
(1987), which better fits the framework of this paper. SLD, AGLD, GLDE, RTS and
IRTS are special cases of this CLP scheme.

The theory C is a theory for a set of reserved predicates R which, remember,
always includes {false, true, =}.

A primitive constraint is an atom with a predicate from R. An allowed constraint is
some subset of all the formulas that can be constructed from the primitive constraints.
It minimally contains all equations and is closed under conjunction.

For SLD, R={false, true, =}, C is HET and only conjunctions of equations are
allowed constraints.

-~ For IRTS, R={false, true, =, #}, C is 3#RTET, and conjunctions of equations
and inequations are allowed constraints.

Theory C must be satisfaction complete for the allowed set of constraints. That is,
for every allowed constraint C, we have

Cl=3C or C|=~3C
This is the generalization of properties R2.2, R2.3 of HET. 3#RTET has this property
for the allowed constraints of IRTS.

Syntax

CLP programs comprise implications of the form A <~ C, G where C is an allowed
constraint, A is an atom with a predicate re P and G is a conjunction of program calls
- calls with predicates from P. Both C and G can be empty.

A goal is a conjunction of program calls. The lack of an allowed consfraint in the
goal is no handicap. We can instead have an extra 0-adic atom A in the goal defined by
a single rule A <~ C added to the program. S




Logic programming schemes ' 51

Operational semantics

A state of the computation is a triple <G,S,C> where G is a multiset of program
calls, S is a satisfiable multiset of allowed constraints for theory C or false, and C is
a multiset of constraints.

The initial state for goal G is <G,{},{}>. A success termination state is of the form
<{},S,{}> with S (or some normalised form of the subset of S related to goal G) the
computed answer. A fail state has false for S.

The computation rule selects some multisubset G'={B1,. ..Bk} of calls from G, and
some multisubset of C' of the constraints in C. Let

Al¢ C1,G1 ... Ak¢ Ck,Gk .
be k clauses for the predicates of the selected atoms (as usual with variables renamed to
avoid clashes). For each different set of such clauses, there is a next state of the
computation of the form
<G-G'uGlu..uGk, S, C-CuClu...uCku {B1=Al,.,Bk=Ak}>
where
S'is SyC'if CE 3S,C, false if CE~3S8,C.

Logical semantics
The following soundness and completeness results apply to any instance of this
scheme (Maher 1987).

R7.1.1 Soundness ,
If G, with variables T, has a computed answer C then
- C,PE RTC c RTG’ RTc;éfaise

R7.1.1 Strong completeness (the analogue of R3.3.3 for SLD)

IfC,PE RTc RTG,RTC#-‘false for some constraint C then, for any computation
rule, G has a k successful derivations with final constraints C1,..,Ck such that

CE RTC < RTc1u...uRTCk .

So, for a general constraint theory, we cannot expect to cover C with just one
computed answer as we can with the HET schemes. As an example of this result,
Mabher gives the program

p(a,b)

p(X,b) € Xza
where R={true, false, = , #} and C is HET.

For given constraint C={Y=b} and goal G={p(X,Y)}, we do have the precondition
PHETE R<X’Y>{Y___b} c R<X’Y>p(X,Y) = {<X,Y>:X=a,Y=b v Xz#a,Y=b}
However, no single computed answer covers C. We need both the computable
constraint answers {Y=b,X=a} and {Y=b,X#a} to coverit. We do havc M

HETE R<XY>ry by ¢ REY 2w o vip) URKY> v yopy

~When the constraints are limited to conjunctions of equations, then k =1 in the above




52 ' Logic programming schemes

result because of the strong compactness of sets of equationé (Lassez et al 1988).

R7.1.3 Soundness and completeness of negation as failure
For goal G, comp(P),C E ~3G iff for a fair computation rule every branch of the
computation tree for G terminates in failure.

This is the generalization of results R3.3.2, R3.3.5 for SLDNF. If C includes the
normal axioms for equality, the anologue of R3.3.3 should hold (I have not checked
the details):

R7.1.4 For goal G, if every branch of the computation tree terminates and C1,....,Ck
are all the answers for the success branches, then
completed(P), Ck RTc= RTcu.u RTe

If the allowed constraints are closed under existential quantification and negation, we
can use this resulf to allow negated atoms fo return answers as in the SLDCNF scheme.

Maher(1987) also extends the above scheme to incorporate the notion of committed
choice with the concept of suspension until some guard subset GC of the constraints of
a clause is valid for the current environment of satisfied constraints S, or is the only
satisfiable constraint in the context S of the alternative clauses. GC with variables T is
valid iff CERTgc ¢ RTg. The unifications with the input argument terms and the
evaluation of the guard calls in Parlog and GHC meet this validity condition. The
satisfiability condition is similar to the computation rule of P-Prolog.

Saraswat (1988, 1989) further refines this scheme to include an ask component
which must be valid and a tell component which must be satisfied, atomically or
eventually. In our presentation of the CLP scheme, all constraints are satisfied
eventually. That is, the constraints infroduced by the use of a clause are not
immediately checked for consistency with the satisfied constraints S, they are checked -
eventually when selected by the computation rule.

Instances of the scheme 7

In any implementable instance of the CLP scheme, checking whether or not some
multiset of constraints is satisfiable for theory C must be implemented as an algorithm.
We cannot have the computational step requiring an inference from some first order
theory. As Jaffar and Lassez (1987b) remark, checking solvability should also be
incremental - when the computation rule selects exfra constraints C' to be checked with
the existing solvable constraints S, it should not be necessary to recheck S. Also,
solvable sets of constraints should ideally have a canonical form, an equivalent
simplified representation using a minimal number of constraints. This would be used
for presenting answers and, if possible, it would also be used for the incremental
checking of solvability. This may not always be possible, or thc.{fﬁc‘ minimal
representation suitable for presenting answers may be different from that needed to
check solvability. For the SLD and AGLD instances of the CLP scheme, the canonical
form for the satisfied constraints in the computation state is an Herbrand assignment.




Logic programming schemes 53

The canonical form for answers is a substitution.

As with the GLDE scheme, the great strength of the CLP scheme is that it provides a
very general framework for extensions and modifications of the unification based
SLD. We simply need to ensure that the algorithm that replaces unification in the
proposed new SLD derivative scheme has a validating consistent first order theory C.
That is, when the algorithm is applied to some allowed constraint C the algorithm
correctly determines whether or not CF JC. We then know that the above logical
properties hold for the computed answers. If the algorithm reduces C to a solution
form S, we also need to have the property C F RTC = RTS. Then all the obove

logical propeites of the CLP scheme will apply.

Implementations of CLP

Prolog III (Colmerauer 1987) is an extension of Prolog II where the constraints are
equations and inequations over rational tree terms, inequalities and linear equations of a
special form over rational numbers, and boolean expressions over truth values.There is
one non-free term constructor . for list concatenation, enabling constraint equations
such as X.Y.X= [1,2,3,4,1] to be used and solved. The constraint language is
restricted to allow algorithmic reducibility to solution form of any allowed constraint.

CLP(R) (Jaffar & Michaylov 1987) has equations over Herbrand terms and
inequalities and equations of arithmetic expressions over the real numbers has allowed
constraints. The implementation only checks the solvability of the term equations,
arithmetic inequalities and linear equations. Non-linear equations are stored and
checked only if the other constraints determine values for some of the variables that
make them linear. If this does not happen, the non-linear equations remain as a
qualification on the answer returned. '

CIL (Mukai 1985), CS-Prolog (Kawamura et al 1987), CAL (Aiba et al 1988) and
CHIP (Dincbas et al 1988) are other constraint languages. EQLOG (Goguen &
Meseguer 1986) is also a constraint language since it solves arithmetic equations using
special purpose algorithms as well as general term equations using E-unification.

8 Concluding remarks

We have seen that the unification of SLD is just a special case of a more general
operation of checking that a set of allowed constraint formulas C, containing only a
reserved set of predicates R, is consistent relative to another set of constraint formulas
S for some pre-interpretation PI of the reserved predicates. S is already known to be
consistent for PI. P is a model of some constraint theory C.

A logic programming computation uses the clauses of a program to incrementally and
non-deterministically generate candidate sets of constraint formulas C to check for PI
consistency.' It does this by reducing a call B to a program defined predicate to a
constraint set C and a set G of calls to program defined predicates, which may be
empty, using a clause of the program.  The answer to a query compfii‘éiti:g: a set of
calls to program defined relations (and optionally a set of constraint formulas) is any PI
consistent set of allowed constraint formulas to which the query can be reduced.

At one extreme, the computation can delay the check for consistency of the union of




54 Logic programming schemes

constraint sets C added during the evaluation of the query, until the query has been
reduced to a set which contains no call to program defined relation. The cost is a much
larger search tree, with more infinite branches.

At the other extreme, as each call is reduced using some clause, it can check that the
C added by the use of the clause is consistent with all the other C's added by the
reductions of its ancestor calls. This previously checked union of C's is stored,
possible in normalised form, as a separate component of the state of the computation.

Unification is special because there are simple algorithms, some parallel, for checking
that each new C, which is a set of term equations, is consistent relative to the equations
added by the reductions of the ancestor calls for the Herbrand interpretation HI. In
- addition, there is a normal form, a Herbrand assignment, which is an explicit
representation of the solutions of any HI consistent set of equations. The unification
algorithms will check consistency of each new set of equations E relative to the union
of the previously added equations E', or relative to the normalised Herbrand
assignment form of E'.

Parallel schemes allow concurrent adding of sets of constraints C by the concurrent
reduction of a set of program calls. Different ways of checking that the concurrently
added sets are pairwise consistent, and consistent with all previously added sets, lead to
very different programming language options. The most interesting idea in this area is
that due to Maher (1987), later refined by Saraswat(1988,1989), to distinguish between
an ask subset of the newly added constraints and a tell subset. This is the
« generalization of the data flow ideas embedded in the concurrent unification based
languages Parlog and GHC. I anticipatc that further work on these abstract models,
and on parallel constraint checking algorithms, will lead to powerful generalizations of
Parlog and GHC.

The extensions of such languages beyond committed choice, to include ideas such as
P-Prolog's parallel selection of deterministic calls and suspension of non-deterministic
calls, will further enrich the application area of such languages. The Andorra
computation model, due to David Warren, in which deadlock for the select only
deterministic calls computation rule is broken by selecting and non-deterministically
exploring alternative evaluation paths for any of the non-deterministic calls, is the key
to the extension. It has already been incorporated into Andorra Prolog (Haridi & Brand
1988) and the Pandora (Bahgat and Gregory 1988) extension of Parlog.

Extensions of negation as failure to allow negated calls to return answers necessarily
leads us from simple equation solving to constraint satisfaction, as we saw with the
SLDCNF scheme. Setting this work in a more general framework, which has already
been started by Przymusinski (1989), will pay dividends. What we need are general
properties of constraint sets that will allow the mapping of the complement of the union
of sets of allowed constraints into a union of a sets of allowed constraints. We then
need efficient algorithms for doing this for sets of allowed constraints richer than those
of the Chan scheme. Finally, we need to extend the completeness r§§1ii§s for the
checking role of the negation as failure rule of SLDNF to a scheme that ‘allows for
constraint generating negated calls.

The area of the integration of functional and logic programming is becoming more




Logic programming schemes 55

active. The Holldobler (1990) book, already mentioned, is a good introductory
reference. Further work in this area should lead to well integrated functional and logic
programming languages, such as K-LEAF (Giovanetti et al 1989), perhaps with a
constraint logic programming component.

Work has also started on the integration of ideas of object oriented programming with
logic programming. (McCabe 1989) defines an extension of SLDNF which deals with
inheritance of static objects - objects for which there is no change of state. Other
approaches are surveyed in (Davison 1990). (Goguen & Meseguer 1987) is an
ambitious attempt to integrate functional, object oriented and logic programming as an
extension of EQLOG. A clean integration, preserving the logical semantics as much as
possible, will give us logic languages that can use the program structuring ideas of
object oriented programming. (McCabe 1989) has simple examples of the usefulness
of these program structuring ideas.




56 Logic programming schemes

References

Aiba, A., Sakai, K., Sato, Y., Hawley, D., Hasegawa, R. (1988) Constraint logic
programming language CAL, FGCS88, ICOT.

Apt., K.R. (1990) Introduction to Logic Prograrﬁming, to appear in Handbook of
Theoretical Computer Science, (ed van Leeuwen, J), North-Holland.

Apt., K.R., Blair, H., Walker, A., (1988), Towards a theory of declarative
knowledge, in (Minker 1988).

Bahgat, R., Gregory, S. (1989) Pandora: Non-deterministic parallel logic
programming, ICLP6, MIT Press.

Barbuti, R., Martelli, M., (1986), Completeness of SLDNF resolution for-a class of
logic programs, /CLP3, Springer-Verlag LNCS 225.

Battani, G and Meloni, H. (1973) Interpreteur du Language de Programmation
PROLOG, Groupe Intelligence Artificielle, Université Aix-Marseille II.

Bancilhon, F., Ramakrishnan, R., (1986) An Amateur's introduction to recursive
query processing strategies, ACM Int. Conf. on Management of Dara.

Burt, A., Ringwood, G.A., (1988), The binding conflict problem in concurrent logic
languages, Research Report, Parlog Group, Department of Computing, Imperial
College.

Cavedon, L., Lloyd, J.W., (1989), A completeness theorem for SLDNF resolution,
JLP 7(3). _

Chan, D., (1988), Constructive negation based on the completed data base, ICLPS,
MIT Press.

Chan, D., (1989), An extension of Constructive Negation and its application to
Coroutining, Proc. NACLP 89, MIT Press.

Ciepielewski, A., Haridi, S., (1984), A formal model for OR—parallél execution of
logic programs, /FIP 84, North-Holland.

Clark, K.L., (1978), Negation as failure, in Logic and Data Bases (eds. Gallaire, H.
and Minker, J.), Plenum Press.

Clark, K.L., (1979), Predicate logic as a computational formalism, Research Teport,
Logic Programming Section, Department of Computing, Imperial College.

Clark, K. L., (1988), Logic Programming Schemes, Proceedings of FGCS88, ICOT,
Tokyo, Japan.

Clark, K. L., Gregory, S., (1981), A relational language for parallel programming,
ACM Conf. on Functional Languages and Computer Architecture, ACM.

Clark, K.L., Gregory, S., (1986), PARLOG: parallel programming in Ioéi:c, ACM




Logic programming schemes 57

Toplas 8(1).

Clark, K.L., McCabe, F.G., The Control facilities of IC-Prolog, in Expert Systems in
the micro-electronic age (ed. D. Michie), Edinburgh University Press.

Clark, K.L., McCabe, F.G., Gregory, S., (1982), IC-PROLOG language features in
(Clark and Tarnlund 1982)

Clark, K.L., Tarnlund, S-A., (1982), Logic Programming, Academic Press.
Colmerauer, A., (1982), Prolog and infinite trees, in (Clark and Tarnlund 1982)

Colmerauer, A., (1982b), Prolog II Reference manual, Groupe Intelligence Artificielle,
Universite Aix-Marseille 1T,

Colmerauer, A., (1984), Equations and inequations on finite and infinite trees,
FGCS84, 1ICOT :

Colmerauer, A., (1986), Theoretical Model of Prolog 11, in Logic Programming and
its applications (ed. Caneghan, M. V. & Warren, D. H. D. ), Ablex.

Colmerauer, A. (1987) Opening the Prolog III universe, Byre, August 1987.

Conery, 1.S., (1987), Parallel execution of Logic Programs, Kluwer Academic
Publishers.

Davison, A. (1990) Design issues for logic based object oriented programming
languages, Research Report, Parlog Group, Dept. of Computing, Imperial College,
London. '

Drabent, W., Martelli, M., Strict completion of logic programs, Research Report R-89-
28, Institutionen for Datavetetenskap, Universitetet och Tecniska Hogskolan,
Linkoping, Sweden.

Degroot, D., (1984), Restricted and-parallelism, FGCS 84, ICOT

Dincbas,M.,van Hentenryck, P., Simonis,H., Aggoun,A., Graf,T., Berthier,F.( 1988)
The constraint logic programming language CHIP, FGCS88, ICOT.

Elcock, E. W., (1990), Absys: The First Logic Programming Language - A
retrospective and a commentary, to appear in JLP. '

- van Emden, M. H., Kowalski, R. A. K., (1976), The semantics of predicate logic as
programming language, JACM, 23, 4, 733-742. :

van Emden, M.H,, Lloyd, J.W., (1984), A logical reconstruction of Prolog II,
ICLP2, Upsalla University.

van Emden, M. H,, Keitaro, Y. (1987) Logic programming with equations, JLP 4(4).

Fay, M. (1979) First order unification in an equational theory, 4th workshop on
automated deduction, Austin.

Foo, N., Rao, A., Taylor, A., Walker, A., Deduced relevant types and constructive
negation, ICLP5, MIT Press 1988,




58 Logic programming schemes

Foster, EIM., Elcock, E-W., (1969), Absys 1: an incremental compiler for assertions,
in Machine Intelligence 4 (ed. Michie, D.}, Edinburgh University Press.

Gallier, J. H., Raatz, S. (1986) SLD-resolution for Horn clauses with equality based
on E-unification, Proc. SLP-86, IEEE.

Giovanetti, E., Levi, G., Moiso, C., Palamidessa, C. (1989) Kernel LEAF: a logic
plus functional language, Tech. Report TR-2/89, Dipartimento di informatica,
Universita di Pisa.

Goguen,J.A., Meseguer, J. (1986) EQLOG: Equality, types and generic modules for
logic programming, in Logic Programming Functions, Relations and Equations (ed.
Degroot, D. & Lindstrom, G.). Prentice-Hall.

Gregory, S. (1987) Parallel Logic Programming in Parlog, Addison-Wesley.

Goguen,J.A., Meseguer, J. (1987) Unifying functional, object-oriented and relational
programming with a logical semantics, in Research directions in Object Oriented
Programming, (ed Shriver, B., Wegner, P.), MIT Press.

Haridi,S., Brand,P. (1988) Andorra Prolog - an integration of Prolog and committed
choice languages, FGCS88,JCOT

Herbrand, J. (1930), Recherches sur 1a theorie de la demonstration, These, University
of Paris. Also in From Frege to Godel: A Source Book in Mathematical Logic, 1879-
1931, (ed. van Heijenoort), Harvard University Press, 1967.

Hermenegildo, M., Rossi,F. (1989) On the correctness and efficiency of independent
and-parallelism in logic programs, NACLP89, MIT Press.

Hill, R. (1974) LUSH-resolution and its completeness, DCL Memo 78 Department of
Artificial Intelligence, Edinburgh University.

Holldobler, S. (1987) Equational logic programming, Proc. SLP-87, IEEE.
Holldobler, S. (1988) From paramodulation to narrowing, /CLP-5, MIT Press.

Holldobler, S. (1990} On the foundations of equational logic programming, LNCS
353, Springer Verlag. '

Jaffar, J., Lassez, J-L., Lloyd, J.W. (1983) Completeness of Negatlon as failure rule,
1JCAI-83.

Taffar, J., Lassez, J-1.., Maher, M.J. (1986) A Logic Programming Language Scheme,
in Logic Programming Functions, Relations and Equations (ed. Degroot, D. &
Lindstrom, G.). Prentice-Hall.

Jaffar, J., Michaylov, S. (1987) Methodology and implementation of a.CLP system,
ICLP4, MIT Press

Jaffar, J., Lassez, J-L., (1987), Constraint Logic Programming, POPL, ACM.

Jaffar, J., Lassez, J-L., Maher, M. J., (1987) Prolog II as an instance of the logic
programming language scheme, Formal Description of Programming Concepts i, (ed
Wirsing M.), North-Holland.

Jaffar, J., Lassez, J-L., (1987b), From unification to constrainesc,"-"i:n Logic
Programming 87, LNCS 315, Springer-Verlag.




Logic programming schemes 59

Jouannaud, J-P., Kirchner, C., Kirchner, H. (1983) Incrémental construction of
unification algorithms in equational theories, Automata, Languages and Programming,
Barcelona.

Kaplan, S. (1986) Fair conditional term rewriting systems: unification, termination and
. confluence, Recent trends in data type specification (ed Kreowski), Springer-Verlag.

Kasif, S., Kohli, M., Minker, J., (1983), Prism: a parallel inference system for
problem solvmg, IJCAI 83. _

Kawamura, T,, Ohwada, H., Mizoguchi, F., (1987), CS-Prolog: A generalised
constraint solver in Logic Programmmg 87, LNCS 315, Springer Verlag.

Kliger, S., Yardeni, E., Kahn, K., Shapiro, E., (1988), The Language FCP(!,:,7),
FGCS 88, 1COT

Kowalski, R. A., (1974), Predicate logic as a programming language, IFIP 74.

Kunen, K., (1987), Answer sets and negation as failure, /CLP4, Melbourne, MIT
Press.

Kunen, K., (1988), Some remarks on completed data bases, ICLPS5, MIT Press.
Kunen, K., (1989) Signed data dependencies in logic programs, JLP 7(3).

Lassez, J. L., Maher, M.J. (1984) Closure and fairness in programming logic,
Theoretical Computer Science.

" Lassez, I. L., Maher, M.]., Marriot, K.L. (1988), Unification rev131ted in (Minker
1988), Morgan Kaufmann.

Lloyd, J.W. (1984), Foundations of Logic programming, Springer-Verlag.
Lloyd, J.W., Topor, R.W., (1984}, Making Prolog more expressive, JLP 1(3).

Lloyd, J.W., Topor, R.-W., (1986), A basis for deductive data base systems II, JLP
3(1).

Maher, M.J., (1987), Logic semantics of a class of committed choice programs, in
ICLP 4, MIT Press. :

Maier, D., Warren, D. S., (1988), Computing with Logic, Benjamin/Cummins.

Martelli, A., Montanari, U., (1982), An efficient unification algorithm, ACM Toplas,
4(2).

Martelli, A.,Moiso, C., Rossi, G. F. (1986) An algorithm for unification in equational
theories, Proc. SLP- 86 IEEE

McCabe, F. G. (1989) Logic and objects, PhD thesis, Dept. of Computing, Imperial
College, London.

Miller, D., Nadathur, G. (1986) Higher order logic programming, ICLP3 LNCS
225, Spnngcr-VerIag

Minker, J., (1988), Foundations of deductive data bases and logic programming,




60 : Logic programming schemes

Morgan Kaufmann.

Moto-Oka, T., Tanaka, H., Aida, H., Hirata, K., Maruyama, T., (1984), The
architecture of a parallel inference machine - PIE, FGCS 84, North Holland.

Mukai, K., (1985), Unification over complex indeterminates in Prolog, TR-113,
ICOT :

Naish, L., (1984), Heterogeneous SLD Resolution, JLP 1(4).

Naish, L., (1985), Negation and Control in Prolog, LNCS 238, Springer-Verlag.
Naish, L., (1986), Negation and quantifiers in NU-Prolog, ICLP3, Springer-Verlag.
Naish, L (1988), Parallelizing NU-Prolog, ICLP5, MIT Press.

Paterson, P. A., Staples, J., (1988), A General Theory of Unification and Solution of
Constraints, Technical Report No. 90, Dept. of Computer Science, University of

Queensland, Brisbane.

Plotkin, G. D., (1972) Building in equational theories, Machine Intelligence 7, (ed
Meltzer, B., Michie, D.), Halsted Press.

Przymusinski, T. (1989) On Constructive Negation in Logic Programming, Proc.
NACLP 89, MIT Press. . .

Pollard, S. H., Parallel execution of Horn clause programs, Ph.D., Thesis, Imperial
College, London. ‘

Ramakrishnan, R., (1988), Magic Templates: A spellbinding approach to logic
programs, ICLP5, MIT Press, 1988.

Robinson, . A., (1965), A machine oriented logic based on the resolution principle,
JACM 12 (1).

Robinson, I.A., (1979), Logic: Form and function, Edinburgh University Press.

Sato, T., (1987), On consistency of first order logic programs, Tec. Report 87-12,
Electrotechnical Lab., Ibaraki, Japan.

Saraswat, V. J., (1987), The concurrent logic programming language cp: definition
and operational semantics, POPLE7, ACM.

Saraswat, V. J., (1988), A somewhat Logical Formulation of CLP Synchronisation
Primitives, ICLP5, MIT Press.

Saraswat, V. J.,, (1989) Concurrent Constraint programming languages; PhD thesis,
Carnegie-Mellon University.

Siekmann, J. H. (1984) Universal unification, Proceedings CADE-7, LNCS 170,
Springer-Verlag.

Shapiro, E., (1986), Concurrent prolog, a progress report, IEEE Computer 19(8).

Shapiro, E. (1989) The family of concurrent logic programming langﬁaggs{,fResearch
report CS89-08, Weizmann Institite of Science, to appear in ACM Computing




Logic programming schemes 61

Surveys.

Shepherdson, J.C. (1984), Negation as failure: a comparison of Clark's completed
data base and Reiters closed world assumption, JLPI(I).

Shepherdson, J.C. (1985), Negation as Failure II, JLP2(3).
Shepherdson, J.C. (1988), Negation in Logic Programming, in (Minker 1988).

Takeuchi, A., Furukawa, K. (1986) Parallel logic programming languages, /CLP3,
LNCS 225, Springer-Verlag.

Takeuchi, A.,Takahashi,K.,Shimuzu,H.(1987) A description language with and/or
parallelism for concurrency systems and its stream based realisation, ICOT TR-229.
Taylor, S. (1989) Parallel Logic programming Techniques, Prentice-Hall.

Thom, J.A., Zobel, J., (1987), NU-Prolog Reference Manual, Department of
Computing Science, Melbourne University.

Ueda, K., (1985), Guarded Horn clauses, in Logic Programing, LNCS 221,
Springer-Verlag.

Vasey, P., (1986) Qualified answers and their application to transformation, /CLP 3,
LINCS 225, Springer-Verlag.

Warren, D.H.D. (1987), OR-Parallel execution models of Prolog, in Tapsoft 87,
LNCS 250, Springer-Verlag.

Wise, M., (1986), Prolog multiprocessors, Prentice-Hall.

Wolfram, D.A., Maher, M.J., Lassez, J-L., (1984), A unified treatment of resolution
strategies for logic programs, /CLP2, Upsalla University.

Yamamoto, A. (1987) A theoretical combination of SLD-resolation and narrowing,
ICLP4, MIT Press.

Yang, R., Aiso,H. (1986) P-Prolog: parallel language based on exclusive relation,
ICLP3, 1.NCS 225, Springer-Verlag.




Uppsala Programming Methodology and Artificial Intelligence Laboratory

Recent UPMAIL Technical Reports, March 1990

37B. Jonas Barklund, A Garbage Collection Algorithm for Tricia, December 1987 (81.50).

38.
39.
40.
41.
42.

43.
44.
45,

46.
48.
49.
50.

51

52.
53.
54.
55,

56.
57.
58.

59.

Jonas Barklund and Hékan Millroth, Garbage Cut, October 1986 ($1.50).

Jonas Barklund, Efficient Interpretation of Prolog Programs, April 1987 ($1.50).

Jonas Barklund and Hékan Millroth, Hash Tables in Logic Programming, April 1987 ($1.50).
Sven-Olof Nystrom, Guarded Horn Clauses, Application and Implementation, November 1987 ($2.00)

Jonas Barklund and Hakan Millroth, Integrating Complex Data Structures in Prolog, October 1987
($1.50).

Sven-Olof Nystrom, An Abstract Machine for Guarded Horn Clauses, December 1987 ($2.00).
Mats Nylén, List and Tree Matching on Fine-grained Parallel STMD Computers, May 1988 ($2.00).

Anna-Lena Johansson, Simplifying Program Derivation by Using Program Schemas: a Study of Tran-
sitive Closures, April 1988 ($2.00).

Jonas Barklund and Hakan Millroth, A Parallel Unification Algorithm, April 1989 ($1.50).

Jonas Barklund, Nils Hagner and Malik Wafin, Condition Graphs, June 1988 ($2.00).

Sven-Olof Nystrom, Introducing Abstract Data Types with Inheritance into Prolog, June 1988 ($2.00).
Jonas Barklund, What Is a Meta-variable in Prolog?, May 1988 ($2.00).

Jonas Barklund, Nils Hagner and Malik Wafin, KL1 in Condition Graphs on a Connection Machine,
May 1988 ($2.00).

Jonas Barklund and Hakan Millroth, Nova Prolog, July 1988 ($2.00).
Peter Pavek, PICON and the Paper Industry, May 1987 ($2.00).
Anders Hjort and Peter Pavek, Pulp Expert, July 1988 (81.50).

Andreas Hamfelt and Jonas Barklund, Metalevels in Legal Knowledge and their Runnable Represen-
tation in Logic, June 1989 ($2.00).

Torkel Hjerpe, Fredrik Méllerberg and Kent Andersson, Making Minimal Plans—Knowledge Based
Plan Execution, September 1989 ($3.50).

Bjorn Carlson, Fredrik Kant and Jan Wiinsche, A Scheme for Functions in Logic Programming, De-
cember 1989 ($2.00).

Johan Montelius, Improvements to an OR-parallel Execution Model for Logic Programs, December
1989 (32.00).

Keith L. Clark, Logic Programming Schemes and their Implementations, March 1990 ($6.00).
Recent Uppsala Theses in Computing Science

Goran Hagert, Logic Modeling of Conceptual Structures: Steps Towards a Computational Theory of
Reasoning, thesis for the degree of Doctor of Philosophy, May 1986 ($10.00).

Lennart Beckman, Towards an Operational Semantics for Concurrent Logic Programming Languages,
thesis for the degree of Licentiate of Philosophy, February 1987 ($5.00).

Agneta Eriksson-Granskog, An Abstract Description of a Derivation Editor, thesis for the degree of
Licentiate of Philosophy, May 1987 ($5.00).

Jonas Barklund, Efficient Logic Data Structures, thesis for the degree of Licentiate of Philosophy, May
1988 ($8.00).

Sven-Olof Nystrém, On the Semantics of Concurrent Logic Programming Languages: a Variable-free
Concurrent Language and Its Operational Semantics, thesis for the degree of Licentiate of Philosophy,
December 1989 ($5.00). ‘

Andreas Hamfelt, The Multilevel Structure of Legal Knowledge and its Representation, thesis [or the
degree of Licentiate of Philosophy, January 1990 ($7.00).

Also available from UPMAIL

Proc. of the Second Logic Programming Conference, ed. Sten-Ake Tarnlund, UppsalaJ ul); é—6, 1984 ($30.00).




