45

Chapter 3 Hon-procedural Semantics

When we write down the clauses of a logic program we usually have in
mind some intended interpretation. This is an interpretation of its
constants, functors and predicates as the names of particular o?jgcts or
individuals, particular functions, and particular relations. Relative
tn this interpretation, we make sure that each clause is a true
statement, that 1is, we nake sure that the intended interpretation is a
model of the program. With this same interpretation in mind, w2 then
compose a goal clause so that its conjunction of atoms denotes the
relation an instanca of which we want to compute.

Fach successful evaluation of the goal clause will return an answer
substitution

{x1/t1, .. ,xk/tK) ;

for all the variables of the goal clause. Relative to our intended
interpretation of the program, the tuple of binding terms

R B

will denote a tuple of individuals, or, if some of the terms contain
variables, a set of tuples of individuals. MNo matter what intended
interpretation we had in mind, we would like to be sure that the tuples
of individuals named by the answer substitution belong to the relation
named by the goal clause.

s ean use this naming requirement to give a non-procadural semantics
for answer substitutions. We shall say that an answer suhstitution is
correct if it names a set of instances of the relation named by the goal
~lause for every model of the progran.

™is is the model theory semantics of answer substitutions that w2
develop more fully in this chapter. Following van Emdem and
Vowalskil 10761, we show how it can be recast 1in the 1lattice theory
framework of the Scott fixpoint semantics. Finally, we investigate its
relationship with the procedural semantics of Chapter 1.

3.1 Interpretations and models

Tn the syntax of logic progans, the logical symbols and the implicitly
quantified variables have a fixed mzaning. The constants, functors and
predicates are ' frea' symbols to be used by the programmer as the names
of any individuals, functions and relations he has in mind. An
interpretation 1is the mapping from these free symbols to their

3.1 Interpretations and models 16

denotations.

DEF IMITION
An interpretation comprises:
(1) A non-empty set D called the domain of the interpretation.
(?) For each constant the assignment of some individual in D.
(2) For each n-ary functor the assignment of some total function from
p” to D.
(4) For each n-ary predicate the assignment of an n-ary relation over
D, . P
if n>0, this is some subset of b®,
if n=n, it is a O-ary relation which is truth value, true or false.

There is no requirement that different names be assigned different
denotations.

Given an interpretation, each program clause, each goal clause, and
each substitution also has a denotation as follows:

Denotation of a progran clause

A clause
H(t?,..,tn)(-A1&..&kﬂ

Adenstes one of the truth values, i.e. it is either true or false. IE 4
true if and only if for every assignment of individuals of D to the
variables of the clause, when the antecadent A1%..%Am is ¢true, SO is
the consequent BIE T, o0 B0

A conjuction A1%..%Am is trus if and only if each atom of the
conjunction is true.

An atom R(t1,..,tn) is true if and only if
(i) for n=0, the predicate R has the value true,
{ii) for n>0, the tuple of individuals denoted by <t1,..,tn> is in the
extension given to R.

The individual denoted by a term which is a variable is the individual
assigned to the variable, that denoted by a term which is a constant 1s
the individual assigned to the constant, and ‘that denoted by a ternm
£(t1,..,tk) 1is the value of the function assigned to f for the tuple of
arguments denoted by <tl1,..,tk>.

nenotation of 2 poal clause

The denotation of 3 goal clause
¢-nk, Lk Pn

is the denotation of its conjunction of atoms. This 1is a k-ary
relation, where ¥ is the number of variables in the clause.

: TR

3.1 Interpretations and models BT
Let x1,..,xk be these variables in lexicographical order. The
relation denoted by the clause is:
(1) for k>0, the set of tuples
{<e1,..,ek> : for the assignment xi=ei,1<i<k, B1&..%Bn is true}

(ii) for k=0, the truth wvalue "denoted by the conjunction of atoms
n1&..%Pn o

Denotation of a substitution

Let <t1,..,tK> be the tuple of binding terms of a substitution ordered

hy the lexicographical ordering of the variables x1,..,xk for which they
are the bindings. The substitution denotes the k-ary relation

{<a1,...,ek> 1 <t1,..,tk> denotes <e1,..,2k> for some
assignment to its variables}.

DEFIMITIONS {
(1) A model of a program P is an interpretation for which each clause

is true.

(2) An answer substitution s for a goal clause C and progran P is
correct if for every interpretation that is a model of the progran
the relation denoted by s is ineluded in the relation denoted by C.
For the special case of a goal clause without variables, the answer
true is correct if C is true for every model of P.

(?) Two answer substitutions (for the same variables) are equivalent
if they denste the same relation in all interpretations.

The definition of a correct answer substitution could be reformulated

3s!:

(8) for every model of P, Cs 1is true for every assignment to its
variables.

or, as.
(P) tha universal closure of Cs is a logical consequence of P.

Te reformulation as (A) relias on the fact that s denotes a 3sub-
ralation of € if ani only if Cs is true for every assignment to its
variables. The re-formulation as (R) appeals to the standard model
theory definition of logical consequznce. The universal closure of Cs
is (¥1,..,yn)Cs, where y1,..,yn are all the variables of Cs. Ve shall

senarally vuse formulation (P).

The Aefinition of eguivalence of answer substitutions is the standard
maodel theory definition of logical =quivalence.

Example models

"la atall Aeserihe turae different interpretations, each of which is =a

e e i

IR

3.1 Interpretations and models g8

model of the program

append(Yil ,x ,x) <~
append(u.x,y,u.z)<-append(x,y,z).

For each model we shall give the denotation of the goal clause
<-append(x,y,A.B.Nil),

and the denotation of each of the answer substitutions
s1={x/Nil,y/A.B.Nil}
s2={x/A.Nil,y/P.Nil}
s3={x/A.R.Nil,y/nil}.

These are all the correct answers for the goal clause and program.

Tnterpretation 1

Pomain is the set of natural numbers,

fmong the assiznments to the constants,functors and predicates:
MNi1M A" MP" are 1,2,2 respectively.

no" is the multiplication function.

"agppend" is the relation [<m,n,p> : mxn=pl.

For this interpretation the assertion of the "append" program 1is the
statement that

for all numbers n, lxn=n,
and the implication is the statement that
for all m,n,p,i, if mxn=p then (ixm)xn=ixp.
Tn other words, the assertion i3 the trus statement that 1 1is a
multiplicative identity, and the implication is the trus statement that
multiplication is associative. The interpretation is a model of the
Program.
The goal clause denotes thz relation
{¢m,n> : mxn=2x3x1} = {<1,56>,¢2,3>,4<32,2>,<6,1>}.
s1 denotes th2 singleton set of pairs {{1,6>}.

s? denotes the singleton set of pairs {<2,3>}.

s2 denotas tha sinzleton se% of pairs [<A, 10},

i
i
11
i
e
-
5
'Ej

o
!
1
i
]

3.1 Interpretations and models B9

As raquired each substitution denotes a sub-relation of the goal
clause relation.

Tnterpretation 2

Pomain is a set of objects D that includes some base set of objects B,
and is closed under an object constructor function. The constructor,
cons, takes a pair of ohjects o1,02 into an object o3 which is different
from o1 and o2 and unique to each pair of arguments.

Mne of the base objects is the empty list [1. A1l the other base
ohjects are called atoms. A special subset of the constructed objects
is the sst of finite length 1lists {lol,..,0k] : k>0l. The 1list
To1,..,0k] is the value of cons(o1,[02,..,0kl).

Among the assignments to the constants,functors and predicates:
nypil" is the empty list (1.

nwat and "P" and all the other constants are sach assigned a unique
atom. Cince each constant denotes: a different atom, we can identify the
stom with the constant.

n.n is the constructor function cons.
napnendi" is the relation

1¢[1,0,0> ¢ 0 in D}
union
{<fo1....oj].{0j+1,..,ok],[o1,....,ok]> : 01,..,0k in D}
union
{<Fo1....ok].o.cons(o1.cons(o2....cons(ok.o)> : 0,01..,0k in D}

™is is the intended intepretation for the program that we referred to
informally in Caapter 1. e leave the reader to check that it is model
Anf the progran.

™e relation denoted by the 703l clause comprises the three pairs of
Jiuts CELIRBAY, 2LALIRID <{A,81,[1>., These are the denotations of
the hindino terms of 1,82 and s?2 respactively. For this model, the
thres answer suhstitutions exactly cover the goal clause relation.

Tnterpretation 2

Pomain is the set of strings that are the terms of our logic progran
syntax.

Canh nonstant o is assigned the term c.

Faah n-ary functor f is assigned the function that takes the tuple of
terms <t1,..,°n> into Lthe term f(t1,..,tn). Thus, "." is the function
that takes "™ and "Hil" into ", (A, M1)". (Remembar that A.Nil is just
syntantin sumar for ".CARIL)Y Yo

3.1 Interpretations and models 50

"append” is the relation

{¢1i1,t,t> ¢ t a term}

union

{(.(t‘i..(t2.-—-,.(tk,Hil)-—-).t..(t1.(t2.—-.(tk,t)——)> :
t,t1,..,tk terms}

We leave the reader to sheck that this interpretation is a model. Tae
g0al clause denotes the relation

[T, . (A, - (FLNE1))> o <L(A MDY (R ML), C.(A,.(BNE1)),NQi1>.

Fach pair in the relation is denoted by the pair of binding terms of
exactly one of the answer substitutions.

Covering the goal clause relation

For the 1last two interpretations the threes answer substitutions
31,822,522 have together covered the corresponding goal clause relation.
To cover the goal clause relation for the first interpretation w2 should
need to add the substitution

sU={x/R.Nil,y/A.Nil},

which Aenotes tha extra tuple ¢3,2>. But the binding terms of this
substitution do not 4enote an instance of the goal clause relation for
the other tw» models of the progran. A set of correct answer
substitutions does not necessarily cover the goal clause relation for
aach model. The extent of the cover is constrained by the fact that
each substitution must denotez a relation that falls inside the goal
clause relation for every other model.

3,2 HWerbrand interpretations

The 1ast interpretation given above is an example of a special class
of interpretations called Herbrand interpretations.

nEETNITINN

» Herbrand interpretation is an interpretation with domain the set of
terms which gives the constants and functors their free
interpretation. That is,

(i) eazh constant ¢ is assigned itself,

(ii) each k%-ary functor f is assigned the function that takes any K-
tuple of terms ¢t 1. . ,tK> into the term £l sey

Usarhrand interpretations diffar only with resp=c
assigned to the predicates. VYoreover, the e
nredinate R can be specified by the set of atoms

£ o the extensions
X 0

‘.
tension assigned to 2

fR(L1,..,tn) ¢ <t1,..,tn> 1S in the relation assigned to R}.

Vs man eqiate the set of all P'arbrand interpretations with a set of 211
5ats of a%nms.

3.2 Herbrand interpretations 51

Herbrand representatives

The sat of Herbrand interpretations is of spscial importance because
they are the only jnterpretations that we need consider when determining
the correctness of an answer substitution. In this matter, they
represent the set of all interpretations. First, we define a mapping H
which takes an arbitrary interpretation into its Herbrand

representative.

DEFINITION
The function H from interpretations to Herbrand interpretations 1is

such that

H(T) = 1R{td,.a:kn) ¢ the universal closure of R(t1,..,tn) is true
for interpretation I}.

Theorea 3.1

Tf T is a model of some program P, then H(I) is a model of P,

Proof i

Suppose that I is a model of P, but H(I) is not. He shall derive 3
~ontradiction.

TF H(T) is not a model of P then there is some clause

P¢-A1%, X Am

in P whieh is false for H(I). That is, for some assignment
%x1=t1,..,xk=tk of terms t5 the variables of the clause, the conjunction

A1%, % Am is true but P is false.

T™e assignment of terms to the variables of the clause 1is 32
suhstitution s. B will be false for the assignment only if Es is not in
tha atom set of H(I), and the antecedent conjunction will be true for
the assionment only if each of the atoms of [A1%&..%Am)s is in the atom

sebu

By Adefinition of H(I), if Bs is not in the atom set then there is some
assignment Y1287, ussyizel of elements from the domain of I to the
variahles of Ps such that Bs is false for this assignment. If w2 extend
this to an assignment yl=el,..,yn=en to all the variables in
rA¢-A1%..Anls, we have an assignment for which Bs is still false, but
for which each of [A1)s,..,[Am]s is true. Fach [Ails is true for this
assignment hecause it 1is in the atom set of H(I). It must, therefore,
he true for every assignment o its variables.

Mow,
Pix1/t1, ... xk/tk} is false and [n1&..&Am}{x1/t1...,xk/tk} is true
for twa assigment yi=e, 1<i<n, only if,

n jq false and Al1hk,.%Am is true

3.2 Herbrand interpretations 52

for the assignment xi=denotation of ti, 1<ick.

Tn which ecase, the clause R(-A1k..&Am is false for interpretation I.
This contradicts the assumption that T is 2 model of the program.

Theorem 3.2

The universal closure of Cs is true for an interpretation I 1if and
only if it is true for interpretation H(I).

Proof

<= Assume that, for H(I), Cs is true for every assignment of terms to
its variables.

Suppnose y1,..,yn are the variables of Cs. Since Cs is true for every
assignment of terms to these variables, it must he true for the
assignment yl=yl,..,yn=yn. In other words, Cs must be true of the
interpretation H(I). This means that each of the atoms of Cs is in the
Atom set of H(I). By definition of H, this is the case only if the
universal closure of Cs is true for interpretation I.

-> Ye leave the proof of this implication for the interested reader.
Tt is just as straightforward.

Equivalent interpretations

The function H induces an equivalence relation on interpretations, two
interpretations being in the same squivalence class if they map in%to the
same Parbrand interpretation. Since H maps =2 Herbrand interpretation
into 1itself, each aquivalence class contains exactly one Herbrand
interpretaticn which we can take as the representing element of the
class.

Tha ahove theorem tells us, that with respsct to the correctness
raquiremnent for answver substitutions, the interpretations of =ach
aquivalance class are equivalent.

This, together with the fact that H maps models into models, gives us
+ue following theorem.

Theorem 3.3

An answer substitution s is correct if and only 1if the universal
closure of Cs is true for every Harbrand nodal of the program.

Proof

=5 1f s is zorrect, the universal elosure of ©Ts is trus for all
models, hencze for all Herbrand models.

¢= Lat " na any model. Theorem 3.1 tells us that its lerbrand
rapresantative () is also 2 model. Py assumption, the universal
Aosurs of Ts is true for model HE(M). Nanee, hy “heoram 3.2 it is also
caym far the arbitrary model M.

3.3 Fizxpoint semantics 53

3.3 Fixpoint semantics

Following van Fmdem and Zowalski[1976] we can recast the model theory
semantiss in the Seott lattice theory framework [Scott 19701. To do
this, wa must interpret each logic program P as an equation

x = P(x),

where P is a continuous function over some complete lattice “of ‘the
possible denotations of P. The least fixpoint of P, i.e. the least
solution of the above equation, is taken as the denotation of P. We

give a brief summary of the key concepts of the fixpoint approach.

DEFINTTIONS

(1) A complete lattice is a set S over which there 1is a reflexive,
antisymmetric, transitive order relation, <. For each subset X of 3
there is a least uppsr bound, lub(X), in S.

(?) A function P over a complete lattice S is continuous if for every
directed subset X of S

P(lub(Y)) = 1ub{P(x) : x in ¥i

(3) A directed set is a set which contains an upper nound for each of
jits finite subsets.

T™e fact that a complete 1attice contains. 3 1ub for every sSubsetl
jmplies that there 1is a top alement, T, and a bottom element, |- It

also implies that every suhset ¥ has a greatest lower bound, gib(X), 1in

[ad
«te

+
19

That P is continuous implies that it is monotonic, i.e. tha
x<y implies P(x)<P(y).

Henca, by Tarski's fixpoint theorem for a monotonic function over a
complete lattice [Tarski 19551, the least fixpoint of P exists, and is

(p) elbix @ P(x)<x}.

Tere is a second jdentification of *the least fixpoint. By a
generalisation of the ¥leene recursion theorem{Kleene 19521, it is

(R 1P () T 20},

Tor a proof, s=ze [Stoy 1977 p.11217. 1t appeals to the continuity
property of P.

Lattice of Herbrand interpretations

Given a logic program P we can usSe it to compute a set of answer
suhstitutions for euery goal clause of the fornm C—R{x1,..,xkK), R a k-ary
predinate. Fanh set of answer bindings defines a Herbrand extension for
P, and by computing A Herhrand extansion for each predicate we compute a
flarhrand interpretation. 5, as ths seb S Af ecgndidate denctations for

the program We take the set of all lorhrand interpretations.

3.3 Fixpoint semantics 54

Iinder the partial order relation

<! iff the atom set of T is included in that of I',
they are 4istributed over a complete lattice s, The least upper bound
of any subset ¥ of S 1is the atom set which is the union of the Herbrand
interpretations in X. The greatest lower bound of X is the intersection
of 1its Merbrand interpretations. The top alement of the lattice is the
Herbrand interpretation comprising the set of all atoms, the bottom
element is the Herbrand interpretation with the empty set of atoms.

Wle re—interpret the progran P as the equation
T = P(T)
where P is the function

P:1 => (R' @ B'<C-A"1E..%A'm is an instance of a
clause in P such that A'1,..,A'm are all in I}.

We shall call P the irmediate consequence function for the program.
¢ 1 defines the extension of each relation accessed by the procesdure
aalls of a program clause, then P(I) is the interpretation that defines
the extension of each relation that can be computed by the program.
This accords with the conventions of the fixpoint approach, and 1is
consistent with the re—interpretation of the progranm as the equation
T=P(I). .

Theorem 3.8

P is continuous.
Proof

Lat ¥ be a directed s=at of Herbrand interpretations. To prove that P
is continuous we must show that an atonm n' is in P(lub(¥)) if and only
if it is in 1w {P(T):T in X3,

nt is in P(luh(¥))

iFF PYC-A"1&..&A'm 15 an instancas of a clause in P suczh that A'1,..,A'm
are in lub(X) (definition of P)

iFF BICAME,EATD is an instance of a clause in P suzh that BYE eanti i
are in interpetations I1,..,Im of the set X
(1uh(Y) is the union of the T in ¥)

$EF B C-A "%, KA M 1S an instance of a clause in P sueh that A'1,..,A'm
ars in some T in ¥
(th~ if-half is rrivial, for the only-if half T is the lub
of T1,..,Im. Fince Y is directed, 3nd I is the 1ub of a
finite subset of ¥, T must be in Y.)

iff P' is in P(1) for some I in ¥ (definition of P)

{FT P i3 in TmPTY: T oin ¥l (Aefinition of bl A

3.3 Fixpoint semantics 55

Te lattice S contains every Herbrand interpretation. For the model
theory semantics only those interpretations which are models are of
interest. The following theorem characterises the llerbrand models in

tarms of the function P.

Theorea 3.5

A Yerbrand interpretation I is a model of a program P iff P(I)LI.

-
Ll

Proof

A Hlerbrand interpretation I is a model of P

iff for each clause B<-A1%..%Am in P, and for every substitution s
for its variables, wnenever [Al1&..%Amls is tru= Ps is true

iff for every substitution s, whenever each of [A1ls,..,[Am]s
are in I, Bs is in I

iff T contains all the atoms in P(I)
jef TOP(T).

Denotation of a program

NEEINITTON
™o least fixpoint of P is the fixpoint denotation of the progran P.

Theorems 3.6

The fixpoint denotation of a program P is the Herbrand model which 1is
the intersection of all the Herbrand models of P.

Proof

T™e fivxpoin% denotation of the progran i{s an interpratation I such
that, TSP(T). Py Theorem 3.5, it is a mod=1 of the program.

To prove that it is the intersection of all the Herbrani models w2 use
+ne Tarski identification of the least fixpoint. It is

glh({T:IDP(T)}) = intersection of {I:I is a Herbrand model of P}.

Fxpressed more intuitively, the fixpoint denotation of the program 1s
the Marhrand interpratation that assigns the least oxtension to 2ach

nredicate compatible with the interpretation's being a model of ths
p ' &

nrofran.

Correct answers

Tha fixpoint denotation of a program P is a3 single Uerbrand model. An
aswar suhstitutisn s must he dnemed correct if the universal closure of

-
s is true for this particular model, This gives us an alternative

i

3.3 Fixpoint semanties 56

definition of correctness.

DEFTNTTIONS

An answer substitution s is fixpoint correct for a goal clause g ard
program P if the universal closure of Cs is true of the fixpoint
denotation of P.

The following theorem tells us that this is exactly the model
theoretic characterisation of a correct answer recast in the ﬂiggd peint
framework.

Theorem 3.7
An answer substitution s is fixpoint correct iff it is correct
Proof
s is fixpoint correct

iff the universal closure of Cs is true for the fixpoint
denotation of P ’

iff it is true for the Herbrand model which is the intersection
of all the Herbrand models of P (Theorem 8,60

iff it is true for every Herbrani model of P

¢

iff s is aorrect (Theorem 2.3).

Racause of this equivalencz of the model theoretic and fixpoint
4efinition of correctness we can use eilther as our non-procedural
semantics for answer substitutions. From now on we shall generally
appeal to the fixpoint semanties. lPote that we have yet %o make use of
the identification

1.;5{?1(1): iy0}

of the 1least fixpoint of P, J2 shall wuse this 1in proving the
aquivalence of the procedural and non-procedural semantics, tha usual
use for *+ha Vleene identification of the least fixpoint.

3.8 Relation to the procedural semantics

The ey intermediary in our proof of the equivalence of the procedural
and non-procedural semantics is the concept of a complete proof tree as
Aefined in Chapter 1. Remember that a complete proof tree is the object
constructad by a successful evaluation.

Tirst, w2 shall prove that a corrz2ct answer syhstitution is the answer
suhstitntion 'displayed' by the goal clause atoms of a complete proof
trea. "a shall prove that a substitution s is correct for C and P if
and only if the atoms of Cs are the goal clauses atoms of a3 finite
complete proof tra» for € and P. From this it follows immediately that
every oomputed answer is correct. However, it does not follow that
pyery pcorrant answer can he computed, far th2 finita proof tree that

3.4 Relation to the procedural semantics 5T

displays s may not be a tree that can be constructed by some evaluation.

To prove that every correct answer answer can be computed, we show
that the set of finite proof trees are the set of substitution instances
of the R-constructed proof trees, R any computation rule. It follows
from this that every correct answer is a substitution instance of an R~
computable answer.

Theorem 3.8

An answer substitution s is correct if and only if the atoms of Cs are
the goal clause atoms of a finite complete proof tree for C and P.

Proof
We reduce the proof of the theorem to a definition and three lemmas.
DEFINITION

An atom B' is an n-level consequence of a program P if B' is in Pn(L)
for some n>0.

]

Remember that P is the immediate consegquence function associated with
the program, and | is the empty set of atoms.

The 1-level consequences are all those atoms that are substitution
instances of the assertions in P.

The n+1 level consegquences are the n-level conseguences together with
the set of atoms

{B": B'¢(-A'1&..&A'm is an instance of a clause in P
and A'1,..,A'm are n-level consequences}.

The following lemma can be established by a simple induction on n.
Lemma 1

An atom 1s an n-level consequence iff all its substitution instances
are n-level consequences.

Proof tree display

We can display the derivation of an atom B' in Pn(l) as a tree of
height at most n. Such a tree is depicted in Fig. 3.1.

By making B' the single descendent of an unlabelled root node the tree
pecomes a complete proof tree for the goal clause ¢-B' and the program
p. Since it is of finite height, by Konig's lemma it has a finite
number of nodes. Hence:

Lemma 2

An atom B' is an n-level consequence of P iff there 1is a finite
complete proof tree for <-B' and P.

3.0 Relation to the procedural semantics 58

////}l;\\\ n-level consequence
LRl N (n-1)-level consequences

A'm
R 1-level cons=quences

D i
- -

- w w == '
Derivation of n-level consequence B’

Fig. 3.1

e 4now that a substitution s is correct iff the universal closure of
Ccs is true for the fixpoint denotation of P, iff every substitution
instances of each of its atoms is in the atom set of the least fixpoint
of P.

T™ea following lemma tells us that each instanc2 of an atom B is in the
least fixpoint of P if and only if B is an n-level consequence for some
n. With lemma 2 it implies the theorem. This 1s because a complete
proof tree for (s comprises separate complete proof trees for each of
its atoms joined to a common roab.

Lemma 3

Taech instance of an atom I' is in the least fixpoint of P iff it is an
n-level consaquence of P for some n.

Proof
An instance of B is in the least fixpoint of P
LFf it is in 1uh(P7(])} (identity (P) for the least fixpoint)
iff it is in Pn{l) for some n (definition of lub)
{fFf P is an n-level cons2quence of P (lemna 1).
Thearam 2.9 has the following immediate corollary?
Corollary to Theorem 3.8

Fyery R-compuhtahle answer suhstitution is correct

3.4 Relation to the procedural semantics 59

Proof

A successful evaluation using computation rule R constructs a complete
proof tree. The answer of the evaluation is the substitution that takes
the goal clause C into the goal clause atoms of thnis tree. By the
theorem, the substitution is correct.

In resolution terms, the above corollary tells us that LUSH resolution
is sound. ,"J

We cannot prove exactly the converse of the above corollary despite
the fact that the theorem tells us that every correct substitution is
"displayed' on some finite complete proof tree. This is baecause not
every finite proof tree can be constructed. However, what is true, is
that every finite complete proof tree is a substitution instance of a
constructed tree.

Theorem 3.9

If T' is a finite complete proof tree then, for any computation rule
R, there 1is an R_constructed proof tree T such that T'=Ts for sone
substitution s.

Proof

A finite complete proof tree T' for a goal clause ¢-81&..%Xb1 1s a tree
as depicted in Fig. 3.2(b). The initial proof tree for this goal
clause, Fig. 3.2(a), is a constructed tree. We can prove the theorem DYy
showing that, using any computation rule Kk, the initial proof tree can
ne extended into a proof tree T +that maps onto T' under soane
substitution S. -

/N /\

o R R () BVl suunlB'm some substitution
instance of B1,..,0Gn

initial
proof tree

(a) \J/—X_/

(b)
complate proof tree i

Fig. 3.2

3.4 Relation to the procedural semantics 60

The initial proof tree is just a special case of a constructed proof
tree T that maps into T' as depicted in Fig. 3.3. That is, it 1s a

J

constructed tree T,
4 some atom on the treec

pruned version of T!'
that is Ts

_complete proof tree T’
Mapping of T into T!

Fig.: 33

constructed tree such tnat 507e substitution s maps it into a pruned
version of T'. Let us measure the Jdifference betwezn T and T' by:

nunber of extra nodes on T' 4+ nunber of leaf nodes on T' .
ot marksd as terminal on T

By an induction on the size of this difference, wWe prove that overy
constructed tree T that maps into T' can be extended into a complete
proof tree that maps 0onto T

Basis

umen the difference is zero T i3 already a constructed complete proof
rree that maps ontc 17

Induction step

Lat the difference belwed: T and T' be x+1. Assune that the extension
can be achieved for all T for wnienh the difference petween T and T' i3 &
or less,

In extending the tree T the computation rule B will select an leaf
aton & of T not marked as terminal. we know that Ts is a prun2d version
of T'. As depicted in Fig. %, h(a), there wmust be an atou Ls on T' that
corresponds Lo the salected atom .

Sipes T' is o complete proof tresz it must Le Lhe ocase that BEs 15 tne

3.4 Relation to the procedural semantics 61

3
T ”#___h“hhf>
B
[(A1]u...[An]u
(a)
Extendad s'
T]
Av ~ A
—Dv
\\\\\ 4 3
/ %
(A'1]v...[A'mlv [Aj]u...[Am]u
(b)
An extension of T \
Fig. 3.4
consaquent atom of a substitution instance
[B'<-A1&..%Anlu, m>0
of some clause in the program P. The atoms [A1]Ju,..,[Amju will D2 t10e

immediate descendants of Bs (which is identical to B'u) on T'. Let us
call

Br¢-A1&. . %An

the validating clause for Bs. A variant

EMC-A'1&..&A'm

of this clause can be usad Lo extend tne partially constructed tree T,

Sinas BEs=z2'u, b and the variant E" of B' will be wunifieble. Suppose
riat {xl/y1,...xk/yk} is the change of variable sdbstitution Lhat takss
ot ointa B". Since [and E" hwaye no variables in common, 3 union
{y1/0x1Ju, .., yk/[xklu}l will be a set of bindings for distine

ot variables.

3.4 Relation to the procedural semantics 62

Applied to B, it will give us Bs. Applied to B", it will give us Blu.
Hence, this substitution is a unifier of B and B".

The unification of B and B" will return a most general unifier V. T
will then be extended by adding A'1,..,A'nm as immediate descendants of
B, or, if m=0, by marking B as terminal. The substitution v 1is then
applied to every node on the extended tree (see Fig. 3. 4(b)).

The difference between the extended T and T' will be X or less. To
apply the induction hypothesis, we must prove that the extended T also
maps into T' under some substitution s'.

e know that s union {yT/[xl}u....yk/[xk]u} unifies B and B". Since v
is a most general unifier of B and B", there is a substitution s' sucn

that
v#s'zs union {y1/0x11u,..,yk/[xklu}
s' is the substitution that will take the extended tree into T'.

1f s' is applied to each of the new nodes, which are labelled by the
antecedent atoms of

[B‘(—A1&..Am]{x1/y1....x1/y1}*v.

it will give us the antecedent atoms of

2

[B'(—A1&..&mn]{x1/y1....xk/yk}*{y1/{x1]u...,yk/[xk]u}.

These are the atoms [A1lu,..,[EmJu on T'. Applied to Bv, and any other
atom 1label fv of one of the old nodes, it will produce thes atoas Ds and
As respectively. lience, s' maps every aton of the new tree 1into the
corresponding atom on T' a3 required.

Corollary to Theores 3.9

there 15

For each correct answer substitution s' for a goal clause C
Cs'=Ca®s" for some

an R-computable answWar substitution s such that s!
substitution s".

Proof

Sinca s' is correct, Theoren 3.0 tells us that the atoms of Cs' are
the goal clause atoms of some complete proof tree T'. Uy the above
theorem, W2 know thal thers is a constructable proof tree T that maps
snto T'. The goal clause atoms of T will be the atons of Cs, where S is
the answer computed by the suzcessful evaluation that constructs T. Tne
substitution s" that maps T onto T' will map Cs onto Cs'., lence,
Cs'=Cs*s" as required.

In resolutlion term3, the above corollary tells us that LUSH reszolutlion
is complete. It is a slight generalisation of the normal conpleteness
result whicho only guarante2o The existence of thie coaputuble
substitution 5 wagn the substitution s' nas binding Lerms withioub
variables. Complatensss for LUSH resolution was first proved by
#3110197481. The above proof 15 somewhal different from tne one e fave.

3.4 Relation to the procedural semantics 63

3.5 Independence of the computation rule

Each answer substitution denotes a relation over the Herbrand
universe. This is the set of tuples of terms that can be obtained by
instantiating the tuple of binding terms of the substitution. Let wus
call the union of the Herbrand relations denoted by the set of R-
computable answers for a goal clauses C, the R—computable extension of
G The following theorem tells us that this is always the extension
given to C by the Herbrand interpretation that 1is the: fixpoint
denotation of P.

Theorem 3.10

For any computation rule R, the R-computable extension of a goal
clause C is the relation assigned to C by the fixpoint denotation of the
progran.

Proof
‘la show that each extension includes the othar.

T™e relation assignad to C by the fixpoint denotation of the progran

is

{<t1,..,tk>: each atom af’ BT Yl l)
is in the fixpoint, interpretation}

2 Lt sy BRZE {x1/t1,..,xk/tk} is a correct answerlt.

That is, a tuple <t1,..,tk> of binding terms is in this relation only if
it is the tuple of binding terms of a correct answar. By the
completeness corollary of Theorem 3.9, <t1,...tk> 1is in the tHerbraad
extension of an HR-computable answer. It follows that the relation
sssignad to C by the fixpoint interpretation is includad in the terbrand
extension of the set of R-computable answers.

By the soundness corollary of Tneorem 3.8, each R—computable answer is
correct. 2y the fixpoint definition of correctness, =tae Herbranid
relation denoted by the answer is included 1in the extznsion of the
relation assigned to C by the fixpoint denotation of tine program. S50,

the Herbrand extension of the set of R-computable answers 135 included 1in
the extension of this goal clause relation.

Corollary

Tne conputed extension of a goal clause 1s independent of the
computation rule.

The above corollary is our first result concarning the indepondence of

the computation rule. There is a stronger result. We can prove tnat
tna Jiffarent sets 5f computable answers not only desnote Lhe Saae
terbrand relation, but that thay contain essentially thoe suneg
substitutions. =

3.5 Independence of the computation rule 64

Let us look again at the proof of Thzorem 3.9. In the induction step,
where we extended the proof tree T at the selected atom L, we used a
variant of the validating clause of the corresponding node on Tr. The
particular atom that appzared on this node was not relevant. We can
replace T' by any other tree T" that has the same validating clause
associated with each node. The tree constructed by the inductive proof
would be unchanged.

DEF INITION 2

The proof skeleton T of a proof tree T 1is a structurally' l1dentical
tree in which each node is labelled by the validating progran clause
of the corresponding node on T

We leave the reader to cheek that in thz construction of T implicit in
the induction of Theorem 3.9:

(1) The sequence of extension steps that will construct T from the
initial proof tree is uniquely determined by the computation rule and

™oy

the proof skeleton T of T,
(2) T' could be replaced by any otner proof tree with the saae skeleton.
(3) The proof skeleton of T is the proof skeleton of ! .

A proof sxeleton is what is constructed by the stack implementation
deseribed in Chapter 1 if we discard the binding anvironmants. We can
summarise the above properties in the following theoren.

Theorem 3.11

For a given computation rule R and proof skeleton T thuere is exactly
sne successful evaluation for the goal clause C. This constructs a most
general proof tree T with proof skeleton T. Tnat is, T maps onto aay
other proof tree with skeleton T.

Corocllary

An answer substitution s 1is R-computable only 1if an equivalent
substitution 13 R'—computable, where R' is any other computation rulza.

Proof

The computation of s using rule R will construct a complete proof tres2
T with the atoms of Cs as the zoal clause atoms. Since there is only
ona successful evaluslion corresponding to the rule R and the proof
skeleton Tof T, T must be a ~nst general proof tree for skeleton T.

For proof skeleton T and rule k' there is also exactly one suzcessful
evaluation of C. Tnis will compute an answer s' and in so doing will
constrict a proof vree T', witn tne atoms of Cs' as 1ts goal clause
atons. This is also 2 most seneral proof tree for skeleton T.

Sipas 1 and T' are zach most general proof trees for skeleton T, tnere
is a substitution thal Mnaps the atoms of Cz into the atoms of Cs', und
vice versa, Cs and Cs! pust cherafore be variants. If 5 and 3' are tae

3.5 Independence of the computation rule 65

substitutions
3=fx1/t 1, o0 sxk/tkl s'={x1/t"'"1, ..., xk/t"k},

then, since x1,..,Xk are all the variables of C, the term tuples
<t1,..,Lk>, <t'1,...,t'k> must also be variants. They therefore denote
the same relation for every interpretation.

The above corollary is the justification for our claim that ,the fauily
of algorithms implicit in a given logic progran are equivalent. It
tells us that each algorithm must compute the same set of answers
(modulo eguivalence of substitutions).

