
13

AjaxScope: A Platform for Remotely
Monitoring the Client-Side Behavior
of Web 2.0 Applications

EMRE KICIMAN and BENJAMIN LIVSHITS
Microsoft Research

The rise of the software-as-a-service paradigm has led to the development of a new breed of so-
phisticated, interactive applications often called Web 2.0. While Web applications have become
larger and more complex, Web application developers today have little visibility into the end-to-
end behavior of their systems. This article presents AjaxScope, a dynamic instrumentation plat-
form that enables cross-user monitoring and just-in-time control of Web application behavior on
end-user desktops. AjaxScope is a proxy that performs on-the-fly parsing and instrumentation of
JavaScript code as it is sent to users’ browsers. AjaxScope provides facilities for distributed and
adaptive instrumentation in order to reduce the client-side overhead, while giving fine-grained
visibility into the code-level behavior of Web applications. We present a variety of policies demon-
strating the power of AjaxScope, ranging from simple error reporting and performance profiling
to more complex memory leak detection and optimization analyses. We also apply our prototype
to analyze the behavior of over 90 Web 2.0 applications and sites that use significant amounts of
JavaScript.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Distributed debugging; D.4.7 [Operating Systems]: Organization and Design—Distributed
systems

General Terms: Reliability, Performance, Measurement, Management, Languages

Additional Key Words and Phrases: Applications, software monitoring, software instrumentation

ACM Reference Format:
Kıcıman, E. and Livshits, B. 2010. AjaxScope: A platform for remotely monitoring the client-side
behavior of Web 2.0 applications. ACM Trans. Web 4, 4, Article 13 (September 2010), 52 pages.
DOI = 10.1145/1841909.1841910. http://doi.acm.org/10.1145/1841909.1841910.

1. INTRODUCTION

In the last several years, there has been a sea change in the way software
is developed, deployed, and maintained. Much of this has been the result of

Authors’ addresses: E. Kıcıman and B. Livshits, Microsoft Research, One Microsoft Way, Redmond,
WA 98052; email: {emrek, livshits}@microsoft.com.
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2010 ACM 1559-1131/2010/09-ART13 $10.00 DOI: 10.1145/1841909.1841910.

http://doi.acm.org/10.1145/1841909.1841910

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 2 · E. Kıcıman and B. Livshits

a rise of software-as-a-service paradigm as opposed to traditional shrink-wrap
software. These changes have lead to an inherently more dynamic and fluid ap-
proach to software distribution, where users benefit from bug fixes and security
updates instantly and without hassle. This fluidity also creates opportunities
for software monitoring. Indeed, additional monitoring code can be seamlessly
injected into the running software without the user’s awareness.

Nowhere has this change in the software deployment model been more
prominent than in a new generation of interactive and powerful Web applica-
tions. Sometimes referred to as Web 2.0, applications such as Yahoo! Mail and
Google Maps have enjoyed wide adoption and are highly visible success stories.
In contrast to traditional Web applications that perform the majority of their
computation on the server, Web 2.0 applications include a significant client-
side JavaScript component. Widely used applications consist of over 50,000
lines of JavaScript code executing in the user’s browser. Based on AJAX (Asyn-
chronous JavaScript and XML), these Web applications use dynamically down-
loaded JavaScript programs to combine a rich client-side experience with the
storage capacity, computational power, and reliability of sophisticated data
centers.

However, as Web applications grow larger and more complex, their depend-
ability is challenged by many of the same issues that plague any large, cross-
platform distributed system that crosses administrative boundaries. There are
subtle and not-so-subtle incompatibilities in browser execution environments,
unpredictable workloads, software bugs, dependencies on third-party Web ser-
vices, and—perhaps most importantly—a lack of end-to-end visibility into the
remote execution of the client-side code. Without visibility into client-side be-
havior, developers have to resort to explicit user feedback and attempts to re-
produce user problems.

This article presents AjaxScope, a platform for instrumenting and re-
motely monitoring the client-side execution of Web applications within users’
browsers. Our goal is to enable practical, flexible, fine-grained monitoring of
Web application behavior across the many users of today’s large Web applica-
tions. While coarse solutions to track page hit statistics or to optimize Web
sites for conversion exist,1 our primary focus is on enabling monitoring and
analysis of program behavior at the source code level to improve developers’
visibility into the correctness and performance problems being encountered by
end-users. Our approach focuses on runtime instrumentation; a popular al-
ternative is static analysis. However, for large applications, static analysis of
JavaScript has been tricky because of the highly dynamic nature of this lan-
guage [Yue and Wang 2009] and because JavaScript programs are often incom-
plete, making whole-program analysis difficult [Guarnieri and Livshits 2009;
Chugh et al. 2009; Guarnieri and Livshits 2010].

To achieve this goal, we take advantage of a new capability of the Web appli-
cation environment, instant redeployability: the ability to dynamically serve
new, different versions of code each time any user runs a Web application.
Indeed, because caching headers are controlled by the server, we can force

1http://www.omniture.com is one such solution.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 3

refreshes every time an application is visited. We use this ability to dynam-
ically provide differently instrumented code per user and per execution of an
application.

Instant redeployability allows us to explore two novel instrumentation con-
cepts, adaptive instrumentation, where instrumentation is dynamically added
or removed from a program as its real-world behavior is observed across users;
and distributed tests, where we distribute instrumentation and runtime analy-
ses across many users’ execution of an application, such that no single user
experiences the overhead of heavyweight instrumentation. A combination of
these techniques allows us to take many brute-force, runtime monitoring poli-
cies that would normally impose a prohibitively high overhead, and instead
spread the overhead across users and time so that no single execution suffers
too high an overhead. In addition, instant redeployability enables comparative
evaluation of optimizations, bug fixes, and other code modifications.

To demonstrate these concepts, we built AjaxScope, a prototype proxy that
rewrites JavaScript-based Web applications on the fly as they are being sent
to a user’s browser. AjaxScope provides a flexible, policy-based platform for in-
jecting arbitrary instrumentation code to monitor and report on the dynamic
runtime behavior of Web applications, including their runtime errors, perfor-
mance, function call graphs, application state, and other information accessi-
ble from within a Web browser’s JavaScript sandbox. Because our prototype
can parse and rewrite standard JavaScript code,2 it does not require changes
to the server-side infrastructure of Web applications, nor does it require any
extra plug-ins or extensions on the client browser. While we built our pro-
totype to rewrite JavaScript code, our techniques may be extended to other
forms of client-executable code, such as Flash or Silverlight. In addition to
the client-side proxy, we have also implemented an AjaxScope plug-in for the
IIS Web server, which provides sever-side JavaScript rewriting before the code
is shipped to the user. The server-side approach may be used to collect fine-
grained performance statistics for JavaScript code in a browser-independent
manner.

To evaluate the flexibility and efficacy of AjaxScope, we use it to implement
a range of developer-oriented monitoring policies, including runtime error re-
porting, drill-down performance profiling, optimization-related policies, a dis-
tributed memory leak checker, and a policy to search for and evaluate potential
function cache placements. In the course of our experiments, we have applied
these policies to 90 Web sites that use JavaScript.

1.1 Contributions

This article makes the following contributions.

—We demonstrate how instant redeployability of applications can provide a
flexible platform for monitoring, debugging, and profiling of service-oriented
applications.

2A public release of our prototype proxy, extensible via plug-in instrumentation policies, is avail-
able at http://research.microsoft.com/projects/ajaxview/.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 4 · E. Kıcıman and B. Livshits

—For Web 2.0 applications, we show how such a monitoring platform can be
implemented using dynamic rewriting of client-side JavaScript code.

—We present two instrumentation techniques, adaptive instrumentation and
distributed tests, and show that these techniques can dramatically reduce
the per-user overhead of otherwise prohibitively expensive policies in prac-
tice. Additionally, we demonstrate how our platform can be used to enable
on-line comparative evaluations of optimizations and other code changes.

—We evaluate the AjaxScope platform by implementing a variety of instrumen-
tation policies and applying them to 90 Web applications and sites containing
JavaScript code. Our experiments qualitatively demonstrate the flexibility
and expressiveness of our platform and quantitatively evaluate the overhead
of instrumentation and its reduction through distribution and adaptation.

—We implement and present several additional uses of AjaxScope, including
MEDic, a control and visualization tool for Web application instrumentation
to enable on-line debugging; and Doloto, a code splitter that optimizes Web
application download time based on analysis of its runtime behavior.

1.2 Article Organization

The rest of the article is organized as follows. First, we give an overview of the
challenges and opportunities that exist in Web application monitoring. Then,
in Section 3, we describe the architecture of AjaxScope, together with exam-
ple policies and design decisions. We present our implementation, as well as
our experimental setup and microbenchmarks of our prototype’s performance
in Section 4. Section 5 and Section 6 describe adaptive instrumentation and
distributed tests, using drill-down performance profiling and memory leak de-
tection as examples, respectively. Section 7 discusses comparative evaluation,
or A/B testing, and applies it to dynamically evaluate the benefits of cache
placement choices. Sections 8 and 9 present two tools we have built atop Ajax-
Scope: The first is MEDic, and consists of a library and manual control and
visualization tool for instrumented Web applications. The second is Doloto, a
code splitter that rewrites Web application code layout to optimize for down-
load time. Section 10 outlines several additional, potential uses of AjaxScope’s
instrumentation capabilities. We discuss implications for Web application de-
velopment and operations in Section 11. Finally, Sections 12 and 13 present
related work and our conclusions.

2. OVERVIEW

Modern Web 2.0 applications share many of the development challenges of any
complex software system. But the Web application environment also provides
a number of key opportunities to simplify the development of monitoring and
program analysis tools. The rest of this section details these challenges and
opportunities, and presents concrete examples of monitoring policies demon-
strating the range of possible capabilities.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 5

Table I. Performance of Simple JavaScript Operations Varies Across Com-
monly Used Browsers. Time is Shown in Msec to Execute 10k Operations

Browser Version Array.sort() Array.join() String +
Internet Explorer 6.0 823 38 4820
Internet Explorer 7.0 833 34 4870
Opera 9.1 128 16 6
FireFox 1.5 261 124 142
FireFox 2.0 218 120 116

2.1 Core Challenges

The core challenge to building and maintaining a reliable client-side Web ap-
plication is a lack of visibility into its end-to-end behavior across multiple envi-
ronments and administrative domains. As described in the following, this lack
of visibility is exacerbated by uncontrolled client-side and third-party environ-
ment dependencies and their heterogeneity and dynamics.

Nonstandard Execution Environments. While the core JavaScript language
is standardized as ECMAScript [ECMA 1999], runtime JavaScript execution
environments differ significantly. As a result, applications have to frequently
work around subtle and not-so-subtle cross-browser incompatibilities. As a
clear example, sending an XML-RPC request involves calling an ActiveX ob-
ject in Internet Explorer 6, as opposed to a native JavaScript object in Mozilla
FireFox. Other, more subtle issues include significant cross-browser differences
in event propagation models. For example, given multiple event handlers reg-
istered for the same event, in what order are they executed? Moreover, even
the standardized pieces of JavaScript can have implementation differences that
cause serious variations in performance; see Table I for examples.

Third-Party Dependencies. All Web applications have dependencies on the
reliability of back-end Web services. And though they strive to maintain high
availability, these back-end services can and do fail. However, even regular
updates, such as bug fixes and feature enhancements, can easily break depen-
dent applications. Anecdotally, such breaking upgrades do occur: live.com up-
dated their beta gadget API, breaking dependent developers code [Rider 2005];
and, more recently, the popular social bookmark Web site, del.icio.us, moved
the URLs pointing to some of their public data streams, breaking dependent
applications [Bosworth 2006].

Traditional Challenges. Where JavaScript programs used to be only simple
scripts containing a few lines of code, they have grown dramatically, to the
point where the client-side code of cutting-edge Web applications easily exceed
tens of thousands of lines of code (see our selected benchmarks in Section 4.3).
The result is that Web applications suffer from the same kinds of bugs as tradi-
tional programs, including memory leaks, logic bugs, race conditions, and per-
formance problems. Worse, JavaScript does not provide modularity constructs
found in Java and C#, such as namespaces, which makes large applications
even more challenging to develop because of the lack of isolation between dif-
ferent portions of the code.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 6 · E. Kıcıman and B. Livshits

2.2 Key Opportunities

While the challenges of developing and maintaining a reliable Web application
are similar to traditional software challenges, there are also key opportunities
in the context of rich-client Web applications, as detailed here.

Instant redeployment. In contrast to traditional desktop software, changes
can be made immediately to Web 2.0 applications. While browsers and proxies
do cache Web content, including JavaScript code, they do so in accordance with
the cache control settings provided by a Web server. Often, top-level Web doc-
uments (i.e., HTML files) are given a short time-to-live, while the secondary—
and often larger—Web objects (e.g., images, CSS files) are given infinite time-
to-live. Updating the secondary Web objects involves assigning a new name
and updating the reference in the primary document. Such techniques allow
Web applications to achieve both the performance benefits of caching and the
ability to provide fresh content to every client. AjaxScope takes advantage of
this to perform on-the-fly, per-user JavaScript rewriting.

Adaptive and distributed instrumentation. Web 2.0 applications are inher-
ently multi-user, which allows us to seamlessly distribute the instrumentation
burden across a large user population. This enables the development of sophis-
ticated instrumentation policies that would otherwise be prohibitively expen-
sive in a single-user context. The possibility of adapting instrumentation over
time enables further control over this process.

Large-scale workloads. In recent years, runtime program analysis has been
demonstrated as an effective strategy for finding and preventing bugs in the
field [Liblit et al. 2005; Martin et al. 2005]. Many Web 2.0 applications have an
extensive user base, whose diverse activity can be observed in real time. As a
result, a runtime analysis writer can leverage the high combined code coverage
not typically available in a test context.

2.3 Categories of Instrumentation Policies

As a platform, AjaxScope enables a large number of exciting instrumentation
policies.

Performance. Poor performance is one of the most commonly heard com-
plaints about the current generation of AJAX applications [Breen 2007]. Ajax-
Scope enables the development of policies ranging from general function-level
performance profiling (Section 5.2) to timing specific parts of the application,
such as initial page loading or the network latency of asynchronous AJAX calls.
Section 9 talks about DOLOTO, a tool built on top of AjaxScope that does code
splitting for optimization.

Runtime analysis and debugging. AjaxScope provides a platform for imple-
menting a range of runtime analyses, from finding simple bugs like infinite
loops (Section 3.2.2) to complex proactive debugging policies such as memory
leak detection (Section 6.2). Given the large number of users for the more
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 7

Table II. Policies Described Before and in Sections 5–7. Simple Policies
Above the Separator Line such as Error Reporting and Infinite Loop

Detection are neither Adaptive nor Distributed

Policy Adaptive Distributed A/B Test
Client-side error reporting
Infinite loop detection
String concatenation detection
Performance profiling �
Memory leak detection �
Finding caching opportunities � �
Testing caching opportunities �

popular applications, an AjaxScope policy is likely to enjoy high runtime code
coverage.

Usability evaluation. AjaxScope can help perform usability evaluation. Be-
cause JavaScript makes it easy to intercept UI events such as mouse move-
ments and key strokes, user activity can be recorded, aggregated, and studied
to produce more intuitive Web interfaces [Atterer et al. 2006]. While usabil-
ity evaluation is not a focus of this article, we discuss some of the privacy and
security implications in Section 11.

The policies we implement and describe in this article are summarized in
Table II.

3. AJAXSCOPE DESIGN

Here we first present a high-level overview of the dynamic instrumentation
process and how it fits into the Web application environment, followed in
Section 3.2 with some simple examples of how instrumentation can be embed-
ded into JavaScript code to gather useful information for the development and
debugging process. Sections 3.3 and 3.4 summarize the structure of AjaxScope
instrumentation policies and policy nodes.

3.1 Platform Overview

Figure 1 shows how an AjaxScope proxy fits into the existing Web application
environment. Other than the insertion of the server-side proxy, AjaxScope does
not require any changes to existing Web application code or servers, nor does
it require any modification of JavaScript-enabled Web browsers. The Web ap-
plication provides uninstrumented JavaScript code, which is intercepted and
dynamically rewritten by the AjaxScope proxy according to a set of instrumen-
tation policies. The instrumented application is then sent on to the user. Be-
cause of the distributed and adaptive features of instrumentation policies, each
user requesting to download a Web application may receive a differently instru-
mented version of code.

The instrumentation code and the application’s original code are executed
together within the user’s JavaScript sandbox. The instrumentation code gen-
erates log messages recording its observations and queues these messages in

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 8 · E. Kıcıman and B. Livshits

Fig. 1. Deployment of AjaxScope server-side proxy for a popular Web application lets developers
monitor real-life client-side workloads.

memory. Periodically, the Web application collates and sends these log mes-
sages back to the AjaxScope proxy.

Remote procedure call responses and other data sent by the Web application
are passed through the AjaxScope proxy unmodified, but other downloads of
executable JavaScript code will be instrumented according to the same policies
as the original application. JavaScript code that is dynamically generated on
the client and executed via the eval construct is not instrumented by our proxy.

One option, left for future work, is to rewrite calls to eval to send dynami-
cally generated scripts to the proxy for instrumentation before the script is ex-
ecuted, as explored elsewhere [Meyerovich and Livshits 2010]. While eval may
be used for a variety of malicious purposes [Yue and Wang 2009], in our experi-
ence, well-behaved Web applications make rare use of dynamic code generation
because of the performance penalty, reserving them for evaluating JSON (Java-
Script Object Notation) or for dynamic code loading. AjaxScope recognizes the
former pattern, avoiding rewriting. Rewriting well-formed non-JSON in the
latter case in the proxy is also possible.

3.2 Example Policies

In the following, we describe three simple instrumentation schemes to illus-
trate how source-level automatic JavaScript instrumentation works. The pur-
pose of these examples is to demonstrate the flexibility of instrumentation via
code rewriting, as well as some of the concerns a policy writer might have, such
as introducing temporary variables, injecting helper functions, etc.3

3.2.1 Client-Side Error Reporting. Currently, Web application developers
have almost no visibility into errors occurring within users’ browsers. Modern
JavaScript browsers do allow JavaScript code to provide a custom error handler
by setting the onerror property:

window.onerror = function(msg, file, line){...}
However, very few Web applications use this functionality to report errors

back to developers. AjaxScope makes it easy to correct this oversight by

3Readers familiar with the basics of JavaScript and source-level instrumentation may want to skip
to Sections 5–7 for examples of more sophisticated rewriting policies.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 9

automatically augmenting the onerror handler to log error messages. For ex-
ample, a policy may automatically augment registered error handlers without
requiring any input from the application developer, resulting in the following
code:

window.onerror = function(msg, file, line){
ajaxScopeSend(’Detected an error: ’ + msg +

’ at ’ + file + ’:’ + line +
’\nStack: ’ + getStack());

... // old handler code is preserved
}

One of the shortcomings of the onerror handler is the lack of access to a call
stack trace and other context surrounding the error. In Section 5.2, we de-
scribe how to collect call stack information as part of the performance profile of
an application. This instrumentation provides critical context when reporting
errors.

3.2.2 Detecting Potential Infinite Loops. While infinite loops might be con-
sidered an obvious bug in many contexts, JavaScript’s dynamic scripts and the
side effects of DOM manipulation make infinite loops in complex AJAX appli-
cations more common than one might think.

Example 1. The following code shows one common pattern leading to infi-
nite loops [Zakas et al. 2006].

for (var i=0; i < document.images.length; i++) {
document.body.appendChild(

document.createElement("img"));
}

The array document.images grows as the body of the loop is executing because
new images are being generated and added to the body. Consequently, the loop
never terminates.

To warn a Web developer of such a problem, we automatically instrument
all for and while loops in JavaScript code to check whether the number of
iterations of the loop exceeds a developer-specified threshold. While we cannot
programmatically determine that the loop execution will never terminate, we
can reduce the rate of false positives by setting the threshold sufficiently high.
Below we show the loop above instrumented with infinite loop detection:

var loopCount = 0, alreadySent = false;
for (var i = 0; i < document.images.length; i++) {
if (!alreadySent &&

(++loopCount > LOOP_THRESHOLD)) {
ajaxScopeSend(’Unexpectedly long loop ’
+ ’ iteration detected’);
alreadySent = true;

}

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 10 · E. Kıcıman and B. Livshits

document.body.appendChild(
document.createElement(’img’));

}

When a potential infinite loop is detected, a warning message is logged for the
Web application developer. Such a warning could also trigger extra instrumen-
tation to be added to this loop in the future to gather more context about why
it might be running longer than expected. This example injects new temporary
variables loopCount and alreadySend; naming conflicts can be avoided using
methods proposed in BrowserShield for tamper-proofing [Reis et al. 2006].

3.2.3 Detecting Inefficient String Concatenation. Because string objects are
immutable in JavaScript, every string manipulation operation produces a new
object on the heap. When concatenating a large number of strings together,
avoiding the creation of intermediate string objects can provide a significant
performance improvement, depending on the implementation of the JavaScript
engine. One way to avoid generating intermediate strings is to use the native
JavaScript function Array.join, as suggested by several JavaScript program-
ming guides [Internet Explorer development team; Crisp 2006]. Our own mi-
crobenchmarks, shown in Table I, indicate that using Array.join instead of
the default string concatenation operator + can produce over 130x performance
improvement on different versions of IE.

Example 2. The string concatenation in the following code

var small = /* Array of many small strings */;
var large = ’’;
for (var i = 0; i < small.length; i++) {

large += small[i];
}

executes more quickly on Internet Explorer 6, Internet Explorer 7, and Fire-
Fox 1.5 if written as: var large = small.join(’’).

To help discover opportunities to replace the + operator with Array.join in
large programs, we instrument JavaScript code to track string concatenations.
To do so, we maintain “depth” values, where depth is the number of string con-
catenations that led to the creation of a particular string instance. The depth
of any string not generated through a concatenation is 0. Our instrumenta-
tion rewrites every concatenation expression of the form a = b + c, where a is a
variable reference, and b and c are expressions. The rewritten form is:

var tmp1,tmp2;
...
(tmp1 = b, tmp2 = c, tmp3 = a,

a = tmp1 + tmp2,
adjustDepth(tmp1, tmp2, tmp3), a)

where the comma operator in JavaScript is used to connect statements. We
use a helper function adjustDepth to dynamically check that the types of b and
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 11

c are strings, to compute the maximum depth of b and c increased by 1 and
associate it with a.4 Depth maintenance is accomplished by having a global
hash map of string → depth values.5 Whenever the depth first exceeds a user-
defined threshold, a warning message is logged. This instrumentation goes be-
yond pattern-matching in simple loops, finding opportunities to optimize even
interprocedural string concatenations.

3.3 Structure of an Instrumentation Policy

In designing AjaxScope, we have found it helpful to give some structure to the
policies we were developing. In particular, the description below motivates the
idea of pipelining policies together. To describe the structure of an instrumen-
tation policy in AjaxScope, we first present some key definitions.

—An instrumentation point is any instance of a language element in JavaScript
code, such as a function declaration, statement, variable reference, or the
program as a whole. Instrumentation points are represented as abstract
syntax tree (AST) nodes of the JavaScript program’s parse tree.

—Policy nodes are the basic unit of organization for analyzing and instrument-
ing JavaScript code. The primary purpose of a policy node is to rewrite the
instrumentation point to report observations of its runtime state and/or ap-
ply a static or runtime analysis. We discuss policy nodes in more detail in
Section 3.4.

—Policy nodes are pipelined together to form a complete instrumentation pol-
icy. This pipeline represents a dataflow of instrumentation points from one
policy node to the next. The first instrumentation point entering the pipeline
is always the root AST node of a JavaScript program.

The JavaScript rewriting examples presented in Section 3.2 are all instrumen-
tation policies implementable with a simple two-stage pipeline, as shown in
Figure 2.

Two components within the AjaxScope proxy provide key support function-
ality for instrumentation policies. The parser is responsible for identifying and
extracting JavaScript code from the HTTP traffic passing through the proxy.
Once identified, the JavaScript code is parsed into an abstract syntax tree
(AST) representation and passed through each of the instrumentation policies.
The log collector receives and logs messages reported by instrumentation code
embedded within a Web application and distributes them to the responsible
instrumentation policy for analysis and reporting.

3.4 Policy Nodes

To support their analysis of code behavior, policy nodes may maintain global
state or state associated with an instrumentation point. One of the simplest

4For this rewriting, function adjustDepth is injected by AjaxScope into the header of every trans-
lated page.
5Since strings are passed by value in JavaScript, this approach can occasionally result in false
positives, although we have not seen that in practice.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 12 · E. Kıcıman and B. Livshits

Fig. 2. Structure of an instrumentation policy. The first F policy node in these policies is a simple
static analysis or filter to identify relevant instrumentation points. The second R policy node is a
rewriting node to inject instrumentation code into the program.

kinds of policy nodes are stateless and stateful filters. Stateless filter nodes
provide the simple functionality of a search through an abstract syntax tree.
Given one or more AST nodes as input, a filter node will search through the tree
rooted at each AST node, looking for any instrumentation point that matches
some constant filter constraints. The results of this search are immediately
output to the next stage of the policy pipeline.

A stateful filter searches through an AST looking for instrumentation points
that not only match some constant filter constraint, but which are also explic-
itly flagged in the filter’s state. This stateful filter is a useful primitive for
enabling human control over the operation of a policy. It is also useful for cre-
ating a feedback loop within a policy pipeline, allowing policy nodes later in the
pipeline to use potentially more detailed information and analysis to turn on
or off the instrumentation of a code location earlier in the pipeline.

Some policy nodes may modify their injected instrumentation code or their
own dynamic behavior based on this state. We describe one simple and useful
form of such adaptation in Section 5. Policy nodes have the ability to inject
either varied or uniform instrumentation code across users. We describe how
we use this feature to enable distributed tests and A/B tests in Sections 6 and 7.

4. IMPLEMENTATION

We have implemented an AjaxScope proxy prototype as described in this arti-
cle. Sitting between the client browser and the servers of a Web application,
the AjaxScope proxy analyzes HTTP requests and responses and rewrites the
JavaScript content within, according to instantiated instrumentation policies.

Our AjaxScope prototype implementation consists of 4 major code modules:

—The core platform, responsible for coordinating among instrumentation poli-
cies and logging, as described in Section 3.1.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 13

Table III. Lines of Code for Code Modules of AjaxScope
Proxy Implementation

Module Lines of code
Policy and logging platform 2,900
JavaScript parser 25,000
HTTP and HTML handling. 3,900
Various policies 4,500
Total 36,300

—The JavaScript parser module, based on the ECMA language specification
[ECMA 1999]. The performance of our parser primarily determines the per-
formance of our instrumentation, and is detailed further in Section 4.1.

—The HTTP and HTML handling module is responsible for the low-level proxy
functionality and HTML parsing. Our implementation relies on the kernel-
level HTTP subsystem within the Windows operating system for most of its
HTTP handling functionality.

—The various instrumentation policies, including the example policies de-
scribed in Section 3.2 the adaptive performance instrumentation policies de-
scribed in Section 5, and the distributed memory leak checking described in
Section 6. The entire AjaxScope prototype is implemented in C#.

Table III details the size of the individual modules. Our prototype includes
some straightforward performance optimizations, such as caching the parsed
representation of JavaScript snippets to avoid reparsing the same script on
every reload of a page. However, our implementation has not been optimized
to scale to medium or large usage. Most significantly, for a large Web site, we
would recommend that instrumentation and rewriting of JavaScript code not
be done on a per-request basis. Instead, we would recommend that applica-
tion code be rewritten periodically, such as every 20 seconds. Such a change
would avoid adding parsing and instrumentation overhead to the critical path
of serving Http requests to a large audience.

Although we have not evaluated it in this article, we have also implemented
a server-side version of AjaxScope that integrates with Microsoft IIS (Web
server). In the server-side implementation, the Web application’s hosting Web
server is responsible for dynamic instrumentation and log collection. This im-
plementation is available for download as Microsoft Visual Studio AJAX Pro-
filing Extensions.6

4.1 Microbenchmarks

Before we characterize overhead numbers for large Web applications, we first
present some measurements of aspects of AjaxScope that affect almost every
instrumentation.

Logging Overhead. By default, instrumented Web applications queue their
observations of application behavior in memory. Our instrumentation sched-
ules a timer to fire periodically, collating queued messages and reporting them
back to the AjaxScope proxy via an HTTP POST request.

6http://code.msdn.microsoft.com/AjaxView

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 14 · E. Kıcıman and B. Livshits

Table IV. Overhead of Message Logging Across Browsers. The Test Code Measured in
this Experiment and Calls a Function 10k Times, Causing 20k Logging Messages to

be Recorded. All Times are Reported in Msec

Browser w/out Instrumentation w/Instrumentation Per-message
mean std.dev. mean std.dev. overhead

IE 7.0 80 30 407 40 0.016
FireFox 1.5 33 14 275 40 0.012

To assess the critical path latency of logging a message within an instru-
mented program, we wrote a simple test case program that calls an empty
JavaScript function in a loop 10,000 times. With function-level instrumenta-
tion described in Section 5.2, there are two messages that are logged for each
call to the empty function. As a baseline, we first measure total execution time
of this loop without instrumentation and then measure with instrumentation.
We calculate the time to log a single message by dividing the difference by the
2 × 104 number of messages logged. We ran this experiment 8 times to ac-
count for performance variations related to process scheduling, caching, etc.
As shown in Table IV, our measurements show that the overhead of logging a
single message is approximately 0.01–0.02 ms.

Parsing Latency. We find that the parsing time for our unoptimized Ajax-
Scope JavaScript parser is within an acceptable range for the major Web 2.0
sites we tested. In our measurements, parsing time grows approximately
linearly with the size of the JavaScript program. It takes AjaxScope about
600 msec to parse a 10,000-line JavaScript file. Dedicated server-side deploy-
ments of AjaxScope can improve performance with cached AST representations
of JavaScript pages.

Note that our parser is not a streaming parser: it waits until the entire
program or page has been arrived to commence the parsing process. Con-
verting to a streaming parser might be a more efficient way to go. However,
note that in real-life deployments, the process of code parsing and rewriting is
done offline, so the latency of the parsing process does not affect the end-user.
In practice, precomputed instrumented versions may be needed for different
browser/language combinations, so there may be need for an initial stub that
dispatches the user to the correct version. However, we already see this kind
of specialization with real-life sites: the same site may have different versions
customized for desktop and mobile browsers.

4.2 Experimental Setup

For our experiments (presented in Sections 5–7) we used two machines con-
nected via a LAN hub to each other and the Internet. We set up one machine
as a proxy running our AjaxScope prototype. We set up a second machine
as a client, running various browsers configured to use AjaxScope as a proxy.
The proxy machine was an Intel dual core Pentium 4, clock rate 2.8GHz with
1GB of RAM, running Windows Server 2003/SP1. The client machine was
an Intel Xeon dual core, clock rate 3.4GHz with 2.5GB of RAM, running
Windows XP/SP2.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 15

4.3 Benchmark Selection

We manually selected 12 popular Web applications and sites from several
categories, including portals, news sites, games, etc. Summary information
about our benchmarks is shown in Table V. This information was obtained
by visiting the page in question using either Internet Explorer 7.0 or Mozilla
FireFox 1.5 with AjaxScope’s instrumentation. We observed overall execution
time with minimal instrumentation enabled to avoid reporting instrumenta-
tion overhead. Separately, we enabled fine-grained instrumentation to collect
information on functions executed during page initialization.

Most of our applications contain a large client-side component, shown in the
code size statistics. There are often small variations in the amount of code
downloaded for different browsers. More surprising is the fact that even dur-
ing the page initialization alone, a large amount of JavaScript code is getting
executed, as shown by the runtime statistics. As this initial JavaScript execu-
tion is a significant component of page loading time as perceived by the user, it
presents an important optimization target and a useful test case. For the exper-
iments in Sections 5–6, we use these page initializations as our test workloads.
In Section 7, we use manual searching and browsing of Live Maps as our test
application and workload.

In addition to the 12 Web applications already described, we also benchmark
78 other Web sites. These sites are based on a sample of 100 URLs from the
top 1 million URLs clicked on after being returned as MSN Search results in
Spring 2005. The sample of URLs is weighted by click-through count and thus
includes both a selection of popular Web sites as well as unpopular or tail Web
sites. From these 100 URLs, we removed those that either 1) had no JavaScript;
2) had prurient content; 3) were already included in the 12 sites described
above; or 4) were no longer available.

4.4 Overview of Experiments

In subsequent sections, we present more sophisticated instrumentation policies
and use them as examples to showcase and evaluate different aspects of Ajax-
Scope. The next section describes issues of policy adaptation, using drill-down
performance profiling as an example. Section 6 describes distributed policies,
using a costly memory leak detection policy as an example. Finally, Section 7
discusses the function result caching policy, an optimization policy that uses
A/B testing to dynamically evaluate the benefits of cache placement decisions.

5. ADAPTIVE INSTRUMENTATION

This section describes how we build adaptive instrumentation policies and how
such adaptive instrumentation can be used to reduce the performance and net-
work overhead of function-level performance profiling, via drill-down perfor-
mance profiling.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 16 · E. Kıcıman and B. Livshits

Ta
bl

e
V.

B
en

ch
m

ar
k

A
pp

li
ca

ti
on

S
ta

ti
st

ic
s

fo
r

In
te

rn
et

E
xp

lo
re

r
7.

0
(I

E
)a

n
d

F
ir

eF
ox

1.
5

(F
F

)

S
T

A
T

IC
R

U
N

T
IM

E
(P

A
G

E
IN

IT
IA

L
IZ

A
T

IO
N

)
W

eb
ap

p
li

ca
ti

on
or

si
te

J
av

aS
cr

ip
t

co
d

e
si

ze
N

u
m

b
er

of
fu

n
ct

io
n

s
E

xe
cu

ti
on

L
oC

K
B

F
il

es
D

ec
la

re
d

E
xe

cu
te

d
U

n
iq

u
e

E
x.

ti
m

e
(m

s)
M

ap
p

in
g

se
rv

ic
es

m
a
p
s
.g
o
o
g
l
e
.c
o
m

33
51

1
33

51
1

29
5

29
5

7
7

19
35

19
35

17
58

7
17

76
2

61
8

61
6

53
0

61
0

m
a
p
s
.l
i
v
e
.c
o
m

63
78

7
65

87
4

92
4

94
6

6
7

28
55

29
74

49
14

49
30

57
7

59
4

19
0

15
0

P
or

ta
ls

m
s
n
.c
o
m

11
,4

99
11

,6
03

12
4

12
7

10
11

59
2

59
2

1,
55

7
1,

55
7

18
9

18
9

30
1

54
1

y
a
h
o
o
.c
o
m

18
,6

09
18

,4
72

27
8

27
7

5
5

1,
09

7
1,

09
5

42
3

41
4

10
7

10
3

66
9

11
0

g
o
o
g
l
e
.c
o
m
/i
g

17
,6

58
17

,7
05

13
5

16
7

3
3

96
0

96
0

21
3

21
3

59
59

18
8

24
4

p
r
o
t
o
p
a
g
e
s
.c
o
m

34
,9

18
35

,0
50

59
9

59
9

2
2

1,
86

2
1,

86
2

0
0

0
0

13
,7

82
1,

29
1

N
ew

s
si

te
s

c
n
n
.c
o
m

6,
29

9
6,

47
3

12
6

13
7

24
25

19
7

20
0

12
0

13
9

56
63

23
4

14
6

a
b
c
n
e
w
s
.c
o
m

7,
92

6
8,

00
4

12
1

12
2

20
21

22
5

22
8

81
0

81
0

86
86

42
2

13
1

b
b
c
n
e
w
s
.c
o
.u
k

3,
35

6
3,

35
5

57
57

10
10

14
2

14
2

26
8

26
8

23
23

67
26

b
u
s
i
n
e
s
s
w
e
e
k
.c
o
m

7,
44

9
5,

81
6

13
5

11
9

18
13

25
8

19
4

7,
71

1
7,

71
1

13
7

13
7

46
9

44
8

O
n

li
n

e
ga

m
es

c
h
i
.l
e
x
i
g
a
m
e
.c
o
m

9,
61

1
9,

65
4

10
0

10
0

2
2

33
3

33
3

76
9

76
9

55
55

20
8

20
3

m
i
n
e
s
w
e
e
p
e
r
.l
a
b
s
.m
o
r
f
i
k
.c
o
m

33
,0

45
34

,3
53

25
3

26
5

2
2

1,
21

0
1,

21
0

29
0

29
0

12
2

12
2

50
5

65
0

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 17

Fig. 3. Policy for drill-down performance profiling.

5.1 Adaptation Nodes

Adaptation nodes are specialized policy nodes which take advantage of the ser-
ial processing by instrumentation policy nodes to enable a policy to have differ-
ent effects over time. The key mechanism is simple: for each instrumentation
point that passes through the pipeline, an adaptation node makes a decision
to either instrument the node itself or to to pass the instrumentation point to
the next policy node for instrumentation. Initially, the adaptation node ap-
plies its own instrumentation and then halts the processing of the particular
instrumentation point, sending the instrumentation point in its current state
to the end-user. In later rounds of rewriting, for example, when other users
request the JavaScript code, the adaptation node will revisit this decision. For
each instrumentation point, the adaptation node will execute a specified test
and, when the test succeeds, allow the instrumentation point to advance and
be instrumented by the next adaptation node in the policy.

5.2 Naı̈ve Performance Profiling

One naı̈ve method for performance profiling JavaScript code is to simply add
timestamp logging to the entry and exit points of every JavaScript function de-
fined in a program. Calls to native functions implemented by the JavaScript
engine or browser (such as DOM manipulation functions, and built-in mathe-
matical functions) can be profiled by wrapping timestamp logging before and
after every function call expression. However, because this approach instru-
ments every function in a program, it has a very high overhead, both in added
CPU time as well as network bandwidth for reporting observations.

5.3 Drill-Down Performance Profiling

Using AjaxScope, we have built an adaptive, drill-down performance profiling
policy, shown in Figure 3, that adds and removes instrumentation to balance
the need for measuring the performance of slow portions of the code with the
desire to avoid placing extra overhead on already-fast functions.

Initially, our policy inserts timestamp logging only at the beginning and end
of stand-alone script blocks and event handlers (essentially, all the entry and

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 18 · E. Kıcıman and B. Livshits

exit points for the execution of a JavaScript application). Once this coarse-
grained instrumentation gathers enough information to identify slow script
blocks and event handlers, the policy adds additional instrumentation to dis-
cover the performance of the functions that are being called by each slow script
block and event handler. As clients download and execute fresh copies of the
application, they will report more detail on the performance of the slow por-
tions of code.

After this second round of instrumentation has gathered enough informa-
tion, our policy drills down once again, continually searching for slower func-
tions further down the call stack. To determine when to drill down into a
function, we use a simple nonparametric test to ensure that we have collected
enough samples to be statistically confident that our observed performance is
higher than a given performance threshold. In our experiments, we drill down
into any function believed to be slower than 5 msec. Eventually, the drill-down
process stabilizes, having instrumented all the slow functions, without ever
adding any instrumentation to fast functions.

5.4 Evaluation

The goal of our adaptation nodes is to reduce the CPU and network overhead
placed on end-user’s browsers by brute-force instrumentation policies while
still capturing details of bottleneck code. To measure how well our adaptive
drill-down performance profiling improves upon the naı̈ve full performance pro-
filing, we tested both policies against our 90 benchmark applications and sites.
We first ran our workload against each Web application 10 times, drilling down
into any function slower than 5 msec. After these 10 executions of our work-
load, we captured the now stable list of instrumented function declarations and
function calls and measured the resulting performance overhead. Our full per-
formance profiler simply instrumented every function declaration and function
call. We also used a minimal instrumentation policy, instrumenting only high-
level script blocks and event handlers, to collect the base performance of each
application.

Figure 4 shows how using adaptive drill-down significantly reduces the num-
ber of instrumentation points that have to be monitored in order to capture
bottleneck performance information. While full-performance profiling instru-
ments a median of 89 instrumentation points per application (mean=129),
our drill-down profiler instruments a median of only 3 points per application
(mean=3.7).

This reduction in instrumentation points—from focusing only on the instru-
mentation points that actually reveal information about slow performance—
also improves the execution and network overhead of instrumentation and log
reporting. Figures 5 and 6 compare the execution time overhead and logging
message overhead of full performance profiling and drill-down performance
profiling on FireFox 1.5 (graphs of overhead on Internet Explorer 7 are almost
identical in shape). Table VI shows the median and 90th percentile perfor-
mance of our benchmark Web sites under no instrumentation, full profiling and
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 19

Fig. 4. Number of functions instrumented per Web site with full profiling vs. drill-down profiling.

Fig. 5. Execution time overhead of drill-down performance profiling compared to full performance
profiling.

drill-down profiling. At the 90th percentile, we find that adaptive instrumen-
tation provides an improvement of over 150 msec. Amazon.com has reported
the importance it places on performance even at the 99.9th percentile [DeCan-
dia et al. 2007]; Google reports that such performance differences can have a
noticeable effect on user behavior [Brutlag 2009].

As seen in Figure 5, seven of our 90 sites appear to show better performance
under full profiling than drill-down profiling. After investigation, we found that
5 of these sites have little JavaScript executing, and the measured difference
in overhead is within the approximate precision of the JavaScript timestamp
(around 10–20 msec). Due to an instrumentation bug, 1 site failed when full
instrumentation was enabled, resulting in a measurement of a very low over-
head. The 7th site appears to be a legitimate example where full profiling is
faster than drill-down profiling. This could be due to subtle differences in the
injected instrumentation or, though we attempted to minimize such effects, it
may be due to other processes running in the background during our drill-down
profiling experiment.

While overall the reduction in CPU overhead was modest, the mean network
overhead from log messages improved substantially, dropping from 300KB to

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 20 · E. Kıcıman and B. Livshits

Fig. 6. Logging overhead of drill-down performance profiling compared to full performance
profiling.

Table VI. The Median and 90th Percentile Performance, in msec,
of Our 90 Benchmark Applications and Sites Without Instrumenta-

tion, with Full Profiling and With Drill-down Profiling

Baseline Full profiling Drill down profiling
Median 28 37 31
90th 130 301 148

64KB, and the median overhead dropping from 92KB to 4KB. This improve-
ment is particularly important for end-users sitting behind slower asymmetric
network links.

6. DISTRIBUTED INSTRUMENTATION

This section describes how we build distributed instrumentation policies in
AjaxScope, and then applies this technique to reduce the per-client overhead
of an otherwise prohibitively expensive memory leak checker.

6.1 Distributed Tests

The second specialized policy node we provide as part of the AjaxScope plat-
form is the distributed test. A distributed test is a runtime analysis testing
some property of the program’s execution, that spreads out the overhead of in-
strumentation code across many users’ executions of a Web application. Note
that all distributed tests are also adaptation nodes, since distributed tests can-
not evaluate until gathering observations of runtime behavior.

At any given point in time, the value of the distributed test can be in one
of three states with respect to a specific instrumentation point: (1) pass, the
instrumentation point has passed the test, in which case it will be sent to the
next policy node in the pipeline; (2) fail, the instrumentation point has failed
the test, in which case, it will not be sent to the next policy node and the dis-
tributed test will cease instrumenting it; and (3) more testing, the information
gathered so far is insufficient and the distributed test needs to gather further
observations.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 21

Our distributed test abstraction requires that a policy writer provide the
specific rewriting rule that measures some runtime behavior of an application,
and the parameters to a simple test function. However, once this is provided,
the distributed test provides for the randomized distribution of instrumenta-
tion across the potential instrumentation points and users, and the evaluation
of the test for each instrumentation point.

Our AjaxScope prototype provides distributed tests on pseudo-Boolean as
well as numerical measures. In the pseudo-Boolean case, we allow the measure
of runtime behavior to return one of 5 values: TotalFailure, Failure, Neutral,
Success, TotalSuccess. If a measure at an instrumentation point ever reports
a TotalFailure or TotalSuccess, the distributed test value for that point is
immediately set to fail or pass, respectively. If neither a TotalFailure nor
TotalSuccess have been reported, then the parameterized test function is ap-
plied to the number of failure, neutral, and success observations. In the case
of numerical measures, the distributed test directly applies the parameterized
test function to the collection of metrics.

A more advanced implementation of distributed tests would dynamically ad-
just the rate at which different instrumentation points were rewritten, for ex-
ample, to more frequently instrument the rare code paths and less frequently
instrument the common code path [Hauswirth and Chilimbi 2004]. We leave
such an implementation to our future work.

6.2 Memory Leaks in AJAX Applications

Memory leaks in JavaScript have been a serious problem in Web applications
for years. With the advent of AJAX, which allows the same page to be updated
numerous times, often remaining in the user’s browser for a period of hours
or even days, the problem has become more severe. Despite being a garbage-
collected language, JavaScript still suffers from memory leaks. One common
source of such leaks is the failure to nullify references to unused objects, mak-
ing it impossible for the garbage collector to reclaim them [Shaham et al. 2002].
Other memory leaks are caused by browser implementation bugs [Schlueter
2006; Baron 2001].

Here, we focus on a particularly common source of leaks: cyclical data struc-
tures that involve DOM objects. JavaScript interpreters typically implement
the mark-and-sweep method of garbage collection, so cyclical data structures
within the JavaScript heap do not present a problem. However, when a cy-
cle involves a DOM element, the JavaScript collector can no longer reclaim the
memory, because the link from the DOM element to JavaScript “pins” the Java-
Script objects in the cycle. Because of a reference from JavaScript, the DOM
element itself cannot be reclaimed by the browser. This problem is considered
a bug in Web browsers and has been fixed or mitigated in the latest releases.
However, it remains a significant issue because of the large deployed base of
older browsers.

Because these leaks can be avoided through careful JavaScript program-
ming, we believe it is a good target for highlighting the usefulness of dynamic
monitoring. Note that these leaks might be tricky to find using static analysis

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 22 · E. Kıcıman and B. Livshits

Fig. 7. An object cycle involving JavaScript and DOM objects.

because DOM data structures are highly recursive, which presents a problem
for static analysis precision: most scalable static analyses would represent a
complex data structure like a fragment of the DOM with just one static node,
leading to false warnings. Despite some degree of success with static analysis
of JavaScript in other areas [Guarnieri and Livshits 2009], we believe runtime
analysis to be a better match for this particular problem.

Example 3. An example of such a memory leak is shown in Figure 7. DOM
element whose DOM id is leaked has a pointer to the global JavaScript ob-
ject globalObj through property someProperty. Conversely, globalObj has a
pointer to leaked through property foo. The link from leaked makes it impos-
sible to reclaim global; at the same time the DIV element cannot be reclaimed
since global points to it.

Explicit cycles such as the one in Figure 7 are not the most common source
of leaks in real applications, though. JavaScript closures inadvertently create
these leaking cycles as well.

Example 4. Figure 8 gives a typical example of closure misuse, leading to
the creation of cyclical heap structures. The DOM element referred to by obj
points to the closure through its onclick property. At the same time, the closure
includes implicit references to variables in the local scope so that references to
them within the closure function body can be resolved at runtime. In this case,
the event handler function will create an implicit link to obj, leading to a cycle.
If this cycle is not explicitly broken before the Web application is unloaded, this
cycle will lead to a memory leak.

6.3 Instrumentation

To detect circular references between JavaScript and DOM objects, we use a
straight-forward, brute-force runtime analysis of the memory heap. First, we
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 23

Fig. 8. A memory leak caused by erroneous use of closures.

Fig. 9. Three instrumentation policy pipelines work together to catch circular references between
DOM and JavaScript objects that are potential memory leaks.

use one instrumentation policy to dynamically mark all DOM objects. A second
instrumentation policy explicitly tracks closures, so that we can traverse the
closure to identify any circular references caused inadvertently by closure con-
text. Finally, a third instrumentation policy instruments all object assignments
to check for assignments that complete a circular reference. This last policy is
the instrumentation that places the heaviest burden on an end-user’s perceived
performance. Thus, we implement it as a distributed test to spread the instru-
mentation load across users. Figure 9 illustrates these three instrumentation
policies.

6.3.1 Marking DOM objects. We mark DOM objects returned from meth-
ods getElementById, createElementById, and other similar functions as well
as objects accessed through fields such as parentNode, childNodes, etc. The

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 24 · E. Kıcıman and B. Livshits

Fig. 10. Code rewriting for DOM object marking.

marking is accomplished by setting the isDOM field of the appropriate object.
For example, assignment

var obj = document.getElementById(”leaked”);

in the original code will be rewritten as

var tmp; var obj=(tmp=document.getElementById("leaked"),
tmp.isDOM = true, tmp);

As an alternative to explicitly marking DOM objects, we could also have specu-
latively infer the type of an object based on whether it contained the members
of a DOM object.

6.3.2 Marking Closures. Since closures create implicit links to the locals in
the current scope, we perform rewriting to make these links explicit, so that
our detection approach can find cycles. For instance, the closure creation in
Figure 8 will be augmented in the following manner:

obj.onclick = (tmp = function(evt){ ... },
tmp.locals = new Object, tmp.locals.l1 = obj, tmp);

This code snippet creates an explicit link from the closure assigned to
obj.onclick to variable obj declared in its scope. The assignment to
obj.onclick will be subsequently rewritten as any other store to include a call
to helper function checkForCycles. This allows our heap traversal algorithm
to detect the cycle

function(evt){...} → function(evt){...}.locals →
obj → obj.onclick

6.3.3 Checking Field Stores for Cycles. We check all field stores of Java-
Script objects to determine if they complete a heap object cycle that involves
DOM elements. For example, field store

document.getElementById(”leaked”).sub = div;

will be rewritten as shown in Figure 10.
Finally, an injected helper function, checkForCycles, performs a depth-first

heap traversal to see if (1) tmp2 can be reached by following field accesses from
tmp1 and (2) if such a cycle includes a DOM object, as determined by checking
the isDOM property, which is set as described above.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 25

Fig. 11. A circular reference in cnn.com, file mainVideoMod.js (edited for readability). Unless this
cycle is explicitly broken before page unload, it will leak memory.

6.4 Evaluation

As with our adaptation nodes, the goal of our distributed tests is to reduce the
overhead seen by any single user, while maintaining aggregate visibility into
the behavior of the Web application under real workloads. To distribute our
memory checking instrumentation, we implement our field store cycle check as
a distributed test, randomly deciding with some probability whether to add this
instrumentation to any given instrumentation point. We continue to uniformly
apply the DOM tracking and closure tracking policies. In our experiments, the
overhead added by these two policies was too small to measure.

Applying our memory leak checker, we found circular references indicating
a potential memory leak in the initialization code of 4 of the 12 JavaScript-
heavy applications in our benchmarks, including google.com/ig, yahoo.com,
chi.lexigame.com, and cnn.com.

Example 5. As a specific example of a potential memory leak, Figure 11
shows code from the video player located on the cnn.commain page, where there
is a typical memory leak caused by closures. Here, event handlers onmouseover
and onmouseoout close over the local variable pipelineContainer referring to a
div element within the page. This creates an obvious loop between the div and
the closure containing handler code, leading to a leak.

Figure 12 shows a histogram of the performance overhead of an individual
cycle check, graphed on a log-scale y-axis. We see that almost all cycle checks
have a minimal performance impact, with a measured overhead of 0msec. A
few cycle checks do last longer, in some cases up to 75 msec. We could further
limit this overhead of individual cycle checks by implementing a random walk
of the memory heap instead of a breadth-first search. We leave this to future
work.

To determine whether distributing our memory leak checks truly reduced
the execution overhead experienced by users, we loaded cnn.com in Internet

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 26 · E. Kıcıman and B. Livshits

Fig. 12. The histogram of circular reference check times. The y-axis is log-scale. The vast majority
of checks for cycles take under 1 msec.

Fig. 13. The average startup time for cnn.com increases linearly with the probability of injecting
a cycle check.

Explorer 7 with varying probabilities of instrumentation injection, measured
the time to execute the page’s initialization code, and repeated this experiment
several times each for different probability settings. Figure 13 shows the result
and we can see that, as expected, the average per-user overhead is reduced lin-
early as we reduce the probability of injecting cycle checks into any single user’s
version of the code. At a probability of 100%, we are adding 1,600 cycle checks
to the Web application, resulting in an average startup time of 1.8 sec. At 0%
instrumentation probability, we reduce the startup to its baseline of 230 msec.
This demonstrates that simple distribution of instrumentation across users can
turn heavyweight runtime analyses into practical policies with a controlled im-
pact on user-perceived performance.

7. A/B TESTING

On Web sites, A/B testing is commonly used to evaluate the effect of changes
to banner ads, newsletters, or page layouts on user behavior. In our developer-
oriented scenarios, we use A/B tests to evaluate the performance impact of a
specific rewriting, such as the code optimization described in Section 3.2. The
A/B test policy node serves the original code point to X % of the Web appli-
cation’s users and serves the rewritten version of the code point to the other
(100 − X)% of users. In both cases, the A/B test adds instrumentation to mea-
sure the performance of the code point. The resulting measurements allow
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 27

Fig. 14. Two policies work together for detection and performance testing of cache opportunities.
After policy (a) finds a potential cache opportunity, a human developer must check its semantic
correctness before policy (b) can test it for performance improvements.

us to evaluate the average performance improvement, as well as the aver-
age improvements for a subpopulation of users, such as all FireFox users. A
more advanced implementation of A/B tests could potentially monitor the rates
of exceptions occurring within the block of code, to notice potential reliability
issues.

7.1 Function Return Value Caching

With live monitoring, we can use a multistage instrumentation policy to detect
possibly valid optimizations and evaluate the potential benefit of applying the
optimization. Let us consider a simple optimization strategy: the insertion of
function result caching. For this optimization strategy to be correct, the func-
tion being cached must (1) return a value that is deterministic given only the
function inputs and (2) have no side effects. We monitor the dynamic behavior
of the application to check the first criteria, and rely on a human developer to
understand the semantics of the function to determine the second. Finally, we
use a second stage of instrumentation to check whether the benefits of caching
outweigh the cost. Both stages of instrumentation are illustrated in Figure 14.

The first stage of such a policy injects test predicates to help identify when
function caching is valid. To accomplish this, the rewriting rule essentially in-
serts a cache, but continues to call the original function and check its return
value against any previously cached results. If any client, across all the real
workload of an application, reports that a cache value did not match the func-
tion’s actual return value, we know that function is not safe for optimization
and remove that code location from consideration.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 28 · E. Kıcıman and B. Livshits

Table VII. Results of Search for Potential Cacheable Functions in Live Maps

Hit Performance Improvement
Function Determ. rate Original (ms) Cached (ms) ms %

OutputEncode

EncodeURL � 77% 0.85 0.67 0.18 21%
DegToRad � 85% 0.11 0.00 0.11 100%

GetWindowHeight x 90% 2.20 0.00 2.20 100%
GetTaskArea

BoundingBoxOffset x 98% 1.70 0.00 1.70 100%
GetMapMode x 96% 0.88 0.00 0.88 100%

After gathering many observations over a sufficient variety and number of
user workloads, we provide a list of potentially cacheable functions to the de-
veloper of the application and ask them to use their knowledge of the function’s
semantics to determine whether it might have any side effects or unseen non-
determinism. The advantage of this first stage of monitoring is that reviewing
a short list of possibly valid cacheable code points should be easier than in-
specting all the functions for potential cache optimization.

In the second stage of our policy, we use automatic rewriting to cache the
results of functions that the developer deemed to be free of side effects. To test
the cost and benefit of each function’s caching, we distribute two versions of the
application: one with the optimization and one without, where both versions
have performance instrumentation added. Over time, we compare our observa-
tions of the two versions and determine when and where the optimization has
benefit. For example, some might improve performance on one browser but not
another. Other caches might have a benefit when network latency is high, but
not otherwise.

7.2 Evaluation

In this section, we described two instrumentation policies: the first searches for
potential caching opportunities, while the second tests their performance im-
provement using automatic comparison testing of the original and optimized
versions. The goal of both policies is to reduce the effort developers must make
to apply simple optimizations to their code, and to show how dynamic A/B test-
ing can be used to evaluate the efficacy of such optimizations under real-life
user workloads.

Table VII shows the end results of applying these policies to maps.live.com.
Our instrumentation started with 1,927 total functions, and automatically re-
duced this to 29 functions that appeared to be deterministic. To exercise the
application, we manually applied a workload of common map-related activi-
ties, such as searching, scrolling, and zooming. Within a few minutes, our A/B
test identified 2 caching opportunities that were both semantically determin-
istic and improved each function’s performance by 20%–100%. In addition,
we identified 3 relatively expensive functions, including a GetWindowHeight
function, that empirically appeared to be deterministic in our workloads but
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 29

semantically are likely to not be deterministic. Seeing these results, our rec-
ommendation would be to modify the implementation of these functions to sup-
port caching, while maintaining correctness by explicitly invalidating the cache
when an event, such as a window size change, occurs. We expect that these
kinds of automated analysis and optimization would be even more useful for
newly written or beta versions of Web applications, in contrast to a mature,
previously optimized application such as Live Maps.

8. MEDIC: USING AJAXSCOPE FOR DEBUGGING

The AjaxScope proxy provides a programmatic framework for instrument-
ing and collecting data on the behavior of Web applications running inside
end-users’ browsers. While AjaxScope provides primitives for distributed and
adaptive instrumentation, instrumentation policies are responsible for man-
aging any dependencies between instrumentation points as well as managing
the runtime execution of instrumentation points. For example, in adaptive
performance profiling (Section 5), whenever the beginning of a function is in-
strumented we must also instrument the end of that function. Such cases of de-
pendent instrumentation can quickly become more complex, however, and may
sometimes be spread across different functions or even different JavaScript
files. Furthermore these dependencies may encompass both static instrumen-
tation dependencies and runtime dependencies. To provide abstractions to ease
developers’ monitoring of application behavior and investigation of problems,
we have extended AjaxScope with the MEDic system (Monitoring, Evolving,
and Debugging Web applications). MEDic consists of two components.

(1) The Probabilistic Instrumentation Library supports sampled instrumen-
tation conditioned on both runtime and static dependencies. The library
provides out-of-the-box support for call tracing, reporting application
state, local variables and function return values, and performance
instrumentation.

(2) StickShift provides manual, online control of the basic instrumentation of
a Web application, as well as a basic visualization of collected data.

The remainder of the section presents a brief introduction to the probabilistic
instrumentation library and StickShift.

8.1 Probabilistic Instrumentation Library

In AjaxScope, the distribution of instrumentation code to Web clients is deter-
mined as the Web application code is being served. But for some purposes,
whether or not instrumentation should be executed is best determined during
the execution of the Web application itself. The probabilistic instrumentation
library abstracts this ability to determine at execution time whether an instru-
mentation point will run. Log messages generated by injected instrumentation
can be either reported to the server immediately or queued within the Web ap-
plication for later reporting. Also, queued logs can be conditionally reported
based on the outcome of some instrumentation.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 30 · E. Kıcıman and B. Livshits

Fig. 15. Sample code showing two dependent instrumentation points (lines 3 and 8). MEDic will
instrument both of these points in a single execution, or will instrument neither.

A policy using this library to instrument the code in Figure 15 could, for
example, add instrumentation to the calls to beginDrag() and endDrag(), and
control not only how frequently the instrumentation is added to the code, but
also how frequently the instrumentation is executed at runtime. Furthermore,
the probabilistic instrumentation library allows the policy to specify a depen-
dency between these two instrumentation points stating that the instrumen-
tation of endDrag() should not run unless the instrumentation of beginDrag()
has already executed. Finally, the policy can specify that the instrumentation
at endDrag() should run dependent on the result of the instrumentation at
beginDrag().

In the context of monitoring and debugging Web applications, dependencies
between instrumentation points can be used to selectively drill down into the
execution of the application. If an error or performance problem occurs only
during or after certain user actions or when the application is in a certain
state, then later instrumentation can be conditioned to execute only when the
necessary conditions are met. This reduces the local performance impact of
instrumentation code that need not run.

In contrast to conditional instrumentation, conditional reporting of collected
logs is useful in debugging scenarios where either the scenario or trigger of a
problem is unknown. For example, if a Web application is known to occasion-
ally fail at a particular point in the code, detailed instrumentation code can be
taken leading up to this known failure point. Once the failure point has been
reached, the logs generated by the instrumentation can either be thrown away
or reported to the server, based on whether a failure actually occurred.

8.2 Stick Shift: Visualization Tool

The Stick Shift tool provides manual, online control over the instrumentation
of an application, and a basic visualization of the results. The purpose of Stick
Shift is to give developers a simple way to monitor, explore and debug the cur-
rent behavior of a Web application’s real-world execution.

Stick Shift provides developers with several out-of-the-box instrumentation
actions, including incrementing counters, capturing local variable state, cap-
turing a return value, and reporting arbitrary log messages. In addition, de-
velopers can provide their own instrumentation code, written in JavaScript, for
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 31

Stick Shift to inject. With a few exceptions, a developer can inject these instru-
mentation actions into any of several kinds of instrumentation points within
an application.

—Function. Instrumenting a function adds an instrumentation action to the
entrance and exit of the function. By default, Stick Shift inserts actions to
record function entry and exit, and to capture parameter and return values,
as well as the local variable state at the end of the function execution.

—Statement. Instrumenting a statement adds an action either before or after
a JavaScript statement.

—Iterations. Instrumenting an iteration, including for and while loops, inserts
instrumentation action at the beginning or end of the loop.

—Script block. Scripts, script blocks, and event handlers can be instrumented
at the entrance or exit to the script.

Figure 16 shows a screenshot of Stick Shift’s display of a single function
instrumentation point. The particular instrumentation point shown is a triv-
ial MathFloor(a) function instrumented from a real-world Web application.
The tool also provides an instances view, which displays the application in-
stances (i.e., the Web sessions) which have executed this instrumentation point.
A developer can use the instances view to drill down and display only the
data captured from a single application instance. Other views display simple
histograms of the parameters, variables, and return value data collected at
this instrumentation point. These histograms are useful for manually discov-
ering anomalous executions or otherwise exploring the usage behavior of an
application.

9. DOLOTO

The use of client-side JavaScript code greatly improves the responsiveness of
these network-bound applications. This shift of application execution from a
back-end server to the client often dramatically increases the amount of code
that must be downloaded to the browser. This creates an unfortunate Catch-
22: to create responsive distributed Web 2.0 applications developers move code
to the client, but for an application to be responsive, the code must first be
transferred there, which takes time.

DOLOTO7 is an optimization tool for Web 2.0 applications we have built on
top of AjaxScope. With the help of JavaScript instrumentation, DOLOTO ana-
lyzes application workloads and automatically rewrites the existing application
code to introduce dynamic code loading. After being processed by DOLOTO,
an application will initially transfer only the portion of code necessary for
application initialization. The rest of the application’s code is replaced by
short stubs—their actual implementations are transferred lazily in the back-
ground or, at the latest, on-demand on first execution of a particular application
feature. Moreover, code that is rarely executed is rarely downloaded to the
user browser. Because DOLOTO significantly speeds up the application startup

7DOLOTO stands for DOwnLOad Time Optimizer.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 32 · E. Kıcıman and B. Livshits

Fig. 16. Stick Shift screenshot.

and since subsequent code download is interleaved with application execu-
tion, applications rewritten with DOLOTO appear much more responsive to the
end-user.

To demonstrate the effectiveness of DOLOTO in practice, we have performed
experiments on five large widely used Web 2.0 applications. DOLOTO reduces
the size of application code download by hundreds of kilobytes or as much
as 50% of the original download size. The time to download and begin interact-
ing with large applications is reduced by 20–40% depending on the application
and wide-area network conditions. DOLOTO especially shines on wireless and
mobile connections, which are becoming increasingly important in today’s com-
puting environments.

9.1 Overview of the Approach

The goal of DOLOTO is to automate the process of optimal code decomposition.
DOLOTO’s processing of application code automatically handles language is-
sues such as closures and scoping; DOLOTO’s analysis discovers an appropriate
code decomposition for the likely execution order of functions. As a consequence
of this sort of automation, developers no longer have to manually maintain the
decomposed version of the application as the application or typical usage sce-
narios change, but simply reapply the analysis and decomposition as necessary.

DOLOTO’s primarily targets feature-rich Web applications such as Live
Maps. The code base of these applications is growing as they expand to provide
functionality once reserved for traditional desktop software. Unfortunately,
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 33

the latency cost of downloading this additional code is paid whether or not the
additional features are used. This suggests that splitting the code of these fea-
tures out, and dynamically loading them outside the critical-performance-path
of initialization is likely to improve initial page loading times.

Overview. DOLOTO processing consists of two phases, the training and the
execution phase described in the rest of this section. The training phase of
DOLOTO’s processing consists of running the application with its client-side
JavaScript component instrumented to collect function-level profile informa-
tion. The result of this training is an access profile, a clustering of original
functions by time of their first use. In our implementation, training is per-
formed by observing a user performing a fixed workload, although it is possible
to train in a distributed manner, by combining workloads from multiple users
with varying workloads, resulting in better code coverage and higher quality
access profiles.

Access profiles may be either static, determined during initial training, or
dynamic, being updated continuously and adjusting to operating conditions
during application deployment. In DOLOTO, we present the profile information
to the developer so that they can tweak the training parameters and review the
resulting clusters. Notice that depending on how the application is executed,
different cluster decompositions may make sense: for an application that is de-
ployed on mobile devices, small clusters are appropriate, whereas going to the
server to fetch a cluster consisting of only several kilobytes of code is probably
wasteful for a Web application running on a desktop computer.

Collecting Access Profiles. At its core, our instrumentation approach is
based on the ability to parse and instrument JavaScript code and to insert
timestamps that allow us to group functions into clusters by the time of their
first access. DOLOTO is an excellent example of how the AjaxScope platform
can be used: the proxy-based instrumentation approach allows us to use a local
proxy to obtain timing information for external, third-party sites.

The beginning of every function is instrumented to record the timestamp as
well as the size of the function. At runtime, timestamps are collected by the
instrumentation DOLOTO proxy and postprocessed to extract the first-access
time tsi for every function fi that is observed at runtime. To avoid excessive
network traffic, timestamp data is buffered on the client before being sent over
to the training proxy. Because the exact code executed may vary depending
on the browser version, we have built merging tools that combine multiple
profiling runs obtained by training using a different browser.

The list of timestamps is sorted and traversed to group functions into clus-
ters c1, . . . , cn. As we are traversing the sorted list we are looking to terminate
the current cluster c j at function fi according to the following criterion:

tsi+1 − tsi > Tgap ∧ size(c j) > Tsize,

That is, the time gap between the two subsequent functions exceeds the pre-
defined gap threshold Tgap and the size of the current cluster exceeds the pre-
defined size threshold Tsize. Note that we disregard the original decomposition

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 34 · E. Kıcıman and B. Livshits

Fig. 17. DOLOTO training tool that allows the developer to adjust clustering settings and training
thresholds.

of functions into files: functions from different JavaScript files may and do end
up belonging to the same cluster because of temporal proximity to each other.

Note that as with any runtime analysis, a potential weakness of this ap-
proach is that some code may not be used for the workload we apply: for in-
stance, if the “help” functionality of an online mapping application is not uti-
lized during the training run, functions implementing this functionality will be
group into an special cluster ⊥. As part of the process, map

P : { f1, . . . , fk} → {c1, . . . , cn,⊥}
from functions to clusters is saved as the access profile.

In practice, the cluster decomposition changes drastically depending on the
threshold values. In our experiments below we favored threshold settings that
produced about a dozen clusters that roughly correspond to high-level appli-
cation activities. For instance, the activities of the initial page load, double-
clicking on the map, moving the map around, asking for directions, printing
the map for Live Maps may each be grouped in their own cluster.

However, for an application that is likely to run in a mobile setting where
the user might be paying for bytes transferred, producing many clusters of a
few kilobytes each is actually a good idea. It is also common to have slightly
different versions of the same application for different browsers, so perform-
ing training for each browser separately, and then using the appropriate ap-
plication version based on the execution environment is the right approach.
Figure 17 shows how a DOLOTO screen presented to the user that allows him
or her to adjust the thresholds, immediately seeing how that affects the number
and composition of function clusters.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 35

Fig. 18. Execution phase of DOLOTO: the left hand side of the picture shows code located on the
server migrating to the client, shown on the right hand side. The execution phase relies on profiles
computed during the training phase.

Examples above illustrate that there is no “perfect” access profile and that
the access profile should be customized based on how the application is likely to
be used. Moreover, a small benchmark can be injected into the beginning of the
application run to determine the network and CPU conditions for a particular
user; this information can be cached on the client for subsequent application
runs. Based on this data, the application will proceed to download one of sev-
eral application versions. However, unlike the current practice of developing a
separate “mobile” version of an application, all versions would be based on the
same code. The execution phase of DOLOTO is illustrated in Figure 18.

Code rewriting. The basis for our approach is to rewrite every JavaScript
function f(x) with a stub that in its simplified version looks as follows:

function f(x){
var real_f_text = blocking_download("f");
var real_f_func = eval(real_f_text);
return real_f_func.apply(this, arguments);

}

Where blocking download is a synchronous call that retrieves the body of func-
tion f from the server. A network call is made only once per cluster: if the body
of f has already been transferred to the client either on-demand or background
code loading, blocking download returns it immediately. We proceed to eval
the body at runtime and apply the resulting function to the arguments that are
being passed into f. For details of rewriting we refer the reader to Livshits and
Kıcıman [2008].

9.2 Experimental Setup

The goal of our experiments is to evaluate the impact of code splitting on the
download size and initial responsiveness of real-world, third-party Web appli-
cations for a variety of realistic network conditions. In the setup of our experi-
mental testbed, we face several challenges:

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 36 · E. Kıcıman and B. Livshits

Modifying third-party applications. While in our design, DOLOTO is in-
tended to be deployed as part of the server-side infrastructure for Web applica-
tions, we do not, in our testbed, have control over the server-side environments
of the applications with which we are experimenting. In order to apply DOLOTO
to these applications, we implement DOLOTO as a rewriting proxy that inter-
cepts the responses from third-party Web servers and dynamically rewrites
their JavaScript content using our code splitting policies. In all our experi-
ments, our client-side Web browsers are chained to the proxy implementation
of DOLOTO. To accurately simulate a server-side deployment of DOLOTO with
offline rewriting of application code, we ensure that our dynamic rewriting is
not in the critical path of serving Web pages. Thus, our DOLOTO proxy caches
the results of its rewritings such that a second visit to the page is immediately
fulfilled.

Sites serving multiple versions of Web application code. Web applications
frequently serve different versions of their code over time, either as part of
a rolling upgrade or as part of a concurrent A/B test of new functionality. To
get comparable and consistent results, our experiments rely on training on and
executing the same Web application code. To be sure that our experiments
are always run against the same version, we deploy the Squid caching proxy
[Squid Developers 2006] to hold a single copy of our benchmark Web applica-
tion code. To ensure that all components of the Web applications are cached, we
use an additional HTTP rewriting proxy, Fiddler [Lawrence 2007], that forces
all components of a Web application to be cache-able by modifying the HTTP
cache-control headers set by the original Web site.

Simulating realistic network conditions. In order to collect execution times
for a realistic range of network conditions, we use a wide-area network simula-
tor that provides control over the effective bandwidth, latency, and packet loss
rates of a machine’s network connection. We use this network simulator to sim-
ulate three different environments: a Cable/DSL connection with a low-latency
network path to a Web site (300 kbps downstream bandwidth and 50 msec
round-trip latency); a Cable/DSL connection with a high-latency network path
(300 kbps downstream bandwidth and 300 msec round-trip latency); and a 56k
dial-up connection (50 kbps downstream bandwidth and 300 msec round-trip
latency).

Our training setup uses Fiddler, Squid, and DOLOTO. The DOLOTO proxy
is running on a machine with a dual Intel Xeon, 3.4GHz CPU, with 2.5GB
of RAM. The client-side machine is a Pentium 4 3.6 GHz machine equipped
with 3 GB of memory running Windows Vista with Firefox 2.0 as the browser.
The physical network connection between all our test machines is a 100 Mb
local area network over a single hub.

In our testing setup, we first populate a Squid cache running a workload
through DOLOTO so that the DOLOTO-processed version of the application is
saved in the cache. We then put a a wide-area network simulator between the
Squid cache and the browser to evaluate a range of network conditions and
replay the same application workload.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 37

9.3 Experimental Results

This section provides a summary of experimental results for DOLOTO; more
results are given in Livshits and Kıcıman [2008]. Below we talk about DOLOTO
training and execution phase statistics.

Training Phase Statistics. To train the clusters and create the access profiles
for a Web application, we collected a profile of several minutes of each Web
application’s execution under a manual workload that exercised a variety of
each application’s functionality. For example, the manual workload for Bunny
Hunt and the Chi game consists of playing the game, and the workload for
maps.live.com consists of browsing and searching through the map.

A summary of results for the training phase is shown in Table VIII. Col-
umn 2 shows the total (uncompressed) download size for each application in
our benchmark suite. Columns 3–6 show information about the code coverage
observed during our training run, detailing the number of functions called dur-
ing the run (absolute number and percentage in columns 3–4) and the size of
these functions (absolute number and percentage in columns 5–6). Columns 7–
10 show a distribution of function sizes that we have observed at runtime.
While small functions are quite common, especially in obfuscated sites that
deliberately introduce them, there are quite a number of large functions as
well, indicating the potential to benefit from removing functions from the ini-
tial download.

Finally, columns 11–13 show information about the clusters we constructed.
Column 11 shows the minimum-average-maximum number of functions per
cluster. As can be seen from the table, it is fairly typical to have a dozen clusters
for the larger applications, with some clusters being quite sizable, containing
several hundred functions and tens of kilobytes of code in the case of larger
applications. Also, it is quite common for a cluster to contain functions from
more than one file. This demonstrates our reliance on realistic workloads to
recompose the code instead of the initial code decomposition provided by the
developer. Column 13 shows the average cluster size, in KB.

Note that the number of clusters is quite sensitive to the threshold selection.
For these results, we used a threshold of 25 msec for the gap between first-run
times for functions and a minimum cluster size threshold of 1.5 KB. We created
at least one cluster per frame for applications that contained multiple FRAME or
IFRAME tags. For the purposes of measuring download size and time improve-
ments, we ensured that all the functions used during page initialization were
included in the initial cluster together.

Execution Phase Statistics. Table IX shows the reduction of size achieved
with DOLOTO rewriting for our application benchmarks. Columns 2 and 3 show
information about the number of percentage of the functions that are rewrit-
ten to insert stubs. Since the first cluster is not rewritten and is pushed to
the application verbatim, less than 100% of all functions end up being stubbed.
Columns 4–6 show the size of the regular (uncompressed) code in its original
version, the size of the initial DOLOTO download that includes all the stubs that
are sent to the client initially, and the resulting space savings. Columns 7–10

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 38 · E. Kıcıman and B. Livshits

Ta
bl

e
V

II
I.

T
ra

in
in

g
S

ta
ti

st
ic

s
fo

r
O

u
r

B
en

ch
m

ar
k

A
pp

li
ca

ti
on

s

C
od

e
co

ve
ra

ge
in

tr
ai

n
in

g
F

u
n

ct
io

n
ch

ar
ac

te
ri

za
ti

on
C

lu
st

er
st

at
is

ti
cs

W
eb

D
ow

n
lo

ad
N

u
m

b
er

%
T

ot
al

%
S

iz
e

d
is

tr
ib

u
ti

on
(c

h
ar

ac
te

rs
)

N
u

m
b

er
of

F
u

n
ct

io
n

s
A

ve
ra

ge
ap

p
li

ca
ti

on
si

ze
,i

n
K

B
fu

n
ct

io
n

s
si

ze
,i

n
K

B
<

10
0

10
0-

20
0

20
0-

50
0

>
50

0
cl

u
st

er
s

p
er

cl
u

st
er

si
ze

,i
n

K
B

C
h

ig
am

e
10

4
10

3
29

%
43

41
%

22
26

28
27

7
3/

14
/4

3
6.

2
B

u
n

n
y

H
u

n
t

16
22

44
%

10
60

%
5

0
9

8
3

2/
7/

19
3.

3
L

iv
e.

co
m

1,
43

6
68

9
21

%
57

2
39

%
20

3
14

9
16

5
17

2
14

5/
49

/4
61

40
.9

L
iv

e
M

ap
s

1,
90

9
80

3
16

%
83

5
43

%
28

4
18

8
17

7
15

4
12

6/
66

/6
89

69
.7

G
oo

gl
e

S
pr

ea
ds

h
ee

ts
49

9
79

4
24

%
17

9
35

%
44

2
15

6
12

1
75

15
3/

52
/6

48
12

.0

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 39

Ta
bl

e
IX

.
S

iz
e

R
ed

u
ct

io
n

A
ft

er
D

O
L

O
T

O
R

ew
ri

ti
n

g
fo

r
O

u
r

B
en

ch
m

ar
ks

A
p

p
li

ca
ti

on
si

ze
,i

n
b

yt
es

W
eb

F
u

n
ct

io
n

s
R

eg
u

la
r

C
ru

n
ch

ed
C

ru
n

ch
ed

an
d

G
zi

p
p

ed
ap

p
li

ca
ti

on
re

w
ri

tt
en

O
ri

gi
n

al
D

O
L

O
T

O
S

av
in

gs
O

ri
gi

n
al

D
O

L
O

T
O

S
av

in
gs

O
ri

gi
n

al
D

O
L

O
T

O
S

av
in

gs

C
h

ig
am

e
20

2
71

%
12

5,
04

5
69

,4
69

44
%

12
4,

64
7

69
,0

73
45

%
34

,2
27

21
,0

04
39

%
B

u
n

n
y

H
u

n
t

24
61

%
17

,3
71

7,
84

1
55

%
17

,2
16

7,
69

2
55

%
4,

83
6

3,
03

3
37

%
L

iv
e.

co
m

1,
68

0
58

%
88

2,
43

8
47

2,
70

6
46

%
88

2,
40

9
47

2,
68

0
46

%
22

0,
54

4
12

9,
27

8
41

%
L

iv
e

M
ap

s
1,

46
3

42
%

1,
12

5,
61

8
61

7,
18

3
45

%
1,

12
5,

60
0

61
7,

17
1

45
%

27
0,

64
4

15
5,

99
2

42
%

G
oo

gl
e

S
pr

ea
ds

h
ee

ts
1,

38
2

48
%

65
4,

19
2

40
2,

06
0

38
%

65
4,

14
2

40
2,

01
0

38
%

18
0,

36
7

96
,4

52
46

%

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 40 · E. Kıcıman and B. Livshits

Table X. Reduction in Execution Times Achieved with DOLOTO for Different Connection Parame-
ters. For Each Group of Columns, the Table Shows the Original Download Time and the Time
with DOLOTO. Both Times are Measured in Seconds and the “%” Column Shows the Time Savings

as a Percentage
Web 50kbs/300ms 300kbs/300ms 300kbs/50ms
application Original Doloto % Original Doloto % Original Doloto %
Chi game 37 37 0 13 15 13 8 8 0
Bunny Hunt 100 92 8 43 41 5 22 22 0
Live.com 99 82 17 31 28 10 18 13 28
Live Maps 155 112 28 31 23 26 26 19 27
Google Sp’sheet 58 45 22 20 20 0 18 11 39

show the same numbers with the code having been run through a JavaScript
crunching utility that removes superfluous whitespace—a common strategy for
optimizing released JavaScript code. The tool configuration we used did not
perform any additional optimizations such as shortening local variable identi-
fiers. Finally, columns 11–14 show the same set of numbers after the code has
been crunched and run through a gzip compression utility.

In today’s AJAX applications, gzip compression is a common and perhaps the
easiest strategy for reducing the amount of data transferred over the network,
and it is used widely by the sites we chose as our benchmarks. Other compres-
sion standards are likely to emerge in the future. Because DOLOTO transfers
well-formed portions of the program AST, we note that DOLOTO integrates well
with size-saving approaches based on AST compression [Burtscher et al. 2010].

In addition to size reduction measurements, we also performed detailed ex-
periments with several representative benchmarks to determine the effect of
code size reduction on the overall application execution time for a range of net-
work parameters, as shown in Table X. For each group of columns in Table X,
we show the original execution time, the time with DOLOTO, and the percent-
age of time savings. Clearly, whether the size reduction is accomplished by
DOLOTO will translate into execution time reduction depends heavily on ap-
plication decomposition. For instance, it is not uncommon to have images and
JavaScript code as the biggest application components; below we consider ap-
plications with different ratios of the two.

It is not too surprising that, as an application whose download is domi-
nated by images, Bunny Hunt does not show any significant improvements
with DOLOTO. On the other hand, mash-up site Live.com, which has Java-
Script as its most significant download component, shows pretty significant
speedups, especially in the case of a low-latency high-bandwidth connection.
For high-latency connections, the time savings are tangible, but not as signifi-
cant because the execution time is dominated by the need to connect to many
servers to fetch data to be shown on the mash-up page.

Live Maps shows 26-28% improvements for a range of network conditions,
with dozens of seconds being saved on the slowest connection. This is quite
impressive given that a significant portion of the application execution is spent
on retrieving map images. However, as Table IX shows, these time savings
can be explained by the fact that about 45% of the application code is not be-
ing transferred in the DOLOTO version. Time savings are most significant for
Google Spreadsheet, in which code is the most significant download component.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 41

Because the entire application is under 200 KB in size and the image compo-
nent is quite small, savings accomplished with DOLOTO result in noticeable
speedups. However, on a 300 msec latency connection, third-party server re-
quests that are used for analytics collection dominate the download time, mask-
ing the savings achieved with DOLOTO.

9.4 Summary

We believe that a dynamic code loading technology like DOLOTO goes a long
way towards enabling very large AJAX applications. When we published the
DOLOTO paper, dynamic loading techniques in the context of AJAX were con-
sidered exotic; these days, they are becoming commonplace for large, complex
JavaScript applications. As we mentioned before, this is driven by the size of
the JavaScript code that needs to be downloaded to the client for rich AJAX
applications. We have seen popular libraries such as jQuery and translators
such as Script# adapting many of the ideas of DOLOTO to perform dynamic
code loading. We see large commercial applications being restructured to sup-
port modular code loading. Moreover, we think that going forward, DOLOTO
technology can be made even better with enhanced browser support for code
caching and loading.

10. ADDITIONAL AJAXSCOPE POLICIES

To provide a sense of the range of useful instrumentation policies Ajax-
Scope can be used for, in this section we detail policies that we have not yet
implemented.

10.1 Data Structure Corruption Bugs

Corruption of in-memory data structures is a clear sign of a bug in an applica-
tion, and can easily lead to serious problems in the application’s behavior. A
straightforward method for detecting data structure inconsistencies is to use
consistency checks at appropriate locations to ensure that data structures are
not corrupt. A consistency check is a small piece of data-structure-specific code
written by a developer or automatically inferred [Demsky et al. 2006]. For ex-
ample, a doubly-linked list data structure might be inspected for unmatched
forward and backward references.

When a consistency check fails, we might suspect that a bug exists some-
where in the executed code after the last successful consistency check.8 If we
execute these consistency checks infrequently, we will not have narrowed down
the possible locations of a bug. On the other hand, if we execute these checks
too frequently, we can easily cause a prohibitive performance overhead, as
well as introduce false positives if we check a data structure while it is being
modified.

8JavaScript programs are executed within a single-thread, avoiding the possibility of a separate
thread having corrupted the data structure.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 42 · E. Kıcıman and B. Livshits

With AjaxScope we can build an adaptive policy that adds and removes con-
sistency checks to balance the need for localizing data structures with the de-
sire to avoid excessive overhead. Initially, the policy inserts consistency checks
only at the beginning and end of stand-alone script blocks and event handlers
(essentially, all the entry and exit points for the execution of a JavaScript ap-
plication). Assuming that any data structure that is corrupted during the exe-
cution of a script block or event handler will remain corrupted at the end of the
block’s execution, we have a high confidence of detecting corruptions as they
are caused by real workloads.

As these consistency checks notice data structure corruptions, the policy
adds additional consistency checks in the suspect code path to “drill-down” and
help localize the problem. As clients download and execute fresh copies of the
application and run into the same data structure consistency problems, they
will report in more detail on any problems they encounter in this suspect code
path, and our adaptive policy can then drill-down again, as well as remove any
checks that are now believed to be superfluous.

Several simple extensions can make this example policy more powerful. For
example, performance overhead can be reduced at the expense of fidelity by
randomly sampling data structure consistency across many clients. Also, if the
policy finds a function that only intermittently corrupts a data structure, we
can explore the program’s state in more detail with an additional rewriting
rule to capture the function’s input arguments and other key state arguments
and other state to help the developer narrow down the cause of a problem.

10.2 Monitoring Third-Party Services

AjaxScope gives the developer visibility into their code’s performance at differ-
ent levels of granularity. While function-level profiling described in Section 5.3
may be useful in detecting first-order performance bottlenecks, developers are
often interested in the performance of specific portions of code.

For instance, the developer of a dynamically assembled page that loads
third-party advertisements together with static text may be interested in the
performance of ad loading. If ad loading is perceived as sluggish, users may
be turned off and stop using the service. For graphical ads, images are loaded
asynchronously, so the naı̈ve strategy of injecting a piece of JavaScript to record
the timestamp after the image loading code does not work. Instead, we can use
AjaxScope to inject a piece of JavaScript that does polling, like the one shown
in the following.

var reportedAlready = false;
function checkImages(){

if(reportedAlready) return;
for(var i =0; i < images.length; i++){

var img = images[i];
if(!img.complete) return;

}
ajaxScopeSend(’Finished loading images at ’

+ ajaxScopeTimestamp());

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 43

reportedAlready = true;
}
setTimeout(’checkImages()’, 100);

This code traverses the array of images checking for whether their loading has
finished every .1 second. When it is, the timestamp is sent to the server.

10.3 Monitoring Wide-Area, End-to-End Network Performance

AjaxScope provides visibility into the network overhead as perceived within
users’ browser. The network overhead can be quite severe for Web application
users located on a different continent. However, is is difficult to assess it in
a local testing environment. Since AjaxScope records user’s IP addresses, it
is possible to correlate overhead numbers with users’ geography. AjaxScope
allows us to instrument XmlHttpRequest calls to record start and finish times.

Example 6. A typical XmlHttpRequest post to the server may look like this

xhr = new XMLHttpRequest();
xhr.onreadystatechange = function {

// process server response
}
xhr.open(GET, "http://www.cnn.com/news.xml", true);
xhr.send(null);

With AjaxScope we can rewrite the send call to capture the initial timestamp
and also the entry of the onreadystatechange handler to record the completion
timestamp. The difference between the two gives us an estimate of the network
round-trip times.

11. DISCUSSION

Section 11.1 presents possible deployment scenarios for AjaxScope.
Section 11.2 addresses potential reliability risks involved in deploying
buggy instrumentation policies. Issues of privacy and security that might arise
when extra code is executing on the client-side are addressed in Section 11.3.
Finally, Section 11.4 addresses the interaction of AjaxScope and browser
caching.

11.1 AjaxScope Deployment Scenarios

The AjaxScope proxy can be deployed in a variety of settings. While client-side
deployment is perhaps the easiest, we envision AjaxScope deployed primarily
on the server side, in front of a Web application or a suite of applications. In
the context of load balancing, which is how most widely used sites today are
structured, the functionality of AjaxScope can be similarly distributed in or-
der to reduce the parsing and rewriting latency. Server-side deployment also
allows developers or system operators to tweak the “knobs” exposed by indi-
vidual AjaxScope policies. For instance, low-overhead policies may always be
enabled. Others higher-overhead policies may only be turned on on-demand,

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 44 · E. Kıcıman and B. Livshits

after a change that is likely to compromise system reliability, such as a major
system update or a transition to a new set of APIs.

AjaxScope can be used by Web application testers without necessarily re-
quiring support from the development organization, as demonstrated by our
experiments with third-party code. AjaxScope can also be used in a test setting
when it is necessary to obtain detailed information from a single user. Consider
a performance problem with Hotmail, which only affects a small group of users.
With AjaxScope, when a user complains about performance issues, she may be
told to redirect her browser to an AjaxScope proxy deployed on the server side.
The instrumentation performed can also be customized depending on the bug
report. That way, she will be the only one running a specially instrumented
version of the application, and application developers will be able to observe
the application under the problematic workload. A particularly attractive fea-
ture of this approach is that no additional software needs to be installed on the
client side. Moreover, real-life user workloads can be captured with AjaxScope
for future use in regression testing. This way real-life workloads can be used,
as opposed to custom-developed testing scripts.

AjaxScope also makes gradual proxy deployment quite easy: there is no need
to install AjaxScope on all servers supporting a large Web application. Initially,
a small fraction of them may be involved in AjaxScope deployment. Alterna-
tively, only a small fraction of users may initially be exposed to AjaxScope.

Our article does not explore the issues of large-scale data processing, such
as data representation and compression as well as various ways to present and
visualize the data for system operators. For instance, network overhead can
be measured and superimposed onto a map in real time. This way, when the
performance of a certain region, as represented by a set of IP addresses, goes
down, additional instrumentation can be injected for only users within that IP
range to investigate the reason for the performance drop.

11.2 Policy Deployment Risks

Users appreciate applications that have predictable behavior, so we do not want
to allow policies to significantly impact performance, introduce new errors, etc.
New policies can also be deployed in a manner that reduces the chances of
negatively affecting application users. After the application developers have
debugged their instrumentation, more users can be redirected to AjaxScope.
To ensure that arbitrary policies do not adversely affect predictability, our in-
frastructure monitors every application’s coarse-grained performance and ob-
served error rate. Monitoring is done via a trusted instrumentation policy
that makes minimal changes to application code, an approach we refer to as
metamonitoring.

When a buggy policy is mistakenly released and applied to a Web applica-
tion, some relatively small number of users will be affected before the policy is
disabled. This meta-monitoring strategy is not intended to make writing bro-
ken policies acceptable. Rather, it is intended as a backup strategy to regular
testing processes to ensure that broken policies do not affect more than a small
number of users for a short period of time.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 45

11.3 Information Protection

Existence of the JavaScript sandbox within the browser precludes security
concerns that involve file or process manipulation. We argue that AjaxScope
does not weaken the security posture of an existing Web application, as there
is already a trust relationship between a user and a Web application. More-
over, a level of protection is achieved through the use of the browser’s sandbox.
However, one corner-case occurs when Web applications wish to carefully silo
sensitive information. For example, e-commerce and financial sites carefully
engineer their systems to ensure that critical personal information, such as
credit card numbers, are stored only on trusted, secured portions of their
data centers. Arbitrary logging of information on the client can result in
this private information making its way into a comparatively insecure logging
infrastructure.

One option to deal with this is to add dynamic information tainting [Nguyen-
Tuong et al. 2005; Wall et al. 1996; Martin et al. 2006], which can be easily done
using our rewriting infrastructure. In this case, the Web application developer
would cooperate to label any sensitive data, such as credit card numbers. The
running instrumentation policies would then refuse to report the value of any
tainted data.

11.4 Caching Considerations

Today, almost all Web applications use client-side caching to achieve a faster
user experience. These Web applications, built using a collection of JavaScript
code files, transfer their code to the client the first time a Web application is
accessed, and then keep these files cached at the client to improve performance
during subsequent visits. Instant redeployment, critical to many key Ajax-
Scope features, however, requires that clients check for new versions of code
with the server, conflicting with the benefits of caching. The challenge then
is to achieve the benefits of distributed and adaptive instrumentation without
compromising the performance benefits of caching.

Distributed Instrumentation. A simple strategy for achieving distributed
instrumentation in the context of client-side caching is straightforward: Ajax-
Scope can continue to serve differently instrumented files and allow them to be
cached as before. Caching on clients will have no affect on the distribution of
these files, while proxies that cache files for many clients will skew the sam-
pling. Regardless of proxy caches, a large service will still achieve coverage of
all the desired instrumentation points.

Adaptive Instrumentation. Achieving adaptive instrumentation in the con-
text of client-side caching is more difficult. There are two negative side ef-
fects when clients cache adaptively instrumented JavaScript code. First, the
caching clients may no longer be providing relevant instrumentation data—
even if AjaxScope has learned enough from the instrumentation cached by
the client, it will not be able to update the client until its cache expires or
is revoked. Secondly, the client may be running a particularly heavy weight

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 46 · E. Kıcıman and B. Livshits

instrumentation that was not intended to be in use for long, and thus paying a
runtime performance penalty. As long as there are sufficient clients accessing
the Web application with either empty or expired caches, the first side effect
AjaxScope will be able to find new sources of data as it adapts its instrumenta-
tion. The affect of the second issue on user-perceived performance is potentially
greater. In this case, we recommend that AjaxScope set short expiry times on
any heavyweight instrumentation.

In both of these cases, AjaxScope can take advantage of existing techniques
for reducing the burden on Web clients of ensuring the freshness of cached files.
One such technique is to combine a noncacheable top-level HTML page with
long-lived dependent resources with version information embedded in their
identifier. In this case, the dependent resources are never directly updated
(e.g., during reinstrumentation). Instead, the top-level HTML page is updated
to reference a new version of the dependent resource. Using this technique,
the client does not need to check the validity of every cached object, and in the
common case does not need to re-download large, dependent JavaScript, image,
or CSS files.

12. RELATED WORK

Several previous projects have worked on improved monitoring techniques for
Web services and other distributed systems [Barham et al. 2004; Aguilera et al.
2003], but to our knowledge, AjaxScope is the first to extend the developer’s
visibility into Web application behavior onto the end-user’s desktop. Other re-
searchers, including Tucek [Tucek et al. 2006], note that moving debugging
capability to the end-user’s desktop benefits from leveraging information eas-
ily available only at the moment of failure—we strongly agree. In addition,
much recent work has been done on exploiting peer-to-peer or client-to-server
relationships to monitor and validate the correctness of nodes in a distributed
system [Haeberlen et al. 2007; Michalakis et al. 2007; Yumerefendi and Chase
2007].

12.1 Dynamic Instrumentation

While program instrumentation has been used for desktop application devel-
opment for a very long time, we feel that AjaxScope is a novel contribution.
Unlike much prior work, AjaxScope allows developers to gain insight into ap-
plication behavior in a wide-area setting across administrative domains. Per-
haps the closest in spirit to our work is ParaDyn [Miller et al. 1995], which
uses dynamic, adaptive instrumentation to find performance bottlenecks in
parallel computing applications. Sun’s DTrace [Microsystems 2009] also pro-
vides a form of adaptive instrumentation through dynamic interposition for
monitoring of the operating system and user programs running on an individ-
ual machine. Sirer et al. demonstrated the use of proxy-based rewriting of
network-deployed applications in Sirer et al. [1999], using this technique to
enforce security policies.
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 47

12.2 Runtime Analysis

Much research has been done in runtime analysis for finding optimization
opportunities [Rubin et al. 2002; Chilimbi and Shaham 2006; Martin et al.
2005]. In many settings, static analysis is used to remove instrumentation
points, leading to a reduction in runtime overhead [Martin et al. 2005]. How-
ever, the presence of the eval statement in JavaScript as well as the lack of
static typing make it a challenging language for analysis. Moreover, not the
entire code is available at the time of analysis. However, we do believe that
some instrumentation policies can definitely benefit from static analysis, which
makes it a promising future research direction.

In recent years, runtime program analysis has emerged as a powerful tool
for finding bugs, ranging from memory errors [Rinard et al. 2004; Cowan et al.
1998; Berger and Zorn 2006; Hauswirth and Chilimbi 2004; Chilimbi and Sha-
ham 2006] to security vulnerabilities [Haldar et al. 2005; Martin et al. 2006;
Nguyen-Tuong et al. 2005]. An area of runtime analysis that we believe to be
closest to our work is statistical debugging. Statistical debugging uses runtime
observations to perform bug isolation by using randomly sampled predicates of
program behavior from a large user base [Liblit et al. 2005; Liu et al. 2006; Liu
and Han 2006]. We believe that the adaptive instrumentation of AjaxScope can
improve on such algorithms by enabling the use of active learning techniques
[Cohn et al. 1996].

12.3 JavaScript Code Rewriting

Both BrowserShield and CoreScript use JavaScript rewriting to enforce
browser security and safety properties [Reis et al. 2006; Yu et al. 2007]. Ajax-
Scope’s focus on nonmalicious scenarios, such as developers debugging their
own code, allows us to simplify our rewriting requirements and make different
trade-offs to improve the performance and simplicity of our architecture. For
example, BrowserShield implements a JavaScript parser in JavaScript and ex-
ecutes this parser in the client browser to protect against potentially malicious,
runtime generated code. In contrast, our parser executes in a proxy and any
dynamically generated code is either not instrumented or must be sent back to
the proxy to be instrumented.

Much of the focus in JavaScript code rewriting has been on security. Caja
[Miller et al. 2007] is one such attempt at limiting capabilities of JavaScript
programs and enforcing this through the use of runtime checks. WebSandbox
is another project with similar goals that also attempts to enforce reliability
and resource restrictions in addition to security properties [Microsoft Live Labs
2008]. While we are not aware of a published comprehensive overhead evalu-
ation, it appears that the runtime overhead of Caja and WebSandbox may be
high, depending on the level of rewriting. This overhead comes from the need to
fully mediate and inspect access to just about any field reference. For instance,
a Caja authors’ report suggest that the overhead of various subsets that are
part of Caja are 6–40x [Miller 2009]. The focus of AjaxScope is generally on
less aggressive and less costly rewriting.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 48 · E. Kıcıman and B. Livshits

12.4 Static Analysis of JavaScript

Approaches to analyzing JavaScript statically so far have included type infer-
ence and pointer analysis; both have been the subject of active research in the
last several years.

It has often been observed that a more useful type system in JavaScript could
prevent errors or safety violations. Since JavaScript does not have a rich type
system to begin with, the work here is devising a correct type system for Java-
Script and then building on the proposed type system. Soft typing [Cartwright
and Fagan 2004] might be one of the more logical first steps in a type system
for JavaScript. Much like dynamic rewriters insert code that must be executed
to ensure safety, soft typing must insert runtime checks to ensure type safety.
Other work has been done to devise a static type system that describes the
JavaScript language [Anderson et al. 2005; Anderson and Giannini 2004; Thie-
mann 2005; Jensen et al. 2009]. These typically works focus on a subset of
JavaScript and provide sound type systems and semantics for their restricted
subsets of JavaScript. However, analysis of large-scale JavaScript applications
that use difficult-to-analyze features such as eval remains largely out of reach.

Gatekeeper and Gulfstream [Guarnieri and Livshits 2009] uses a pointer
analysis to reason about JavaScript programs. The ability to reason about
pointers and the program call graph often allows one to express more inter-
esting security policies than would be possible otherwise. A recent project
by Chugh et al. [2009] focuses on staged analysis of JavaScript and finding
information flow violations in client-side code. Chugh et al. focus on informa-
tion flow properties such as reading document cookies and changing the loca-
tions. A valuable feature of that work is its support for dynamically loaded and
generated JavaScript in the context of what is generally thought of as whole-
program analysis. We should point out that AjaxScope does not suffer from
the requirement to have the entire program available for instrumentation at
once. The topic of streaming JavaScript applications and incremental analysis
is further explored in the Gulfstream project [Guarnieri and Livshits 2010].

13. CONCLUSIONS

In this article we have presented AjaxScope, a platform for improving devel-
oper’s end-to-end visibility into Web application behavior through a continuous,
adaptive loop of instrumentation, observation, and analysis. We have demon-
strated the effectiveness of AjaxScope by implementing a variety of practical
instrumentation policies for debugging and monitoring Web applications, in-
cluding performance profiling, memory leak detection, and cache placement for
expensive, deterministic function calls. We have applied these policies to a
suite of 90 widely used and diverse Web applications to show that 1) adaptive
instrumentation can reduce both the CPU overhead and network bandwidth,
sometimes by as much as 30% and 99%, respectively; and 2) distributed tests
allow us fine-grained control over the execution and network overhead of oth-
erwise prohibitively expensive runtime analyses.

While our article has focused on JavaScript rewriting in the context of
Web 2.0 applications, we believe that we have just scratched the surface when it
ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 49

comes to exploiting the power of instant redeployment for software-as-a-service
applications. In the future, as the software-as-a-service paradigm, centralized
software management tools [Chandra et al. 2005] and the property of instant
redeployability become more widespread, AjaxScope’s monitoring techniques
have the potential to be applicable to a broader domain of software. More-
over, the implications of instant redeployability go far beyond simple execution
monitoring, to include distributed user-driven testing, distributed debugging,
and potentially adaptive recovery techniques, so that errors in one user’s ex-
ecution can be immediately applied to help mitigate potential issues affecting
other users.

ACKNOWLEDGMENTS

We greatly appreciate the detailed comments and feedback of Andrew Myers,
our SOSP shephard, our anonymous SOSP reviewers, and our anonymous re-
viewers, from ACM Transactions on the Web. Our discussions with Helen Wang,
Trishul Chilimbi, Yi-Min Wang were invaluable to the conception and refine-
ment of the project. We thank Chen Ding for his help formulating the ini-
tial ideas for Doloto [Livshits and Ding 2007]. We are grateful to our interns,
Himanshu Sharma, who wrote an initial JavaScript-based instrumentation
engine, and Troy Ronda, who built the MEDic extensions to AjaxScope. We
would like to thank Hesham Anan, Shobana Balakrishnan, Brian Crawford,
John Cunningham, Adam Eversole, and Eric Lawrence for all of their help in
making AjaxScope more applicable to real-world scenarios.

REFERENCES

AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND MUTHITACHAROEN, A.
2003. Performance debugging for distributed systems of black boxes. In Proceedings of the Sym-
posium on Operating Systems Principles. 74–89.

ANDERSON, C. AND GIANNINI, P. 2004. Type checking for JavaScript. In Proceedings of the 2nd
Workshop on Object-Oriented Development. http://www.binarylord.com/work/js0wood.pdf.

ANDERSON, C., GIANNINI, P., AND DROSSOPOULOU, S. 2005. Towards type inference for Java-
Script. In Proceedings of the European Conference on Object-Oriented Programming. 429–452.

ATTERER, R., WNUK, M., AND SCHMIDT, A. 2006. Knowing the user’s every move: user activity
tracking for Website usability evaluation and implicit interaction. In Proceedings of the Interna-
tional Conference on World Wide Web. 203–212.

BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. 2004. Using Magpie for request ex-
traction and workload modelling. In Proceedings of the Symposium on Operating Systems Design
and Implementation. 259–272.

BARON, D. 2001. Finding leaks in Mozilla.
http://www.mozilla.org/performance/leak-brownbag.html.

BERGER, E. D. AND ZORN, B. G. 2006. Diehard: Probabilistic memory safety for unsafe languages.
SIGPLAN Notes 41, 6, 158–168.

BOSWORTH, A. 2006. How to provide a Web API.
http://www.sourcelabs.com/blogs/ajb/2006/08/how to provide a Web api.html.

BREEN, R. 2007. Ajax performance. http://www.ajaxperformance.com.
BRUTLAG, J. 2009. Speed matters for google Web search.

http://code.google.com/speed/files/delayexp.pdf.
BURTSCHER, M., LIVSHITS, B., SINHA, G., AND ZORN, B. G. 2010. Jszap: Compressing JavaScript

code. In Proceedings of the USENIX Conference on Web Application Development.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 50 · E. Kıcıman and B. Livshits

CARTWRIGHT, R. AND FAGAN, M. 2004. Soft typing. ACM SIGPLAN Notices 39, 4, 412–428.
CHANDRA, R., ZELDOVICH, N., SAPUNTZAKIS, C., AND LAM, M. S. 2005. The Collective: A cache-

based system management architecture. In Proceedings of the Symposium on Networked Systems
Design and Implementation.

CHILIMBI, T. M. AND SHAHAM, R. 2006. Cache-conscious coallocation of hot data streams.
SIGPLAN Notes 41, 6, 252–262.

CHUGH, R., MEISTER, J. A., JHALA, R., AND LERNER, S. 2009. Staged information flow for Java-
Script. In Proceedings of the Conference on Programming Language Design and Implementation.

COHN, D. A., GHAHRAMANI, Z., AND JORDAN, M. I. 1996. Active learning with statistical models.
J. Artif. Intelli. Resear. 4, 129–145.

COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P.,
ZHANG, Q., AND HINTON, H. 1998. StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the Usenix Security Conference. 63–78.

CRISP. 2006. String performance in Internet Explorer.
http://therealcrisp.xs4all.nl/blog/2006/12/09/string-performance-in-internet-explorer/.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. 2007. Dynamo: Amazon’s highly avail-
able key-value store. In Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’07). ACM, New York, 205–220.

DEMSKY, B., ERNST, M., GUO, P., MCCAMANT, S., PERKINS, J., AND RINARD, M. 2006. Inference
and enforcement of data structure consistency specifications. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA).

ECMA. 1999. ECMAScript Language Specification 3rd Ed.
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

GUARNIERI, S. AND LIVSHITS, B. 2009. Gatekeeper: Mostly static enforcement of security and
reliability policies for javascript code. In Proceedings of the Usenix Security Symposium.

GUARNIERI, S. AND LIVSHITS, B. 2010. Gulfstream: Incremental static analysis for stream-
ing JavaScript applications. In Proceedings of the USENIX Conference on Web Application
Development.

HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P. 2007. Peerreview: Practical accountabil-
ity for distributed systems. In Proceedings of the 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP’07). ACM, New York, 175–188.

HALDAR, V., CHANDRA, D., AND FRANZ, M. 2005. Dynamic taint propagation for Java. In
Proceedings of the Annual Computer Security Applications Conference. 303–311.

HAUSWIRTH, M. AND CHILIMBI, T. M. 2004. Low-overhead memory leak detection using adaptive
statistical profiling. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems. 156–164.

INTERNET EXPLORER DEVELOPMENT TEAM. IE+JavaScript performance recommendations part
2: JavaScript code inefficiencies.
http://therealcrisp.xs4all.nl/blog/2006/12/09/string-performance-in-internet-explorer/.

JENSEN, S. H., MØLLER, A., AND THIEMANN, P. 2009. Type analysis for JavaScript. In Proceed-
ings of the 16th International Static Analysis Symposium (SAS’09). Lecture Notes in Computer
Science, vol. 5673. Springer-Verlag.

LAWRENCE, E. 2007. Fiddler: Web debugging proxy. http://www.fiddlertool.com/fiddler/.
LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. 2005. Scalable statistical bug

isolation. In Proceedings of the Conference on Programming Language Design and Implementa-
tion. 15–26.

LIU, C., FEI, L., YAN, X., HAN, J., AND MIDKIFF, S. P. 2006. Statistical debugging: A hypothesis
testing-based approach. IEEE Trans. Softw. Engin. 32, 10, 831–848.

LIU, C. AND HAN, J. 2006. Failure proximity: A fault localization-based approach. In Proceedings
of the International Symposium on Foundations of Software Engineering. 46–56.

LIVSHITS, B. AND DING, C. 2007. Code splitting for network bound Web 2.0 applications. Tech.
rep., Microsoft Research.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

AjaxScope · 13: 51

LIVSHITS, B. AND KICIMAN, E. 2008. Doloto: Code splitting for network-bound Web 2.0 applica-
tions. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering.

MARTIN, M., LIVSHITS, B., AND LAM, M. S. 2005. Finding application errors and security vul-
nerabilities using PQL: A program query language. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications.

MARTIN, M., LIVSHITS, B., AND LAM, M. S. 2006. SecuriFly: Runtime vulnerability protection for
Web applications. Tech. rep., Stanford University.

MEYEROVICH, L. AND LIVSHITS, B. 2010. ConScript: Specifying and enforcing fine-grained secu-
rity policies for JavaScript in the browser. In Proceedings of the IEEE Symposium on Security
and Privacy.

MICHALAKIS, N., SOULE, R., AND GRIMM, R. 2007. Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation. 145–158.

MICROSOFT LIVE LABS. 2008. Live Labs Websandbox. http://Websandbox.org.
MICROSYSTEMS, S. 2009. Dtrace. http://www.sun.com/bigadmin/content/dtrace/index.jsp.
MILLER, B. P., CALLAGHAN, M. D., CARGILLE, J. M., HOLLINGSWORTH, J. K., IRVIN, R. B.,

KARAVANIC, K. L., KUNCHITHAPADAM, K., AND NEWHALL, T. 1995. The ParaDyn parallel per-
formance measurement tool. IEEE Comput. 28, 11, 37–46.

MILLER, M. S. 2009. Is it possible to mix ExtJS and google-caja to enhance security.
http://extjs.com/forum/showthread.php?p=268731#post268731.

MILLER, M. S., SAMUEL, M., LAURIE, B., AWAD, I., AND STAY, M. 2007. Caja: Safe active content
in sanitized JavaScript.
http://google-caja.googlecode.com/files/caja-2007.pdf.

NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D., SHIRLEY, J., AND EVANS, D. 2005. Automati-
cally hardening Web applications using precise tainting. In Proceedings of the IFIP International
Information Security Conference.

REIS, C., DUNAGAN, J., WANG, H. J., DUBROVSKY, O., AND ESMEIR, S. 2006. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. In Proceedings of the Symposium on Operating
Systems Design and Implementation.

RIDER, S. 2005. Recent changes that may break your gadgets.
http://microsoftgadgets.com/forums/1438/ShowPost.aspx.

RINARD, M., CADAR, C., DUMITRAN, D., ROY, D. M., LEU, T., AND WILLIAM S. BEEBEE, J. 2004.
Enhancing server availability and security through failure-oblivious computing. In Proceedings
of the Symposium on Operating Systems Design and Implementation. 303–316.

RUBIN, S., BODIK, R., AND CHILIMBI, T. 2002. An efficient profile-analysis framework for data-
layout optimizations. SIGPLAN Notes 37, 1, 140–153.

SCHLUETER, I. Z. 2006. Memory leaks in Microsoft Internet Explorer.
http://isaacschlueter.com/2006/10/msie-memory-leaks/.

SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. 2002. Estimating the impact of heap liveness
information on space consumption in Java. In Proceedings of the International Symposium on
Memory Management. 64–75.

SIRER, E. G., GRIMM, R., GREGORY, A. J., AND BERSHAD, B. N. 1999. Design and implementa-
tion of a distributed virtual machine for networked computers. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP’99). ACM, New York, 202–216.

SQUID DEVELOPERS. 2006. Squid Web proxy cache. http://www.squid-cache.org.
THIEMANN, P. 2005. Towards a type system for analyzing JavaScript programs. In Proceedings of

the European Symposium on Programming.
TUCEK, J., LU, S., HUANG, C., XANTHOS, S., AND ZHOU, Y. 2006. Automatic on-line failure diag-

nosis at the end-user site. In Proceedings of the Workshop on Hot Topics in System Dependability.
WALL, L., CHRISTIANSEN, T., AND SCHWARTZ, R. 1996. Programming Perl. O’Reilly and Asso-

ciates, Sebastopol, CA.

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

13: 52 · E. Kıcıman and B. Livshits

YU, D., CHANDER, A., ISLAM, N., AND SERIKOV, I. 2007. JavaScript instrumentation for browser
security. In Proceedings of the Symposium on Principles of Programming Languages. 237–249.

YUE, C. AND WANG, H. 2009. Characterizing insecure JavaScript practices on the Web. In
Proceedings of the International World Wide Web Conference.

YUMEREFENDI, A. R. AND CHASE, J. S. 2007. Strong accountability for network storage. In
Proceedings of the 5th USENIX Conference on File and Storage Technologies. 77–92.

ZAKAS, N. C., MCPEAK, J., AND FAWCETT, J. 2006. Professional Ajax. Wrox.

Received September 2008; revised April 2010; accepted June 2010

ACM Transactions on The Web, Vol. 4, No. 4, Article 13, Pub. date: September 2010.

