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Abstract. Nowadays, service providers gather fine-grained data about
users to deliver personalized services, for example, through the use of
third-party cookies or social network profiles. This poses a threat both
to privacy, since the amount of information obtained is excessive for
the purpose of customization, and authenticity, because those methods
employed to gather data can be blocked and fooled.

In this paper we propose privacy-preserving profiling techniques, in
which users perform the profiling task locally, reveal to service providers
the result and prove its correctness. We address how our approach applies
to tasks of both classification and pattern recognition. For the former, we
describe client-side profiling based on random forests, where users, based
on certified input data representing their activity, resolve a random forest
and reveal the classification result to service providers. For the latter, we
show how to match a stream of user activity to a regular expression,
or how to assign it a probability using a hidden Markov model. Our
techniques, based on the use of zero-knowledge proofs, can be composed
with other protocols as part of the certification of a larger computation.

1 Introduction

Many popular business models rely on profiling users to deliver customised ser-
vices. Currently, privacy-sensitive fine-grained data about each user’s activities
is gathered on the server side to perform this personalization. As an alterna-
tive strategy, we propose a set of techniques that allow for user profiling to be
performed in a privacy-preserving manner.

By way of motivation, consider a retailer of home heating equipment that
wishes to tailor prices or rebates according to a household’s occupancy patterns.
Similarly, a soft drink manufacturer may wish to provide free drink samples to
loyal customers of its competitors. More generally, a marketing company may
wish to classify customers according to their lifestyle to better target reduc-
tion coupons. A news site may adjust its content according to user preferences
on a social network. These are all examples of personalization, a strategy that
necessitates knowing more about the user, or user profiling.

In recent years, several mechanisms have emerged for discerning user prefer-
ences on a large scale. The most notable of them is third-party advertising, which
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involves partially observing user browsing history through third-party cookies
to understand user preferences. Similarly, social network platforms allow third-
party apps to query user profiles and “likes” for personalization purposes. If this
information were only to be used for the purposes of personalization, in both
settings the amount of detailed information relating to the user would seem to
be excessive. To summarize, the current approach has the following drawbacks:

– Privacy: service providers not only learn the profiles of customers, which
might in themselves be privacy-sensitive, but also acquire a mass of fine-
grained data about users, including click streams, previous purchases, social
contacts, etc.

– Authenticity: the correctness of profiling is doubtful as the data has been
gathered in an ad-hoc manner, often through third party networks or web
“bugs” or beacons, which can be blocked and fooled. Moreover, a determined
user may interfere with cookie-based profile gathering by geting involved in
so-called cookie swaps — rings of people exchanging tracking cookies to
confuse the trackers.

In this work, we propose techniques that perform profiling on the client side using
state-of-the-art machine learning procedures, namely random forests [11]. Clients
can conclusively prove that they have performed the classification task correctly,
with reference to certified data representing user activity. These certificates serve
as a root of trust: a service provider can unreservedly rely on the computed profile
for business decisions, such as giving free samples, coupons or rebates, without
learning anything more than the decision or fearing that the user is cheating.

In addition to resolving random forests, we show how to match a stream
of user activity against a regular expression. If desired, we can also assign a
probability to a stream of user activity using a hidden Markov model [4]. This
has applications in matching against streams of user activity, such as finding
patterns in bank transactions, for example. The same guarantees relating to
privacy and authenticity hold in both of these cases.

Previous private data mining techniques are too specific to the problem they
solve and can only be used in isolation [44,36]. In contrast, the techniques pre-
sented in this paper are fully composable with other zero-knowledge protocols.
As a result, they may be used as part of certifying a larger computation.

2 System Overview

At a high level, we present cryptographic mechanisms that allow a user to prove
some certified features match a class or a sequence, defined by a random forest,
regular expression, or a hidden Markov model, respectively.

Our protocol takes place between a prover, a verifier, and two authorities: A
and A′. The basic interactions between those entities are illustrated in Figure 1
and described in detail below. We assume that there is an implicit setup phase,
during which all principals in the system generate their public/private key pairs
and distribute them securely to all other entities. The prover and the verifier
also generate signature and verification keys for purposes of authentication.
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Fig. 1. An overview of the key interactions between all parties in the system

For the purposes of the protocol, a prover must be provided with a set of
certified features (Figure 1, step 1). Abstractly, these features are signed by an
authority A that is trusted by the verifier to authoritatively associate features
with the prover. In practice, this authority could be a third party service, such
as a trusted social network platform that observes user actions and provides
a signed account of them for third parties to use. Or it could be a trusted
hardware device, such as a smart meter that is installed on user premises to
provide certified readings. Similarly an automotive on-board unit could provide
trusted readings, such as time and vehicle speed, that need to be matched or
classified for the purposes of billing for pay-per-mile insurance. Finally, the user
could self-certify some features, and even keep them secret, and simply attest
them with a third party using a blind signing protocol.. The features need to be
encoded in a specific manner as described in Section 5 and Section 6.

A separate entity A′, that could be the verifier, cryptographically encodes a
decision forest or a hidden Markov model and provides it to the prover (Figure 1,
step 2). In Section 5 and Section 6 we describe how to encode random forest and
hidden Markov model classifiers to support efficient proof of their operation. In
theory, the classifiers themselves could be kept secret from the verifier, since
the verification does not require them. This may enable some business models,
but is fragile due to the fact that the prover has to know the full details of the
classifiers to construct the necessary proofs.

Finally, the prover and verifier interact, in such a way that the verifier is
provided with the outcome of the random forest classification or hidden Markov
model match probability, along with a proof that it was performed correctly
(Figure 1, step 3). No other information about the features is revealed. The
subsequent sections of this paper present the details of these proofs. Standard
techniques can be used to turn the interactive protocol into a non-interactive
one. In that setting, the prover simply constructs the proof and sends it to the
verifier that can either accept or reject it.
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Our protocols protect privacy in the sense that they leak no more information
about the detailed features than what becomes known through the decision of a
classifier or a match with a hidden Markov chain. We note that such classifiers
could be build to leak specific features, and therefore a user needs to know what
being subjected to such profiling entails. Since the classifier is public it can be
executed, or not, according to the privacy preference of the prover.

The interactions between the authority certifying the features, the prover and
the verifier are reminiscent of anonymous credential protocols. The key difference
of our approach from such protocols is that we do not attempt to hide the identity
of the prover, but rely on hiding the detailed user features to preserve privacy.
The protocols can be extended with relative ease to protect the identity of the
user but this goes beyond the scope of this work.

3 Applications

This section outlines some of the applications of the theory presented in this
paper. The application focus for this paper is on end-user settings, many of
which pertain to the context of everyday life, rather than enterprise or business-
to-business scenarios.

Behavioural Advertising. Perhaps, the most common application setting on
people’s minds today is that of behavioural profiling – web users are classified
based on their pattern of visiting web pages, according to either a taxonomy or by
associating keywords with their profile, typically, for more accurate ad targeting.
Our techniques allow the user to run the classification algorithm locally using
fine-grained behavioural information — usually, on their URL stream — and
only reveal their aggregate profile to an advertiser or web site for the purposes
of customization or ad targeting. Our schemes could make use of features certified
by social networking sites, or even certified cookies gathered by browsing on the
internet. As has been proposed in the literature [40,30,43,26], in this case, a set
of ads can be matched against the user profile without revealing precise user web
browsing history.

P2P Dating and Matchmaking. A common functionality of on-line social
sites is the ability to filter users based on one or more criteria. More specifically,
imagine a P2P dating site. The site is decentralized, i.e. P2P in order to avoid
sharing rather personal details with the site owner. The process of matchmaking,
i.e. filtering of the users with respect to criteria such as music tastes or hair color,
would be done locally, on each of the P2P nodes. Of course, we need to make
sure that this local filter is not compromised to always cheerfully, but deceitfully
answer “yes, I am a match.” We can prevent this by requiring users to commit to
their preferences and attributes at most once, and then use the same, committed,
profile when answering matching queries from different parties.

In this scenario, trust is rooted in the fact that users cannot have their at-
tributes certified at will, and can only do so in a restricted manner: either through
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paying some money to get their subscription to the dating site to establish an
identity, or any other Sybil defence mechanism [35].

Financial Logs. In banking applications, it is common to look for patterns over
user transaction data. One common application is fraud detection. For example,
two or more bank charges in a stream of account transactions per month or
too many charges by a particular merchant may be indicative of fraud. Banks
themselves are often interested in flagging certain kinds of transactions, primarily
for fraud prevention reasons. Governments are keen to oversee transactions to
avoid tax-evasion or money laundering.

A more specific application using our techniques is a lender who is interested in
querying your transaction history for determining if you are a reliable borrower,
which might include checking for more than two late fees within a month. Our
techniques could use transaction financial logs provided by financial institutions
or shops to prove certain properties to third parties, such as a lending institution.

Insurance. Metered automotive insurance is an example of an application
where revealing too much about the user’s driving habits can be privacy-
compromising, as it will leak excessive data about their whereabouts. However,
certain behavioural patterns on the part of the user can be utilized to flag danger-
ous or reckless behaviour, which are legitimate to inquire about for the purpose
of providing and charging for automotive insurance.

For instance, a driver that alternates prolonged day and night driving within
the same 24- or 48-hour period could be at risk for an accident. Someone who
starts the car more than, say, ten times a day does a fair bit of city driving. Such
patterns may be mined to determine the right insurance premium. To support
such settings, a trusted on-board unit in the car can provide certified readings of
speed and time that are mined to detect the presence of certain driving patterns,
without revealing the rest.

Bio-medical and Genetic. A number of services have been proposed on the
basis of individual genetic or biological profiles. These can include claiming a
state benefit due to some debilitating genetic condition or even testing a genetic
fingerprint as part of a criminal investigation. Our techniques could be used
to support privacy in such settings: an authority could provide a user with a
certified generic profile as detailed as their DNA profile. Third parties can then
provide certified models that match specific genes or other biological profiles to
tune their services. The results computed by these third parties can be shared,
yet the detailed biological profile will never be revealed.

3.1 Related Work

Random forests are a very popular classification algorithm first proposed by
Breiman [11]. Their performance, efficiency and potential for parallelization
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has made random forests popular for image classification [8], and they have
been widely used in bio-informatics [24]. Hidden Markov models [31] have found
applications in speech recognition [39] as well as bio-informatics [32]. The fact
that both techniques have serious medical applications motivates us further to
perform classification and matching tasks without revealing raw data.

Previous works have considered privacy in the context of classification tasks.
Pinkas [38] argues that arbitrary multi-party computation can be used to jointly
perform privacy-preserving data mining when different parties have secrets. The
key building block of the presented protocol is oblivious transfer, which requires
interactions among parties. Our techniques differ in that the only party with se-
crets is the user, and all other parties only care about the integrity and authentic-
ity of the classification procedure. As a result, our protocols are not interactive,
and are more efficient than generic secure multi-party computations.

Vaideep et al. [44] consider privacy friendly training of decision trees and
forests. These techniques are orthogonal and complementary to our algorithms.
We provide a zero-knowledge proof that a trained random forest classifier was
applied on a secret data set correctly, and do not discuss the privacy of the train-
ing phase. Similarly, Magkos et al. [36] use protocols based on secure electronic
election to implement a privacy friendly-frequency counter. They discuss how
multiple rounds of their protocol can be used to privately train a random forest
classifier.

Our cryptographic constructions build upon a number of previous crypto-
graphic techniques, mostly involving zero-knowledge proofs, that we describe in
detail in the next section.

4 Cryptographic Foundations

The novel techniques for resolving random forests and matching regular lan-
guages make use of modern cryptographic primitives, and in particular efficient
zero-knowledge proofs of knowledge. We present here the basic building blocks,
namely commitments, zero-knowledge proofs and signatures with efficient proof
protocols (P-signatures). We also dwell deeper into how to use P-signatures to
perform lookups into a public indexed table without revealing the lookup key or
row retrieved.

4.1 Zero-Knowledge, Commitments and P-Signatures

Zero-Knowledge proofs. A zero-knowledge proof of knowledge [6] is a two-party
protocol between a prover and a verifier. The prover demonstrates to the verifier
her knowledge of some secret input (witness) that fulfills some statement without
disclosing this input to the verifier. The protocol should fulfill two properties.
First, it should be a proof of knowledge, i.e., a prover without knowledge of the
secret input convinces the verifier with negligible probability. Second, it should
be zero-knowledge, i.e., the verifier learns nothing but the truth of the statement.



24 G. Danezis et al.

We make use of classical results for efficiently proving knowledge of discrete
logarithm relations [42,21,19,12,10,22]. To avoid common pitfalls, and to be com-
patible with the newest results in the literature, we use the language proposed
by Camenisch et al. [15]. Their language is inspired by the CKY-language [14],
which formalized and refined the PK notation for proofs of knowledge by Ca-
menisch and Stadler [20]. While proofs of knowledge for the standard model are
addressed in [14], Camenisch et al. [15] show how to realize proofs for their lan-
guage in the UC-framework. As a third option, these proofs can be compiled [25]
into non-interactive proofs in the random oracle model [7].

In the notation of [15], a protocol proving knowledge of integers w1, . . . , wn
satisfying the predicate φ(w1, . . . , wn) is described as

Kw1 ∈ I1, . . . , wn ∈ In : φ(w1, . . . , wn) (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving
“knowledge” of a witness, rather than just its existence.

The predicate φ(w1, . . . , wn) is built up from “atoms” using arbitrary combi-

nations of ANDs and ORs. An atom expresses group relations, such as
∏k
j=1 g

Fj
j =

1, where the gj are elements of an abelian group and the Fj ’s are integer poly-
nomials in the variables w1, . . . , wn.

Instead of using group relations directly, we rely on classical results that show
how to reduce the following proof components to group relations: (1) linear
relations and equality, (2) inequalities, and (3) proofs about commitments and
signatures.

For the prime-order and the hidden-order setting there are different techniques
for dealing with inequalities and P-signature possession.We refer to the literature
for more details. We consciously keep our presentation independent of the lower-
level cryptography by using an abstract notation for zero-knowledge statements.

Inequalities. A couple of techniques are available to prove that a value is positive.
Groth [29], who builds on [9], relies on the fact that a number can be expressed
using the sum of 3 squares. Alternatively, the value can be shown to be within the
set of positive integers as provided by a trusted authority, using set membership
techniques by Camenisch et al. [13].

Commitment schemes. A non-interactive commitment scheme consists of the
algorithms ComSetup, Commit and Open. ComSetup(1k) generates the param-
eters of the commitment scheme parc . Commit(parc , x) outputs a commitment
Cx to x and auxiliary information openx. A commitment is opened by revealing
(x, openx) and checking whether Open(parc , Cx, x, openx) outputs accept. The
hiding property ensures that a commitment Cx to x does not reveal any in-
formation about x, whereas the binding property ensures that Cx cannot be
opened to another value x′. Our scheme requires commitment schemes that sup-
port an efficient proof predicates POpenCx(x, openx) for the opening algorithm
of commitment Cx [37,27].



Private Client-Side Profiling 25

P-signatures. A signature scheme consists of algorithms (Keygen, Sign,Verify).
Keygen(1k) outputs a key pair (sk , pk). Sign(sk ,m) outputs a signature s on
message m. Verify(pk , s ,m) outputs accept if s is a valid signature on m and
reject otherwise. This definition can be extended to support multi-block messages
m = {m1, . . . ,mn}. Existential unforgeability [28] requires that no probabilistic
polynomial time (p.p.t.) adversary should be able to output a message-signature
pair (s ,m) unless he has previously obtained a signature on m.

One important proof component that we use in many of our constructions is
a predicate PVerifypk (s ,m1, . . .mn) for the verification algorithm of a signature
scheme. This allows to prove possession of a signature s , while keeping the sig-
nature itself and parts of the signed message secret. Signature schemes for which
verification is efficiently provable are thus very attractive for protocol design,
and are variously referred to as CL-signatures or P-signatures, i.e., signatures
with efficient protocols [17,18,5].

Extended notation for zero-knowledge statements. We extend the notation above
to abstract the details of proofs of knowledge that are used to verify private
computations. In particular we allow the definition of named proof components
that can be reused as sub-components of larger proofs.

We introduce the special notation F(b) → (a) to abstract details of proof com-
ponents. We call this a proof component declaration. For example we may name
a proof F on some secret inputs and outputs as being equivalent to a statement
in zero-knowledge in the following manner: F(a) → (b) ≡ Ka, b : b = a + 1. Se-
mantically, the function F represents the proof that a counter was incremented.
Secret a is the initial value and secret b the new value. Whether a variable ap-
pears on the left or the right is somewhat arbitrary and primarily meant to give
useful intuition to users of the component. In terms of cryptography, it is simply
syntactic sugar for the equivalent statement above.

Named proof components can be used in further higher-level proofs without
their details being made explicit. For example, the proof Kc, d : d = F(c) is
equivalent to the two statements above. All variables within the component dec-
laration (e.g. variables a, b in F(a) → (b)) can be re-used in the high level proof.
Any variables whose knowledge is proved, but that are not in the declaration,
are considered inaccessible to the higher-level proof.

4.2 Direct Lookups

A P-signature on a sequence of messages, representing a number of keys and
values, can be used to prove the equivalent of a table look-up [41].

Consider a public table T of keys ki each mapping to the corresponding
values vi. Keys and values themselves can have multiple components ki =
(k(i,0), . . . , k(i,n−1)) and vi = (v(i,0), . . . , v(i,m−1)).

A trusted authority A can encode this table to facilitate zero-knowledge look-
ups by providing a set of P-signatures ti:

∀i. ti = Sign(skA, 〈Tid, n,m, k(i,0), . . . , k(i,n−1), v(i,0), . . . , v(i,m−1)〉) (2)
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To prove that a set of secrets (k′, v′) corresponds to a lookup in the table it is
sufficient to show that:

LOOKUPT (k
′
0, . . . , k

′
n−1) → (v′0, . . . , v

′
m−1) ≡ (3)

Kt, k′0, . . . , k
′
n−1, v

′
0, . . . , v

′
m−1 : (4)

PVerifypkA(t, Tid, n,m, k
′
0, . . . , k

′
n−1, v

′
0, . . . , v

′
m−1) (5)

The predicate PVerify corresponds to the verification equations of the signature
scheme. The proof hides the keys k′ and corresponding values v′, but not the
identity of the table used to perform the lookup. To avoid any confusion, we
always specify the table as part of the name of the lookup.

A variant of the proof allows for range lookups. In this case, a table T ′ contains
as key a pair of values (k(i,min), k(i,max)) defining a range, corresponding to a set
of values (v(i,0), . . . , v(i,m−1)). We assume that the ranges defined by the keys do
not overlap.

We denote the creation of the table with columns a, b and c, signed by author-
ity A, by an algorithm called ZKTABLEA([ai, bi, ci]). The cost of performing a
lookup in terms of computation and communication is O(1) and constructing a
table requires O(n) signatures in the size of the table.

5 Random Forests

Random forests are a state-of-the-art classification technique. A random forest
is a collection of decision trees. Each decision tree is trained on a subset of a
training dataset. Once the set of trees is trained, it can be used to classify unseen
data items. Each decision tree is used separately to classify the item using its
features and the majority decision is accepted as valid.

The aim of our protocol is to apply the random forest classification algorithm
to a feature set that remains secret. At the same time, we wish to provide a
proof that the classification task was performed correctly. We assume that the
random forest classifier is already trained and public.

5.1 Vanilla Training and Resolution of Random Forests

This section provides a short overview of how a random forest is grown from
a training set, as well as how it is used to classify data items, without any
security considerations. Full details are available in Breiman [11]. The notation
and resolution algorithms will be used as part of the privacy friendly protocols.

Consider a labelled training data set comprising items di. Each item has a set
of M features, denoted as Fm(di) for m in [0,M − 1]. Each item is labelled with
li into one of two classes c0 or c1.

The training algorithm takes two parameters: the depth D and the number of
items N to be used to train each tree. Training each tree proceeds by sampling
N items, with replacement, from the available data items di. Then, at each
branch, starting with the root, a random feature is selected. The value of the
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feature that best splits the data items corresponding to this branch into the two
separate classes is used to branch left or right. The algorithm proceeds to build
further branches until the tree has reached the maximum depth D. Leaves store
the decision or the relative number of items in each class.

A data item d that has not been previously seen is assigned a class by resolving
each tree t in the forest. Starting at the root, the branching variable b and its
threshold τ is used to decide whether to follow the right or left branch according
to the corresponding feature Fb(d

′). The process is repeated until a leaf is reached
and the relative weight of belonging to two classes is stored as (ct0, ct1).

The sum of the weights corresponding to the two classes can be computed as
(
∑

t ct0,
∑

t ct1). These sums represent the relative likelihood of the item belong-
ing to the corresponding classes.

5.2 Encoding of Features and Trees

The key objective of our algorithm is to correctly execute the random forest
classification algorithm on certified features without revealing the features. To
enable this approach, both the user data and the random forest need to be
cryptographically encoded in a specific manner.

First, the profile features are encoded as a table supporting zero knowledge
lookups (as described in Section 4.2). A user u, with a profile with features
ki taking values vi, has to be provided by an authority A with a table: Fu ≡
ZKTABLEA([ki, vi, u]).

Second, we need to cryptographically encode each tree of the random forest.
Each decision tree is individually encoded by building two tables supporting
zero-knowledge lookups: one table for branches and one table for leaves.

Each non-leaf node of the decision tree is encoded as two separate left and
right branches. Branches are encoded by an entry containing a node id ni, a
feature id ki, and a range for the value [vmin, vmax] as well as target node id n′

i.
The node id ni represents the node of the tree, while ki is the feature used at
this node to make a decision. If the branch feature is indeed in [vmin,i, vmax,i],
then the algorithm should proceed to n′

i. Representing an interval that has to
be matched represents a uniform way to encode both left and right branches:
left branches are encoded with an interval [vmin, vmax] ≡ [MINi, τi− 1] and right
branches with an interval [vmin, vmax] ≡ [τi,MAXi], where τi is the threshold of
feature ki that has a domain [MINi,MAXi]. An authority A′ encodes branches
as: Bt ≡ ZKTABLEA′([ni, ki, vmin,i, vmax,i, n

′
i]).

Leafs are encoded separately to store the decision for each decision tree. Each
leaf has a node id ni and two values c0,i, c1,i representing the relative likelihood
of the item being in two classes respectively. The table representing leaves signed
by A′ is Lt ≡ ZKTABLEA′([ni, c0,i, c1,i]).

Branches and leaves of decision trees are encoded in order to certify its cor-
rectness when verifying proofs of signature possession. It is worth noting that
they are public vis-a-vis the prover. In particular, the node id of the root node
of each tree is known to all as is the fixed depth D of trees.
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5.3 Private Resolution for Random Forests

Given a table of user features Fu, and a set of |t| trees given by the sets of branch
and leaf tables Bt,Lt, we present the proofs of correct classification.

In a nutshell, we can decompose the zero-knowledge proof required into per-
forming the classification using the separate trees, and then aggregating and re-
vealing the forest decision (without revealing the intermediate decisions). Each
decision tree is matched by proving sequentially that the feature considered at
each branch satisfies the prescribed condition.

The zero knowledge proof of correct resolution of a single tree is:

RESOLVETREEt(Fu, Bt, Lt) → (c0,t, c1,t) ≡ (6)

K∀j.nj , kj , vmin,j , vmax,j , vj , c0,t, c1,t : (7)

n0 = start∧ (8)

for j = 0 . . .D − 2 : { (9)

nj , kj , vmin,j , vmax,j , nj+1 = LOOKUPBt(nj)∧ (10)

vj , u = LOOKUPFu(kj)∧ (11)

vmin,j ≤ vj ∧ vj ≤ vmax,j}∧ (12)

(c0,t, c1,t) = LOOKUPLt(nD−1) (13)

The RESOLVETREE proof works by starting with a record of the known root
node, and following D− 2 branches to a leaf. For each branch, the proof demon-
strates that it follows the previous branch, and that the feature variable con-
cerned falls within the valid branch interval. The appropriate feature is looked-up
in the feature table without revealing its identity or value. Note that n0, u,D and
j are not secret, which leads to some efficiency improvement when implementing
the proof for the root branch.

To resolve a forest of |t| trees, the following proof is required:

RESOLVEFORESTt(Fu, ∀t.Bt, Lt) → (c0, c1) ≡ (14)

K∀t.c0,t, c1,t, c0, c1 : (15)

for t = 0 . . . |t| − 1 : { (16)

(c0,t, c1,t) = RESOLVETREEt(Fu, Bt, Lt)}∧ (17)

(c0, c1) = (
∑

t

c0,t,
∑

t

c1,t)∧ (18)

POpenCc0 (c0, openc0) ∧ POpenCc1 (c1, openc1) (19)

The RESOLVEFOREST proof uses the tree resolution as a sub-component. The
secret values returned from each tree are then aggregated into committed values
(c0, c1). These values can be revealed, or kept secret and used as part of a further
protocol (for example to prove that the probability of the user belonging to a
certain profile is higher than a set threshold).
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5.4 Extensions

Decision forests can be used to classify items into more than two classes.
To achieve this, the leaf table can encode likelihoods of multiple classes, and
the aggregation algorithm can sum the evidence for more than two classes in
parallel.

Similarly, more than one feature can be used to branch at each node. In such
cases, each branch needs to encode the identity and interval for all necessary
features. To maintain indistinguishability among all branches, the same number
of features must be tested for all of them.

6 HMMs, Probabilistic Automata and Regular Languages

Regular languages can be used to match streams of symbols to a set of rules
based on an initial state and possible transitions between states. Probabilistic
automata extend regular languages to consider specific probabilities associated
with initial states and transitions. Finally, hidden Markov models dissociate
states from emitted symbols. We show how a client can match a sequence of
certified actions or logs to a given model without revealing the specific actions
or log entries. We illustrate our techniques using hidden Markov models (HMM),
as both probabilistic automata and regular languages can be considered special
cases of such models. We also discuss how matching simpler models can be
implemented more efficiently.

6.1 Vanilla Matching for Hidden Markov Models

We first review the HMM matching algorithms in the absence of any privacy
protection. A complete tutorial on hidden Markov model based techniques can
be found in [39].

A hidden Markov model is fully defined by three tables: an initial state table,
a transition table, and a symbol emission table. All tables refer to a finite set of
hidden states and observed symbols. The initial state table maps possible initial
states of the model to a probability. The state transition table maps state pairs to
a probability. Finally, the symbol emission table maps state and symbol tuples
to a probability. We assume that any entry missing from a table is implicitly
assigned a probability of zero. By convention, a specific state is considered to be
the final state of a model, and matching ends there.

Matching a sequence of symbols starts with assigning the first symbol both a
state and a probability from the initial state table, and, given the initial state,
a probability of emitting the observed first symbol from the symbol emission
table. Matching then proceeds through the sequence of observed symbols by
selecting a new hidden state for each symbol. The probability of state transi-
tion and the probability of emitting the subsequent symbol from the new state
can be retrieved from the state transition table and the symbol emission table
respectively.
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The total probability of a match is the product of all the probabilities from
the initial state to the final state. This product can also be expressed as the sum
of the logarithms of all the probabilities.

6.2 Encoding of Hidden Markov Models

To enable a user to prove that a sequence of their actions or log is matched by
a hidden Markov model, both their actions and the HMM need to be encoded
in a specific manner.

First, we consider how an authority A encodes a sequence of symbols re-
lating to a user. This sequence can represent specific user actions or generic
log entries relating to a user u. Each symbol in the sequence is represented
by an individual entry within a table supporting zero-knowledge lookups Su ≡
ZKTABLEA([ti, ei, u]), where ti is a sequence number and ei represents the sym-
bol observed.

Each table of the hidden Markov model is also encoded using tables that allow
for zero-knowledge lookups signed by authority A′. The initial symbol table It
contains: It ≡ ZKTABLEA′([si, pi]), where si is a possible initial state and pi
the logarithm of its probability. The state transition table is represented as:
Tt ≡ ZKTABLEA′([si, sj , pi]), where si and sj are states between which there is
a transition with log-probability pi. Finally, the emission table for each state si
and potential emitted symbol ej is encoded as: Et ≡ ZKTABLEA′([si, ej , pi]).

We implicitly assign a zero probability to any entries that are not encoded
in the above tables. No proof of a match can be produced for zero-probability
matches. Furthermore, we store all probabilities as a positive integer representing
the quantised version of their negative logarithm. Therefore, the expression pi
used above is a shorthand for −�10ψ log πi� in case ψ decimal digits of the
logarithm are to be used where πi is the raw probability.

6.3 Private Matching

A user with a certified sequence of actions Su can prove that it matches a hidden
Markov model described by a triplet of tables (It, Tt, Et). This can be done
without revealing the symbols in the sequence of actions, their position within
the sequence and without revealing the matched sequence or states or matching
probability. In practice, it might be necessary to reveal the position of the match,
the probability of the match or some hidden states for subsequent processing. We
present the algorithms where only commitments to these are produced, which
can be selectively opened to reveal interesting values.

The MATCH function proves that a sequence of hidden states s0 . . . sl−1

match the sequence of symbols e0 . . . el−1 present, at the offset t0 of the user
sequence, with probability p.
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MATCH(Su, It, Tt, Et) → (s0 . . . sl−1, e0 . . . el−1, t0, p) ≡ (20)

K∀i ∈ [0, l− 1].ti, si, ei, pi, p
′
i, p : (21)

e0, u = LOOKUPSu(t0)∧ (22)

p0 = LOOKUPIt(s0)∧ (23)

p′0 = LOOKUPEt(s0, e0)∧ (24)

for i = 1 . . . |i| − 1 : { (25)

ti = t0 + i∧ (26)

ei, u = LOOKUPSu(ti)∧ (27)

pi = LOOKUPTt(si−1, si)∧ (28)

p′i = LOOKUPEt(si, ei)}∧ (29)

p =

l−1∑

0

(pi + p′i)∧ (30)

POpenCp(p, openp) ∧ POpenCsl−1
(sl−1, opensl−1

) (31)

The main result of the protocol is a commitment Csl−1
to the final state sl−1

and a commitment Cp to the probability p of reaching this state. The prover can
open Csl−1

and Cp. The raw probability of a match can be computed as π =

e10
−ψ·−p. Instead of opening the commitment corresponding to the probability

of the match p the user could prove in zero knowledge that it is within a certain
range.

We note that we do not hide the length of the match denoted by l. The user
is also free to commit to and open commitments to any of the values s0 . . . sl−1,
e0 . . . el−1, t0 to reveal more information to the verifier.

We note that the above procedure proves there is a match and returns its
probability, but does not guarantee in itself that this is the best match, i.e. the
match with the highest probability. Such a procedure is likely to be computation-
ally more expensive, and thus not really practical for real-world applications. In
comparison, the above match algorithm requires only a linear number of proofs
in the length of the match.

6.4 Simplifications for Finite Automata and Regular Languages

Using the match algorithm for HMMs, we can trivially match regular languages
and probabilistic automata. For regular languages, we assume that each state
only emits one symbol with probability one, and that all probability values are
equal. For finite automata, we extend the encoding for regular languages to allow
for different probabilities for the initial state and transitions between states. In
both cases, the matching algorithm can be simplified to avoid proving the link
between symbols and states, as they are in fact the same entities.

Similarly, for regular languages there is no need to store or process probabil-
ities as the length of the match contains all the necessary information.
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Prover Verifier

Authority or 
device A Authority A’

�

�

Authority A 
confirms features

Authority A’ provides 
model

Prover asks trusted party to convince 
verifier that features match a profile

�

Fig. 2. An ideal protocol with a trusted party

7 Discussion

7.1 Security

Security and privacy properties. The security and privacy properties of our
client-side profiling schemes can be described via an ideal protocol depicted in
Figure 2 that carries out the same task. In the ideal protocol, a trusted party
T receives all the inputs of the parties involved in the protocol, performs the
required computations, and provides each party with its output.

As mentioned in Section 2, we have a setting with four parties: provers P ,
verifiers V , an authority A that certifies prover’s profiles, and an authority A′

that certifies the model. In the ideal protocol, first, A′ sends T the model, which
is either the random forest or the hidden Markov model. P sends T its features,
which forwards them to A. A replies T whether the features are correct, and, if it
is the case, T stores them. When P tells T to send the result of the profiling task
to V , T employs P ’s features and the received model to perform the profiling
task and sends V the result.

As can be seen, in the ideal protocol V only learns the result, which protects
P ’s privacy. The resolution of the profiling task is performed by T , which is
trusted, and thus the correctness of the result is guaranteed.

Our scheme mirrors the security and privacy properties of the ideal protocol
while limiting the involvement of trusted parties. Namely, our protocols require
A and A′ to be trusted when certifying the correctness of provers’ profiles and
of the model respectively. Once this is done, A and A′ do not participate in the
protocol anymore. P and V can be adversarial, and yet our scheme guarantees
that, as in the ideal protocol, the result computed by P is correct and V does
not learn more information on P ’s features. We note that our protocols reveal to
V a small amount of information on the model, such as the depth of the decision
trees. Such information is also revealed to V by the ideal functionality in the
ideal protocol.
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Secure implementation of our protocols. It may seem that the provable guar-
antees afforded by zero-knowledge proofs of knowledge, particularly when using
the compilation techniques of [15] to generate a universally composable protocol,
are all that is needed to implement such an ideal functionality, and thus to auto-
matically guarantee the authenticity and privacy of the classification result. The
soundness of proofs guarantees the correctness and authenticity of the classifi-
cation task towards verifiers, and the fact that the protocols are zero-knowledge
guarantees to users that nothing besides the result of the classification is re-
vealed.

Our system is, however, not only a zero-knowledge proof of knowledge. It also
consists of input generators that provide auxiliary information for the proofs,
e.g., signed lookup tables. Unfortunately, as noted by [14] many zero-knowledge
proof protocols designed with only honestly generated input in mind, are not
portable, i.e., they do not necessarily retain their properties when executed on
malicious input. In our system the input generation stage involves the prover
P , verifiers V , an authority A that certifies users profiles, and an authority A′

that certifies the tables and algorithms used for classification. When considering
authenticity A and A′ are considered as being fully trusted by the verifier. For
authenticity, portability is thus naturally maintained. For privacy we consider
A and A′, however, as potentially colluding with the verifier. To prevent the
attacks of [33] the prover needs to be able to check that the cryptographic group
parameters provided by A and A′ are well formed as required in [14]. In our case
these parameters primarily consist of P-signature public keys, and commitment
parameters. To meet their security properties these schemes should already be
carefully designed to be portable. Note that provers need to verify the correct
generation of these public keys and commitment parameters only once in the
setup phase.

Portability is significantly easier for prime order groups. Also in light of [34],
using a single pairing-based elliptic curve could thus be a conscious design deci-
sion, if one is willing to live without Strong RSA based CL-signatures (there are
pairing-based alternatives [18]) and sum-of-squares based range proofs [9]. This
may, however, exclude credential issuing authorities [16] that only support the
more mature Strong RSA based CL-signatures.

We do not provide a concrete implementation and leave many low-level design
decisions underspecified. We advice against adhoc implementations, and recom-
mend the use of zero-knowledge compilation frameworks such as [3,1] that are
approaching maturity.

Systems security issues. A malicious service provider could utilize our client-side
profiling schemes and yet employ covertly web-bugs, cookies or other techniques
to obtain further information about users. We point out that existing counter-
measures, e.g., [2] for web-bugs, can be employed to prevent that. When used in
combination with out scheme, service providers still get the result of the profiling
task.
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7.2 Efficiency of Proposed Schemes

Encoding a table for zero-knowledge lookups using ZKTABLEA(·) requires one
re-ranomizable signature per encoded row. The LOOKUP operation requires the
proof of possession of a single P-signature, and RLOOKUP additionally requires
a range proof to ensure the key is within a secret range.

To prove that a value x lies within an interval [a, b], it is necessary to show
that x−a ≥ 0 and b−x ≥ 0. The techniques of Groth [29] requiring 3 additional
commitments and 3 zero-knowledge proofs of multiplication. Using set member-
ship techniques by Camenisch et al. [13] requires two proof of possession of a
signature per range proof.

The RESOLVETREE procedure relies heavily on zero-knowledge lookups and
range proofs: two LOOKUP and a range proof are needed per branch followed in
the tree. A single lookup is needed to retrieve the leaf with the decision. In total
4·(D−1)+1 proofs of possession of a signature are needed to resolve each decision
tree, where D is the depth of the tree. Aggregating the decisions of multiple
trees in RESOLVEFOREST can be done very efficiently using homomorphic
properties of commitments.

The MATCH procedure to resolve hidden Markov models requires 3 lookups
per symbol matched in the general case. This can be reduced to two lookups if
only regular automata are used (and the emitted symbols are equivalent to the
matched states). In case the location of the sequence into the user stream is not
secret, the stream can be encoded as a sequence of commitments, and a single
lookup is necessary per matched symbol.

8 Conclusion

A rule for building secure system states that all user input must be positively
validated to be correct. Traditionally, any computation performed on the client-
side cannot be trusted. As a result, personal information must be available to
be processed on the server side, which leads to a number of privacy problems.

In this paper, we extend the paradigm of secure client-side computation [23],
and show that complex classification and pattern recognition tasks on user se-
crets can be proved correct. We heavily rely on the efficiency of proving posses-
sion of P-signatures to efficiently implement random forest and hidden Markov
model matching.

Our techniques allow for classification and matching without any unnecessary
leakage of other information. Matching and classification are often necessary to
transform unstructured data into information that can be acted upon: to perform
authentication, to tune a business decision, to detect intrusion, to reason about
a stream of activity.

Yet, in many contexts the mere act of profiling in itself can violate privacy.
Recent news stories, for example, describe how data mining techniques can be
used to detect whether one is pregnant for the purposes of marketing from shifts
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in their buying habits1. Our techniques could deliver comparative functionality
without the need to reveal the detailed shopping list of a customer. The extent
to which one should be subjected to such profiling at all is highly debatable.

Providing a definite answer as to the necessity or oppression inherent in pro-
filing is beyond the scope of this work. Those applying it to specific settings
would be advised to reflect on the remarks Roland Barthes made at his inaugu-
ral lecture at the College de France: “We do not see the power which is in speech
because we forget that all speech is a classification, and that all classifications
are oppressive.”2
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