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ABSTRACT
In this paper, we present CATCHANDRETRY, an extension of the
traditional exception mechanism to provide language-level support
for common recovery techniques in distributed systems. We moti-
vate and justify our design by analyzing several cases studies taken
from the context of Facebook. CATCHANDRETRY is a language
mechanism that is general enough to apply to multiple tiers of a
distributed application; throughout this paper, we illustrate CATCH-
ANDRETRY with examples of its use within both a large-scale dis-
tributed server-side application running in a data center as well as a
JavaScript clients-side application running within a web browser.

1. INTRODUCTION
In today’s programming languages, exceptions provide develop-

ers with a mechanism to raise and propagate signals that some error
or other special condition has occurred. Traditionally, these mecha-
nisms have not included support for reacting to and recovering from
such errors and other conditions, because such recovery is usually
application-specific. We believe, however, that a set of general-
purpose recovery mechanisms exists for common classes of errors
in distributed systems. In particular, large-scale Internet services,
as well as other distributed systems, must contend with a variety of
common failure and error conditions, including:

• Data errors: maintaining data freshness and consistency in
a distributed system can be expensive or even impossible to
preserve in some circumstances [4]. Such data errors may
include reading stale values or reading inconsistent data from
multiple sources [2, 14].

• Availability errors: whether because of network partitions,
hardware failures, performance stutters, or software bugs,
code within a distributed system must be prepared to handle
the problems that occur when a remote node is unavailable
or slow to respond.

Of course, data errors are not completely independent of availabil-
ity errors. Some data errors, such as missing data, occur when part
of the storage system are unavailable.
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These classes of errors in Internet services and many other dis-
tributed systems are often resolved with a layered approach: 1)
the initial design of the system incorporates node and data repli-
cation to minimize the impact of these errors; 2) a supporting in-
frastructure layer is tasked with detecting and repairing the under-
lying faults as they occur (e.g., by rebooting, re-imaging failed
nodes [7, 13]; and 3) application-specific code is responsible for
maintaining the user-visible functionality and performance of the
system.

The first contribution of this paper is its identification of a small
number of building-block mechanisms that are used to implement
common application-level recovery techniques for availability and
data errors. These mechanisms explored in this paper include:

• Re-execution of failed operations, with optional variation
in parameters.

• Scheduling control over when, where, and whether failed
operations are re-executed.

Applications can combine these mechanisms to implement the most
common recovery techniques that are in use today, such as op-
timistically continuing and resolving conflicts later; re-trying on
user action; continuing with a graceful degradation of functional-
ity; scheduling an operation to occur once a failed dependency has
been recovered, or others [1, 6]. Today, without existing implemen-
tations of these mechanisms, we find that distributed systems (re-
)create their own implementations of these mechanisms [8, 11, 12].

The second contribution of this paper is a language-level mecha-
nism that we call CATCHANDRETRY, a building block for recovery
techniques; in addition to providing the ability to retry, CATCH-
ANDRETRY includes an extension of the traditional exception ob-
jects to include explicit references to the failed code.The result is
an easy-to-use language mechanism that can greatly simplify the
writing of recovery code. In the rest of this paper, we describe
CATCHANDRETRY, and motivate and justify our design by ana-
lyzing several cases studies taken from the context of Facebook.

As a language mechanism, CATCHANDRETRY is general enough
to apply any modern language with support for structured excep-
tions. We illustrate CATCHANDRETRY with examples of its use
within both a large-scale distributed server-side application run-
ning in a data center written in C# or Java as well as a JavaScript
clients-side application running within a web browser. CATCH-
ANDRETRY is similar to the retry mechanisms proposed in other
languages, such as Eiffel, Ruby, and others [3, 9]. However, our
approach addresses deficiencies in these techniques, such as con-
cisely specifying the number of retries to avoid the danger of infi-
nite loops, handling interleaved retries of multiple types of excep-
tions, parameterized retries, and providing control over scheduling
of retries. All these extensions have been motivated by common
error handling patterns, some of which are shown in Section 3.



try {
Console.WriteLine("reading file...");
// code to read a file from the network
...

} catch( StalenessException e ) {
// wait 5 seconds before retrying
Thread.Sleep(TimeSpan.FromSeconds(5));
Console.WriteLine("about to retry...");
retry; // retry once
Console.WriteLine("retried the read");

} fail {
Console.WriteLine("retry failed");

}

Figure 1: Basicretry.

2. OVERVIEW OF CATCHANDRETRY

In building large-scale Internet services, such as search engines,
web-mail services, and social networking sites, developers must
contend with the challenges of data and availability errors. In this
section, we describe an approach where data and availability errors
are signalled via exceptions, and handled with language features
for operation retries and their fine-grained scheduling.

Throughout this paper, our examples assume a single-threaded
model similar to that of JavaScript, and omit the synchronization
complications that would be needed in a multi-threaded system.
We discuss the implications of multi-threading in Section 4.

2.1 Data and Availability Exceptions
The first element of our approach is for system and application

code to raise an exception when a data error, such as staleness or
inconsistency is detected; or when a remote node providing some
service to the running code is unavailable or too slow in responding
to a request.

Today, some exceptions, such as SQL exceptions on database
queries and I/O exceptions on network errors, are already raised to
signal data and availability errors. We propose expanding the use
of these exceptions to include a broader set of problems, including
data errors and availability error conditions that may or may not
be real problems, depending on application semantics and require-
ments.

Our approach forrecoveringfrom these failures is orthogonal to
the mechanisms used todetectpotential data and availability errors.
For the purposes of this paper, we assume that there is some clear
mechanism, such an application-specified policy, or a strong sys-
tems indications, such as a network partition, that indicate data and
availability error conditions.

2.2 Basic Retry
Once data and availability errors in a program are signaled via

the use of exceptions, we propose the use of a new language-level
feature, theretry keyword to re-execute thetry block in which
the exception was raised, as shown in Figure 1.

Theretry keyword is only valid within acatch block and will
attempt to re-execute thetry block. While we shall use the C#
syntax for illustration, similar syntax would be valid in other lan-
guages such as Java and JavaScript. An optional integer parameter
specifies how many times to retry the block: e.g.,retry 3;. When
retry is called without an argument,retry 1; is assumed. Limiting
the number of allowed retries prevents the accidental infinite loops
that can occur in other languages with exception retries, such as
Ruby [3].

2.3 When Retries Fail
Despite repeated attempts to retry a particulartry block, there

are situations when all of these attempts will ultimately fail. To
process this scenario, eachretry block can have an optionalfail
block that is processed when the specified number of retries fail.
An example is shown in Figure 1. Note thatfail “swallows” the
exception; if we wish to re-throw it, we can just putthrow; without
an argument in thefail block.

In a way,fail blocks are similar tofinally blocks. The differ-
ence is that they only execute if all retry attempts fail for a particular
catch clause;fail for a block without aretry is syntactically in-
valid. Note that in the presence of multipleretry keywords within
a catch block, afail block will execute after the first one that
is hit at runtime. Just like with regular exception semantics, an-
othercatch (or afinally) clause can be provided after the current
catch to deal with the situation when a different type of exception
is thrown.

2.4 Parametrized Retry
Albert Einstein defined insanity to be “doing the same thing over

and over again and expecting different results”. In a distributed sys-
tem, retrying an operationcanoften lead to different results, such as
when a fault was only transient, or the system is non-deterministic.
Other times, however, it is useful to be able to explicitly retry a
parameterized variant of the original failed operation. For this pur-
pose, we support a parameterized version of thetry keyword:

int x = 10, y = 100, z = 200;
try(x,y) {

z = x + y;
} catch(Exception ex) {

// retry twice with x set to 5
retry(x=5), 2;

}

The parameterizedtry lists the variables in scope that can be mod-
ified when retrying an operation. When retrying an operation, new
values can be specified using the C# 4.0 syntax for optional argu-
ments. If no new value is specified then the original value is used.
A retry cannot change the value of any variable that was not ex-
plicitly listed in thetry parameter list.

Note that retries do not attempt to provide transactional seman-
tics. In other words, aretry will re-execute the portion of thetry
block that had already run before the exception was thrown, which
may lead to undesirable side-effects, as discussed in Section 5.

2.5 Recovery From Multiple Exceptions
It is common in a distributed system to have multiple failures

and applications should robustly handle all of them. CATCHAND-
RETRY allows the application to separate the logic required for han-
dling multiple failure modes. Consider the example below:

try {
ReadData();

} catch(NetworkConnectivityException e) {
Thread.Sleep(TimeSpan.FromMilliseconds(5));
retry 5;

} fail {
Console.Writeline("network failure");

} catch(StaleDataException e) {
RefreshData();
retry 10;

}

When reading data from a network, the application recovers from
network failures by retrying after sleeping for a small period of
time. Simultaneously, the application recovers from stale data reads
by retrying after refreshing the data. At runtime, it is possible for
the application to receive network-failure exceptions while recov-
ering from stale data reads. CATCHANDRETRY automatically dis-
patches to the rightcatch clause in this case. Note that if excep-
tions are thrown by thefail block or the code before or after the



A a;
try(a){

T;
} catch(Exception1 ex1){

P1;
retry 3;
Q1;

} fail {
F1;

} catch(Exception2 ex2){
P2;
retry(a=a2);
Q2;

} fail {
F2;

} finally{
R;

}

Figure 2: Example for translation.

retry keyword, it will not be handled by thecatch clauses and
will need to be handled separately. In other words, the sequence of
catch/retry/fail/finally clauses applies to thetry block.

2.6 Scheduling Control Over Retries
While the ability to immediately retry a failed operation can of-

ten be useful, there are also many times when we know that a retry
will not succeed until some additional condition is met. Perhaps,
an operation will not succeed until a remote node has completed
rebooting, or until a cached data item has been refreshed from its
master copy.

To support these cases, we extend the traditionalcatch block
to accept an explicit reference to a function object representing the
retriable operation:

try {
// do something

} catch(AvailabilityException e, RetryFunction r) {
// allow the application to schedule the
// try block asynchronously
scheduleForLater(r);

}

The function objectr behaves as an anonymous function capturing
the functionality of thetry block as well as a closure over its scope,
as defined by the position of thetry block. Once thecatch block
has an explicit handle to the function representing the (retryable)
try block, it may pass it around, store it in an application-level
data structures, and execute the function whenever is desired.

2.7 Implementation
These new constructs for retrying thecatch block, scheduling

retries, and handling retry failure are effectively convenient syn-
tactic sugar that makes many common cases easier to program, as
Section 3 shows. It is possible to implement them using regular
language syntax, as we show below.

Figure 3 shows the translation of atry-catch-retry-fail-finally
block shown in Figure 2. We use a local delegate to capture thetry

blockT. Delegates are a feature of C# that effectively allows the lo-
cal closure to be properly captured in the same lexical scope as the
block T. We change the occurrences of variablesa andb with _a
and _b when we convertT into a delegate so that we can pass these
in as parameters. In Java, anonymous classes can be used for simi-
lar effect.

Note that as Figure 3 shows, we keep a set of counters per single
try block. It is possible to alternate among different kinds of ex-
ceptions without resetting retry counters; every time an exception is
caught, a retry counter will be incremented. Doing so allows us to

// rename argument and adjust returns
bool _T(A _a=a) {T/a/_a/;}
int retryCount1 = retryCount2 = 0;
A _arg = a;
delegate void Continuation();
Continuation _cont = null;

while (true) {
try {

bool shouldReturn = _T(_arg);
if (shouldReturn) {

_cont = null;
return;

}
} catch(Exception1 ex1){

P1;
if(retryCount1 < 3){

retryCount1++;
_arg = a;
_cont = ( () => Q1 );
continue;

} else{
_cont = null;
F1;

}
} catch(Exception2 ex2){

P2;
if(retryCount2 < 1){

retryCount2++;
_arg = a2;
_cont = ( () => Q2 );
continue;

} else{
_cont = null;
F2;

}
} finally {

if(_cont) _cont();
R;

}
break;

}

Figure 3: De-sugaring of the Figure 2 example in C#. We are
using meta-syntax as needed (for example,T is actually a block
of code).

place an upper limit on the number of times retry code will be run.
Also note that we generally allow for codeafter a retry block,
as indicated byQ1 andQ2 in our example, which can be used for
local cleanup, for instance. However, since these block may never
be reached, using them adds unpredictability in practice. Enforcing
that aretry keyword be the last element of acatch block could
be a good stylistic recommendation.

We also replace occurrences ofreturn keyword within thetry
block to return to the surrounding function. To signal returns, we
make the underlying delegate _T return a boolean value, which is
handled by the caller. Note thatfinally “trumps” return: be-
fore returning from the function, thefinally block will be called
in C#. Once thetry block has been implemented as a delegate
function, passing an explicit handle to this function into acatch

block is trivial. Note that an alternative, perhaps more efficient im-
plementation for Java bytecode would use JSRs, local Java subrou-
tines [5]; in this case, we would not have to addressreturns spe-
cially. The translation uses per-retry counters to capture whether
we should continue the retrying process or just bail out of process-
ing thistry block. Depending on whichcatch block succeeds, if
any, we set up and execute a continuation represented by delegate
_cont.

3. MOTIVATING CASE STUDIES
This section presents some case studies that further motivate our



TimestampingMap<Person, Set< Person » friends;
TimestampingMap <Person, Message> statusUpdates;
struct Message {string msg; DateTime time};

List<Message> getStatusUpdate(
Person person, TimeSpan staleness)

{
List<Message> result = new List<Message>();
Set<Person> f = friends.Get(person, staleness);
foreach (Person p in f) {

result.Add(statusUpdate.Get(p, staleness));
}
return result;

}

Figure 4: Status update example.

design. These case studies are taken from the context of Facebook,
a widely used distributed system. For each study, we start by de-
scribing the example scenario in question and then showing a naïve
implementation of it. We then proceed to refine the example over
several iterations to add sophisticated exception recovery.

3.1 Facebook Status Updates
This example captures the problem of getting status updates from

one’s friends on Facebook.

Take 1: The initial implementation is being very conservative
about staleness. All low-level calls take staleness as an argument,
as shown in Figure 4.Anystaleness violation will cause the func-
tion to throw an exception.

Take 2: In this variant, we allow individual people’s status to be
stale. We simply choose to skip these outdated status messages
when creating a set of status updates:

foreach (Person p in f) {
try {

result.Add(statusUpdate.Get(p, staleness));
} catch(StalenessException ex){

;
}

}

Take 3: In the case that thelist of friends is too stale to be used,
we force a retry to re-fetch the list instead of throwing an exception
to the surrounding application logic:

for(int i=0;i<=10;i++)
try {

List<Person> f = friends.Get(person, staleness);
} catch(StalenessException ex){

continue;
}
break;

}

The same logic can be succinctly expressed withretry syntax:

try {
List<Person> f = friends.Get(person, staleness);

} catch (StalenessException ex){
retry 10;

}

Note that CATCHANDRETRY is a syntactic mechanism — we are
not trying to enforce any sort of transactional semantics here. It is
up to the application to undo whatever side-effects might have hap-
pened before the exception is thrown withinthe try block. Note
that above, the call tofriends.Get is idempotent, so there is no
danger of duplication. Anecdotally, experience with Facebook shows
that duplication failures are common: when posting a link, for ex-
ample, Facebook will often show an error message and then re-
posting the link will result in two similar messages being posted.

void SendEventInvite(Person me,
AddressFilter<string,bool> isValid, string message,
TimeStamp staleness)

{
foreach(Person friend in friends.Get(me, staleness)){

string address = friend.Get("address", staleness);
if(isValid (friend)){

sendMessage(friend, message, "HTTPS");
}

}
}

Figure 5: Event invitation routine.

Take 4: We can catch and retry on a signal at a later point. The
interesting observation is that the code above is exactly what the
client code in a browser needs to execute as well. However, the
amount of state maintained within a browser session is generally
considerably smaller. This will lead to a situation where staleness
exceptions are more common.

One option is to force an update by going to the Facebook server
every time such an exception is caught. A more efficient approach,
however, is to schedule an update for later execution. In the case of
Facebook, a “keep-alive” request is sent to the server every several
seconds. Together with such a ping, an information request can be
also batched:

try {
List<Person> f = friends.Get(person, staleness);

} catch (StalenessException ex){
Aspects.registerAspect(Facebook.PingServer,

new Task(delegate(){
friends.Refresh(person); // refresh from server

})).waitForCompletion();
// just retry
Console.WriteLine("Retryng after update...");
retry;

}

This code inserts a client-sideaspectto add operation

friends.Refresh(person);

for the current value ofperson on nextFacebook.PingServer
request. Here we assume that the machinery for batching requests
is implemented by the AJAX client.

3.2 Organizing a Facebook Event
Suppose we want to send a Facebook event invitation to a list

of friends. Let’s further assume that we want to send an invitation
to only those of our friends who live in Redmond, WA. Note that
some of friends’ address information might be unavailable on the
current machine or not even provided by friends.

Take 1: The basic logic of sending an event is shown in Figure 5.

Take 2: Because a friend address lookup may fail, we wrap it in a
try block:

try {
string address = friend.Get("address", staleness);
if(isValid (friend)){

sendMessage(friend, message, "HTTPS");
}

} catch (AvailablityException ex, 1) {
friend.Refresh("address");

}

This will try to re-execute the operation to get the address of a
friend after theRefresh is done. Note that CATCHANDRETRY

will also restore the state of the stack to make sure that when the
try block is scheduled to be re-run, the value of variablefriend



void SendEventInvite(Person me,
AddressFilter<string,bool> isValid, string message,
TimeStamp staleness)

{
foreach(Person friend in friends.Get(me, staleness)){

try {
string address = friend.Get("address", staleness);
if(isValid (friend)){
string protocol = "HTTPS";
try(protocol) {

sendMessage(friend, message, protocol);
} catch(AvailablityException ex, 5) {

friend.Refresh("address");
int timeout = 1;
if(ex.Timeout != -1){

timeout = ex.Timeout;
}
Thread.Sleep(TimeSpan.FromSeconds(timeout));

} fail(AvailablityException ex) {
Console.WriteLine("5 retries failed");

} finally {
Console.WriteLine("Done");

}
}

} catch(AvailablityException ex, 1){
friend.Refresh("address");
int timeout = 1;
if(ex.Timeout != -1) timeout = ex.Timeout;
Thread.Sleep(TimeSpan.FromSeconds(timeout));

} catch(AvailablityException ex){
Console.WriteLine("5 retries failed");

} finally {
Console.WriteLine("Done");

}
}
// need to wait for all tasks to finish!

}

Figure 6: Retrying SendMessage.

is whatever it was at the time the exception occurred. In this case,
we chose not to block subsequent iterations of theforeach loop:
lookup of addresses of other friends can proceed in parallel.

Take 3: RetryingsendMessage is shown in Figure 6.

Take 4: We can retry the logic of thetry block with a different
set of values. For instance, assuming aSendMessage request fails
using HTTPS, we can try switching to HTTP instead by wrapping
SendMessage in the following way:

string protocol="HTTP";
try(protocol){

SendMessage(friend, message, protocol);
} catch(AvailablityException ex){

retry(protocol="HTTP");
Thread.Sleep(TimeSpan.FromSeconds(5));

}

The call to will try to re-send the message withHTTP as the value
of theprotocol try block parameter.

4. DISCUSSION
While there are a small number of common approaches to re-

covering from exceptions in a distributed system. These patterns
are applicable in many scenarios and, interestingly enough, similar
mechanisms apply across distributed system tiers, from the client to
the server tier. However, today’s programming languages provide
little support for these recovery patterns.

Our case studies demonstrate the feasibility and usefullnes of
providing programming language support for retrying operations
after failure, modifying key parameters for execution, and con-
trolling the scheduling of these retries. While our case studies

primarily use a staleness parameter to detect data errors, we can
easily generalize to detect and raise exceptions to a broader set
of staleness,consistency and availability issues. Similarly, while
our case studies are written under the simplified model of a single-
threaded or turn-based concurrency [10] execution model, CATCH-
ANDRETRY is applicable to multi-threaded systems as well. How-
ever, scheduling a retry operation to execute in a parallel thread
does require the developer to ensure that the operation take explicit
action to ensure thread-safety and avoid time-of-check-time-of-use
(TOCTOU) problems.
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