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Abstract

The landscape of security vulnerabilities has changed dramatically in the last sev-

eral years. While buffer overruns and format string violations accounted for a large

fraction of all exploited vulnerabilities in the 1990s, the picture started to change

in the first decade of the new millennium. As Web-based applications became more

prominent, familiar buffer overruns are now far outnumbered by Web application

vulnerabilities such as SQL injections and cross-site scripting attacks. These vulner-

abilities have been responsible for a multitude of attacks against large e-commerce

sites, financial institutions and other sites, leading to millions of dollars in damages.

In this thesis, we describe the Griffin project, which provides a comprehensive

static and runtime compiler-based solution to a wide range of Web application vul-

nerabilities. Our approach targets large real-life Web-based Java applications. Given

a vulnerability description a static code checker is generated. The checker statically

analyzes the code and produces vulnerability warnings. Alternatively, a specially in-

strumented, secured version of the original application bytecode is produced, which

can be deployed on a standard application server alongside other applications.

To make our approach to vulnerability detection and prevention both extensible

and user-friendly, vulnerability specifications are expressed in PQL, a Program Query

Language. The initial PQL vulnerability specification is provided by the user, but

the majority of the specification can be shared among multiple applications being

analyzed. This is because most of the PQL specification is specific to the framework

being used, such as Java J2EE, rather than the application.

The static checker generated based on the PQL specification finds vulnerabilities

by analyzing the Web-based applications. The static approach is sound, which ensures

that it finds all vulnerabilities captured by the specification in the statically analyzed
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code. We evaluate analysis features such as context-, object- and map sensitivity that

help keep the number of false positives low.

Modern Java applications make an extensive use of runtime reflection; this is

especially common in extensible applications that support plugins and extensions.

Being oblivious to reflection in the process of call graph construction leads to large

portions of the application being ignored. This thesis describes the first call graph

construction algorithm to explicitly address the issue of reflection. When reflection

is taken into account by our approach, the size of the resulting application call graph

often increases many-fold.

Conservative static analysis provides an over-approximation of runtime behavior.

As such, it is impossible to have a conservative static solution that is completely free

of false positives, despite our efforts to improve static analysis precision. Therefore, as

an alternative to static analysis, secured application executables can be automatically

generated based on the same PQL vulnerability specification. As an alternative to

terminating the Web application whenever an exploit is detected, vulnerability recov-

ery rules may be provided as part of the PQL specification. Recovery allows injecting

security into existing applications without sacrificing application availability. Finally,

we show how static analysis can be used to significantly reduce the instrumentation

overhead required for runtime protection.

Our experimental results show that Griffin provides effective and practical tools

for finding and preventing security vulnerabilities. We were able to find a total of 98

security errors, and all but one of our 11 large real-life benchmark applications were

vulnerable. Two vulnerabilities were located in commonly used libraries, thus subject-

ing applications using the libraries to potential vulnerabilities. Most of the security

errors we reported were confirmed as exploitable vulnerabilities by their maintainers,

resulting in more than a dozen code fixes. The static analysis reported false positives

for only one of 11 applications we have analyzed. While the runtime overhead can

be quite high for our runtime protection, information we compute statically allows

us to reduce the number of necessary instrumentation points dramatically, reducing

the dynamic overhead to below 10% in the majority of cases. Finally, our runtime

system was able to recover from all exploits we performed against it in practice.
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Sonnet

All we need is fourteen lines, well, thirteen now,

and after this one just a dozen

to launch a little ship on love’s storm-tossed seas,

then only ten more left like rows of beans.

How easily it goes unless you get Elizabethan

and insist the iambic bongos must be played

and rhymes positioned at the ends of lines,

one for every station of the cross.

But hang on here wile we make the turn

into the final six where all will be resolved,

where longing and heartache will find an end,

where Laura will tell Petrarch to put down his pen,

take off those crazy medieval tights,

blow out the lights, and come at last to bed.

— Billy Collins
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Chapter 1

Introduction

The security of Web applications has become increasingly important in the last

decade. Web applications are rapidly becoming the norm for a wide range of soft-

ware development projects, as client-server solutions are getting less popular. More

and more Web-based enterprise applications deal with sensitive financial and medical

data, which, if compromised, can cause significant downtime and millions of dollars

in damages. It is crucial to protect these applications from hacker attacks.

1.1 Introduction

The current state of application security leaves much to be desired. The 2002 Com-

puter Crime and Security Survey conducted by the Computer Security Institute and

the FBI revealed that, on a yearly basis, over half of all databases experience at least

one security breach and an average episode results in close to $4 million in losses [37].

The survey also noted that Web crime has become commonplace. Web crimes range

from cyber-vandalism (e.g., Web site defacement) at the low end, to theft of sensitive

information and financial fraud at the high end.

A recent penetration testing study performed by the Imperva Application Defense

Center included more than 250 Web applications from e-commerce, online banking,

enterprise collaboration, and supply chain management sites [200]. Their vulnera-

bility assessment concluded that at least 92% of Web applications are vulnerable to

1
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some form of hacker attacks. Security compliance of application vendors is especially

important in light of recent U.S. industry regulations such as the Sarbanes-Oxley act

pertaining to information security [20, 70].

According to the 2005 E-Crime Watch survey conducted in cooperation with the

United States Secret Service, 43% of respondents reported an increase in e-crimes

and intrusions over the previous year [138]. Overall 70% of respondents reported at

least one e-crime or intrusion was committed against their organization. During the

first six months of 2005, malicious code that exposed confidential information repre-

sented 74% of the top 50 malicious code samples, according to Symantec’s Internet

Security Threat Report Volume VIII [40]. The report also documents 1,872 vulner-

abilities in the first half of 2005, the most ever recorded since the inception of the

report. Despite this sampling of data pointing to the increasing threat of directed

attacks, the threat is likely still understated. Many directed attacks go unreported

for the following reasons:

• Many organizations try to suppress the fact that they were attacked in the hope

of avoiding negative publicity and damage to their reputation.

• Many organizations that have been attacked simply do not know that they have

been the victim of a targeted attack.

While a great deal of attention over the last decade has been given to network-

level attacks such as port scanning, about 75% of all attacks against Web servers

target Web-based applications, according to a recent survey [89]. It is easy to un-

derestimate the potential level of risk associated with sensitive information within

databases accessed through Web applications until a severe security breach actually

occurs. Traditional defense strategies such as firewalls do not protect against Web

application attacks, as these attacks rely solely on HTTP traffic, which is usually

allowed to pass through firewalls unhindered. Thus, attackers typically have a direct

line to Web applications.

Many projects in the past focused on guarding against problems caused by

the unsafe nature of C, such as buffer overruns and format string vulnerabili-

ties [41, 177, 194]. However, in recent years, Java has emerged as the language
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of choice for building large complex Web-based systems, in part because of language

safety features that disallow direct memory access and eliminate problems such as

buffer overruns. Platforms such as J2EE (Java 2 Enterprise Edition), Struts, Web-

Works, and Tapestry also helped to promote the adoption of Java as a language for

implementing e-commerce applications such as Web stores, banking sites, customer

information management sites, etc.

A typical Web application accepts input from the user browser and interacts with

a back-end database to serve user requests; J2EE libraries make these common tasks

easy to implement. However, despite Java language’s safety, it is possible to make

logical programming errors that lead to vulnerabilities such as SQL injections [6, 7, 59]

and cross-site scripting attacks [33, 87, 179]. Discovered several years ago, these attack

techniques are now commonly used to create exploits by malicious hackers. A score

of recently discovered vulnerabilities can be attributed to these attacks. A simple

programming mistake can leave a Web application vulnerable to unauthorized data

access, unauthorized updates or deletion of data, and application crashes leading to

denial-of-service attacks. Moreover, certain types of attacks may result in the attacker

gaining complete control over the underlying system.

The fact that many applications are deployed on external sites greatly increases

the perimeter of the attack. Many Web sites need to be made public in order to

give the necessary access to their customers, however, this also exposes them to

malicious hackers. A good example of this is a recent attack on a government Web

site ri.gov perpetrated by a college student living in Eastern Europe [170]. The

enabling mechanism for the attack was the presence of a SQL injection vulnerability,

which allowed the hacker to discover the structure of database tables and then to

execute a shell command through the underlying SQL server database. This incident

led to the theft of hundreds of credit card numbers.
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Figure 1.1: Number of vulnerabilities reported by year (based on NIST/DHS data).

1.2 Web Application Vulnerability Statistics

To further motivate our focus on Web application vulnerabilities in this thesis, this

section presents statistics that demonstrate how common various categories of vulner-

abilities are. While there are many cataloguing sites that collect vulnerability reports,

reliable statistics on the frequency of different vulnerability categories is hard to come

by. Below we report on the data obtained from some publicly available sources that

shed light on this matter.

1.2.1 NIST Study

The National Institute of Standards and Technology (NIST) and the Department of

Homeland Security have been aggregating vulnerability data for many years [156].

Statistics summarizing the total number of vulnerabilities in the NIST database are

presented in Figure 1.1. While the numbers for 2006 are not yet available at the time
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Figure 1.2: Relative frequency of vulnerabilities in the SecurityFocus.com sample.

of this writing, the number of vulnerabilities is projected to be higher than in 2005.

As can be seen from Figure 1.1, there is a slight decline in the number of vulner-

abilities in 2003, followed by a sharp increase in 2004 and 2005. While it is difficult

to validate these claims precisely, one interpretation of this anomaly is that the de-

cline in 2003 is attributable to most of “shallow” buffer overruns being found. The

sharp increase in 2004 can be attributed to Web application vulnerabilities becoming

commonplace.

1.2.2 SecurityFocus.com Study

To gain insight into the relative frequencies of different vulnerability types, we con-

sidered a sample of 500 vulnerability reports obtained from the SecurityFocus.com

database. This vulnerability sample spans a week in November 2005. The format of

the vulnerability database allows for relatively easy processing and classification of

this data. A coarse classification of these vulnerabilities is shown in Figure 1.2. It

is apparent from the picture that input and output validation vulnerabilities account

for over 50% of the sample.
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Figure 1.3: Relative frequency of input/output validation vulnerabilities.

Focusing in on input and output validation vulnerabilities shows that most are

vulnerabilities specific to Web applications, as can be seen from Figure 1.3. In fact,

the infamous buffer overrun issue comes in a distant third, trailing SQL injection and

cross-site scripting attacks.

1.2.3 Relative Popularity of Java

The focus of our work is on large mission-critical software systems written in Java.

The rise of such systems is in part due to the type safety and modularization features

of Java, which allow the development of large systems, which we defined to be over

100,000 lines of code. The popularity of Java for Web applications has also been

fueled by the rise of Web application development frameworks such as J2EE, Tapestry,

WebWorks, Apache Struts and many others.

While no reliable data on this subject is available, anecdotal evidence suggest that

Java J2EE applications comprise a significant fraction of Web applications at large

financial firms and e-commerce sites [181]. .NET applications, which are typically
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Figure 1.4: History of common Web application vulnerabilities. The date of the first report
describing a vulnerability found “in the wild” or the article describing the vulnerability is given.

written in C#, account for another big fraction of Web applications. Most of the

ideas described in this thesis apply to applications written in C# as well. One C#

language feature potentially complicating the pointer analysis described in Chapter 3

is the presence of stack-allocated objects. Moreover, the presence of unmanaged code

makes the soundness guarantees of our static approach much harder to sustain; see

Section 3.6 for a discussion of soundness.

As the recent research in vulnerability detection in scripting languages such as

PHP demonstrates [95, 207], a different approach is typically required for that class

of languages. In particular, control flow of the program is typically more important

than it is in Java. Furthermore, the presence of the eval construct makes soundness

very difficult to maintain.

1.2.4 History of Web Application Vulnerabilities

Web application vulnerabilities have a short but an illustrious history. Figure 1.4

shows the first time each type of vulnerability was discovered. In many cases, vulner-

abilities were first discovered and described in a paper by a vulnerability researcher,

with actual exploits following soon thereafter.
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We can also expect new types of vulnerabilities to appear in the future. For in-

stance, two new flavors of injection attacks, control injection and reflection injection,

which allow the hacker to influence the control flow path taken by an application and

what classes are created reflectively are entirely possible [178]. How these vulnerabil-

ities can be exploited remains to be seen.

1.3 Overview of Web Application Vulnerabilities

As supported by the statistics presented in Section 1.2.2, of all vulnerabilities identi-

fied in Web applications, problems caused by input/output validation are recognized

as being the most common. These vulnerabilities, also sometimes referred to as taint-

style or information flow vulnerabilities are the focus of this thesis.

Our statistics in Section 1.2.2 are further supported by security surveys. Ac-

cording to an influential survey performed by the Open Web Application Security

Project [157], unvalidated input is the number one security problem in Web appli-

cations. Many such security vulnerabilities have recently appeared on specialized

vulnerability tracking sites such as SecurityFocus and are widely publicized in the

technical press [151, 157]. Recent reports include SQL injections in Oracle prod-

ucts [122] and cross-site scripting vulnerabilities in Mozilla Firefox [112].

Input validation problems are similar to those handled dynamically by the taint

mode in Perl [197]. Perl maintains a runtime taint bit it attaches to every value.

The taint bit is set for data that comes from the outside (return result of file or

network read methods, etc.). Perl automatically un-taints a value that is matched

against a regular expression. While a good heuristic, this approach is obviously not

safe if the regular expression is /(.*)/, which matches all strings. Moreover, when

the blacklist validation approach is used, regular expressions are created to recognize

malicious values, in which case matching strings should definitely not be untainted.

Our approach to controlling the flow of taint is considerably more extensible, as

summarized in Section 2.1.1.

In Section 1.3.1 below we list the vulnerabilities this thesis addresses. However,

the framework presented here is general enough to encompass other, yet undiscovered
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vulnerability types. As mentioned above, reflection injection refers to the user being

able to control which classes are reflectively instantiated at runtime [178]. While we

are able to find such vulnerabilities, none has been observed in the wild yet.

1.3.1 Categorization of Taint-Style Vulnerabilities

To exploit unchecked input, an attacker must achieve two goals:

Inject malicious data into Web applications. Common methods used include:

• Parameter manipulation: pass specially crafted malicious values in fields of

HTML forms.

• Hidden field manipulation: set hidden fields of HTML forms in Web pages

to malicious values.

• HTTP header tampering: manipulate parts of HTTP requests sent to the

application.

• Cookie poisoning: place malicious data in cookies, small files sent to Web-

based applications.

• Non-Web sources: set command-line parameters to malicious values.

Manipulate applications using malicious data. Common methods used include:

• SQL injection: pass input containing SQL commands to a database server for

execution.

• Cross-site scripting: exploit applications that output unchecked input ver-

batim to trick the user into executing malicious scripts.

• HTTP response splitting: exploit applications that output input verbatim

to perform Web page defacements or Web cache poisoning attacks.

• Path traversal: exploit unchecked user input to control which files are accessed

on the server.

• Command injection: exploit user input to execute shell commands.
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1. javax.sql.Connection con = ...

2. javax.servlet.http.HttpServletRequest request = ...;

3. String userName = request.getParameter("username");

4. String query = "SELECT * FROM Users " + " WHERE name = ’" + userName + "’";

5. con.execute(query);

Figure 1.5: Simple SQL injection example.

The kinds of vulnerabilities described above are widespread in today’s Web applica-

tions. A recent empirical study found that parameter manipulation, SQL injection,

and cross-site scripting attacks account for more than a third of all reported Web

application vulnerabilities [185]. While different on the surface, all types of attacks

listed above are made possible by user input that has not been (properly) validated.

In this chapter we only outline the basics of each vulnerability. More detailed

information about the vulnerabilities outlined below can be found in “The 21 Primary

Classes of Web Application Threats” [151] and the “OWASP Secure Development

Guide” [158].

1.3.2 SQL Injection Example

Let us start with a discussion of SQL injections, one of the most well-known security

vulnerabilities found in Web applications. SQL injections are caused by unchecked

user input being passed to a back-end database for execution [6, 7, 59, 109, 123, 180].

The hacker may embed SQL commands into the data he sends to the application,

leading to unintended actions performed on the back-end database. When exploited,

a SQL injection may cause unauthorized access to sensitive data, updates or deletions

from the database, and even shell command execution.

Example 1.1. A simple example of a SQL injection is shown in Fig-

ure 1.5. This code snippet obtains a user name (userName) by invoking method

request.getParameter("username") and uses it to construct a query to be passed

to a database for execution (via con.execute(query)). This seemingly innocent piece

of code may allow an attacker to gain access to unauthorized information: if an at-

tacker has full control of string userName obtained from an HTTP request, he can,
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for example, set it to ’OR 1 = 1;−−. Two dashes are used in the Oracle dialect of

SQL to indicate the beginning of a comment. (Other databases use a slightly different

syntax.) Therefore, the WHERE clause of the query effectively becomes the tautology

name = ’’ OR 1 = 1. Thus, the attacker may circumvent the name check and gain

access to all user records in the database. �

SQL injection is but one of the vulnerabilities that can be formulated as tainted

object propagation problems. In this case, the input variable userName is considered

tainted. If a tainted object (the source or any other object derived from it) is passed

as a parameter to con.execute (the sink), then there is a vulnerability.As discussed

above, such an attack typically consists of two steps:

Step 1. injecting malicious data into the application, and

Step 2. using the data to manipulate the application.

The former corresponds to the sources of a tainted object propagation problem and the

latter to the sinks. The rest of this section presents attack techniques and examples

of how exploits may be created in practice1.

1.3.3 Injecting Malicious Data

Protecting Web applications against unchecked input vulnerabilities is difficult be-

cause applications can obtain information from the user in a variety of different ways.

One must check all sources of user-controlled data such as form parameters, HTTP

headers, and cookie values systematically. While commonly used, client-side filtering

of malicious values is not an effective defense strategy. For example, a banking ap-

plication may present the user with a form containing a choice of only two account

numbers; however, this restriction is easily circumvented by saving the HTML page,

editing the values in the list, and resubmitting the form. Therefore, inputs must be

filtered by the Web application on the server. Note that many attacks are relatively

1Most security exploitation techniques described in this chapter are independent of the program-
ming language being used. To make the discussion below concrete, we use Java examples. Code
snippets we show in this section are extracted from a suite of Web application benchmarks described
in Chapter 6.
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easy to mount: an attacker needs little more than a standard Web browser to attack

Web applications in most cases.

Parameter Manipulation

The most common way for a Web application to accept parameters is through HTML

forms. When a form is submitted, parameters are sent as part of an HTTP request.

An attacker can easily tamper with parameters passed to a Web application by en-

tering maliciously crafted values into text fields of HTML forms.

A variation of this technique is know as URL manipulation. For HTML forms that

are submitted using the HTTP GET method, form parameters as well as their values

appear as part of the URL that is accessed after the form is submitted. An attacker

may directly edit the URL string, embed malicious data in it, and then access this

new URL to submit malicious data to the application.

Example 1.2. Consider a Web page at a bank site that allows an authenticated

user to select one of her accounts from a list and debit $100 from the account. When

the submit button is pressed in the Web browser, the following URL is requested:

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=100

However, if no additional precautions are taken by the Web application receiving this

request, accessing

http://www.mybank.com/myaccount?accountnumber=341948&debit_amount=-5000

may in fact increase the account balance. �

There are other URL parameters that an attacker can modify, including attribute

parameters and internal modules. Attribute parameters are unique parameters that

characterize the behavior of the uploading page. For example, consider a content-

sharing Web application that enables the content creator to modify content, while

other users can only view content. The Web server checks whether the user that is

accessing an entry is the author or not (usually via a cookie). An ordinary user will

request the following link:
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http://www.mydomain.com/myaccount?id=77492&mode=readonly

An attacker can modify the mode parameter to readwrite in order to gain authoring

permissions for the content.

Hidden Field Manipulation

Because HTTP is stateless, many Web applications use hidden fields to emulate

persistence. Hidden fields are just form fields made invisible to the end-user. For

example, consider an order form that includes a hidden field to store the price of

items in the shopping cart:

<input type="hidden" name="total_price" value="25.00">

A typical Web site using multiple forms, such as an online store will likely rely on

hidden fields to transfer state information between pages. For instance, a single page

we sampled on Amazon.com contains a total of 25 built-in hidden fields. Unlike

regular fields, hidden fields cannot be modified directly by typing values into an

HTML form. However, since the hidden field is part of the page source, saving the

HTML page, editing the hidden field value, and reloading the page will cause the

Web application to receive the newly updated value of the hidden field. This attack

technique is commonly used to forge information being sent to the Web application

and to mount SQL injection or cross-site scripting attacks.

HTTP Header Manipulation

HTTP headers typically remain invisible to the user and are used only by the browser

and the Web server. However, some Web applications do process these headers, and

attackers can inject malicious data into applications through them. While a normal

Web browser will not allow forging the outgoing headers, multiple freely available

tools allow a hacker to craft an HTTP request leading to an exploit [35].

Example 1.3. An HTTP request fragment is shown in Figure 1.6. The

Accept-Language header indicates the preferred language of the user. An interna-

tionalized Web application may take the language label from the HTTP request and
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Host: www.mybank.com

Accept-Language: en-us, en;q=0.50

User-Agent: Lynx/2.8.4dev.9 libwww-FM/2.14

Referer: http://www.mybank.com/login

Content-type: application/

x-www-form-urlencoded

Content-length: 100

Figure 1.6: An HTTP request fragment.

pass it to a database to look up a language-specific text message. If this header is

sent verbatim to the database, an attacker may inject SQL commands by modify-

ing the header value. Likewise, if the header value is used to build the name of file

that contains messages for the correct language, an attacker may be able to launch a

path-traversal attack [158]. �

Consider, for example, the Referer field, which contains the URL indicating

where the request comes from. This field is commonly trusted by the Web applica-

tion, but can be easily forged by an attacker. It is possible to manipulate the Referer

field’s value used in an error page or for redirection to mount cross-site scripting or

HTTP response splitting attacks. Similarly, the Referer field should never be used

to authenticate valid clients, as this authentication scheme may be easily circum-

vented [158].

Cookie Poisoning

Cookie poisoning attacks consist of modifying a cookie, which is a small file accessi-

ble to Web applications stored on the user’s computer [103]. Many Web applications

use cookies to store information such as user login/password pairs and user identi-

fiers. This information is often created and stored on the user’s computer after the

initial interaction with the Web application, such as visiting the application login

page. Cookie poisoning is a variation of header manipulation: malicious input can be

passed into applications through values stored within cookies. Because cookies are

supposedly invisible to the user, cookie poisoning is often more dangerous in practice

than other forms of parameter or header manipulation attacks.
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con.executeUpdate("UPDATE EMPLOYEES " PreparedStatement pstmt =

+ " SET SALARY = " + salary con.prepareStatement(

+ " WHERE ID = " + id); "UPDATE EMPLOYEES " +

" SET SALARY = ? " +

" WHERE ID = ?");

pstmt.setBigDecimal(1, salary);

pstmt.setInt(2, id);

(a) (b)

Figure 1.7: Two different ways to update an employee’s salary: (a) may lead to a SQL injection
and (b) safely updates the salary using a PreparedStatement.

Example 1.4. Consider the HTTP GET request in Figure 1.8. The URL on host

http://www.mybank.com requested by the browser transfer and the parameter string

transfer = yes indicates that the user wants to perform a funds transfer.

The request includes a cookie that contains the following parameters: SESSION,

which is a unique identification string that associates the user with the site and

Amount, which is the transfer amount for this transaction. Amount is validated by

the Web application before being stored in a cookie. However, an attacker can easily

edit the cookie and change the Amount value in order to circumvent account overdraw

checks that are performed before the cookie is created to transfer more money than

is contained in an account. �

As this example illustrates, cookie poisoning is typically used in a manner similar

to hidden field manipulation, i.e. to change the outcome to the attacker’s advantage.

However, since programmers rely on cookies as a location for storing parameters, all

parameter attacks including SQL injection, cross-site scripting, etc. can be performed

with the help of cookie poisoning [18].

Non-Web Input Sources

Malicious data can also be passed in as command-line parameters. This problem

is not as important because typically only administrators are allowed to execute

components of Web-based applications directly from the command line. However,

http://www.mybank.com
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GET transfer?complete=yes

HTTP/1.0 Host: www.mybank.com Accept: */*

Referrer: http://www.mybank.com/login

Cookie: SESSION=89DSSSXX89JJSYUJG; Amount=5000

Figure 1.8: An HTTP GET request containing a cookie.

by examining our benchmarks, we discovered that command-line utilities are often

used to perform critical tasks such as initializing, cleaning, or validating a back-end

database or migrating the data. Therefore, attacks against these important utilities

can still be dangerous.

1.3.4 Exploiting Unchecked Input

Once malicious data is injected into an application, an attacker may use one of many

techniques to take advantage of this data, as described below.

In this section we present the following techniques: SQL injections, cross-site

scripting vulnerabilities, HTTP response splitting attacks, path-traversal attacks, and

command injections.

SQL Injections

SQL injections (first described in Section 1.3.2) are caused by unchecked user input

being passed to a back-end database for execution. When exploited, a SQL injec-

tion may cause a variety of consequences from leaking the structure of the back-end

database to adding new users, mailing passwords to the hacker, or even executing

arbitrary shell commands.

Many SQL injections can be avoided relatively easily with the use of better APIs.

J2EE provides the PreparedStatement class, that allows specifying a SQL state-

ment template with ?’s indicating statement parameters. Prepared SQL statements

are precompiled, and expanded parameters never become part of executable SQL.

However, not using or improperly using prepared statements still leaves plenty of

room for errors.
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Example 1.5. Figure 1.7 shows two ways to update the salary of an employee,

whose id is provided. The first method in Figure 1.7 (a) uses string concatenation

to construct the query and leads to potential SQL injection attacks; the second in

Figure 1.7 (b) uses PreparedStatements and is safe from SQL injection attacks. �

Most SQL injections we have encountered can be categorized as the result of con-

structing SQL statements directly instead of using PreparedStatements. However,

while a good practical strategy for most purposes when programming using J2EE,

PreparedStamtents are not a panacea. As our practical experience with auditing

for SQL injections shows, there are some legitimate reasons for using dynamically

constructed SQL statements:

• SQL statements may depend on the way the application is configured. For in-

stance, SQL statements are often read from configuration files that are different

depending on the back-end database being used.

• Only certain parts of SQL statements may be parameterized, for instance, an

online store that performs a search depending on both the search criterion that

corresponds to a database column, such as the name or the address will likely

construct the SQL query using string concatenation.

• Improper use of PreparedStatements, e.g. using non-constant template strings

for constructing prepared statements defeats the purpose of using them in the

first place.

Cross-site Scripting Vulnerabilities

Cross-site scripting occurs when dynamically generated Web pages display input that

has not been properly validated [33, 38, 87, 102, 179]. An attacker may embed

malicious JavaScript code into dynamically generated pages of trusted sites. When

executed on the machine of a user who views the page, these scripts may hijack

the user account credentials, change user settings, steal cookies, or insert unwanted

content (such as ads) into the page. At the application level, echoing the application
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input back to the browser verbatim enables cross-site scripting.

Example 1.6. A cross-site scripting attack leverages the trust the user has for

a particular Web site, such as that of a financial institution, to perform malicious

activities. Suppose a bank’s online accounting system has an error page that displays

input verbatim. An attacker may trick the legitimate user into following a benign-

looking URL, which results in displaying an error page containing a malicious script.

Suppose the script looks like the following:

<script>

document.location =

’http://www.attack.org/?cookies=’ + document.cookie

</script>

When the error page is opened, the script redirects the user’s browser, while submit-

ting the user’s cookie to a malicious site in the meantime. �

HTTP Response Splitting

HTTP response splitting is a general technique that enables various new attacks in-

cluding Web cache poisoning, cross-user defacement, sensitive page hijacking, as well

as cross-site scripting [104]. By supplying unexpected line break CR and LF charac-

ters, an attacker can cause two HTTP responses to be generated for one maliciously

constructed HTTP request. The second HTTP response may be erroneously matched

with the next HTTP request. By controlling the second response, an attacker can

generate a variety of issues, such as forging or poisoning Web pages on a caching

proxy server. Because the proxy cache is typically shared by many users, this makes

the effects of defacing a page or constructing a spoofed page to collect user data even

more devastating. For HTTP splitting to be possible, the application must include

unchecked input as part of the response headers sent back to the client. For example,

applications that embed unchecked data in HTTP Location headers returned back

to users are often vulnerable.

Several HTTP splitting vulnerabilities in deployed software have been announced

recently, including two in Java applications (SecurityFocus.com bid ids 11413 and

SecurityFocus.com
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11180). The latter one is in snipsnap, which is one of the benchmarks in our suite. A

common coding pattern that makes Java applications vulnerable to HTTP response

splitting is redirecting to user-defined URLs, as illustrated by this code from one of

our benchmark applications, personalblog:

request.sendRedirect(request.getParameter("referer"));

Path Traversal

Path-traversal vulnerabilities allow a hacker to access or control files outside of the in-

tended file access path. Path-traversal attacks are normally carried out via unchecked

URL input parameters, cookies, and HTTP request headers. Many Java Web appli-

cations use files to maintain an ad-hoc database and store application resources such

as visual themes, images, and so on.

If an attacker has control over the specification of these file locations, then he

may be able to read or remove files with sensitive data or mount a denial-of-service

attack by trying to write to read-only files. Using Java security policies allows the

developer to restrict access to the file system (similar to using chroot jail in Unix).

However, missing or incorrect policy configuration still leaves room for errors. When

used carelessly, input/output operations in Java may lead to path-traversal attacks.

Example 1.7. The following code snippet we found in blojsom turns out to be not

secure because permalink is under user control:

String permalinkEntry =

_blog.getBlogHome() + category + permalink;

File blogFile = new File(permalinkEntry);

Changing permalink on the part of the attacker can be used to mount denial of

service attacks when accessing non-existent files. �

Command Injection

Command injection (also sometimes referred to as “stealth commanding”) involves

passing shell commands into the application for execution. This technique enables
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a hacker to attack the server using access rights of the application. While relatively

uncommon in Web applications, especially those written in Java, this attack technique

is still possible when applications carelessly use functions that execute shell commands

or load dynamic libraries.

1.3.5 Unvalidated Output and Information Leaks

While the focus of the discussion above has been on poorly validated user input,

many of the same concerns apply to validating the output that is passed from the

Web application to the user’s browser.

A common Web application vulnerability that stems from poorly validated output

is information leaks. For example, when a piece of sensitive data is leaked from a

back-end underlying database, this might be a sign of trouble. Another common

error pattern is revealing too much in exception messages. When a Web application

encounters an exception, these messages containing potentially sensitive information

are often sent to the browser. Furthermore, cross-site scripting attacks can be seen

as unvalidated output issues.

Conceptually, unvalidated output attacks are really the same as unvalidated input

attacks and they fit equally well into our analysis framework described in Chapter 2.

However, fewer potential output validation issues are clear-cut cases of exploitable

vulnerabilities. Often, leaking a piece of data from the database does not have any

undesirable consequences. Because of this, we chose not to look for output validation

issues in our experiments. However, if needed, these types of vulnerabilities can be

easily expressed in the Griffin framework.

1.4 Existing Solutions

In this section we briefly summarize existing approaches to Web application security

issues. In this section, our focus is on accepted industry practices. We postpone a

detailed discussion of related research until Chapter 7.
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1.4.1 Client-side Protection

The simplest approach used to combat Web application security issues is to perform

validation on the client side. This is typically done by having Javascript execute in

the client’s browser when a form is submitted. While a common technique, client-side

protection is quite easy to circumvent:

• An attacker can save the Web page in the browser, edit it to remove the vali-

dating Javascript code, and resubmit the form again.

• Another technique consists of crafting HTTP packets manually or with the

help of tools such as PacketCrafter [108]. Specially crafted malicious packets

can be sent to the application directly, completely circumventing browser-based

protection.

While more sophisticated browser-based security measures have recently been pro-

posed [100], clearly, simple client-side validation is completely helpless when either of

the two approaches described above is used.

1.4.2 Penetration Testing

Penetration testing is a commonly used technique for improving Web application

security [105, 135, 136, 187]. Penetration testing is an approach that involves a

person or a tool constructing potentially malicious inputs and feeding them to the

Web application, mimicking the actions of a hacker. This is done in an effort to either

crash or exploit the application being tested.

The most common difference between penetration testing strategies is the amount

of knowledge about the implementation of the system being tested. Black box testing

assumes no prior knowledge of the infrastructure to be tested. At the other end of

the spectrum, white box testing provides the testers with complete knowledge of the

infrastructure to be tested, often including network diagrams, source code, and IP

addressing information. There are also several variations in between, often referred

to as gray box testing.
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The relative merits of these approaches are debatable. It is argued that black box

testing most closely simulates the actions of a real hacker, however this ignores the

fact that any targeted attack on a system most probably requires some knowledge of

the system, and any insider attacker would be in possession of as much information

as the system owners. In most cases it is preferable to assume a worst-case scenario

and provide the testers with as much information as they require, assuming that any

determined attacker would already have acquired this. The end-goal of penetration

testing is to either produce a crash or to get the application to disclose sensitive data.

The difficulty of performing such tests manually lead to the development of auto-

matic techniques such as Cenzic’s Hailstorm [32]. However, no matter how automated

the approach, as a testing technique, penetration testing still suffers from lack of cov-

erage and therefore likely misses a large fraction of vulnerabilities.

1.4.3 Application Firewalls

According to the Web Application Security Consortium Glossary [199], an application

firewall is “An intermediary device, sitting between a Web client and a Web server,

analyzing layer-7 messages for violations in the programmed security policy. A Web

application firewall is used as a security device protecting the Web server from attack.”

Standard firewalls are designed to restrict access to certain ports, or services that an

administrator does not want unauthorized people to access. Application firewalls are

often called “deep packet inspection firewalls” because they examine every request

and response within the HTTP, SOAP, XML-RPC, and Web service layers.

Application firewalls vary in the filtering approach, which includes both whitelist-

ing and blacklisting or a combination of the two. The blacklisting approach consists

of maintaining a database of attack signatures, not unlike regular firewalls or in-

trusion detection software. The whitelisting relies on having a model of “normal”

traffic between the application and the client. Moreover, some application firewalls

include the ability to fully configure filtering policies and learn them based on past

traffic. However, coming up with proper policies that reduce the number of both false

positives and false negatives is a formidable challenge.
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Web application firewalls can be either software, or hardware appliance based and

are installed in front of a Web or application server in an effort to try and shield it

from incoming attacks.

1.4.4 Code Auditing for Security

Code reviews or code audits have been commonly used to improve the security posture

of applications, leading to the creation of a large number of consulting companies

and code auditing guidelines. While an effective approach to finding vulnerabilities,

code auditing is a heavily manual task. Code auditing suffers from the following

shortcomings:

• Security vulnerabilities elude detection. Vulnerabilities described in Sec-

tion 1.3 involve following data flow in the program, which is especially difficult

when a given piece of data is deposited into data structures. The branching

factor adds another level of complication to the code auditing task: if a given

method is invoked from dozens of different call sites, all of them need to be

considered by the reviewer. While shallow security bugs are easily detected

with code review, vulnerabilities that span a large number of methods, files, or

directories are much less likely to be found with manual inspection. As our ex-

periments described in Chapter 6 suggest, a significant number of vulnerabilities

require examining numerous methods and files.

• Lack of guarantees about the results. A security audit typically improves

the application security posture and is often the only approach to improving to

overall application architecture. However, completeness is difficult to achieve:

vulnerabilities are missed by manual efforts. This is especially true when it

comes to vulnerabilities that span multiple methods and files, which are not

uncommon, according to our experimental results.

• Difficult to maintain continuous security. The rapid pace of change in

software development, especially when applied to Web applications, means that

the security assessment may no longer be valid whenever the application code
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is changed. Since security code reviews are often done by outside consultants,

new code changes may not get reviewed until the next consulting engagement,

leaving the application in an insecure state for long periods of time.

1.4.5 Griffin Project Scope and Goals

The overarching goal of the Griffin project is to address a large range of Web ap-

plications security issues. Existing approaches described in Section 1.4 provide a

best-effort attempt at improving Web application security. Instead, the goal of our

research is to provide guarantees about the security posture of a given application.

The focus of the Griffin project is on large applications written in Java. As

discussed in Section 1.2.3, Java is the primary development language for a large

number of Web applications, especially mission-critical ones, making it an attractive

analysis target.

1.5 Overview of Our Solution

The Griffin project aims to provide a comprehensive solution to a wide range of Web

application security vulnerabilities. It offers a combination of static and runtime

analysis techniques to achieve this goal.

The user of the Griffin project tools specifies what constitutes a vulnerability.

Specifications are expressed in PQL, a Program Query Language [140]. PQL is a

generic language that can be used to capture events that happen to objects, such as

specific method calls being invoked with an object passed as a parameter or returned

from a method. While PQL has been used to express a variety of queries for purposes

ranging from debugging to finding optimization opportunities, in this thesis it is used

to capture vulnerability queries.

Since most portions of vulnerability specification consist of J2EE library meth-

ods, and since the J2EE library is shared among most Java Web applications, the

per-application specification effort in usually minor. Moreover, most vulnerabilities
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query verySimpleSQLInjection()

returns
object String param;

uses
object HttpServletRequest req;

object Connection con;

matches {
param = req.getParameter(_);

con.execute(param);

}

Figure 1.9: A very simple PQL query for finding SQL injections.

can be found with a “generic” specification that is specific to the Web application de-

velopment framework such as J2EE or Apache Struts, which completely removes the

need for user involvement. A very simple PQL query that captures only some SQL

injection vulnerabilities is shown in Figure 1.9; more complete vulnerability queries

are described in Chapter 2. This PQL query will locate all objects param which are

returned from a call to getParameter and are passed into method executeQuery.

Based on the PQL vulnerability specification, a static analyzer is automatically

generated. The static analysis runs over the application bytecode and produces vul-

nerability warnings. The static approach has the following important benefits:

• Finds vulnerabilities early in the development cycle. It is well-known

that finding defects before they make it into a production system has great

benefits because the communications between the party that detects the bug,

the developer who fixes it, etc. are completely obviated [195]. Moreover, the

window of opportunity that a vulnerable program presents is never opened with

static assurance.

• Explores all possible program executions. Designing a test suite that

adequately explores many program execution paths is generally a challenge. In

the case of security exploits that often take trained hackers hours and days to

design, adequate testing is an even harder problem. Static analysis obviates the

need for security testing, while providing full path coverage.
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• No false negatives. Soundness of our technique is one of the features that set

it apart from other security efforts [88, 207]. Using a sound technique is the only

way to provide guarantees about the security posture of a given application, as

discussed in Section 3.6.

A significant disadvantage of a static analyzer is that it may suffer from impreci-

sion. While a great deal of thinking and experimentation went into the design of our

static analysis abstraction, the problem of soundly and precisely identifying security

violations is undecidable. This means that in the worst case, false positives will still

be reported no matter how precise we make our analysis technique.

The potential for imprecision in the static solution is one of the primary reasons

we chose to provide a runtime alternative. Moreover, since a static analyzer would

typically run as part of the development phase after the code is written, a runtime

analysis is also a good fit in less established development environments, which may

not have a separate testing phase or when the pace of development and deployment is

especially fast. Finally, unlike a static technique, runtime analysis is not complicated

by dynamic language features (such as reflection) and inter-language interpretability

complications (such as native methods).

Our runtime technique works by instrumenting the existing application based on

the PQL specification provided by the user to prevent vulnerabilities at runtime. In

addition to not suffering from false positives, the runtime approach offers the following

important benefits:

• Keeps vulnerabilities from doing harm. As discussed earlier, runtime

analysis may be used in situations where the user is unwilling to consider the

false positives. It also applies when the source code is unavailable or cannot be

changed. The runtime technique is of great practical value in stopping existing

vulnerabilities from being exploited. For example, an application that has an

output validation vulnerability that may lead to an information leak can be

terminated before the leak actually occurs.

• Can recover from exploits. Since the right approach to fixing taint-style vul-

nerabilities in Web applications involves applying a data sanitizer, our dynamic
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technique automatically applies the appropriate sanitizer on the code execution

paths that lack it. The runtime approach we describe can be used in the cre-

ation of a safe application server, which automatically secures the applications

that are deployed on it. This gives the user a notion of continuous security.

• No false positives and no false negatives. Finally, the dynamic technique

has full visibility into the runtime program behavior and therefore does not

suffer from false alarms. The runtime protection is designed to detect and

prevent any vulnerabilities matching the user-provided specification.

As with any runtime technique, an important consideration is the runtime overhead.

Näıve instrumentation generated based on the PQL specification incurs an overhead

ranging from 40% to 120%. While Web-based applications are largely interactive in

nature, the overhead is still undesirable.

In the Griffin project, additional static information is computed to reduce the

amount of runtime instrumentation that needs to be inserted. This approach is very

effective, as it reduces the number of instrumentation points by about 85%-99%. This

reduces the overhead to less than 37%. For most benchmarks, the overhead is under

20%. The soundness of the static technique allows us to remove instrumentation

points deemed unnecessary statically without jeopardizing the quality of runtime

protection. We believe that a special-purpose runtime instrumentation technique

that would just keep track of tainted strings should reduce the runtime overhead

even further.

1.5.1 Summary of Thesis Contributions

This section summarizes the contributions of the Griffin project.

• Effective solution to an important practical problem. This thesis de-

scribes what we believe to be the first effective and comprehensive solution

to the problem of Web application security. It compares favorably with com-

monly used approaches such as client-side validation, penetration testing, and

application firewalls. The problem of Web application security is only going
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to get bigger, as more and more of the infrastructure around us relies on Web

applications.

• A unified static and runtime analysis framework. The Griffin analysis

framework unifies multiple, seemingly diverse, recently discovered categories of

Web application security vulnerabilities and proposes a combination of static

and dynamic analysis techniques to detect and prevent them in large modern

Java J2EE applications. The user can specify vulnerabilities to be found by the

analysis in PQL, an intuitive and expressive language has been used to capture

a wide range of properties that involve events applied to objects.

• A powerful static analysis technique. Our tool is the first practical static

security analysis that utilizes a pointer analysis recently developed by Whaley

and Lam [205]. We improve on the state of the art in pointer analysis by

enhancing the object-naming scheme as well as the handling of maps [145, 146].

The precision of the analysis is effective in reducing the number of false positives

issued by our tool. Our static technique also addresses a range of practical

challenges that exist in analyzing Web applications, such as how to construct

the static call graph without the need to analyze the application server.

• Reflection analysis for Java. We propose the first call graph construction

algorithm for Java in the presence of reflection. We formulate a set of natural

assumptions that hold in most Java applications and make the use of reflection

amenable to static analysis. We propose a call graph construction algorithm

that uses points-to information about strings used in reflective calls to statically

find potential call targets. When reflective calls cannot be fully “resolved” at

compile time, our algorithms determines a set of specification points — places in

the program that require user-provided specification to resolve reflective calls.

As an alternative to having to provide a reflection specification, we propose an

algorithm that uses information about type casts in the program to statically

approximate potential targets of reflective calls.

We provide an extensive experimental evaluation of our analysis approach based
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on points-to results by applying it to a suite of six large open-source Java ap-

plications consisting of more than 600,000 lines of code combined. The conser-

vative call graph obtained with the help of a user-provided specification results

is a call graph than is almost 7 times as big as the original.

• Runtime analysis technique. The runtime technique is the first security

prevention technique for Web application attacks of its kind. It relies on precise

taint tracking to deliver a precise and sound prevention from Web application

exploits. Another contribution is the design of a recovery technique, which

allows vulnerable applications to continue running.

• Experimental validation. We present a detailed experimental evaluation

of our system and the static analysis approach on a set of 11 large, widely-

used open-source Java applications. To measure the effect of different analysis

features, we also apply our techniques to a suite of over 100 small benchmarks.

We found a total of 98 security errors, including two important vulnerabilities

in widely-used libraries. Most of our benchmark applications had at least one

vulnerability, and our analysis produced only 147 false positives, all of which

were concentrated within a single benchmark.

We also created exploits for some of the statically detected vulnerabilities. All

the exploits were foiled in the dynamically protected applications. While the

runtime overhead with the default instrumentation we apply is acceptable, av-

eraging about 60%, when static results are used to reduce the number of instru-

mentation points, the overhead drops to below 10% in most cases.

1.6 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 outlines the scope of the Grif-

fin project and presents our framework for analyzing Web application vulnerabilities.

Chapter 3 focuses on the static analysis portion of the Griffin project. Chapter 4 de-

scribes our analysis of reflective constructs in Java. Chapter 5 discussed our runtime
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analysis approach. Chapter 6 summarizes our static and runtime analysis results and

discusses our findings. Chapter 7 describes related work. Finally, Chapter 8 summa-

rizes the contributions of this thesis and outlines some future research directions.



Chapter 2

Analysis Framework for

Web Application Vulnerabilities

This chapter gives an overview of the Griffin analysis framework. Further information

on static and runtime analysis can be found in Chapters 3 — 5.

2.1 Framework Overview

We start our discussion of the Griffin project architecture by focusing on the SQL

injection example in Section 1.3.2. Conceptually, a vulnerability occurs because there

is uninterrupted flow between a tainted object (as exemplified by String userName on

line 3 in Figure 1.5) and a sink (execute on line 5). It is important to point out that

in Java every string is a separate object. Moreover, a String object is immutable,

meaning that once it becomes tainted, it will always remain so.

A vulnerability trace is a sequence of objects, such that every object is de-

rived from the previous one, leading to a sink. Notice that the objects involved

in a vulnerability trace are strings, represented in Java by standard library types

String, StringBuffer, StringBuilder, StringTokenizer, etc. declared in package

java.lang.

The overall goal of both static and runtime analyses is to locate such traces. While

the example in Section 1.3.2 is quite simple, the trace is in fact 3 objects long:

31
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Figure 2.1: High-level architecture of the Griffin project.

1. The original source java.lang.String object on line 3;

2. The java.lang.StringBuffer object constructed when the Java compiler con-

verts string concatenation into calls to java.lang.StringBuffer.append(...)1;

3. The java.lang.String object that is the result of calling

StringBuffer.toString() on the previous StringBuffer object.

Of course, large programs produce traces that are considerably longer and traces

of length 20 and above are not uncommon. The longer a trace is, the more difficult it

generally is to detect through code review or shallow analysis. Our techniques have

been developed to find all traces, independent of their length. In the rest of this

section we formalize the notions discussed above.
1More recent versions of the Java starting with version 1.5 use the StringBuilder class, which

offers an interface very similar to that of StringBuffer. The advantage of StringBuilder is that
it is not synchronized, resulting in faster code.
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2.1.1 Tainted Object Propagation Problem

In this section we formalize the tainted object propagation problem first described in

Section 4.2. We start by defining the terminology that was first informally introduced

in Example 1.

Definition 2.1.1 An access path as a sequence of field accesses, array index oper-

ations, or method calls separated by dots. We denote the empty access path by ε;

array indexing operations are indicated by [ ].

For instance, the result of applying access path f.g to variable v is v.f.g.

Definition 2.1.2 A tainted object propagation problem consists of a set of source

descriptors, sink descriptors, derivation descriptors, and sanitization descriptors, as

described below:

• Source descriptors of the form 〈m,n, p〉 specify ways in which user-provided

data can enter the program. They consist of a source method m, parameter

number n and an access path p to be applied to argument n to obtain the user-

provided input. We use argument number -1 to denote the return result of a

method call.

• Sink descriptors of the form 〈m,n, p〉 specify unsafe ways in which data may be

used in the program. They consist of a sink method m, argument number n,

and an access path p applied to that argument.

• Derivation descriptors of the form 〈m,ns, ps, nd, pd〉 specify how data propa-

gates between objects in the program. They consist of a derivation method m,

a source object given by argument number ns and access path ps, and a desti-

nation object given by argument number nd and access path pd. This derivation

descriptor specifies that at a call to method m, the object obtained by apply-

ing pd to argument nd is derived from the object obtained by applying ps to

argument ns.
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• Sanitization descriptors of the form 〈m,nd, pd〉 specify sanitization methods

that stop the propagation of taint between objects in the program. They consist

of a derivation method m, a destination object given by argument number nd

and access path pd. This sanitization descriptor specifies that at a call to method

m, the object obtained by applying pd to argument nd is not tainted.

These descriptors formally specify how source methods in the program can generate

tainted input and how sink methods can be exploited if unsafe input is passed to them.

They also specify how string data can propagate between objects in the program by

using string manipulation routines and when the flow of taint terminates.

A tainted object propagation problem is instantiated for any particular vulnerabil-

ity type, such as SQL injections caused by parameter manipulation. Moreover, parts

of the problem are application-specific. For instance, it is common to have application-

specific sanitizers, whereas derivation routines are typically shared among most Java

applications. Fortunately, the lists of sources and sinks are specific to the J2EE

framework we use and can therefore be shared among all applications using those

APIs. The issue of specification completeness is further discussed in Section 2.1.4.

2.1.2 Derivation and Sanitization Descriptors

While the notion of sources and sinks is intuitively clear, the subject of derivation and

sanitization descriptors requires further discussion. In the absence of derived objects,

to detect potential vulnerabilities we only need to know if a source object is used at

a sink. Derivation descriptors are introduced to handle the semantics of strings in

Java.

Because Strings are immutable Java objects, string manipulation routines such

as concatenation create brand new String objects, whose contents are based on the

original String objects. Derivation descriptors are used to specify the behavior of

string manipulation routines, so that taint can be explicitly passed among the String

objects.

Unfortunately, there are numerous ways to obtain tainted objects from string

objects in Java. Data contained in a string object propagates to any object derived
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String tainted = ...;

char[] chars = tainted.getChars();

for(int i = 0; i < chars.length; i++){

char ch = chars[i];

buf.append(ch);

}

String str = buf.toString();

con.executeQuery(str);

Figure 2.2: Character-level string manipulation not captured by our model.

from the string through string concatenation, substring extraction, and other similar

routines. For instance, s.toLowerCase() is derived from string s. Similarly, the

result of s + ”; ” is derived from string s. Finally, newStringTokenizer(s) is derived

from s, because the StringTokenizer object constructed out of a tainted string will

produces potentially tainted tokens.

Most Java programs use built-in String libraries and can share the same set

of derivation descriptors as a result. However, some Web applications use multiple

String encodings such as Unicode, UTF-8, and URL encoding. If encoding and

decoding routines propagate taint and are implemented using native method calls

or character-level string manipulation, they also need to be specified as derivation

descriptors. Sanitization routines that validate user input are also often implemented

using character-level string manipulation.

It is possible to obviate the need for manual specification of derivation and san-

itization descriptors with a static analysis that determines the relationship between

strings passed into and returned by low-level string manipulation routines. We de-

scribe such an analysis in Section 2.1.4. However, such an analysis must be performed

not just on the Java bytecode but on all the relevant native methods as well.

It is important to point out that the notion of derivation and sanitization descrip-

tors we use is restricted to methods. We are unable to capture the creation of one

string from characters of another if it does not involve a method call, as shown in

Figure 2.2.

Example 2.1. We can formulate the problem of detecting parameter manipulation
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attacks that result in a SQL injection as follows: the source descriptor for obtaining

parameters from an HTTP request is:

〈HttpServletRequest.getParameter(String),−1, 〉,

where ε stands for the empty access path. A sink descriptor for SQL query execution

is:

〈Connection.executeQuery(String), 1, ε〉.

To allow the use of string concatenation in the construction of query strings, we use

derivation descriptors:

〈StringBuffer.append(String), 1, ε,−1, ε〉, and

〈StringBuffer.toString(), 0, ε,−1, ε〉

Finally, in this example, we leave the list of sanitization descriptors empty. �

2.1.3 Security Violations

Below we formally define a security violation:

Definition 2.1.3 A source object for a source descriptor 〈m,n, p〉 is an object ob-

tained by applying access path p to argument n of a call to m.

Definition 2.1.4 A sink object for a sink descriptor 〈m,n, p〉 is an object obtained

by applying access path p to argument n of a call to method m.

Definition 2.1.5 Object o2 is derived from object o1, written derived(o1, o2), based

on a derivation descriptor 〈m,ns, ps, nd, pd〉, if o1 is obtained by applying ps to argu-

ment ns and o2 is obtained by applying pd to argument nd at a call to method m.
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Definition 2.1.6 An object is tainted if it is obtained by applying relation derived

to a source object zero or more times.

Definition 2.1.7 A security violation occurs if a sink object is tainted. A security

violation consists of a sequence of objects o1 . . . ok such that o1 is a source object and

ok is a sink object and each object is derived from the previous one:

∀
0≤i<k

i : derived(oi, oi+1).

We refer to object pair 〈o1, ok〉 as a source-sink pair. When talking about vulnerability

counts we will actually refer to the number of source-sink pairs our analysis detects.

2.1.4 Specifications Completeness

If a specification is incomplete, important errors will be missed even if we use a sound

analysis that finds all vulnerabilities matching a specification. Therefore, the problem

of obtaining a complete specification for a tainted object propagation problem is an

important one. However, it is hardly a unique issue for program analysis, as many

other projects require a specification to be provided [9, 80, 194].

To come up with a list of source and sink descriptors for vulnerabilities in our

experiments, we used the documentation of the relevant J2EE library APIs. Since

it is relatively easy to miss relevant descriptors in the specification, we used several

techniques to make our problem specification more complete. For example, to find

some of the missing source methods, we instrumented the Web applications to find

places where application code is called by the application server.

We also used a static analysis to identify tainted objects that have no other ob-

jects derived from them, and examined methods into which these objects are passed.

In our experience, some of these methods turned out to be obscure derivation and

sink methods missing from our initial specification, which we subsequently added.

However, despite our best efforts, we cannot claim specification completeness.
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An interesting feature of our analysis framework is that it is generally not necessary

to include character-level sanitization routines in the specification. This is because

the analysis will be unable to follow the flow from the parameters of such routines

to their return values, achieving the desired effect. It is, however, not acceptable to

omit derivation routines, as this would miss some legitimate data flow through the

program and threaten the soundness of our results.

2.2 Specifying Vulnerabilities in PQL

While a useful formalism, source, sink, derivation, and sanitization descriptors as

defined in Section 2.1.1 are not a user-friendly way to describe security vulnerabilities.

In both the static and dynamic analysis arenas, we have seen the development of

various analysis specification techniques.

For example, for static analysis, questions about static program properties may be

expressed as Datalog queries [203] or type inference rules [107]. Datalog exposes the

program intermediate representation (IR) as a set of relations. To determine static

program properties, the user can subsequently query these relations. While giving

the user complete control, Datalog queries expose too much of the program’s inter-

nal representation to be practical for the casual use who does not want to learn the

intricacies of the IR. The same argument applies to requiring the user to write run-

time instrumentation code, leading to the development of numerous aspect-oriented

systems such as AspectJ, etc. that make common tasks easier to accomplish [50, 99].

Our approach is to use PQL, a program query language. PQL is a general query

language capable of expressing a variety of questions about program execution. A

PQL query is a pattern describing a sequence of dynamic events that involves variables

referring to dynamic object instances. Matching object instances are returned as

the answer to the PQL query. PQL queries can be answered either statically or

dynamically. In the static case, a conservative approximation of the answer is used:

false positive matches may be introduced.

To make them accessible to developers, PQL queries are written in a familiar

Java-like syntax. PQL serves as a layer of abstraction and, as a result, the user is not
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query simpleSQLInjection()

returns
object String param, derived;

uses
object HttpServletRequest req;

object Connection con;

object StringBuffer temp;

matches {
param = req.getParameter(_);

temp.append(param);

derived = temp.toString();

con.execute(derived);

}

Figure 2.3: The PQL query for finding simple SQL injections.

required to become familiar with the details of static program internal representation

or the internals of an instrumentation framework. Moreover, as shown in the Griffin

project architecture in Figure 2.1, the same PQL query is used for both the static

and the runtime portions of our analysis.

In this thesis, we only use a relatively limited and stylized form of PQL queries to

formulate tainted object propagation problems; a more extensive description of PQL

is found elsewhere [140]. Figure 2.4 provides a BNF grammar for PQL queries for

reference purposes. Translation of tainted object propagation queries from PQL into

static checkers and runtime instrumentation is described in more detail in Chapters 3

and 5, respectively.

2.2.1 Simple SQL Injection Query

Example 2.2. Figure 2.3 shows a PQL query for the SQL injection vulnerability in

Example 1. It is important to point out and this is a relatively simple query example

given here for the purpose of illustration that only addresses a small subset of all

SQL injections that includes the code snippet in Figure 1.5. Queries capturing a

wider range of vulnerabilities are discussed in Section 2.2.2.
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queries −→ query*

query −→ query qid ( [decl [, decl ]*] )
[returns declList ; ]
[uses declList ; ]
[matches { seqStmt }]
[replaces primStmt with methodInvoc ;]*
[executes methodInvoc [, methodInvoc]* ;]*

methodInvoc −→ methodName(idList)

decl −→ object [!] typeName id |

member namePattern id
declList −→ object [!] typeName id ( , id )*|

member namePattern id ( , id )*

stmt −→ primStmt | ∼ primStmt |

unifyStmt | { seqStmt }
primStmt −→ fieldAccess = id |

id = fieldAccess |

id [ ] = id |

id = id [ ] |
id = methodName ( idList ) |

id = new typeName ( idList )
unifyStmt −→ id := id

( [idList ] ) := qid ( idList )

seqStmt −→ ( commaStmt ; )*

commaStmt −→ altStmt ( , altStmt )*

altStmt −→ stmt ( "|" stmt )*

typeName −→ id ( . id )*

idList −→ [ id ( , id )* ]

fieldAccess −→ id . id

methodName −→ typeName . id

qid −→ [A-Za-z ][0-9A-Za-z_ ]*

qid −→ [A-Za-z ][0-9A-Za-z_ ]*

namePattern −→ [A-Za-z*_ ][0-9A-Za-z*_ ]*

Figure 2.4: BNF grammar specification for PQL.
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query main()

returns
object Object sourceObj, sinkObj;

matches {
sourceObj := source();

sinkObj := derived*(sourceObj);

sinkObj := sink();

}

Figure 2.5: Main query for finding source-sink pairs.

Query simpleSQLInjection is described in more detail below. The uses clause

of a PQL query declares all objects used in the query. The matches clause specifies

the sequence of events that must occur for a match to be found. Semicolons are used

in PQL queries to indicate a sequence of events. The wildcard character _ is used

instead of a variable name if the identity of the object to be matched is irrelevant.

Finally, the return clause specifies source-sink pairs 〈param, derived〉 returned by

the query. The matches clause is interpreted as follows:

1. object param must be obtained by calling HttpServletRequest.getParameter;

2. method StringBuffer.append must be called on object temp with param as the

first argument;

3. method StringBuffer.toString must be called on temp to obtain object

derived, and

4. method execute must be called with object derived passed in as the first

parameter.

These operations must be performed in order; however, the invocations need

not be consecutive and may be scattered across different methods. Query

simpleSQLInjection matches the code in Example 1 with query variables param

and derived matching the objects in userName and query. Query variable temp cor-

responds to the temporary StringBuffer created by the Java compiler for the string

concatenation operation in Example 1. �
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query derived*(object Object x)

returns
object Object y;

uses
object Object temp;

matches {
!sanitizer1(x); !sanitizer2(x); ...

y := x |

temp := derived(x); y := derived*(temp);

}

Figure 2.6: Transitive derived relation derived?.

2.2.2 Queries for a Taint Propagation Problem

In this section we describe how generic tainted object propagation queries are for-

mulated. There is a direct correspondence between source, sink, derivation, and

sanitization descriptors used in the problem (definition 2.1.2) and parts of the PQL

query shown in Figure 2.5.

Generic Taint Propagation Queries

Query main shown in Figure 2.5 computes source-sink object pairs corresponding to

static or runtime security violations for a given tainted object propagation problem.

Intuitively, query main matches pairs of objects, such that the first object comes from

a source, the second goes into a sink, and the second object is derived from the first

one using zero or more derivation steps. The source and sink objects are denoted in

the query as sourceObj and sinkObj, respectively. Events separated by semicolons

in query main must occur in order, but can be separated by other events (such as

method calls, etc.).

Query main uses auxiliary subqueries source, sink, and derived∗ to constraint

sourceObj and sinkObj values. Object sourceObj in main is returned by subquery

source. Object sinkObj is the result of subquery derived? with sourceObj used as

a subquery parameter and is also the result of subquery sink. Therefore, sinkObj

returned by query main matches all tainted objects that are also sink objects.
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query source()

returns
object Object sourceObj;

uses
object String[] sourceArray;

object HttpServletRequest req;

matches {
sourceObj = req.getParameter(_)

| sourceObj = req.getHeader(_)

| sourceArray = req.getParameterValues(_);

sourceObj = sourceArray[]

| ...

}

query sink()

returns
object Object sinkObj;

uses
object java.sql.Statement stmt;

object java.sql.Connection con;

matches {
stmt.executeQuery(sinkObj)

| stmt.execute(sinkObj)

| con.prepareStatement(sinkObj)

| ...

}

query derived(object Object x)

returns
object Object y;

matches {
y.append(x)

| y = _.append(x)

| y = new String(x)

| y = new StringBuffer(x)

| y = x.toString()

| y = x.substring(_,_)

| y = x.toString(_)

| ...

}

Figure 2.7: PQL subqueries for finding SQL injections.

Subquery derived∗ shown in Figure 2.6 defines a transitive derived relation: ob-

ject y is transitively derived from object x by applying subquery derived zero or
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more times. This query takes advantage of PQL’s subquery mechanism to define a

transitive closure recursively.

Instantiating Taint Propagation Queries

Subqueries source, sink, and derived used in main and derived? are specific to a

particular tainted object propagation problem, as shown in the example below.

Example 2.3. This example describes subqueries source, sink, and derived shown

in Figure 2.7 that can be used to match SQL injections, such as the one described

in Example 1. Usually these subqueries are structured as a series of alternatives

separated by |. The wildcard character _ is used instead of a variable name if the

identity of the object to be matched is irrelevant.

Query source is structured as an alternation: sourceObj can be returned

from a call to req.getParameter or req.getHeader for an object req of type

HttpServletRequest; sourceObj may also be obtained by indexing into an array re-

turned by a call to req.getParameterValues, etc. Query sink defines sink objects

used as parameters of sink methods such as java.sql.Connection.executeQuery,

etc. Query derived determines when data propagates from object x to object y. It

consists of the ways in which Java strings can be derived from one another, including

string concatenation, substring computation, etc. �

As can be seen from this example, subqueries source, sink, and derived map to

source, sink, and derivation descriptors for the tainted object propagation problem.

However, instead of descriptor notation for method parameters and return values,

natural Java-like method invocation syntax is used.

2.3 Static Analysis Overview

A tainted object propagation problem expressed in the form of a PQL query is au-

tomatically translated into a query in Datalog, a logic programming language [192].

Information about the input program is summarized as a set of database relations

that are represented in a highly compressed form in bddbddb, a BDD-based deductive
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database [205]. Datalog queries are combined with the results of pointer analysis as

well as the initial program relations and are fed to the bddbddb solver to obtain the

final solution. According to the PQL query formulation in Figure 2.5, only static

approximations of the source and sink objects are returned.

Recovering the full vulnerability trace requires simple post-processing of analysis

results. The analysis for finding the relevant instrumentation points is discussed

further in Section 3.5.4.

2.4 Runtime Analysis Overview

The second component of the Griffin project is runtime analysis. There are several

benefits of runtime analysis in this context.

• Even the most precise conservative static analysis will suffer from false positives

in the worst case. If the user does not want to deal with false positives generated

from the static checker, runtime analysis is a good alternative. Runtime analysis

monitors application execution, only flagging dangerous vulnerability patterns

if and when they occur at runtime.

• While some organizations have an established software development process,

which includes well-defined development and testing phases, others do not. As

a result, requiring developers to adopt a static analysis tool is not a viable

option at those organizations. However, a runtime tool does not require much

involvement on developers’ part. A PQL specification can often be defined by

the product architect or a system administrator.

Taint propagation problems expressed as PQL queries are automatically translated

into finite state machines runtime that run alongside the application as it executes.

If a query match is detected, the application either terminates, thus preventing a

potential exploit, or recovers from the vulnerability, if recovery code is provided as

part of the specification. More information about vulnerability recovery is provided

in Section 5.5.
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2.5 Chapter Summary

In this chapter we have presented the architecture of the Griffin project, focusing on

the user of PQL to specify vulnerabilities of interest. Chapters 3 and 5 cover the

details of static and runtime analysis, respectively.



Chapter 3

Static Analysis

This chapter describes the static analysis techniques used in the Griffin project. Static

analysis results are summarized in Chapter 6.

3.1 Chapter Overview

Static analysis techniques described in this chapter represent the bulk of this thesis’s

contribution. A diagram representing the static portion of the Griffin project is shown

in Figure 3.1. The chapter is organized as follows. We start with a code auditing

example that motivates our analysis technique in Section 3.2. Section 3.3 summarizes

our static analysis approach and lays the ground for the rest of the chapter. Section 3.4

describes our pointer analysis precision enhancements. Section 3.5 formalizes the

notion of a static security vulnerability and explains how it relates to pointer analysis

results; it also describes how a static analyzer (or checker) is automatically generated

from a PQL vulnerability specification. Section 3.6 addresses the issue of analysis

soundness. Section 3.7 describes our approach to increasing the static coverage of our

analysis.

47
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Figure 3.1: Architecture of the static analysis part of the Griffin project.

3.2 Motivating Example

Solutions of PQL queries can be found either using runtime or static analysis. At

runtime, the solution to a PQL query can be found by observing program execution

or by analyzing execution traces after the program finishes. Static analysis finds

an approximation to the dynamic solution without executing the program. Static

analysis captures all program execution to find all potential solutions satisfying the

PQL query. However, the static solution may suffer from imprecision: some of the
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statically derived answers may be false positives.

The tainted object propagation problem described in Section 2.1.1 involves global

data flow, which present a significant challenge for a static analysis tool. While local

parameter passing in a program is relatively easy to track statically, an analysis that

tracks the flow of data when it is deposited into fields of objects, arrays, or containers,

such as hash maps, is considerably more complicated.

This is especially true in large enterprise software systems, where the use of mul-

tiple abstraction layers leads to data being passed around through multiple methods

located across many files, directories, or libraries. A static analysis needs to be able

to track this data passing precisely to avoid false positives. To further illustrate the

difficulty of this problem, we begin with an example of code auditing for the purpose

of security.

Example 3.1. For an example of the kind of work an auditor needs to perform

to detect security vulnerabilities, consider a call to sendRedirect in pebble, a large

J2EE online blogging application described in Chapter 6:

response.sendRedirect(blog.getUrl());

If the return result of blog.getUrl() is tainted, this call may lead to a HTTP splitting

vulnerability. This is because the browser location the user is redirected to is under

control of the attacker. Below is a sequence of steps that a code auditor has to perform

by hand to determine if the return result of blog.getUrl() is tainted.

Step 1: Method getUrl() is implemented as follows:

public String getUrl() {

return BlogManager.getInstance().getBaseUrl() + this.url;

}

Examining the implementations of method getBaseUrl() reveals that it returns

the field baseUrl, which may be set by multiple calls to setBaseUrl(...).

Step 2: Similarly, this.url is set by multiple calls to setUrl(...).
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Step 3: One of the many calls to method setUrl(...) looks as follows:

blog.setUrl(this.url + blog.getId() + "/");

Step 4: Method getId() is just a getter returning the field id.

Step 5: As it turns out, the setter method setId(...) is called with a parameter

passed from the return result of HttpRequest.getParameter("id") through

several levels of method invocation.

Step 6: As a result, the field url might be tainted, which in turns causes the return

result of method getUrl() to be tainted as well.

Step 7: As a result, the return result of getUrl() may also be tainted.

However, arriving at this conclusion requires the examination of a great number of

method calls spanning multiple files and directories. �

3.3 Static Analysis Overview

As mentioned above, a person auditing such an application by hand often quickly

gets lost given the number of possibilities they need to consider. As a result, while

simple errors will likely be detected, some of the more complex errors stemming from

sources and sinks located “far apart” in the program may remain unnoticed. As our

experiments summarized in Section 6.3.5 show, vulnerabilities that involve sources

and sinks separated by many levels of abstraction are not uncommon. Similarly,

automatic source code scanning tools that follow parameters or explore only a fixed

number of paths though the program may miss potential vulnerabilities [28].

Our framework is based on a sound (i.e. conservative) analysis approach that finds

all potential security violation that may be present in the program. The use of a sound

analysis gives the application vendor or its user the assurance that an application for

which no warnings is generated is in fact free of the type of security vulnerabilities

the analysis is looking for. Our static analysis finds all potential violations matching

a vulnerability specification given by its source, sink, derivation, and sanitization

descriptors, as described in Section 2.1.1.
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3.3.1 Static Program Representation

In this section we introduce the notation used to describe static analysis in the rest

of this chapter.

Program as Relations

The input program is represented as a set of relations that capture the crucial aspects

of program representation in the program, while omitting details that are not perti-

nent to the analysis of string data. For example, parameter passing will be captured,

while integer manipulation will be omitted.

Conceptually, one can think of these relations as regular database relations. How-

ever, in order to save space, a specialized representation is used that uses binary

decision diagrams (BDDs) to achieve high levels of compression for data with much

commonality. Input relations that represent the program are stored in bddbddb, a

BDD-based program database further described in Whaley et al. [205].

Relations in Datalog

The program database and the associated constraint resolution tool allows program

analyses to be expressed in a succinct and natural fashion as a set of rules in Dat-

alog, a logic programming language [192]. In the following, we say that predicate

R(x1, . . . , xn) is true if tuple (x1, . . . , xn) is in relation R.

Elements of Datalog tuples are strictly typed, indicating which of several Datalog

domains the element belongs to. Notation R(x1, . . . , xn) : D1 × . . . × Dn indicates

that xi is in Datalog domain Di. The full list of Datalog domains used for program

representation is shown in Figure 3.2. The list of input relations used to represent

the program is shown in Figure 3.3.

Querying Program Properties Using Datalog

A Datalog query consists of a set of rules, written in a Prolog-style notation, where

a predicate is defined as a conjunction of other predicates. For example, the Datalog
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B the domain of program bytecodes1,

I the domain of invocation sites,

V the domain of program variables,

M the domain of program methods,

H the domain of heap objects named by their allocation site,

T the domain of program types,

Z the domain of integers, and

S the domain of constant strings in the program.

Figure 3.2: Datalog domains used throughout this chapter.

rule

D(w, z) : – A(w, x), B(x, y), C(y, z).

says that “D(w, z) is true if predicates A(w, x), B(x, y), and C(y, z) are all true.”

Datalog queries can be used to answer a variety of questions about static properties

of the program, as show by the example below.

Example 3.2. Suppose we are interested in finding all methods that return

Cloneable objects. We will define relation ret-cloneable : M as follows:

ret-cloneable(m) : – mret(m, r), var -type(r, t),

subtype(t, "java.lang.Cloneable").

Variable m : M is the method returned from the query. Variable r : V is the return

value of method m, as captured by relation mret(m, r). Variable t : T is the type of

the return value r, as captured by var -type(r, t). Finally, type t must be a subtype

of java.lang.Cloneable, as captured by subtype(t, "java.lang.Cloneable"). �

Example 3.3. Suppose we are interested in finding all methods so that the

first parameter’s type and the return type are the same and is either a String,

StringBuffer, or StringBuilder. Such methods are often either derivation or san-

itization routines. To define relation stringer : M capturing this property, we will

first define an auxiliary relation str : T as follows:
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str(t) : – t = "java.lang.String".

str(t) : – t = "java.lang.StringBuffer".

str(t) : – t = "java.lang.StringBuilder".

Relation stringer : M is defined as follows:

stringer(m) : – mret(m, r), var -type(r, t), formal(m, 1, p), var -type(p, t), str(t).

Relation str is used to factor out constraints on type variable t : T . �

3.3.2 Role of Pointer Information

Descriptors involved in a tainted object propagation problem in Section 2.1.1 refer to

variables in the program code. To find security violations statically, it is necessary to

know what runtime objects these descriptors may refer to, a general problem known

as pointer or points-to analysis. To illustrate the need for points-to information,

we consider the task of auditing a piece of Java code for SQL injections caused by

parameter manipulation, as described in Example 1.

Example 3.4. In the code shown in Figure 3.4(a), string userName is tainted

because it is returned from a source method getParameter. So is buf1, because it

is derived from userName in the call to append on line 6. Finally, string query is

derived from buf2 and is subsequently passed to sink method executeQuery.

Unless we know that variables buf1 and buf2 may never refer to the same object,

we would have to conservatively assume that they may. Since buf1 is tainted, vari-

able query may also refer to a tainted object. Thus a conservative tool that lacks

additional information about pointers will flag the call to executeQuery on line 8 as

potentially unsafe. An unsound optimistic tool will conclude that there no vulnera-

bility is possible, potentially introducing a false negative. A similar situation arises

in the process of auditing the code snippet in Figure 3.4(b). A vulnerability will be

reported depending on whether userName and query may refer to the same object.

Answering this question is far from obvious, as it depends on where the two lists
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actual : B × I × Z × V . actual(b, i, z, v) means that variable v is zth argu-
ment of the method call at i.

formal : M × Z × V . formal(m, z, v) means that variable v is zth pa-
rameter of the method m.

ret : B × I × V . ret(b, i, v), means that variable v is the return re-
sult of the method call at i.

thrown: B × I × V .
thrown(b,m, v), means that variable v is an excep-
tion thrown by a method called at i.

mret : M × V . mret(m, v), means that variable v is the return
result of method m.

mthr : M × V .
mthr(m, v), means that variable v is an exception
thrown by method m.

assign: B × V × V .
assign(b, v1, v2) means that there is an implicit or
explicit assignment statement v1 = v2 in the pro-
gram.

load : B × V × F × V .
load(b, v1, f, v2) means that there is a load state-
ment v2 = v1.f in the program. Special symbol [ ]
is used to encode array loads.

store: B × V × F × V .
store(b, v1, f, v2) means that there is a store state-
ment v1.f = v2 in the program. Special symbol [ ]
is used to encode array stores.

call : B × I ×M . call(b, i,m) means that invocation site i may in-
voke method m.

var -type: V × T .
var -type(v, t) means that variable v has declared
type t.

heap-type: H × T .
heap-type(h, t) means that heap allocation site h
has declared type t.

subtype: T × T . subtype(t1, t2) means that t1 is a subtype of t2.

Figure 3.3: Datalog relations used to represent the input program.
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1. String userName = req.getParameter("username");

2.

3. StringBuffer buf1;

4. StringBuffer buf2;

5. ...

6. buf1.append(userName);

7. String query = buf2.toString();

8. con.executeQuery(query);

(a)

1. String userName = req.getParameter("username");

2.

3. LinkedList l1 = ...;

4. LinkedList l2 = ...;

5. ...

6. buf1.add(userName);

7. String query = (String) l2.getFirst();

8. con.executeQuery(query);

(b)

Figure 3.4: Role of aliasing and points-to information.

declared on lines 3 and 4 are allocated and what elements they contain. �

Fortunately, the question of what objects a given program variable may refer to

is precisely the question answered by pointer analysis. An unbounded number of

objects may be allocated by the program at runtime, so, to compute a finite answer,

the pointer analysis statically approximates dynamic program objects with a finite set

of static object “names”. A common approximation approach is to name an object

by its allocation site, which is the line of code that allocates the object.

Example 3.5. In the program snipped in Figure 3.5, all 100 string objects allocated

in the loop are approximated with the same allocation site on line 3. However,

clashes introduced by object naming may or may not result in imprecision in the final

results: in this case, all string objects allocated on line 3 will be either tainted on

not, depending on whether s1 is, so no imprecision is introduced. �

For every variable in the program, the analysis computes the sets of allocation

sites that the variable may refer to. The basis of our approach is a context-sensitive
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1. LinkedList l = new LinkedList();

2. for(int i = 0; i < 100; i++){

3. String s2 = new String("string " + i) + s1;

4. l.addLast(s);

5. }

Figure 3.5: Effect of object naming on precision of the results.

inclusion based points-to analysis that uses binary decision diagrams to make the

computation and representation of results efficient [205]. Context sensitivity refers

to the fact that the set of allocation sites a given variable may point to may in fact

be different depending on the invocation context in which the variable is considered.

The pointer analysis we use is generally flow-insensitive, which means that the same

variable used in two different places in the program will have the same points-to set.

Basic control flow, as applied to method locals, is handled in a flow sensitive way, as

discussed in Section 3.4.6.

3.4 Pointer Analysis Precision Improvements

This section describes the role of various pointer analysis features towards improving

the precision of static analysis results.

3.4.1 Role of Pointer Analysis Precision

Pointer analysis has been the subject of much compiler research over the last sev-

eral decades [84]. Because accurately determining what heap objects a given pro-

gram variable may point to during program execution is undecidable, sound analyses

compute conservative approximations of the solution. Pointer analysis approaches

typically trade scalability for precision, ranging from highly scalable but impre-

cise techniques [83, 182] to highly precise approaches that have not been shown to

scale [116, 173].

In the absence of precise information about pointers, a sound tool would conclude

that many objects are tainted and hence report many false positives. Therefore,
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many practical tools use an unsound approach to pointers, assuming that pointers

are unaliased unless proven otherwise [28, 80]. Such an approach, however, may miss

important vulnerabilities, leading to false negatives.

The lack of precision provided by sound techniques is a common reason for why

static analysis tools do not enjoy a wide adoption in practice. This is justified by the

fact that a developer is rarely willing to examine tens or hundreds of false alarms to

find a few “true” positives. Below we describe analysis features that contribute to

the precision of the results.

3.4.2 Role of Context Sensitivity

Having precise points-to information can significantly reduce the number of false pos-

itives. Context sensitivity refers to the ability of an analysis to keep information from

different invocation contexts of a method separate and is known to be an important

feature contributing to precision. Context sensitivity also helps avoid the imprecision

that is caused by mismatched calls and returns [168].

Imprecision of a Context-insensitive Analysis

Points-to analysis determines what heap objects variables in a method may point

to [84]. However, the answer to this question can be heavily dependent on the in-

vocation context the method is considered in. Unless different invocation contexts

of method m are distinguished, formal arguments of the methods will point to all

objects passed into the methods from different calls. Similarly, the return result of

m will point to all objects that can possibly be returned from m. As a result, inputs

from one call of m can flow to outputs of another call, a problem called unrealizable

paths [113]. The effect of context sensitivity on analysis precision is illustrated by the

example below.

Example 3.6. Consider the code snippet in Figure 3.6. The class DataSource

acts as a wrapper for a URL string. The code creates two DataSource objects and

calls the method getUrl() on both objects. A context-insensitive analysis would

merge information for calls of getUrl on lines 16 and 17. The variable this, which is
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1. class DataSource {

2. private String url;

3. public DataSource(String url) {

4. this.url = url;

5. }

6. String getUrl(){

7. return this.url;

8. }

9. ...

10. }

11. String passedUrl = request.getParameter("..."); // tainted

12. DataSource ds1 = new DataSource(passedUrl);

13. String localUrl = "http://localhost/";

14. DataSource ds2 = new DataSource(localUrl);

15.

16. String s1 = ds1.getUrl();

17. String s2 = ds2.getUrl();

Figure 3.6: Example showing the importance of context sensitivity.

considered to be argument 0 of the call, points to objects allocated on line 12 and 14,

so this.url points to either the object returned on line 11 or "http : //localhost/"

on line 13. As a result, both variables s1 and s2 will be considered tainted if we rely

on context-insensitive points-to results. With a context-sensitive analysis, however,

only s2 will be considered tainted. �

Cloning-based Context-Sensitive Pointer Analysis

While many points-to analysis approaches exist, until recently, we did not have a scal-

able context-sensitive conservative pointer analysis. The idea of using binary decision

diagrams was explored by several researchers, including Zhu [213] and Berndl [21]. We

rely on the context-sensitive, inclusion-based points-to analysis proposed by Whaley

and Lam [205]. This analysis achieves scalability by using binary decision diagrams

to exploit the similarities across the exponentially many calling contexts.

A call graph is a static approximation of what methods may be invoked at all

method calls in the program. While the number of different invocation contexts is po-

tentially infinite due to recursion, the pointer analysis we use approximates them with
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a finite set of context numbers for each methods. To do so, strongly-connected compo-

nents of the call graph are “collapsed” into one node and paths reaching the method

through the strongly connected components are numbered sequentially. While there

are exponentially many acyclic call paths through the call graph of a program, the

compression achieved by BDDs makes it possible to efficiently represent as many

as 1014 contexts.

A Datalog formulation of the pointer analysis due to Whaley and Lam is shown

in Figure 3.7. Below we summarize the rules; interested readers are referred to Wha-

ley et al. [205] for a more detailed explanation. Rule (1) is the base case of the

points-to relation. Relations that come from objects being allocated, as captures by

points-to0 are added to relation points-to. Relation (2) captures a context-sensitive

call relation, where the initial context numbers are copies from a call graph number-

ing relation call -num. Relations (4) — (7) are various assignment relations; (4) is

simple interprocedural variable assignment, others are intraprocedural assignments,

which also include data passing through exceptions. Finally, relations (8) — (10) are

the pointer analysis relations that capture the interaction of assignments with load

and store relations.

The Griffin static analysis framework is the first practical static approach for

security to leverage a BDD-based pointer analysis for Java. The use of BDDs has

allowed us to scale our framework to programs consisting of over 500,000 lines of code

without sacrificing soundness. As our experimental evaluation if Section 6.3.3 shows,

context sensitivity has a great impact on reducing the number of false positives.

3.4.3 Imprecision of Allocation Site Object Naming

Containers such as hash maps, vectors, lists, and others are a common source of

imprecision for even a context-sensitive pointer analysis algorithm. The imprecision

is due to objects being stored in data structures allocated inside the container class

definition. These data structures often share the allocation site. As a result, pointer

analysis cannot statically distinguish between objects stored in different containers.

If a tainted value is deposited into one container of a given type, all values retrieved
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points-to(_, v, h) : – points-to0(v, h). (1)

call(vc2, i, vc1,m) : – call0(i,m), call -num(vc2, i, vc1,m). (2)

filter(v, h) : – var -type(v, tv), subtype(tv, th), heap-type(h, th). (3)

assign(_, v1, _, v2) : – assign0(v1, v2). (4)

assign(vc1, v1, vc2, v2) : – formal(m, z, v1), call(vc2, i, vc1,m), actual(i, z, v2). (5)

assign(vc2, v2, vc1, v1) : – mret(m, v1), call(vc2, i, vc1,m), return(i, v2). (6)

assign(vc2, v2, vc1, v1) : – mthr(m, v1), call(vc2, i, vc1,m), thrown(i, v2). (7)

points-to(vc1, v1, h) : – assign(vc1, v1, vc2, v2), points-to(vc2, v2, h),filter(v1, h). (8)

hpoints-to(h1, f, h2) : – store(v1, f, v2), points-to(vc1, v1, h1),
points-to(vc1, v2, h2). (9)

points-to(vc1, v2, h2) : – load(v1, f, v2), points-to(vc1, v1, h1), (10)

hpoints-to(h1, f, h2),filter(v2, h2).

Figure 3.7: Context-sensitive pointer analysis rules of Whaley and Lam [205].

from all containers of the same type anywhere else in the program will be considered

potentially tainted by a context-sensitive pointer analysis. The example below further

illustrates the imprecision that comes from analyzing containers.

Example 3.7. An abbreviated version of the Vector class in shown in Figure 3.8.

The constructor of the class allocates an internal array called table on line 4. In the

client code, Vectors v1 and v2 share that array. As a result, the original analysis

will conclude that the String object referred to by s2 retrieved from vector v2 may

be the same as the String object s1 deposited in vector v1.

A more formal description of how this conclusion is reached follows. Relations
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1. public class Vector {

2. Object[] table = null;

3. public Vector(){

4. this.table = new Object[1024];

5. }

6.

7. void add(Object value){

8. int i = ...;

9. Object[] t1 = this.table;

10. t1[i] = value;

11. }

12.

13. Object getFirst(){

14 Object[] t2 = this.table;

15. Object value = t2[0];

16. return value;

17. }

18. }

19. String s1 = "...";

20. Vector v1 = new Vector();

21. v1.add(s1);

22. Vector v2 = new Vector();

23. String s2 = v2.getFirst();

Figure 3.8: A sample Vector class definition and usage.

load(this, table, t2), store(this, table, t1), and load(t2, [ ], value) are obtained di-

rectly from the program code. Let hn represent the allocation site of line n. We shall

also represent the calling context by the line of code on which the call occurs.

1. We have points-to(_, v1, h19) and points-to(_, v2, h21), which are part of the

initial points-to relation points-to0 from pointer analysis rule (1).

2. Using the formal-actual propagation rule (5) in combination with rule (8) allows

us to conclude points-to(c22, this, h22), where context c22 correspond to the call

to method getFirst() on line 22 and this is a variable in method getFirst().

3. Relation store(this, table, t1) combined with points-to(c, this, h22) leads to

the heap points-to relation hpoints-to(h22, table, h4) according to rule (10).

4. A combination of rules (6) and (8) leads us to conclude that

points-to(c21, value, h19) since points-to(_, s1, h19) follows from rule (1).
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public org.odmg.Transaction newTransaction() {

try {

return new Transaction( currentDatabase() );

}

catch (ODMGException ode) {

throw new ODMGRuntimeException( ode.getMessage() );

}

}

Figure 3.9: A sample factory function from the hibernate library, version 2.1.

5. Relations hpoints-to(h22, table, h4) and load(this, table, t2) lead to

points-to(c23, t2, h4), according to rule (10).

6. Relation store(t2, [ ], value) combined with points-to(c21, value, h19) leads to

the heap points-to relation hpoints-to(h22, table, h4) according to rule (9).

7. Relations hpoints-to(h4, [ ], h19), points-to(c2, table, h4), and

load(t2, [ ], value) lead to points-to(c2, value, h19), according to rule (10).

8. Finally, a combination of rules (6) and (8) leads us to conclude that

points-to(c2, s2, h19).

The final relation points-to(c2, s2, h19) implies that the string object allocated on

line 19 may be the result result of a call to getFirst(). �

Containers are one of several programming constructs where the precision of a

context-sensitive analysis is not enough. Another common programming idiom is

factory functions.

Example 3.8. Consider factory method newTransaction extracted from the

hibernate library shown in Figure 3.9. The default allocation site object nam-

ing scheme leads to imprecision in this case. All objects returned from method

newTransaction will be associated with the allocation site within the method. This

might produce a less precise answer compared to an equivalent piece of code in which

allocations happen at the caller. This problem is sometimes referred to as allocation

site burying [23]. �
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public String getAddForeignKeyConstraintString(

String constraintName, String[] foreignKey,

String referencedTable, String[] primaryKey)

{

return new StringBuffer(30)

.append(" add constraint ")

.append(" foreign key (")

.append( StringHelper.join(StringHelper.COMMA_SPACE, foreignKey) )

.append(") references ")

.append(referencedTable)

.append(" constraint ")

.append(constraintName)

.toString();

}

Figure 3.10: A sample string-manipulation routine from the hibernate library, version 2.1.

Imprecise object naming has especially severe consequences when it comes to

string manipulation, as demonstrated by the example below.

Example 3.9. Consider a piece of code extracted from the hibernate

library in Figure 3.10. Notice that the return result of method

getAddForeignKeyConstraintString is tainted only if one of the parameters

used in string concatenation is. However, there is only one StringBuffer object

allocated within this method, leading to tainted and untainted values colliding.

Moreover, in this case method StringBuffer.toString() returns a newly allo-

cated String object. Unless a better object naming scheme is used, as long as a

single tainted object is passed into StringBuffer.toString(), all String objects re-

turned from it will be tainted. Obviously, since our static analysis focuses on strings,

this conclusion is grossly imprecise for most reasonably-sized programs. �

3.4.4 Improved Object Naming

Our approach to object naming involves judicious inlining of certain allocation sites.

As the example in Figure 3.9 shows, inlining the factory routine achieves the same

effect as parameterizing the allocation site with a calling context. Sometimes, one

level of inlining is sufficient. Other times, several levels of inlining are necessary, as
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illustrated by the example in Figure 3.10. Inlining corresponds to parameterizing

the allocation site by a list of call sites. While achieving the necessary precision in

practice, the inlining-based approach suffers from the following shortcomings:

• Need to know which allocation sites to inline. Determining that is far

from obvious. Moreover, if we decide to inline too little, this will result in

imprecision. If we decide to inline too much, because many methods will be

inlined into their calling context, the size of the program we need to analyze

will expand, causing scalability problems.

• Virtual calls with more than one target. Call sites that may invoke a

method of interest present a challenge. Inlining all methods that such a site

may invoke often results in a significant expansion of the code under analysis.

• Recursion. There is no way to inline recursive methods while remaining con-

servative.

Input: M0

Output: M

M ←M0;
F ← ∅;

do {
F∆ ← getFalsePositives() \ F ;
A ← getAllocationSitesLeadingTo(F∆);

foreach (a ∈ A) {
m← getContainingMethod(a);
if (¬ isRecursive(m)) {

M ←M ∪ {m};
}

}

F ← F ∪ F∆;
} while (F∆ 6= ∅);

Figure 3.11: Incremental algorithm for determining methods to inline.
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1. ...

2. String s = o.m();

3. ...

4. class C1 {

5. ...

6. String m(){

7. return new String(...);

8. }

9. }

10. class C2 {

11. ...

12. String m(){

13. return new String(...);

14. }

15. ...

16. }

Figure 3.12: Inlining a virtual site with multiple targets.

While there is no good solution for recursive methods, our approach to the other two

challenges is described below.

A Semi-Automatic Technique for Determining Allocation Sites to Inline

Our algorithm for deciding what methods to inline is shown in Figure 3.11. The

output of the algorithm is a set of methods M that are subject to inlining.

The initial set of methods to inline M0 is determined experimentally and contains

constructors of standard library container classes such as HashMap, LinkedList, etc.

Moreover, since a method such as HashMap.put(...) may transitively call a method that

allocates more elements of an array internal to the HashMap, calls to HashMap.put(...)

and several other HashMap mutators need to be inlined as well. Furthermore, many

standard library String and StringBuffer routines require inlining, as illustrated

by Example 9. Set M0 also contains several factory methods that are commonly used

in J2EE applications.

The approach to selecting methods to inline is not fully automatic. In particu-

lar, method getFalsePositives requires human intervention to determine which of

the reported warnings are in fact false positives. The amount of effort involved in
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String s;

if (...) {

s = o.m(); // call method C2::m only

} else {

s = new String(); // inlined from line 7

}

Figure 3.13: Expanded call site to a virtual method with more than one target.

determined that is often non-trivial for some of the longer vulnerability traces.

Similarly, determining which allocation sites lead to the false positives in question,

represented by method getAllocationSitesLeadingTo here is far from obvious. We

have built tools that are able to automatically determine which call sites among the

ones leading to a vulnerability trace have too many variables pointing to them. This

appears to be a good heuristic for finding allocation sites to inline.

The construction of a fully automatic tool that finds candidates for selective inlin-

ing remains a subject of future work. However, our experience suggests that inlining

certain well-chosen allocation sites is enough to achieve the necessary precision. What

those sites are may vary depending on the property of interest as well as the program

being analyzed.

Inlining Calls With More Than One Target

Traditional notion of inlining considers a call site invoking a single method. In object-

oriented languages, virtual method dispatch violates this abstraction. Even the most

precise call graph resolution algorithms in the worst case have call sites with more

than one target method. Our approach is to only inline the callee methods of interest,

while preserving the original call site. This is further illustrated by the example below:

Example 3.10. Consider the code snippet in Figure 3.12. Let us assume that object

o on line 2 may refer to either class C1 or class C2 and we only want to inline method

C1.m(). This will result in line 2 being replaced by the code shown in Figure 3.13.

Since our analysis is oblivious to predicates, the exact value of the predicate used to

choose between the inlined and the non-inlined version is immaterial. However, one
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{

...

// populates user information to return as a result

Hashtable result = new Hashtable();

result.put("nickname", user.getUserName());

result.put("userid", user.getUserName());

result.put("url", contextUrl+"/page/"+userid);

result.put("email", "");

result.put("lastname", lastname);

result.put("firstname", firstname);

return result;

...

}

Figure 3.14: Example from roller requiring precise map value handling.

way to think about it is as explicitly encoding the virtual dispatch logic. �

3.4.5 Improved Handling of Constant-Key Maps

A coding idiom common to large Java applications consists of having global map

structures that use constant string keys. An example of this idiom extracted from a

real-life application is shown below.

Example 3.11. This example is extracted from roller, a large open-source blogger

written in Java. More information about roller may be found in Chapter 6. Shown

in Figure 3.14 is a code excerpt that saves important information about the user in a

Hashtable, which is subsequently passed around the program.

Individual values are referred to through constant string keys they are associated

with. This idiom is often used in Java to create ad-hoc extensible structs. Clearly,

being unable to distinguish between values associated with different keys will lead to

less precise results when large maps with a variety of string data are used. �

Standard interprocedural propagation rules, rules (5) and (6), of pointer analysis

shown in Figure 3.7 are augmented in order to handle maps with constant string

keys. The new augmented rules shown in Figure 3.15 handle HashMap’s put and get
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# auxiliary predicates

isGet(m) : – m = "HashMap.get(Object)". (1)

constStr(h) : – string2constant(h, _). (2)

nonConstStr(h) : – ¬constStr(h). (3)

# record calls to HashMap.put with a constant key

put(maph, keystr , valueh) : – (4)

call(c, i, _, "HashMap.put(Object, Object)"),

actual(i, 1, key), actual(i, 2, value), actual(i, 0,map),

points-to(c, key , keyh), points-to(c, value, valueh),

points-to(c,map,maph),

string2constant(keyh, keystr ).

# augmented return assignment rule

assign(vc2, v2, vc1, v1) : – ¬isGet(m), (5)

mret(m, v1), call(vc2, i, vc1,m), return(i, v2).

# retrieve from map with a constant key

points-to(vc1, value, valueh) : – isGet(m), string2constant(keyh, keystr ), (6)

mret(m, v2), call(vc1, i, vc2,m), return(i, value),

actual(i, 1, key), actual(i, 0,map),filter(value, valueh),

points-to(vc2, key , keyh), points-to(vc2,map,maph),

put(maph, keystr , valueh).

# retrieve from a map with a non-constant key

points-to(vc1, v1, h) : – isGet(m),nonConstStr(keyh), (7)

mret(m, v2), call(vc1, i, vc2,m), return(i, v1),

actual(i, 1, key), points-to(vc2, key , keyh),

points-to(vc2, v2, h),filter(v1, h).

Figure 3.15: Rules for map sensitivity in pointer analysis.
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methods in a special manner2. The following additional input relation is used to

capture the notion of string equality:

string2constant : H × S. string2constant(h, s) means that the string created at

allocation site h is string constant s.

This additional relation is needed because the same string literal corresponds to dif-

ferent allocation sites when it appears in different parts of code.

Example 3.12. In the following piece of code

m.put("key", v1); // h1

m.put("key", v2); // h2

both lines will create a new allocation site for string "key". The following two rela-

tions will be created for this code snippet:

string2constant(h1, "key").

and

string2constant(h2, "key").

and used by the pointer analysis rules in Figure 3.15. �

The pointer analysis rules for precise map handling are shown in Figure 3.15.

Rules (1) — (3) are auxiliary relations used in the rest of the map-related rules.

Relation put defined by rule (4) records when a value is associated with a constant

string key. The standard pointer analysis interprocedural assignment rule, rule (6)

in Figure 3.7 is augmented to not propagate values through HashMap.get(...) calls

in rule (5). Rules (6) and (7) handle returning values associated with constant and

non-constant keys, respectively.

3.4.6 Flow and Path Sensitivity

Local variables in a method are analyzed in a flow-sensitive manner before the pointer

analysis is run; essentially, the same stack location is not confused as it is reused

2Other types implementing the Map interface can be treated in a manner similar to HashMap.
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throughout the method. This allows the flow-insensitive interprocedural algorithm to

take advantage of some local flow sensitivity, which is essential for accurately keeping

track of updates to local variables [204].

An important characteristic of our static taint propagation is that it deals with

string-like data. In Java, String objects are immutable. Moreover, StringBuffers

and StringBuilders are monotonic, i.e. there is no way to remove data from a

string data other than by calling method StringBuffer.delete. However, calls to

this method have never been encountered in our benchmarks.

Therefore, once a String or a StringBuffer is deemed tainted by the analysis,

it cannot be untainted with regular string operations unless a sanitizer is applied to

it. As a result, a flow-insensitive analysis formulation where we talk about a static

object approximation regarding of the program point is fully appropriate here.

It is important to point out that our pointer analysis as well as further analysis

stages are oblivious to predicates found in the program (this is also sometimes referred

to as path sensitivity). While false positives might result from not paying attention to

predicates, we did not find this analysis feature useful in our set of benchmarks, as the

results shown in Chapter 6 demonstrate. Of course, the value of predicate sensitivity

varies greatly depending on the property of interest, so our practical observations

should not be taken to mean that predicates have no value in static analysis for Java

beyond the information flow properties we consider.

3.5 Finding Security Violations Statically

The presence of points-to information enables us to find security violations statically.

Notice that the definition below closely mirrors the definition of a security violation

given in Section 2.1.3.

Definition 3.5.1 A static security violation is a sequence of heap allocation sites

h1, . . . , hk such that

1. There exists a variable v1 such that points-to(_, v1, h1), where v1 corresponds
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to access path p applied to argument n of a call to method m for a source

descriptor 〈m,n, p〉.

2. There exists a variable vk such that points-to(_, vk, hk), where vk corresponds to

applying access path p to argument n in a call to method m for a sink descriptor

〈m,n, p〉.

3. There exist variables v1, . . . , vk such that

∀
1≤i<k

: points-to(ci, vi, hi) ∧ points-to(ci, vi+1, hi+1),

where variable vi corresponds to applying ps to argument ns and vi+1 corre-

sponds applying pd to argument nd in a call to method m for a derivation

descriptor 〈m,ns, ps, nd, pd〉.

3.5.1 Static Checker and Optimizer

This section discusses how the tainted object propagation analysis is implemented

in practice. Constraints of a specification as given by Definition 3.5.1 are translated

into Datalog queries straightforwardly. Facts such as “variable v is parameter n of

a call to method m” map directly into Datalog relations representing the internal

representation of the Java program, as described in Section 3.3.1. The points-to

results used by the constraints are also readily available as Datalog relations after

pointer analysis has been run. Points-to results serve as a link that connects heap

object approximations and variables in the program; variables are in turn connected

to method parameters, return values, etc.

Notice that the static analysis is fully interprocedural : calls to source, sink, and

derivation methods may be located in different methods. It is important to point

out that what violations are detected depends on the portion of the call graph that

is statically analyzed; however, determining what classes may be used at runtime is

statically undecidable. Because Java supports dynamic loading and classes can be

dynamically generated on the fly and called reflectively, we can find vulnerabilities
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only in the code available to the static analysis. For reflective calls, we use an analysis

that handles common uses of reflection to increase the size of the analyzed call graph.

The issue of reflection resolution is further addressed in Chapter 4.

3.5.2 Simple SQL Injection Query Translated

We start the discussion of how PQL vulnerability specifications are translated into

Datalog by considering a simple PQL example.

Example 3.13. Figure 2.3 shows a PQL query for the SQL injection vulnerability

in Example 1. This is a relatively simple query example that only addresses some

SQL injections. The uses clause of a PQL query declares all objects used in the

query. The matches clause specifies the sequence of events that must occur for a

match to be found. Semicolons are used in PQL queries to indicate a sequence of

events. The wildcard character _ is used instead of a variable name if the identity of

the object to be matched is irrelevant. Finally, the return clause specifies source-sink

pairs 〈param, derived〉 returned by the query. The matches clause of the query is

interpreted as follows:

1. object param must be obtained by calling HttpServletRequest.getParameter,

2. method StringBuffer.append must be called on object temp with param as the

first argument,

3. method StringBuffer.toString must be called on temp to obtain object

derived, and

4. method execute must be called with object derived passed in as the first

parameter.

These operations must be performed in order; however, the invocations need

not be consecutive and may be scattered across different methods. Query

simpleSQLInjection matches the code in Example 1 with query variables param
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simpleSQLInjection(hparam , hderived) : – (1)

ret(_, i1, v1),

call(_, c1, i2, "HttpServletRequest.getParameter"),

points-to(c1, v1, h
param),

actual(_, i2, v2, 0), actual(_, i2, v3, 1), (2)

call(_, c2, i2, "StringBuffer.append"),

points-to(c2, v2, h
temp), points-to(c2, v3, h

param),

actual(_, i3, v4, 0), ret(_, i3, v5), (3)

call(_, c3, i3, "StringBuffer.toString"),

points-to(c3, v4, h
temp), points-to(c3, v5, h

derived),

actual(_, i4, v6, 0), actual(_, i4, v7, 1), (4)

call(_, c4, i4, "Connection.execute"),

points-to(c4, v6, h
con),

points-to(c4, v7, h
derived) .

Figure 3.16: Simple SQL injection query translated into Datalog.

and derived matching the objects in userName and query. Query variable temp cor-

responds to the temporary StringBuffer created by the Java compiler for the string

concatenation operation in Example 1.

The result of translating simpleSQLInjection into Datalog is shown in Fig-

ure 3.16. To make the correspondence between the original PQL query and the

generated Datalog query more apparent, object x in PQL is approximated by al-

located site hx in Datalog. Parts (1) — (4) of the Datalog translation correspond

directly to the four lines of the matches clause of the original PQL query. Notice

that the resulting Datalog demands that the contexts in which various points-to re-

lations corresponding to single PQL event match. As can be seen from the example

above, the resulting Datalog is quite involved even for a relatively simple query and

is therefore not a very good specification language for describing vulnerabilities. �
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3.5.3 Systematic Translation from PQL into Datalog

Datalog is a highly expressive language, which includes the ability to recursively spec-

ify properties, meaning that PQL queries may be translated to Datalog approximation

using a relatively simple syntax-directed approach described below.

To make our discussion more systematic, the reader is referred to a BNF grammar

for PQL queries shown in Figure 2.4. The topmost level non-terminal is queries , which

stands for a list of PQL queries. In the rest of the discussion, we describe how each

individual query is translated from PQL into Datalog.

Normalizing the PQL Query

In the beginning of the translation process, we normalize the input PQL queries so

that the matches part of each query is an alternation of sequence statements. In

other words, the topmost level statement of the matches clause is an altStmt each

of whose clauses is a seqStmt expression. Moreover, altStmts mentioned in Figure 2.4

are used only at the top level.

It should be pointed out that the other parts of a PQL query captured by the

grammar in Figure 2.4 are ignored in the translation. Indeed, replaces and executes

clauses that insert runtime events to execute on a query match only pertain to the

runtime system, as explained in Section 5.5. The returns clause is used to determine

which variables need to be included in the resulting Datalog query and which can be

safely dropped. Finally, Datalog does not require a special variable declaration, so

the uses clause can be dropped.

The normalization process is performed by introducing new auxiliary subqueries

as necessary, which may increase the size of the input, but greatly simplifies the

translation. Any event affected by a replaces clause is treated by this process as being

a possible final event in the query. This is equivalent to appending an alternation

of all such statements to the end of the matches clause before normalization. Since

PQL variables refer to objects and our static analysis uses allocation sites as an

approximation of object identity, for every reference to object h in PQL, h is replaced

with a Datalog variable vh and require that vh point to h: points-to(c, vh, h). Literals
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PQL grammar transition Datalog translation

primStmt −→ fieldAccess = id store(_, v1,fieldAccess.id2, v2),

points-to(c, v1,fieldAccess.id1),

points-to(c, v2, id)

primStmt −→ id = fieldAccess load(_, v1,fieldAccess.id2, v2),

points-to(c, v2,fieldAccess.id1),

points-to(c, v1, id)

primStmt −→ id [ ] = id store(_, v1, [ ], v2),

points-to(c, v1, id1),

points-to(c, v2, id2)

primStmt −→ id = id [ ] load(_, v1, [ ], v2),

points-to(c, v2, id1),

points-to(c, v1, id2)

primStmt −→ id = methodName ( idList ) ret(i, id), call(c, i, _,methodName),

actual(i, 1, v1), points-to(c, v1, idList.id1),

· · ·
actual(i, n, vn), points-to(c, vn, idList.idn)

primStmt −→ id = new typeName ( idList ) ret(i, id), call(c, i, _, typeName.<init>),

actual(i, 1, v1), points-to(c, v1, idList.id1),

· · ·
actual(i, n, vn), points-to(c, vn, idList.idn)

Figure 3.17: Translation of primitive statements primStmt from PQL (left) into Datalog (right)
for static analysis and optimization.

and wildcards are translated from PQL into Datalog without change.
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Handling PQL Constructs

We summarize the handling of individual PQL constructs below:

• Primitive statements. Each primitive statement in the query is translated

into one or more Datalog predicates. A syntax-directed translation of PQL

queries into Datalog is shown in Figure 3.17. The left side of the table lists the

PQL grammar rule and the right hand side shows its Datalog translation.

Indices are used to disambiguate between different identifiers id1 and id2 used in

PQL rules. Nonterminal fieldAccess expands into id1.id2 and fieldAccess .idi no-

tation is used to refer to each used identifier. Method invocation is the only PQL

primitive that requires multiple Datalog predicates, as shown in Example 13.

A special field [ ] is used to denote array access. Notation typeName.<init> is

used to denote the constructor of type typeName.

• Alternation. Since the input queries are normalized so that alternation state-

ments are used only at the top level, each clause in an alternative is represented

by a separate Datalog rule with the same head goal.

• Sequencing. Because the static analysis is flow-insensitive, we do not track

sequencing directly, and instead merely demand that all events in the sequence

occur at some point. This can be done by simply replacing the sequence oper-

ator “;” with the Datalog conjunction operator “,”. If a path represented by

the sequence is shorter than the maximum-length path, the remaining bytecode

parameters are forced to be equal to the special value ε, which stands for “no

bytecode”.

• Independent blocks. Similarly, because the static analysis is flow-insensitive,

the translation of a comma statement can simply treat all its clauses as part of

its containing sequence.

• Exclusion. Since our static analysis is flow-insensitive, no guarantees about

event ordering can be made. This implies that we cannot deduce that an ex-

cluded event (denoted with a ∼) occurs between two points in a sequence; as
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a result, all excluded events are ignored. For more details, see a discussion of

sanitizers in Section 3.5.5.

• Unification. Unification of PQL variables is translated into equality of heap

allocation sites.

• Subqueries. Invocations of PQL subqueries are represented by referring to the

equivalent Datalog relation. The program points and any variables that are not

parameters in the PQL subquery are matched to wildcards and projected away.

3.5.4 Extracting the Relevant Bytecodes

The Datalog provided in the previous subsection finds all program points and heap

variables for each subquery individually. The final result, however, requires extracting

only those program points that actually participate in a top-level match.

This is a two-step process. In the first step, we determine which subquery invoca-

tions contribute to the final result; in the second we project the relevant subqueries

onto the bytecode domain B to get a set of bytecodes that require to be instrumented.

1. Finding relevant subquery values. Relevant subquery values are deter-

mined inductively as follows:

• any parameter of the query main is relevant, and

• any subquery value that appears as a clause on the right hand side in a

relevant relation is relevant.

This can be translated directly to Datalog, with one rule for each subquery

invocation and an additional rule to express that all parameters of query main

are relevant.

2. Extracting relevant program locations. Gathering the relevant program

locations is straightforward once the previous step is performed. Any program

location that occurs in a relevant solution to any query is relevant. For the

special case of the main query, we need not check for relevance because all

solutions to the main query are relevant.
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main(b1, b2, b3, b4, h
param , hderived) : – (1)

ret(b1, i1, v1),

call(b1, c1, i2, "HttpServletRequest.getParameter"),

points-to(c1, v1, h
param),

actual(b2, i2, v2, 0), actual(b2, i2, v3, 1),

call(b2, c2, i2, "StringBuffer.append"),

points-to(c2, v2, h
temp),

points-to(c2, v3, h
param),

actual(b3, i3, v4, 0), ret(b3, i3, v5),

call(b3, c3, i3, "StringBuffer.toString"),

points-to(c3, v4, h
temp),

points-to(c3, v5, h
derived),

actual(b4, i4, v6, 0), actual(b4, i4, v7, 1),

call(b4, c4, i4, "Connection.execute"),

points-to(c4, v6, h
con),

points-to(c4, v7, h
derived) .

mainRelevant(hparam , hderived) : – (2)
main(_, _, _, _, hparam , hderived).

relevant(b1) : – main(b1, _, _, _, _, _, ). (3)

relevant(b2) : – main(_, b2, _, _, _, _, ). (4)

relevant(b3) : – main(_, _, b3, _, _, _, ). (5)

relevant(b4) : – main(_, _, _, b4, _, _, ). (6)

Figure 3.18: Simple SQL injection query translated to extract the relevant bytecode information.

Example 3.14. Figure 3.18 shows the Datalog translation of Example 1 that is

used to extract the relevant bytecodes. (For consistency, we renamed the main query

to main instead of simpleSQLInjection.) Statement (1) shows the main query itself
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query derivedStream(object InputStream x)

returns
object InputStream d;

uses
object InputStream t;

matches {
d := x |

{t = new InputStream(x); d := derivedStream(tmp);}
}

query main()

returns
method * m;

uses
object Socket s;

object InputStream x, y;

object Object v;

matches {
x = s.getInputStream();

y := derivedStream(x);

v = y.readObject();

v.m();

}

Figure 3.19: Recursive query for tracking data from sockets.

translated with bytecode information encoded as b1, ..., b4 preserved. Statement (2)

shows a projection of the main query to preserve the bytecode information for each

component of the query in statement (1). Since there is no non-main subquery, this

subquery does not strictly have to be introduce in this case. Finally, query relevant

collects all of these bytecodes in statements (3) — (6). �

Example 3.15. As this example illustrates, the translation process is more complex

for recursive queries. Recursion in PQL is useful for matching against the common

idiom of wrappers in Java. Java exposes higher-level I/O functions by providing

wrappers over base input streams. These wrappers are subclasses of the top-level

interfaces Reader (for character streams) and InputStream (for byte streams).

For example, to read Java Objects from some socket s, one might first wrap

the stream with a BufferedInputStream to cache incoming data, then with an

ObjectInputStream to parse the objects from the stream:
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main(b1, b2, b3,m, hs, hv, hx, hy) : – (1)
call(c0, b1, _, "getInputStream"),
actual(b1, 0, vs0), ret(b1, vx),
points-to(c0, vx, hx), points-to(c0, vs0, hs),

derivedStream(_, hx, hy, _),

call(c1, b2,, "readObject"),
actual(b2, 0, vy1), ret(b2, vv1),
points-to(c1, vv1, hv), points-to(c1, vy1, hy),

call(c2, b3, _,m), actual(b3, 0, vv2),
points-to(c2, vv2, hv).

derived(b, hx, hd, _) : – (2)
hx = hd, b = ε.

derived(b, hx, hd, ht) : – (3)
call(c, b, _, "InputStream.<init>"),
actual(b, 1, vx), ret(b, vt),
points-to(c, vx, hx), points-to(c, vt, ht),

derived(_, ht, hd, _).

Figure 3.20: Datalog translation of the PQL query in Figure 3.19.

r1 = new BufferedInputStream(s.getInputStream()));

r2 = new ObjectInputStream(r1);

obj = r2.readObject();

In general, there can be arbitrary levels of wrapping. To capture this, we need to

use a recursive pattern, as shown in Figure 3.19. The base case in derivedStream

subquery declares that any stream can be considered derived from itself; the other

captures a single wrapper and then re-invokes derivedStream recursively.

The query shown in Figure 3.19 finds all methods invoked on objects read from a

network socket. The query first finds all the streams derived from the input stream of a

socket, then all objects read from any of the derived streams. It then matches against

any method, represented by the method parameter m, invoked upon the objects read.

Figure 3.21 uses the relevant relation to express this. The first rule says that
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mainRelevant(m,hs, hv, hx, hy) : – (1)
main(_, _, _,m, hs, hv, hx, hy).

derivedRelevant(hx, hy, h3) : – (2)
mainRelevant(_, _, _, hx, hy),
derived(_, hx, hy, h3).

derivedRelevant(ht, hd, h3) : – (3)
derivedRelevant(_, hd, ht),
derived(_, ht, hd, h3).

relevant(b) : – (4)
derived(b, hx, hd, ht),
derivedRelevant(hx, hd, ht).

relevant(b) : – main(_, _, b, _, _, _, _, _). (5)

relevant(b) : – main(_, b, _, _, _, _, _, _). (6)

relevant(b) : – main(b, _, _, _, _, _, _, _). (7)

Figure 3.21: Extracting relevant bytecodes for the PQL query in Figure 3.19.

all non-bytecode parameters of main are relevant. Rules (2) and (3) in Figure 3.21

correspond to rules (2) and (3) in Figure 3.20. Recursive definition of derivedRelevant

in rule (3) corresponds to recursive definition of derived in Figure 3.20. Finally,

rules (4) — (7) extract the bytecodes that matter for the top-level query main. �

3.5.5 Dealing with Sanitizers

While detecting if a certain sanitizer has been applied to an object at runtime is quite

easy, the fact that we only have may points-to information presents a problem.

Example 3.16. Consider the code snippet in Figure 3.22. Variable str will point

to both the return result of sanitize as well as the original, tainted value username.

According to our static security violation formulation in Section 3.5, we will report

this case. However, our analysis will also happily report the piece of code shown

in Figure 3.23 as a violation as well. However, this is a false positive because the

assignment on line 3 overrides the old value of str. This false positive will result
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String username = req.getParameter("username");

String s = null;

if (...) {

str = sanitize(username);

} else {

str = username;

}

Figure 3.22: Simple conditional sanitization example.

because our points-to information is flow-insensitive. However, we can still use points-

to information to detect that str points to a string pointed to by the return result

of method sanitize. �

To preserve soundness, our approach is to still report cases like this, but as lower-

level warnings, as explained below:

Definition 3.5.2 A violation trace h1, ..., hn is low-level if there exists a variable v

such that v corresponds to applying pd to argument nd for a sanitization descriptor

〈m,nd, pd〉 and ∃ i : 0 ≤ i ≤n such that points-to(_, v, hi) holds.

Since most sanitization is performed by creating a new fresh sanitized object,

omitting a sanitizer stops the propagation of taint, giving us the correct result. There

are only a few low-level warnings in all our experiments.

3.6 Static Analysis Soundness

Our analysis finds all vulnerabilities in statically analyzed code that are captured by

the specification.

3.6.1 Static Analysis Limitations

Failing to obtain a conservative call graph or having an incomplete specification com-

promises the static soundness of the analysis results, as discussed below.
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1. String username = req.getParameter("username");

2. String str = username;

3. str = sanitize(username);

4. con.executeQuery("SELECT ... " + str);

Figure 3.23: False positive in our formulation.

Static Analysis Coverage

The static analysis approach needs to be able to analyze all code that might be

executed at runtime. Otherwise, vulnerabilities might be missed. However, finding

all the relevant code is far from obvious. We postpone the discussion of the analysis

coverage issue until Section 3.7 and Chapter 4.

Specification Completeness

The analysis results are only complete if the specification is. In order for all vul-

nerabilities to be detected, the sets of sources, sinks, derivation, and sanitization

descriptors must be complete. For instance, if derivation descriptors are missing,

some portions of the taint propagation graph will be unexplored and some potential

vulnerabilities may go unreported.

Our current approach delegates the task of creating complete lists of descriptors —

or the PQL specification — to the user. While this might seem like a difficult task,

our approach here is not very different from what is done by other work in the space

of software error detection [9, 80, 194]. As described in Chapter 8.2, aiding the user

with the task of specification creation is an important area of future research.

3.6.2 Troublesome Program Constructs

Below we discuss analysis issues and programming constructs that compromise the

soundness of our approach. Our static analysis techniques are sound for programs

devoid of such constructs.
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String s = ...;

char[] chars = s.getChars();

for(int i = 0; i < chars.length; i++){

if(chars[i] != ’/’) buf.append(chars[i]);

}

s = buf.toString();

// proceed to use string s

Figure 3.24: Inline character-level string manipulation

Inline Character-level String Manipulation

While this is much less common than in C, which represents strings as character

arrays, Java programs still occasionally operate on strings at the level of individual

characters. As discussed above, our analysis works at the level of objects, so the flow

of taint through characters may be lost as a result.

Most character-level operations are encapsulated into methods. However, as the

code in Figure 3.24 shows, it is possible to have string manipulation statements inline.

Our framework, as described in Chapter 2, does not capture inline string manipula-

tion, which we believe to be rare. A conservative approach would be to report all

places where character-level manipulation may occur to be reviewed by the user.

Native Methods

Native methods may have side-effects that affect objects located on the Java heap.

Since native methods are not written in Java and are hard to analyze, we do not

support native methods possibility in our static analysis system. Moreover, similarly

to the static analysis technique, the runtime approach also does not track data that

is passed into or returned from native code.

Recent work has considered dangers involved in native function calls [60, 61, 175,

212]. However, we do not believe that string-manipulating native routines to be

common. The majority of JDK’s String and StringBuffer code is written in Java,

with only a few native methods. One possible exception where the handling of

native code may matter is method System.arraycopy that efficiently copies data

between arrays.
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Application server (JBoss/Tomcat)
Application server (JBoss/Tomcat)

AppApp AppApp AppApp

web.xml
web.xml

web.xml
web.xml

web.xml
web.xml

Figure 3.25: Typical application server architecture.

Data Flow Through Exceptions

For efficiency reasons, we currently disregard the data flow that is caused by excep-

tion passing in Java. Flow through exceptional paths is supported, as reflected in

rule (7) of the pointer analysis in Figure 3.7. While it would not be too difficult to

add, exceptional flow paths are mostly interesting for information leak vulnerabilities,

which are outside the scope of our experiments.

3.7 Static Analysis Coverage

In this section we describe features of the analysis that allow us to increase the amount

of code that is analyzed statically. It is helpful to start by contrasting whole-program

analysis of a stand-alone Java program with that of a Web-based application.

3.7.1 Challenges of Call Graph Construction in

Web Applications

Since Web applications are designed to be deployed on an application server such

as Apache Tomcat or JBoss, static analysis of Web application code presents unique

challenges not present in regular command line or GUI-based applications. Since it is

generally not known what methods a given program consists of, whole-program static
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analysis of Java typically works by constructing a static call graph. This is usually

done in two steps through a process called call graph discovery [205]:

1. A set of root methods, which are entry points into the call graph, such as main

is identified by the user.

2. Call graph edges are added until a fixed point is reached when no more methods

can be added to the call graph.

However, when the call graph discovery approach is used näıvely, the analysis

is very hard to scale because too much code is included in the call graph. Shown

in Figure 3.25 is a typical application server architecture. The size of a large Web-

based Java application can be as much as 0.5 million lines of code. According to

Koders.com statistics, the size of recent versions of JBoss, one of the more popular

application servers, is over 1.5 million lines [106]. Combined together, this yields a

program over 2 million lines of code in size. Performing a global and precise static

analysis on such a large code base is a formidable task. We describe our approach

to finding the call graph roots in the rest of this section and leave the discussion of

challenges introduced into the process of call graph discovery when reflection is used

until Chapter 4.

3.7.2 Finding Call Graph Roots

To keep our approach scalable, instead we choose to analyze the Web applications in

a stand-alone manner by providing a stub that emulates the environment in which

the application is supposed to execute. This is similar to modeling the environment

in model checking [190] or using mock objects for testing [137].

Finding all root methods in Web applications presents a challenge. J2EE-based

applications are designed to run within a J2EE application server with the server

invoking different components of the application. A typical Web application we an-

alyzed defines a set of servlets and Struts actions that are listed in a deployment

descriptor parsed by the application server to determine what code to invoke. To in-

clude all the necessary servlets and actions in our analysis, we generate an invocation

Koders.com
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package se.bluefish.blueblog;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpServlet;

import MyMockLib.MyHttpServletRequest;

import MyMockLib.MyHttpServletResponse;

import java.io.IOException;

class InvokeServlets {

public static void main(String[] args) throws IOException {

processServlets();

}

public static void processServlets() {

try {

HttpServletRequest request = new MyHttpServletRequest();

HttpServletResponse response = new MyHttpServletResponse();

se.bluefish.blueblog.servlet.BBServlet servlet =

new se.bluefish.blueblog.servlet.BBServlet();

servlet.service(request, response);

} catch (Exception e) {

e.printStackTrace();

}

try {

HttpServletRequest request = new MyHttpServletRequest();

HttpServletResponse response = new MyHttpServletResponse();

se.bluefish.blueblog.servlet.ForwardingServlet servlet =

new se.bluefish.blueblog.servlet.ForwardingServlet();

servlet.service(request, response);

} catch (Exception e) {

e.printStackTrace();

}

}

}

Figure 3.26: Invocation stub program generated for blueblog.
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stub, a small driver program that invokes each servlet and action in the application

in turn. The following components of the Web applications are handled within the

generated stub:

• J2EE servlets,

• J2EE listeners,

• J2EE tags and taglibs,

• Apache Struts actions and forms.

While servlets are relatively easy to process, Java Server Pages (JSPs) present a par-

ticular challenge. JSPs are regular HTML with pieces of Java code embedded in

them. The presence of Java code opens JSPs to security attacks. JSPs are typically

distributed as source code and are only compiled down to Java bytecode at the time

of application deployment. However, setting up a proper static compilation environ-

ment is often difficult. Another approach consists of deploying the application and

then copying the compiled JSP bytecode from the temporary application server loca-

tion. Our technique currently does not address Java beans, which would require an

approach which is similar to that we use for reflection, as described in Chapter 4.

3.7.3 Using a Mock Library

Methods of servlets and actions called from the invocation stub expect objects imple-

menting interfaces HttpServletRequest and HttpServletResponse to be passed in

as parameters. These interfaces are implemented by classes defined inside the appli-

cation server that cannot be easily instantiated from a stand-alone program. Passing

in null parameters is not a viable possibility, as that would make all the relevant

points-to sets empty. In order to have concrete objects to pass to these methods

in the invocation stub, we create our own “mock” versions of classes implementing

these interfaces for the purpose of analysis [137]. While this approach allows us to

scale to large applications, we may miss some vulnerabilities contained in application

server sources, which are not analyzed. Moreover, the user of the tool has no way of

estimating the number of vulnerabilities that may still be missing.
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To generate an invocation stub, Web application descriptors usually contained

in file web.xml are parsed to find all servlets, filters, and listeners contained in the

application. Similarly, calls are generated for Struts actions typically described by a

struts-config.xml file [31].

Example 3.17. An example of a stub generated for a smaller Web-based applica-

tion called blueblog is shown in Figure 3.26. Method processServlets constructs

a mock MyHttpServletRequest and MyHttpServletResponse and passes them to

method service of a newly constructed BBServlet. Typically, stubs are quite a bit

larger, though, since many real-life J2EE applications contain dozens of servlets. �

3.7.4 Limitations of This Approach

While the mock library approach gives us the scalability we want, it replaces the

actual application server with a stylized harness, which might not have all of server’s

complexity. As a result, the following types of vulnerabilities might be missed with

the harness-based approach:

• Vulnerabilities inside application server code as opposed to application code will

not be detected. As a result, our approach should be seen as a technique for

finding vulnerabilities within application code.

• Vulnerabilities that only exhibit themselves when the application is deployed

within a particular application server environment. Our harness-based approach

is a simplification of the complexity of a real application server. As a result of

this specification and insufficiently accurate environment modeling, vulnerabil-

ities might be missed.

While we do not believe these to be serious practical limitations of our approach, we

mention them here for completeness.
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3.8 User Interface to Analysis Results

To help the user with the task of examining violation reports, the Griffin project

provides an intuitive GUI. The interface is built on top of Eclipse, a popular open-

source Java development environment. As a result, a Java programmer can assess the

security of his application, often without leaving the development environment used

to create the application in the first place.

A typical auditing session involves applying the analysis to the application and

then exporting the results into Eclipse for review. Our Eclipse plugin allows the

user to easily examine each vulnerability by navigating among the objects it involves.

Clicking on each object allows the user to navigate through the code displayed in the

text editor in the top portion of the screen.

Example 3.18. An example of using the Eclipse GUI is shown in Figure 3.27. The

bottom portion of the screen lists all potential security vulnerabilities reported by

our analysis. One of them, a SQL injection caused by non-Web input is expanded to

show all the objects involved in the vulnerability.

Each line of the expanded vulnerability display at the bottom of the screen repre-

sents a static object approximation within a static vulnerability trace. The source ob-

ject on line 76 of JDBCDatabaseExport.java is passed to derived objects using deriva-

tion methods StringBuffer.append and StringBuffer.toString until it reaches the

sink object constructed and used on line 170 of the same file. Line 170, which con-

tains a call to Connection.prepareStatement, is highlighted in the Java text editor

shown on top of the screen. Types of vulnerability as well as trace lengths are shown

to simplify vulnerability classification. �

It is necessary to point out that a statically computed vulnerability trace consists

of a list of static object approximations, which in our case are allocation sites. While

line number information for each allocation site is generally available (library code

can be compiled without line number information), the user often does not know what

variables correspond to a given object.

Even if an object-to-variable mapping is extracted from the results of pointer

analysis, it is often a challenge to determine what sequence of calls makes an object
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is one file derived from an object in another file or directory.

3.9 Chapter Summary

In this chapter we presented the static analysis portion of the Griffin project. Static

analysis is an especially powerful technique when it comes to finding security errors

because it can explore all possible execution paths without requiring an input. In

this chapter we showed how our static technique relies on a points-to analysis. We

introduced a range of pointer analysis precision improvements that result in a reduc-

tion of the number of false positives. This chapter also describes a scalable approach

to analyzing Web applications independently of the application server.



Chapter 4

Analysis of Reflection

This chapter describes an approach to call graph construction for Java programs in

the presence of reflection.

4.1 Introduction

Whole-program static analysis requires knowing the targets of function or method

calls. The task of computing a program’s call graph is complicated for a language

like Java because of virtual method invocations and reflection. Past research has

addressed the analysis of function pointers in C [48, 144, 147] as well as virtual

method calls in C++ [3, 12, 30, 161] and Java [71, 72, 166, 184, 189]. Reflection,

however, has mostly been neglected.

Reflection in Java allows the developer to perform runtime actions given the de-

scriptions of the objects involved: one can create objects given their class names,

call methods by their name, and access object fields given their name [54]. Because

names of methods to be invoked can be supplied by the user, especially in the pres-

ence of dynamic class loading, precise static construction of a call graph is generally

undecidable. Even if we assume that all classes that may be used are available for

analysis, without placing any restrictions on the targets of reflective calls, a sound

(or conservative) call graph would be prohibitively large.

Many projects that use static analysis for optimization, error detection, and other

93
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Retrieving Class or Constructor objects:
Class java.lang.Class.forName(String className)

Class java.lang.Class.forName(String name, boolean initialize,

ClassLoader loader)

Class java.lang.Object.getClass()

Constructor[] java.lang.Class.getConstructors()

Constructor java.lang.Class.getConstructor(Class[] args)

Creating new objects:
Object java.lang.Class.newInstance()

Object java.lang.reflect.Constructor.newInstance(Object[] initargs)

Figure 4.2: Java API methods for reflective object creation.

purposes ignore the use of reflection, which makes static analysis tools incomplete

because some parts of the program may not be included in the call graph and poten-

tially unsound, because some operations, such as reflectively invoking a method or

setting an object field, are ignored. Others require the user to specify the methods

invoked reflectively [188].

In recent years there has been an upsurge of interest in the use of static analysis

for error detection. Our research is motivated by the practical need to improve the

coverage of static error detection tools [111, 129, 167, 201]. The success of such tools

in Java is predicated upon having a call graph available to the error detection tool.

Unless reflective calls are interpreted, the tools run the danger of only analyzing a

small portion of the available code and giving the developer a false sense of security

when no bugs are reported. Moreover, when static results are used to reduce run-

time instrumentation, all parts of the application that are used at runtime must be

statically analyzed. While finding some bugs is valuable, a tool that claims to find

all possible bugs of a particular kind provides a much stronger guarantee: a software

system for which no errors are statically reported in known to be error-free.

A recent paper by Hirzel, Diwan, and Hind proposes the use of dynamic instru-

mentation to collect the reflection targets discovered at runtime [85]. They use this

information to extend Andersen’s context-insensitive, inclusion-based pointer analy-

sis for Java into an online algorithm [5]. Reflective calls are generally used to offer
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a choice in the application control flow, and a dynamic application run typically in-

cludes only several of all the possibilities. However, analyses used for static error

detection and optimization often require a full call graph of the program in order to

achieve complete coverage.

In this paper we present a static analysis algorithm that uses points-to information

to determine the targets of reflective calls. Often the targets of reflective calls can

be determined precisely by analyzing the flow of strings that represent class names

throughout the program. This allows us to precisely resolve many reflective calls

and add them to the call graph. However, in some cases reflective call targets may

depend on user input and require user-provided specifications for the call graph to

be determined. Our algorithm determines all specification points — places in the

program where user-provided specification is needed to determine reflective targets.

The user is given the option to provide a specification and our call graph is complete

with respect to the specifications provided [189].

Because providing reflection specifications can be time-consuming and error-prone,

we also provide a conservative, albeit sometimes imprecise, approximation of targets of

reflective calls by analyzing how type casts are used in the program. A common coding

idiom consists of casting the result of a call to Class.newInstance used to create

new objects to a more specific type before the returned object can be used. Relying

on cast information allows us to produce a conservative call graph approximation

without requiring user-provided reflection specifications in most cases. A flow diagram

summarizing the stages of our analysis is shown in Figure 4.1.

Our reflection resolution approach hinges on three assumptions about the use of

Retrieving Method objects:
Method java.lang.Class.getDeclaredMethod(String name, Class[] parameterTypes)

Method[] java.lang.Class.getDeclaredMethods()

Method[] getMethods()

Calling methods:
Object java.lang.reflect.Method.invoke(Object obj, Object[] args)

Figure 4.3: Java API methods for method invocation.
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Retrieving Field objects:
Field getField(String name)

Field[] getFields()

Field getDeclaredField(String name)

Field[] getDeclaredFields()

Accessing field values: getter and setter methods for
objects and primitive types:
Object java.lang.Reflect.Field.get(Object obj)

byte java.lang.Reflect.Field.getByte(Object obj)

char java.lang.Reflect.Field.getChar(Object obj)

int java.lang.Reflect.Field.getInt(Object obj)

...
void java.lang.Reflect.Field.set(Object obj, Object value)

void java.lang.Reflect.Field.setByte(Object obj, byte b)

void java.lang.Reflect.Field.setChar(Object obj, char c)

void java.lang.Reflect.Field.setInt(Object obj, int i)

Figure 4.4: Java API methods for field access and manipulation.

reflection: (a) all the class files that may be accessed at runtime are available for

analysis; (b) the behavior of Class.forName is consistent with its API definition in

that it returns a class whose name is specified by the first parameter, and (c) cast

operations that operate on the results of Class.newInstance calls are correct. In

rare cases when no cast information is available to aid with reflection resolution, we

report this back to the user as a situation requiring specification.

4.1.1 Chapter Contributions

This chapter makes the following contributions:

• We present a case study of common uses of reflection in large modern Java

systems. This study shows the importance of handling reflection in call graph

construction.

• We formulate a set of natural assumptions that hold in most Java applications

and make the use of reflection amenable to static analysis.
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• We propose a call graph construction algorithm that uses points-to information

about strings used in reflective calls to statically find potential call targets.

When reflective calls cannot be fully “resolved” at compile time, our algorithms

determines a set of specification points — places in the program that require

user-provided specification to resolve reflective calls.

• As an alternative to having to provide a reflection specification, we propose an

algorithm that uses information about type casts in the program to statically

approximate potential targets of reflective calls.

• We provide an extensive experimental evaluation of our analysis approach based

on points-to results by applying it to a suite of six large open-source Java ap-

plications consisting of more than 600,000 lines of code combined. We evaluate

how the points-to and cast-based analyses of reflective calls compare to a local

intra-method approach. While all these analyses find at least one constant tar-

get for most Class.forName call sites, they only moderately increase the call

graph size. However, the conservative call graph obtained with the help of a

user-provided specification results is a call graph than is almost 7 times as big as

the original. We assess the amount of effort required to come up with a specifi-

cation and how cast-based information can significantly reduce the specification

burden placed on the user.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows. In Section 4.2, we provide background

information about the use of reflection in Java. In Section 4.3 we show some of the

common usage idioms that justify the need for reflection analysis. In Section 4.4,

we lay out the simplifying assumptions made by our static analysis. In Sections 4.5

we describe our analysis approach. Section 4.6 provides a comprehensive experimen-

tal evaluation. In Section 4.7 concludes this chapter. Related work is described in

Section 7.6.
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4.2 Overview of Reflection in Java

In this section we first informally introduce the reflection APIs in Java and then show

some characteristic ways in which they are used in large Java applications.

4.2.1 Reflection APIs in Java

The most typical use of reflection by far is for creating new objects given the object

class name. The most common usage idiom for reflectively creating an object is

shown in Figure 4.5. In the rest of this section, we fully describe reflective APIs that

Java provides for creating objects, invoking methods, and reading and writing to

data structures at runtime. There are also read-only API methods that are used for

runtime discovery; for example, an application can check if a certain method exists

before trying to invoke it.

Obtaining Class Objects

Obtaining a class given its name is most typically done using a call to one of the static

functions Class.forName(String, ...) and passing the class name as the first parameter.

We should point out that while Class.forName is the most common way to obtain a

class given its name, it may not be the only method for doing so. An application may

define a native method that implements the same functionality. The same observation

applies to other standard reflective API methods.

The .class construct is syntactic sugar that is translated by the compiler down

into basic calls to Class.forName. The translation is somewhat different depending

on the version of the compiler. For example, when T.class is translated, Sun’s version

of javac in JDK 1.4 produces bytecode shown in Figure 4.6. In this case, method

1. String className = ...;

2. Class c = Class.forName(className);

3. Object o = c.newInstance();

4. T t = (T) o;

Figure 4.5: Typical use of reflection to create new objects.
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static java.lang.Class class$test$T;

...

0: getstatic #7; //Field class$test$T:Ljava/lang/Class;

3: ifnonnull 18

6: ldc #8; //String test$T

8: invokestatic #9; //class$:(Ljava/lang/String;)Ljava/lang/Class;

11: dup

12: putstatic #7; //Field class$test$T:Ljava/lang/Class;

15: goto 21

18: getstatic #7; //Field class$test$T:Ljava/lang/Class;

21: astore_1

22: getstatic #10; //Field java/lang/System.out:LPrintStream;

25: new #11; //class StringBuffer

28: dup

29: invokespecial #12; //StringBuffer."<init>":()V

32: ldc #13; //String c:

34: invokevirtual #14; //StringBuffer.append:(LString;)LString

37: aload_1

38: invokevirtual #15; //StringBuffer.append:(LObject;)LString

41: invokevirtual #16; //StringBuffer.toString:()LString;

44: invokevirtual #17; //PrintStream.println:(LString;)V

47: return

static java.lang.Class class$(java.lang.String);

Code:

0: aload_0

1: invokestatic #1; //Class.forName:(Ljava/lang/String;)LClass;

4: areturn

5: astore_1

6: new #3; //class NoClassDefFoundError

9: dup

10: aload_1

11: invokevirtual #4; //ClassNotFoundException.getMessage:()LString;

14: invokespecial #5; //NoClassDefFoundError."<init>":(LString;)V

17: athrow

Exception table:

from to target type

0 4 5 Class java/lang/ClassNotFoundException

Figure 4.6: Interpretation of .class in JDK version 1.4 and below.

class$ that takes a class name and returns the class returned by Class.forName is

generated by the compiler. The result of the call is stored in field class$test$T.

The same compiler in JDK 1.5 takes a more efficient approach that results in a much
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shorter bytecode sequence:

ldc_w #2; //class test$T

astore_1

In this case, the Class object is loaded from a constant pool. The analysis described

here handles the JDK 1.4 interpretation; supporting the JDK 1.5 interpretation re-

quires a simple extension of our algorithm to reflect the creation of the constant

pool.

Reflective Object Creation

Object creation APIs in Java provide a way to programmatically create objects of

a class, whose name is provided at runtime; parameters of the object constructor

can be passed in as necessary. Relevant Java API methods are summarized in Fig-

ure 4.2. Creating an object with an empty constructor is achieved through a call to

newInstance on the appropriate java.lang.Class object, which provides a runtime

representation of a class.

While methods Class.forName and Class.newInstance represent the majority of

uses of reflection in real-life software systems, Java also provides ways to reflectively

invoke a method given its name and to access the value of an object field at runtime,

as described below [54].

Reflective Method Invocation

Methods are obtained from a Class object by supplying the method signature or by

iterating through the array of Methods returned by one of Class functions. Methods

are subsequently invoked by calling Method.invoke. The complete list of relevant

API functions is summarized in Figure 4.3.

Reflective Field Access

Fields of Java runtime objects can be read and written at runtime. Calls to Field.get

and Field.set can be used to get and set fields containing objects. Additional meth-

ods are provided for fields of primitive types. (All Java primitive types are supported,
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we limit the list in Figure 4.4 to several representative ones only.)

4.3 Use of Reflection: Case Studies

In this Section, we describe some of the common usage patterns for reflection found in

large Java systems. We identified these patterns by studying large Java applications

downloaded from SourceForge; more details on these applications can be found in

Section 4.6. In addition to describing each use case, we show why statically resolving

reflection is important.

4.3.1 Specifying Application Extensions

Many large applications support plugins, which are usually detected by the applica-

tion upon startup by either reading a specification file or looking for files in a specific

directory. For example, columba, an open-source email client parses an XML specifi-

cation file to determine which plugins to instantiate, as shown in Figure 4.7. A similar

scheme is supported by jedit, which also supports high levels of customization and

downloadable plugins.

Application servers such as Apache Tomcat, use similar schemes where they

retrieve plugin descriptions from files or by traversing a predefined directory

WEB− INF [25]. Clearly, static analysis needs to be aware of these application ex-

tensions. If reflective calls are not properly resolved, most of the plugins or Web

applications in the case of Tomcat would be completely missing from the call graph.

However, this represents a case where without “hints” from the user static analysis

cannot determine which plugins to analyze.

4.3.2 Custom-made Object Serialization Scheme

Often objects are reflectively created based on a specification that is passed to the

application.

Example 4.1. Reflection is used by an open-source genetic algorithm library, jgap,
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public void addHandlers(String path) {

XmlIO xmlFile = new XmlIO(DiskIO.getResourceURL(path));

xmlFile.load();

XmlElement list = xmlFile.getRoot().getElement("handlerlist");

Iterator it = list.getElements().iterator();

while (it.hasNext()) {

XmlElement child = (XmlElement) it.next();

String id = child.getAttribute("id");

String clazz = child.getAttribute("class");

AbstractPluginHandler handler = null;

try {

Class c = Class.forName(clazz);

handler = (AbstractPluginHandler) c.newInstance();

registerHandler(handler);

} catch (ClassNotFoundException e) {

if (Main.DEBUG) e.printStackTrace();

} catch (InstantiationException e1) {

if (Main.DEBUG) e1.printStackTrace();

} catch (IllegalAccessException e1) {

if (Main.DEBUG) e1.printStackTrace();

}

}

}

Figure 4.7: Creating objects reflectively based on an XML specification.

1. String geneClassName = thisGeneElement.

2. getAttribute(CLASS_ATTRIBUTE);

3.

4. Gene thisGeneObject = (Gene) Class.forName(

5. geneClassName).newInstance();

Figure 4.8: Creating objects reflectively based on an XML specification.
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try {

Class macOS = Class.forName("gruntspud.standalone.os.MacOSX");

Class argC[] = {ViewManager.class};

Object arg[] = {context.getViewManager()};

Method init = macOS.getMethod("init", argC);

Object obj = macOS.newInstance();

init.invoke(obj, arg);

} catch (Throwable t) {

// not on macos

}

Figure 4.9: Calling a method if it is present on the runtime platform.

Method m = c.getMethod("clone", null);

if (Modifier.isPublic(m.getModifiers())) {

try {

result = m.invoke(object, null);

}

catch (Exception e) {

e.printStackTrace();

}

}

Figure 4.10: Checking if a method is present before calling it.
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try {

// Test for being run under JDK 1.4+

Class.forName("javax.imageio.ImageIO");

// Test for JFreeChart being compiled

// under JDK 1.4+

Class.forName("org.jfree.chart.encoders.SunPNGEncoderAdapter");

} catch (ClassNotFoundException e) {

...

}

Figure 4.11: Using reflection to circumventing JDK inconsistencies.

Method getVersionMethod =

Class.forName("org.columba.core.main.ColumbaVersionInfo").

getMethod("getVersion", new Class[0]);

return (String) getVersionMethod.invoke(null,new Object[0]);

Figure 4.12: Using a method that is not available at compile time.
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public JDBCCategoryDataset(String url, String driverName,

String user, String passwd)

throws ClassNotFoundException, SQLException

{

Class.forName(driverName);

this.connection = DriverManager.getConnection(url, user, passwd);

}

Figure 4.13: Using Class.forName for its side-effects.

1. fieldSysPath = ClassLoader.class.getDeclaredField("sys_paths");

2. fieldSysPath.setAccessible(true);

3.

4. if (fieldSysPath != null) {

5. fieldSysPath.set(System.class.getClassLoader(), null);

6. }

Figure 4.14: Circumventing static type checking to set a field.
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to implement a customized serialization scheme. Information on genes is saved in an

XML file and then later loaded to create runtime data structures. The names of the

classes to be created are read from an XML element on lines 1–2 in Figure 4.8 and

the objects are created on lines 4–5. �

Like the plugin examples above, this example demonstrates the need for user-

provided specifications of reflective targets [189] when the strings on which reflective

calls depend are not constant.

4.3.3 Improving Portability Using Reflection

While many Java applications are fully platform-independent, there are often subtle

reasons to use platform-specific code, especially in large systems.

Example 4.2. Reflection is used in gruntspud, an open-source graphical CVS client,

to improve code portability across different platforms. As shown in the code excerpt

in Figure 4.9, call of method init is executed only if the call to Class.forName in

the try clause succeeds when the Mac-OS-specific class is available. �

Similarly, sometimes applications check if certain methods are available before

calling them:

Example 4.3. A generic cloning routine in jfreechart checks that clone is avail-

able and declared to be public before attempting to call it, as shown in Figure 4.10.

The call is attempted only if the method is public. �

Platform-dependent features are not the only reason to use reflection for the pur-

pose of introspection. The behavior of the program can also differ depending on the

JDK version being used.

Example 4.4. The code in Figure 4.11 illustrates another use of reflection to get

around incompatibilities in the JDK implementations across different distributions.

The code conditionally creates an instance of SunPNGEncoderAdapter if jfreechar

is used with a JDK version 1.4 and above. �

Examples 2 — 4 illustrate an inherent weakness of dynamic analysis that mani-

fests itself when it comes to platform-specific code. Only a subset of the code in an
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application is executed on any particular platform. Static techniques, on the other

hand, can analyze parts of code intended to be executed on different platforms all at

once. If we want to detect subtle platform-specific errors that are hard to reproduce

at runtime, obtaining a full call graph of the application requires reflection resolution.

4.3.4 Code Unavailable Until Deployment

Reflection is also used to examine information that does not exist at compile time

and only becomes available after the application is deployed.

Example 4.5. The code from columba in Figure 4.12 invokes method getVersion

of class org.columba.core.main.ColumbaVersionInfo. Upon examining the code, we

found that this class is not created until after the application is deployed, which is

when the version information becomes available. �

As described in Section 4.5.3, to make classes generated at deployment time avail-

able to our analysis, our techniques collect information on all classes after application

deployment. Example 5 is a specific case of a more general Java design pattern, in

which interface types are used and their implementations are substituted in a manner

that is deployment-specific. Unless reflection is resolved, all objects of the interface

types will lack an implementation that can be statically analyzed.

4.3.5 Using Class.forName for its Side-effects

The call to Class.forName has the additional effect of calling the class constructor

of the class being referenced. Occasionally, the result of the call is ignored and the

call is used as a convenient way to invoke the class constructor. This coding idiom

is commonly used to initialize database drivers as shown in a code excerpt extracted

from jfreechart in Figure 4.13.
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4.3.6 Getting Around Static Type Checking

While this is relatively uncommon, reflection makes it possible to circumvent the

standard Java type system.

Example 4.6. As shown in the code snippet in Figure 4.14 extracted from columba,

reflection is used to reset the system library paths of the default class loader by setting

field sys paths to null. Since the field is non-public, the accessibility flag of the field

is first reset on line 2 before assigning to the field on lines 5. �

If we fail to take into account methods that assign to fields of objects when con-

structing the program representation, the resulting representation will be incomplete.

4.3.7 Providing a Built-in Interpreter

On occasion, a very wide set of classes may be returned by a reflective calls, as shown

below.

Example 4.7. One of our benchmark applications, jedit, contains an embed-

ded BeanShell, a Java source interpreter used to write editor macros [155]. Within

the BeanShell interpreted, one of the calls to Class.forName takes type parameters

extracted from the Bean shell macros. �

Clearly, ignoring the targets of the Class.forName call in this case leads to the

code within the macro file not being analyzed. But this example also reveals a key

difficulty: the set of macros is hardly static. New macros can be downloaded or

written, so the approximation of the reflective targets is only valid with respect to a

specific application configuration.

4.4 Assumptions About Reflection

This section presents assumptions we make in our static analysis for resolving reflec-

tion in Java programs. We believe that these assumptions are quite reasonable and

hold for many real-life Java applications.
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The problem of precisely determining the classes that an application may access is

undecidable. Furthermore, for applications that access the network, the set of classes

that may be accessed is unbounded: we cannot possibly hope to analyze all classes

that the application may conceivably download from the net and load at runtime.

Programs can also dynamically generate classes to be subsequently loaded. Our

analysis assumes a closed world, as defined below.

Assumption 4.1 Closed world.

We assume that only classes reachable from the class path at analysis time can be

used by the application at runtime.

In the presence of user-defined class loaders, it is impossible to statically determine

the behavior of function Class.forName. If custom class loaders are used, the behav-

ior of Class.forName can change; it is even possible for a malicious class loader to

return completely unrelated classes in response to a Class.forName call. The follow-

ing assumption allows us to interpret calls to Class.forName. We assume that the

behavior of Class.forName is consistent with the API declaration even when custom

class loaders are used, which postulates that:

Given the fully qualified name for a class or interface (in the same format

returned by getName) this method attempts to locate, load, and link the

class or interface.

Assumption 4.2 Well-behaved class loaders.

The name of the class returned by a call to Class.forName(className) equals

className.

To check the validity of this assumption, we have instrumented large applications to

observe the behavior of Class.forName; we have never encountered a violation of this

assumption. Finally, we introduce an assumption that allows us to leverage type cast

information contained in the program to constrain the targets of reflective calls.
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Assumption 4.3 Correct casts.

Type cast operations that always operate on the result of a call to newInstance are

correct; they will always succeed without throwing a ClassCastException.

We believe this to be a valid practical assumption: while it is possible to have casts

that fail, causing an exception that is caught so that the instantiated object can be

used afterwards, we have not seen such cases in practice. Typical catch blocks around

such casts lead to the program terminating with an error message.

4.5 Analysis of Reflection

In this section, we present techniques for resolving reflective calls in a program. Our

analysis consists of the following three steps:

1. We use a sound points-to analysis to determine all the possible sources of strings

that are used as class names. Such sources can either be constant strings or de-

rived from external sources. The pointer analysis-based approach fully resolves

the targets of a reflective call if constant strings account for all the possible

sources. We say that a call is partially resolved if the sources can be either

constants or inputs and unresolved if the sources can only be inputs. Knowing

which external sources may be used as class names is useful because users can

potentially specify all the possible values; typical examples are return results

of file read operations. We refer to program points where the input strings are

defined as specification points.

2. Unfortunately the number of specification points in a program can be large.

Instead of asking users to specify the values of every possible input string, our

second technique takes advantage of casts, whenever available, to determine a

conservative approximation of targets of reflective calls that are not fully re-

solved. For example, as shown in Figure 4.5, the call to Class.newInstance,

which returns an Object, is always followed by a cast to the appropriate type

before the newly created object can be used. Assuming no exception is raised,
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we can conclude that the new object must be a subtype of the type used in the

cast, thus restricting the set of objects that may be instantiated.

3. Finally, we rely on user-provided specification for the remaining set of calls —

namely calls whose source strings are not all constants — in order to obtain a

conservative approximation of the call graph.

We start by describing the call graph discovery algorithm in Section 4.5.1 as well

as how reflection resolution fits in with call graph discovery. Section 4.5.2 presents a

reflection resolution algorithm based on pointer analysis results. Finally, Section 4.5.3

describes our algorithm that leverages type cast information for conservative call

graph construction without relying on user-provided specifications.

4.5.1 Call Graph Discovery

Our static techniques to discover reflective targets are integrated into a context-

insensitive points-to analysis that discovers the call graph on the fly [205]. As the

points-to analysis finds the pointees of variables, type information of these pointees

is used to resolve the targets of virtual method invocations, increasing the size of the

call graph, which in turn is used to find more pointees. Our analysis of reflective calls

further expands the call graph, which is used in the analysis to generate more points-

to relations, leading to bigger call graphs. The discovery algorithm terminates when

a fixpoint is reached and no more call targets or points-to relations can be found.

By using a points-to analysis to discover the call graph, we can obtain a more

accurate call graph than by using a less precise technique such as class hierarchy

analysis CHA [46] or rapid type analysis RTA [11]. We use a context-insensitive

version of the pointer analysis for this purpose because context sensitivity does not

seem to substantially improve the accuracy of the call graph [205, 71] and the context-

insensitive version is substantially faster.
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4.5.2 Pointer Analysis for Reflection

This section describes how we leverage pointer analysis results to resolve calls to

Class.forName and track Class objects. This can be used to discover the types

of objects that can be created at calls to Class.newInstance, along with resolving

reflective method invocations and field access operations. Pointer analysis is also used

to find specification points: external sources that propagate string values to the first

argument of Class.forName.

Reflection and Points-to Information

The programming idiom that motivated the use of points-to analysis for resolving

reflection was first presented in Figure 4.5. This idiom consists of the following steps:

1. Obtain the name of the class for the object that needs to be created.

2. Create a Class object by calling the static method Class.forName.

3. Create the new object with a call to Class.newInstance.

4. Cast the result of the call to Class.newInstance to the necessary type in order

to use the newly created object.

When interpreting this idiom statically, we would like to “resolve” the call to

Class.newInstance in step 3 as a call to the default constructor T(). However,

analyzing even this relatively simple idiom is nontrivial.

The four steps shown above can be widely separated in the code and reside in

different methods, classes, or jar libraries. The Class object obtained in step 2

may be passed through several levels of function calls before being used in step 3.

Furthermore, the Class object can be deposited in a collection to be later retrieved

in step 3. The same is true for the name of the class created in step 1 and used

later in step 2. To determine how variables className, c, o, and t defined and used

in steps 1–4 may be related, we need to know what runtime objects they may be

referring to: a problem addressed by points-to analysis. Point-to analysis computes

which objects each program variable may refer to.
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Resolution of Class.newInstance of Class.forName calls is not the only thing

made possible with points-to results: using points-to analysis, we also track Method,

Field, and Constructor objects. This allows us to correctly resolve reflective method

invocations and field accesses. Reflection is also commonly used to invoke the class

constructor of a given class via calling Class.forName with the class name as the

first argument. We use points-to information to determine potential targets of

Class.forName calls and add calls to class constructors of the appropriate classes

to the call graph.

Datalog Relations Used for Reflection Resolution

As described in Section 3.3.1, the input program is represented as a set of relations1.

Several additional relations are used for the process of reflection resolution.

string2class : H × T . string2class(s, t) means that string constant s is the string

representation of the name of type t.

string2method : H ×M . string2method(s,m) means that string constant s is the

string representation of the name of method m.

string2field : H × F . string2field(s, f) means that string constant s is the string

representation of the name of field f .

Finally, an auxiliary relation freshi2h is used for reflection resolution to make “fresh”

heap allocation sites:

freshi2h: I ×H. freshi2h(i, h) means that a freshly created allocation site h corre-

sponds to the result of the method call at i.

Pointer Analysis Results

In addition to input relations, relations

points-to : V ×H
1In the rest of this chapter, we shall use the context-insensitive version of the points-to relation,

points-to(v, h) : V ×H.
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and

hpoints-to : H × F ×H

are computed as a result of pointer analysis. Pointer analysis computation is in-

tegrated with the process of call graph discovery so that new points-to facts are

introduced as more and more of the call graph is analyzed.

In the rest of this chapter, we shall use the context-insensitive version of the

points-to(v ∈ V, h ∈ H) relation. While a slight increase in precision may be gained

by using context-sensitive results, the approach to call graph numbering proposed by

Whaley and Lam requires the call graph to be known in advance [205].

Basics of Reflection Resolution Using Points-To Information

The algorithm for computing targets of reflective calls is naturally expressed in

terms of Datalog queries. Below we define Datalog rules to resolve targets of

Class.newInstance and Class.forName calls. Handling of constructors, methods,

and fields proceed similarly, as described in Sections 4.5.2–4.5.2. To disambiguate re-

lations introduced for reflection resolution from input relations, we use Java identified

naming conventions for the former.

To compute reflective targets of calls to Class.newInstance, we define two Dat-

alog relations. Relation classObjects contains pairs 〈i, t〉 of invocations sites i ∈ I

calling Class.forName and types t ∈ T that may be returned from the call. We

define classObjects using the following Datalog rule:

classObjects(i, t) : – call(i, “Class.forName”),

actual(i, 1, v), points-to(v, s),

string2class(s, t).

The Datalog rule for classObjects reads as follows. Invocation site i returns an object

of type t if the call graph relation call contains an edge from i to “Class.forName”,

parameter 1 of i is v, v points to s, and s is a string that represents the name of

type t.

Relation newInstanceTargets contains pairs 〈i, t〉 of invocation sites i ∈ I calling
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Class.newInstance and classes t ∈ T that may be reflectively invoked by the call.

The Datalog rule to compute newInstanceTargets is:

newInstanceTargets(i, t) : – call(i, “Class.newInstance”),

actual(i, 0, v), points-to(v, c),

points-to(vc, c), ret(ic, vc),

classObjects(ic, t).

The rule reads as follows. Invocation site i returns a new object of type t if the

call graph relation call contains an edge from i to Class.newInstance, parameter 0

of i is v, v is aliased to a variable vc that is the return value of invocation site ic,

and ic returns type t. Targets of Class.forName calls are resolved and calls to the

appropriate class constructors are added to the invocation relation call :

call(i,m) : – classObjects(i, t),m = t+ “. < clinit >”.

(The “+” sign indicates string concatenation.) Similarly, having computed relation

newInstanceTargets(i, t), we add these reflective call targets invoking the appropriate

type constructor to the call graph relation call with the rule below:

call(i,m) : – newInstanceTargets(i, t),m = t+ “. < init >”.

In Section 4.5.2 we cover other ways to perform reflective operations.

Handling Reflective Constructor Calls: Constructor Objects

Another technique of reflective object creation is to use Class.getConstructor to

get a Constructor object, and then calling newInstance on that. We define a re-

lation constructorTypes that contains pairs 〈i, t〉 of invocations sites i ∈ I calling
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Class.getConstructor and types t ∈ T of the type of the constructor:

constructorTypes(i, t) : – call(i, “Class.getConstructor”),

actual(i, 0, v), points-to(v, h),

classObjects(h, t).

Once we have computed constructorTypes , we can compute more newInstanceTargets

as follows:

newInstanceTargets(i, t) : – call(i, “Class.newInstance”),

actual(i, 0, v), points-to(v, c), points-to(vc, c),

ret(ic, vc), constructorTypes(ic, t).

This rule says that invocation site i calling method “Class.newInstance” returns an

object of type t if parameter 0 of i is v, v is aliased to the return value of invocation

ic which calls “Class.getConstructor”, and the call to ic is on type t.

In a similar manner, we add support for Class.getConstructors, along with sup-

port for reflective field, and method accesses. The specification of these are straight-

forward and we do not describe them here.

Handling Reflective Invocations: Method Objects

Auxiliary relation getMethod defines two standard ways reflection API ways to reflec-

tively invoke a method.

getMethod(“Class.getMethod(String, Class”).

getMethod(“Class.getDeclaredMethod(String, Class”).

Relation methodObject(h,m) defines when a heap-allocated object h ∈ H represents

a method m ∈M . Relation resolvedInvoke(i,m) defines when a method m ∈M can

be called from an invocation site i ∈ I.
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methodObject(h,m) : – getMethod(mi), call(i,mi), freshi2h(i, h),

actual(i, 1, v), points-to(v, hm),

string2method(hm,m).

resolvedInvoke(i,m) : – call(i, “Method.invoke(Object, Object[])”),

actual(i, 0, v), points-to(v, h),methodObject(h,m).

Finally, input relations are updated with the results of method invocation resolution

to represent the flow of data through parameters and return values:

assign(v1, v2) : – resolvedInvoke(i,m),

formal(m, 0, v1), actual(i, 1, v2).

assign(v1, v2) : – resolvedInvoke(i,m), ret(i, v1),mret(m, v2).

points-to(v, h) : – resolvedInvoke(i,m), formal(m, z, v), z > 0,

actual(i, 2, v2), points-to(v2, h2),

hpoints-to(h2, “null”, h).

Handling Reflective Field Accesses: Field Objects

Resolution of Field objects is similar to Methods. Auxiliary relation getField defines

two standard ways reflection API ways to reflectively access a field.

getField(“Class.getField(String)”).

getField(“Class.getDeclaredField(String)”).

Relation fieldObject(h, f) defines when a heap-allocated object h ∈ H represents a

field f ∈ F .

fieldObject(h, f) : – getF ield(mf ), call(i,mf ),

freshi2h(i, h), actual(i, 1, v), points-to(v, hf ),

string2field(hf , f).
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Finally, load and store relations are updated to represent the newly discovered reflec-

tive field accesses:

store(v1, f, v2) : – call(i, “Field.set(Object, Object)”),

actual(i, 0, v), points-to(v, h), fieldObject(h, f),

actual(i, 1, v1), actual(i, 2, v2).

load(v1, f, v2) : – call(i, “Field.get(Object, Object)),

actual(i, 0, v), points-to(v, h), fieldObject(h, f),

actual(i, 1, v1), ret(i, v2).

Notice that because our relations describing the input program only represent objects

and effectively ignore primitive values, we do not need to model other field accessors

such as Field.getByte/Field.setByte, etc. listed in Figure 4.4.

Specification Points and User-Provided Specifications

Using a points-to analysis also allows us to determine, when a non-constant string is

passed to a call to Class.forName, the provenance of that string. The provenance of

a string is in essence a backward data slice showing the flow of data to that string.

Provenance allows us to compute specification points — places in the program where

external sources are read by the program from a configuration file, system properties,

etc. For each specification point, the user can provide values that may be passed into

the application.

Our implementation accepts specification files that contain a simple textual map

of a specification point to the constant strings it can generate. A specification point

is represented by a method name, bytecode offset, and the relevant line number. An

example of a specification file is shown in Figure 4.15.

We compute provenance by propagating through the assignment relation assign,

aliased loads and stores, and string operations. To make the specification points as

close to external sources as possible, we perform a simple analysis of strings to do

backward propagation through string concatenation operations. For brevity, we only

list the StringBuffer.append method used by the Java compiler to expand string
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loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet4AddressImpl

loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet6AddressImpl

...

lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.ISO_8859_15

lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.MS1251

...

tryToLoadClass() @ 29 DataFlavor.java:64 => java.io.InputStream

...

Figure 4.15: A fragment of a specification file accepted by our system. A string identifying a call
site to Class.forName is mapped to a class name that that call may resolve to.

concatenation operations here; other string operations work in a similar manner. The

following rules for relation leadsToForName detail provenance propagation:

leadsToForName(v, i) : – call(i, “Class.forName”), actual(i, 1, v).

leadsToForName(v2, i) : – leadsToForName(v1, i), assign(v1, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i),

load(v3, f, v1), points-to(v3, h3),

points-to(v4, h3), store(v4, f, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToForName(v2, i) : – leadsToForName(v1, i), actual(i2, 0, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

To compute the specification points necessary to resolve Class.forName calls, we find

endpoints of the leadsToForName propagation chains that are not string constants

that represent class names. Relation lhs(v) defines when variable v is ever assigned

to in the program.
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lhs(v) : – assign(v, _).

lhs(v) : – call(i, “StringBuffer.append”), ret(i, v).

lhs(v) : – call(i, “StringBuffer.append”), actual(i, 0, v).

lhs(v) : – call(i, “StringBuffer.toString”), ret(i, v).

lhs(v) : – call(i, “new StringBuffer”), actual(i, 0, v).

lhs(v) : – load(v3, f, v), points-to(v3, h), points-to(v2, h), store(v2, f, _).

Relation isTypeString(v) below holds for variables v that refer to class name constants:

isTypeString(v) : – points-to(v, h), string2class(h, _).

Finally, relation specPts(v, i) defines when variable v is a specification point for a call

to Class.forName at call site i:

specPts(v, i) : – leadsToForName(v, i),¬lhs(v),¬isTypeString(v).

Variables in specPts are often return results of calls to System.getProperty in the

case of reading from a system property or BufferedReader.readLine in the case of

reading from a file. By specifying the possible values at that point that are appropriate

for the application being analyzed, the user can construct a complete call graph.

Dealing with Other Reflective Calls

Unfortunately, Class.forName calls discussed in detail in the previous section are

not the only reflective calls whose results can occasionally remain unresolved without

a user-provided specification. According to the definition of newInstanceTargets in

Section 4.5.2, calls to Class.newInstance should all be fully resolved as long as the

underlying Class and Constructor objects are fully resolved.

Similarly, according to the rules in Sections 4.5.2 and 4.5.2, method invocations

and field accesses may not be fully resolved either because the underlying field or
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method objects are not fully resolved or because the method or field names are not

fully resolved. Since the underlying objects come from Class.forName calls, they will

be dealt with when we consider Class.forName resolution. However, method and

field names can be not fully resolved and we need to address these cases separately

by adding to the specPts relation.

leadsToInvoke(v, i) : – call(i, getMethod(m)), actual(i, 1, v).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), assign(v1, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i),

load(v3, f, v1), points-to(v3, h3),

points-to(v4, h3), store(v4, f, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToInvoke(v2, i) : – leadsToInvoke(v1, i), actual(i2, 0, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

Relation isMethodString below defines all string variables that represent method

names:

isMethodString(v) : – points-to(v, h), string2method(h, _).

Finally, we all the necessary 〈v ∈ V, i ∈ I〉 pairs to relation specPts :

specP ts(v, i) : – leadsToInvoke(v, i),¬lhs(v),¬isMethodString(v).

Finding additional specification points caused by unresolved field accesses proceeds

similarly. The relevant rules are shown below:
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leadsToField(v, i) : – call(i, getField(m)), actual(i, 1, v).

leadsToField(v, i) : – call(i, “Class.getDeclaredField”), actual(i, 1, v).

leadsToField(v2, i) : – leadsToField(v1, i), assign(v1, v2).

leadsToField(v2, i) : – leadsToField(v1, i),

load(v3, f, v1), points-to(v3, h3),

points-to(v4, h3), store(v4, f, v2).

leadsToField(v2, i) : – leadsToField(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 0, v2).

leadsToField(v2, i) : – leadsToField(v1, i), ret(i2, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

leadsToField(v2, i) : – leadsToField(v1, i), actual(i2, 0, v1),

call(i2, “StringBuffer.append”), actual(i2, 1, v2).

isFieldString(v) : – points-to(v, h), field2method(h, _).

specP ts(v, i) : – leadsToField(v, i),¬lhs(v),¬isFieldString(v).

4.5.3 Reflection Resolution Using Casts

For some applications, the task of providing reflection specifications may be too heavy

a burden. Fortunately, we can leverage the type cast information present in the pro-

gram to automatically determine a conservative approximation of possible reflective

targets. Consider, for instance, the following typical code snippet:

1. Object o = c.newInstance();

2. String s = (String) o;

The cast in statement 2 post-dominates the call to Class.newInstance in statement 1.

This implies that all execution paths that pass through the call to Class.newInstance

must also go through the cast in statement 2 [2]. For statement 2 not to produce a

runtime exception, o must be a subclass of String. Thus, only subtypes of String



CHAPTER 4. ANALYSIS OF REFLECTION 124

can be created as a result of the call to newInstance. More generally, if the result

of a newInstance call is always cast to type t, we say that only subtypes of t can be

instantiated at the call to newInstance.

Relying on cast operations can possibly be unsound as the cast may fail, in which

case, the code will throw a ClassCastException. Thus, in order to work, our cast-

based technique relies on Assumption 4.3, the correctness of cast operations.

Preparing Subtype Information

We rely on the closed world Assumption 4.2 described in Section 4.4 to find the set of

all classes possibly used by the application. The classes available at analysis time are

generally distributed with the application. However, occasionally, there are classes

that are generated when the application is compiled or deployed, typically with the

help of an Ant script. Therefore, we generate the set of possible classes after deploying

the application.

We pre-process all resulting classes to compute the subtyping relation

subtype(t1, t2) that determines when t1 is a subtype of t2. Preprocessing even the

smallest applications involved looking at many thousands of classes because we con-

sider all the default jars that the Java runtime system has access to. We run this

preprocessing step off-line and store the results for easy access.

Using Cast Information

We integrate the information about cast operations directly into the system of con-

straints expressed in Datalog. We use a Datalog relation subtype described above, a

relation cast that holds the cast operations, and a relation unresolved that holds the

unresolved calls to Class.forName. The following Datalog rule uses cast operations

applied to the return result vret of a call i to Class.newInstance to constrain the

possible types tc of Class objects c returned from calls sites ic of Class.forName:
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1. UniqueVector voiceDirectories = new UniqueVector();

2. for (int i = 0; i < voiceDirectoryNames.size(); i++) {

3. Class c = Class.forName((String) voiceDirectoryNames.get(i),

4. true, classLoader);

5. voiceDirectories.add(c.newInstance());

6. }

7.

8. return (VoiceDirectory[]) voiceDirectories.toArray(new

9. VoiceDirectory[voiceDirectories.size()]);

Figure 4.16: A case in freetts where our analysis is unable to determine the type of objects
instantiated on line 5 using casts.

classObjects(ic, t) : – call(i, “Class.newInstance”), actual(i, 0, v),

points-to(v, c), ret(i, vret),

cast(_, tc, vret), subtype(t, tc),

unresolved(ic), points-to(vc, c), ret(ic, vc).

Information propagates both forward and backward — for example, casting the result

of a call to Class.newInstance constrains the Class object it is called upon. If the

same Class object is used in another part of the program, the type constraint derived

from the cast will be obeyed.

Problems with Using Casts

Casts are sometimes inadequate for resolving calls to Class.newInstance for the

following reasons. First, the cast-based approach is inherently imprecise because

programs often cast the result of Class.newInstance to a very wide type such

as java.io.Serializable. This produces many potential subclasses, only some of

which are relevant in practice. Second, as our experiments show, not all calls to

Class.newInstance have post-dominating casts, as illustrated by the following ex-

ample.

Example 4.8. As shown in Figure 4.16, one of our benchmark applica-

tions, freetts, places the object returned by Class.newInstance into a vector



CHAPTER 4. ANALYSIS OF REFLECTION 126

voiceDirectories (line 5). Despite the fact that the objects are subsequently cast

to type VoiceDirectory[] on line 8, intraprocedural post-dominance is not powerful

enough to take this cast into account. �

Using cast information significantly reduces the need for user-provided specifica-

tion in practice. While the version of the analysis that does not use cast information

can be made fully sound with user specification as well, we chose to only provide a

specification for the cast-based version.

4.6 Experimental Results

In this section we present a comprehensive experimental evaluation of the static anal-

ysis approaches presented in Section 4.5. In Section 4.6.1 we describe our experimen-

tal setup. Section 4.6.2 presents an overview our experimental results. Section 4.6.3

presents our baseline local reflection analysis. In Sections 4.6.4 and 4.6.5 we discuss

the effectiveness of using the points-to and cast-based reflection resolution approaches,

respectively. Section 4.6.6 describes the specifications needed to obtain a sound call

graph approximation. Section 4.6.7 compares the overall sizes of the call graph for

the different analysis versions presented in this section.

Line File Available
Benchmark Description count count Jars classes

jgap genetic algorithms package 32,961 172 9 62,727
freetts speech synthesis system 42,993 167 19 62,821

gruntspud graphical CVS client 80,138 378 10 63,847

jedit graphical text editor 144,496 427 1 62,910

columba graphical email client 149,044 1,170 35 53,689

jfreechart chart drawing library 193,396 707 6 62,885

Total 643,028 3,021 80 368,879

Figure 4.17: Summary of information about reflection benchmarks. Applications are sorted by the
number of lines of code in column 3.
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4.6.1 Experimental Setup

We performed our experiments on a suite of six large, widely-used open-source Java

benchmark applications. These applications were selected among the most popular

Java projects available on SourceForge. We believe that real-life applications like these

are more representative of how programmers use reflection than synthetically created

test suites, or SPEC JVM benchmarks, most of which avoid reflection altogether.

Summary of information about the applications is provided in Figure 4.17. Notice

that the traditional lines of code size metric is somewhat misleading in the case of

applications that rely on large libraries. Many of these benchmarks depend of massive

libraries, so, while the application code may be small, the full size of the application

executed at runtime is quite large. The last column of the table in Figure 4.17 lists

the number of classes available by the time each application is deployed, including

those in the JDK. Notice that JDK classes dominate the picture, so the difference in

the number of classes across the applications is not very large.

We ran all of our experiments on an Opteron 150 machine equipped with 4GB

or memory running Linux. JDK version 1.4.2_08 was used. All of the running times

for our preliminary implementation were in tens of minutes, which, although a little

high, is acceptable for programs of this size. Creating subtype information for use

with cast-based analysis took well under a minute.

4.6.2 Evaluation Approach

We have implemented five different variations of our algorithms: None, Local,

Points-to, Casts, and Sound and applied them to the benchmarks described above.

None is the base version that performs no reflection resolution; Local performs a sim-

ple local analysis, as described in Section 4.6.3. Points-to and Casts are described

in Sections 4.5.2 and 4.5.3, respectively.

Version Sound is augmented with a user-provided specification as described in

Section 4.5.2 to make the answer conservative. Section 4.6.6 details what kind of

specification we had to provide to get a conservative result. We should point out

that only the Sound version provides results that are fully sound: None essentially
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assumes that reflective calls have no targets. Local only handles reflective calls that

can be fully resolved within a single method. Points-to and Casts only provide

targets for reflective calls for which either string or cast information constraining the

possible targets is available; both versions unsoundly assume that the rest of the calls

have no targets.

Figure 4.18 summarizes the results of resolving Class.forName using all five analy-

sis versions. Class.forName calls represent by far the most common kind of reflective

operations and we focus on them in our experimental evaluation. To reiterate the

definitions in Section 4.5, we distinguish between the following categories of calls:

• Fully resolved calls to Class.forName for which all potential targets are class

name constants.

• Partially resolved calls are calls that have at least one class name string constant

propagating to them and are not fully resolved.

• Unresolved calls are calls that have no class name string constants propagating

to them, only non-constant external sources requiring a specification.

The columns subdivide the total number of calls (T) into fully resolved calls (FR),

partially resolved (PR), and unresolved (UR) calls. In the case of Local analysis,

there are no partially resolved calls — calls are either fully resolved to constant

strings or unresolved. Similarly, in the case of Sound analysis, all calls are either

fully resolved or unresolved, as further explained in Section 4.6.5.

4.6.3 Local Analysis for Reflection Resolution (Local)

To provide a baseline for comparison, we implemented a local intra-method analysis

that identifies string constants passed to Class.forName. This analysis catches only

those reflective calls that can be resolved completely within a single method. Because

this technique does not use interprocedural points-to results, it cannot be used for

identification of specification points. Furthermore, because for method invocations

and field accesses the names of the method or field are typically not locally defined

constants, we do not perform resolution of method calls and field accesses in Local.
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A significant percentage of Class.forName calls can be fully resolved by local anal-

ysis, as demonstrated by the numbers in column 4, Figure 4.18. This is partly due to

the fact that it is actually quite common to call Class.forName with a constant string

parameter for side-effects of the call, because doing so invokes the class constructor.

Another common idiom contributing the number of calls resolved by local analysis

is T.class, which is converted to a call to Class.forName and is always statically

resolved.

4.6.4 Points-to & Reflection Resolution (Points-to)

Points-to information is used to find targets of reflective calls to Class.forName,

Class.newInstance, Method.invoke, etc. As can be seen from Figure 4.18, for all of

the benchmarks, Points-to information results in more resolved Class.forName calls

and fewer unresolved ones compared to Local.

Specification Points

Quite frequently, some sort of specification is required for reflective calls to be

fully resolved. Points-to information allows us to provide the user with a list of

specification points where inputs needs to be specified for a conservative answer

to be obtained. Among the specification points we have encountered in our ex-

periments, calls to System.getProperty to retrieve a system variable and calls to

BufferedReader.readLine to read a line from a file are quite common. Below we

provide a typical example of providing a specification.

Example 4.9. This example describes resolving reflective targets of a call

to Class.newInstance in javax.xml.transform.FactoryFinder in the JDK in or-

der to illustrate the power and limitation of using points-to information. Class

FactoryFinder has a method Class.newInstance shown in Figure 4.19. The call

to Class.newInstance occurs on line 9. However, the exact class instantiated at

runtime depends on the className parameter, which is passed into this function.

This function is invoked from a variety of places with the className parameter be-

ing read from initialization properties files, the console, etc. In only one case, when
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1. private static Object newInstance(String className,

2. ClassLoader classLoader) throws ConfigurationError {

3. try {

4. Class spiClass;

5. if (classLoader == null) {

6. spiClass = Class.forName(className);

7. }

8. ...

9. return spiClass.newInstance();

10. } catch (...)

11. ...

12. }

Figure 4.19: Reflection resolution using points-to results in javax.xml.transform.FactoryFinder
in the JDK.

Class.newInstance is called from another function find located in another file, is

the className parameter a string constant.

This example makes the power of using points-to information apparent — the

Class.newInstance target corresponding to the string constant is often difficult to

find by just looking at the code. The relevant string constant was passed down

through several levels of method calls located in a different file; it took us more that

five minutes of exploration with a powerful code browsing tool to find this case in

the source. Resolving this Class.newInstance call also requires the user to provide

input for four specification points: along with a constant class name, our analysis

identifies two specification points, which correspond to file reads, one access of system

properties, and another read from a hash table. �

In most cases, the majority of calls to Class.forName are fully resolved. However,

a small number of unresolved calls are potentially responsible for a large number of

specification points the user has to provide. For Points-to, the average number of

specification points per invocation site ranges from 3 for freetts to 9 for gruntspud.

However, for jedit, the average number of specification points is 422. Specification

points computed by the pointer analysis-based approach can be thought of as “hints”

to the user as to where provide specification.

In most cases, the user is likely to provide specification at program input points

where he knows what the input strings may be. This is because at a reflective call



CHAPTER 4. ANALYSIS OF REFLECTION 132

it may be difficult to tell what all the constant class names that flow to it may be,

as illustrated by Example 9. Generally, however, the user has a choice. For problem-

atic reflective calls like those in jedit that produce a high number of specification

points, a better strategy for the user may be to provide reflective specifications at the

Class.forName calls themselves instead of laboriously going through all the specifi-

cation points.

4.6.5 Casts & Reflection Resolution (Casts)

Type casts often provide a good first static approximation to what objects can be

created at a given reflective creation site. There is a significant increase in the number

of Class.forName calls reported in Figure 4.18 in a few cases, including 93 newly

discovered Class.forName calls in gruntspud that appear due to a bigger call graph

when reflective calls are resolved. In all cases, the majority of Class.forName calls

have their targets at least partially resolved. In fact, as many as 95% of calls are

resolved in the case of jedit.

As our experience with the Java reflection APIs would suggest, most

Class.newInstance calls are post-dominated by a cast operation, often located within

only a few lines of code of the Class.newInstance call. However, in our experiments,

we have identified a number of Class.newInstance call sites, which were not dom-

inated by a cast of any sort and therefore the return result of Class.newInstance

could not be constrained in any way. As it turns out, most of these unconstrained

Class.newInstance call sites are located in the JDK and sun.∗ sources, Apache li-

braries, etc. Very few were found in application code.

The high number of unresolved calls in the JDK is due to the fact that re-

flection use in libraries tends to be highly generic and it is common to have

“Class.newInstance wrappers” — methods that accept a class name as a string

and return an object of that class, which is later cast to an appropriate type in the

caller method. Since we rely on intraprocedural post-dominance, resolving these calls

is beyond our scope. However, since such “wrapper” methods are typically called from

multiple invocation sites and different sites can resolve to different types, it is unlikely
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that a precise approximation of the object type returned by Class.newInstance is

possible in these cases at all.

Precision of Cast Information

Many reflective object creation sites are located in the JDK itself and are present

in all applications we have analyzed. For example, method lookup in package

sun.nio.cs.AbstractCharsetProvider reflectively creates a subclass of Charset and

there are 53 different character sets defined in the system. In this case, the answer is

precise because all of these charsets can conceivably be used depending on the appli-

cation execution environment. In many cases, the cast approach is able to uniquely

pinpoint the target of Class.newInstance calls based on cast information. For exam-

ple, there is only one subclass of class sun.awt.shell.ShellFolderManager available

to gruntspud, so, in order for the cast to succeed, it must be instantiated.

In general, however, the cast-based approach provides an imprecise up-

per bound on the call graph that needs to be analyzed. Because the re-

sults of Class.newInstance are occasionally cast to very wide types, such

as java.lang.Cloneable, many potential subclasses can be instantiated at the

Class.newInstance call site. The cast-based approach is likely to yield more pre-

cise results on applications that use Java generics, because those applications tend to

use more narrow types when performing type casts.

4.6.6 A Sound Call Graph Approximation (Sound)

Providing a specification for unresolved reflective calls allows us to achieve a sound

approximation of the call graph. In order to estimate the amount of effort required

to come up with a specification for unresolved reflective calls, we decided to start

with the Points-to call graph version and then add a reflection specification until

all reflective calls become resolved. Because providing a specification allows us to

discover more of the call graph, two or three rounds of specification were required as

new portions of the program became available. In practice, we would start without a

specification and examine all unresolved calls and specification points corresponding
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to them. Then we would come up with a specification and feed it back to the call

graph construction algorithm until the process converges.

Coming up with a specification is a difficult and error-prone task that requires

looking at a large amount of source code. It took us about ten hours to incrementally

devise an appropriate specification and ensure its completeness by rerunning the

call graph construction algorithm to make certain all reflective constructs are fully

resolved. After providing a reflection specification stringing with Points-to, we then

estimate how much of the user-provided specification can be avoided if we were to

rely on type casts instead.

Specification Statistics

The first part of Figure 4.20 summarizes the effort needed to provide specifications

to make the call graph sound. The second column shows the number of specifications

of the form

reflective call site => type

as exemplified by Figure 4.15. Columns 3–5 show the number of reflection calls sites

covered by each specification, breaking them down into sites that located within

library vs. application code. As can be seen from the table, while the number of

invocation sites for which specifications are necessary is always around 20, only a few

are part of the application. Moreover, in the case of jfreechart, all of the calls

requiring a specification are part of the library code.

Since almost all specification points are located in the JDK and library code,

specification can be shared among different applications. Indeed, there are only 40

unique invocation sites requiring a specification across all the benchmarks. Column 6

shows the average number of types specified per reflective call site. Numbers in this

columns are high because most reflective calls within the JDK can refer to a multitude

of implementation classes.

The second part of Figure 4.20 estimates the specification effort required if were

were to start with a cast-based call graph construction approach. As can be seen

from columns 8–10, the number of Class.forName calls that are not constrained by a
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cast operation is quite small. There are, in fact, only 14 unique invocation sites — or

about a third of invocation sites required for Points-to. This suggests that the effort

required to provide a specification to make Casts sound is considerably smaller than

our original effort that starts with Points-to. However, the cast-based approximation

is in many cases quite imprecise, which artificially inflates the call graph size.

Specification Difficulties

In some cases, determining meaningful values to specify for Class.forName results is

quite difficult, as shown by the example below. One such problematic example was

the BeanShell interpreter in jedit first described in Section 4.3.7.

Example 4.10. In order to come up with a conservative superset of classes that

may be invoked by the BeanShell interpreter for a given installation of jedit, we

parse the scripts that are supplied with jedit to determine imported Java classes

they have access to. (We should note that this specification is only sound for the

default configuration of jedit; new classes may need to be added to the specification

if new macros become available.)

It took us a little under an hour to develop appropriate Perl scripts to do the

parsing of 125 macros supplied with jedit. The Class.forName call can instantiate

a total of 65 different types, which is, of course, an improvement over the overly

conservative approximation that assumes that any class in the system may be instan-

tiated through the reflective call. �

We should emphasize that the conservativeness of the call graph depends on the

conservativeness of the user-provided specification. If the specification missed poten-

tial relations, they will be also omitted from the call graph. Furthermore, a speci-

fication is typically only conservative for a given configuration of an application: if

initialization files are different for a different program installation, the user-provided

specification may no longer be conservative.
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Remaining Unresolved Calls

Somewhat surprisingly, there are still some Class.forName calls that are not fully

resolved given a user-provided specification, as can be seen from the last column in

Figure 4.18. In fact, this is not a specification flaw: no valid specification is possible

for those cases, as explained below.

Example 4.11. The audio API in the JDK includes method

javax.sound.sampled.AudioSystem.getDefaultServices, which is not called

in Java version 1.3 and above. A Class.forName call within that method resolves

to constant com.sun.media.sound.DefaultServices, however, this class is absent

in post-1.3 JDKs. However, since this method represents dead code, our answer is

still sound. Similarly, other unresolved calls to Class.forName located within code

that is not executed for the particular application configuration we are analyzing

refer to classes specific to MacOS and unavailable on Linux, which is the platform

we performed analysis on. In other cases, classes were unavailable for JDK version

1.4.2_08, which is the version we ran our analysis on. �

4.6.7 Effect of Reflection Resolution on Call Graph Size

Figure 4.21 compares the number of classes and methods across different analysis

versions. The last column shows by how many times the number of classes or meth-

ods in the Sound version exceeds that for None. Local analysis does not have any

significant effect on the number of methods or classes in the call graph, even though

most of the calls to Class.forName can be resolved with local analysis. This is due to

the fact that the vast majority of these calls are due to the use of the T.class idiom,

which typically refer to classes that are already within the call graph. While these

trivial calls are easy to resolve, it is the analysis of the other “hard” calls with many

potential targets that leads to a substantial increase in the call graph size.

Using Points-to increases the number of classes and methods in the call graph

only moderately. The biggest increase in the number of methods occurs for jedit

(293 methods). Using Casts leads to significantly bigger call graphs, especially for
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gruntspud, where the increase in the number of methods compared to None is almost

two-fold.

The most noticeable increase in call graph size is observed in version Sound.

Compared to None, the average increase in the number of classes is 3.2 times the

original and the average increase for the number of methods is 3 times the original.

The biggest increase in the number of methods occurs in gruntspud, with over 7,000

extra methods added to the graph.

Figure 4.21 also demonstrate that the lines of code metric is not always indicative

of the size of the final call graph — programs are listed in the increasing order of line

counts, yet, jedit and gruntspud are clearly the biggest benchmarks if we consider

the method count. This can be attributed to the use of large libraries that ship with

the application in binary form as well as considering a much larger portion of the

JDK in version Sound compared to version None.

4.6.8 Running Times

Figure 4.22 presents the running times for the different versions our our analysis.

For each analysis version, we specify the bddbddb solver time as well as the total

wall clock time, which includes the time to load the relations and save the program

representation and call graph information. The overhead involved in these steps can

range from 38% to over 100%. When there is a client analysis that uses the results

None Local Points-to Casts

Benchmark Solver Total Solver Total Solver Total Solver Total

jgap 30 54 34 61 43 73 477 692

freetts 16 32 19 35 23 39 180 250

gruntspud 193 268 239 318 392 481 5,702 5,860

jedit 836 1,236 983 1,394 1,925 2,401 0 7,300

columba 106 158 125 179 173 237 1,161 1,456

jfreechart 272 395 335 462 450 592 2,578 3,351

Figure 4.22: Running times for different analysis versions, in seconds.
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of reflection resolution, these additional saving operations can be avoided by running

the client analysis together with reflection resolution while the relevant relations are

still within bddbddb. While the version with no reflection resolution runs relatively

fast, other analysis versions take considerably more time to complete.

4.7 Chapter Summary

This chapter presents the first static analysis for call graph construction in Java that

addresses reflective calls. Our algorithm uses the results of a points-to analysis to

determine potential reflective call targets. When the calls cannot be fully resolved,

user-provided specification is requested. As an alternative to providing specification,

type cast information can be used to provide a conservative approximation of reflective

call targets.

We applied our static analysis techniques to the task of constructing call graphs

for six large Java applications, some consisting of more than 190,000 lines of code.

Our evaluation showed that as many as 95% of reflective Class.forName could at

least partially be resolved to statically determined targets with the help of points-to

results and cast information without providing any specification.

While most reflective calls are relatively easy to resolve statically, precisely in-

terpreting some reflective calls requires a user-provided specification. Our pointer

analysis-based approach also identified specification points — places in the program

corresponding to file and system property read operations, etc., where user input

is needed in order to obtain a full call graph. Our evaluation showed that the con-

struction of a specification that makes the call graph conservative is a time-consuming

and error-prone task. Fortunately, our cast-based approach can drastically reduce the

specification burden placed on the user by providing a conservative, albeit potentially

imprecise approximation of reflective targets.

Our experiments confirmed that ignoring reflection results in missing significant

portions of the call graph, which is not something that effective static analysis tools

can afford. While the local and points-to analysis techniques resulted in only a mod-

erate increase in call graph size, using the cast-based approach resulted in call graphs
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with as many as 1.5 times more methods than the original call graph. Furthermore,

providing a specification resulted in much larger conservative call graphs that were

almost 7 times bigger than the original. For instance, in one our benchmark, an

additional 7,047 methods were discovered in the conservative call graph version that

were not present in the original.



Chapter 5

Runtime Analysis

In this chapter we describe the runtime analysis part of the Griffin project. Runtime

analysis results are summarized in Chapter 6.

5.1 Advantages of the Runtime Approach

As part of the Griffin project, we have developed a runtime security protection and

recovery system for Web applications. Commonly used dynamic techniques such as

application firewalls [152] that rely on pattern-matching and monitor traffic flowing

in and out of the application are often a poor solution for SQL injection or cross-site

scripting attacks. Such techniques suffer from both false positives and false negatives.

In contrast, our runtime technique can detect all attacks of a particular kind be-

cause it precisely tracks how the data flows through the application. No false alarms

are introduced because runtime instrumentation has perfect historical information

about any piece of data. Moreover, our approach can gracefully recover from vulner-

abilities before they can do any harm by sanitizing tainted input whenever necessary.

There are some inherent advantages summarized below that the runtime analysis

approach has over the static one:

Deployment-time security. Runtime analysis can be integrated with the server so

that whenever a new Web application is added, it is instrumented automatically.
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This removes the risk associated with deploying “unfamiliar”, potentially unsafe

Web applications. This approach eliminates the “vulnerability window” that

stems from the code changing without the static analysis tool being immediately

rerun. Moreover, recovery from vulnerabilities can be provided by applying

user-provided sanitization.

No need to change the development lifecycle. Unlike static tools, runtime

technology can be used at organizations that lack a well-established static an-

alysis or testing infrastructure as part of their development process. Trying to

introduce a static analysis tool into such an organization is a difficult task, one

that is likely to be met with reluctance from the developers.

No need for the source code. Unlike a static approach, runtime analysis does not

require changes to the original program and does not need access to the source

code. While static analysis is done at the bytecode level, reporting analysis

results back to the user requires access to the source code. Runtime analysis

can be especially advantageous when dealing with applications that rely heavily

on libraries, whose source is unavailable. In those cases, the vulnerabilities that

span library code cannot be easily reported. It can also be beneficial in an

environment where the source code is unavailable for security or intellectual

property reasons.

Avoids static analysis challenges. Finally, as described in Chapter 3, analyzing

Web applications statically can be challenging because of the difficulty of call

graph construction and reflection. Runtime analysis avoids these challenges

altogether.

The rest of the chapter is organized as follows. Section 5.2 describes the process of

translating a PQL query into nondeterministic finite automata (NFAs). Section 5.3

describes the NFAs corresponding to tainted object propagation queries in Chapter 2.

Section 5.4 discusses the issue of runtime overhead. Finally, Section 5.5 addresses

runtime recovery from exploits.
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5.2 Matching PQL Queries at Runtime

PQL provides generic machinery for matching queries at runtime as described in the

rest of this section. PQL queries are translated into non-deterministic finite-state au-

tomata (NFAs). The underlying application is instrumented so that all events relevant

to the query being matched are recorded. When the application is executed, NFAs

constructed on the bases of the PQL query run alongside the application collecting

information about relevant program events.

Whenever the NFA corresponding to the main query enters an accept state, one

of several outcomes can occur. If the replaces clause is present, another event is

substituted in place of the event being replaced. This is especially useful for recovery,

so that a safe action replaces a potentially unsafe one, as described in Section 5.5. If

the executes clause is present, the code within the clause will be executed, which is

useful for reporting vulnerabilities or terminating the application.

Finding dynamic matches to PQL queries involves the following steps:

Query translation. Translate each subquery into an NFA which takes an input

event sequence, finds subsequences that match automaton, and reports the val-

ues bound to all returned query variables for each match.

Program instrumentation. Instrument the target application to record events

relevant to the query being matched.

Query matching. Use a query matcher to interpret all the state machines over the

execution trace collected as the program runs to find all matches.

Each of these steps is described in detail in Sections 5.2.1 — 5.2.3.

5.2.1 Translation From Queries To State Machines

A state machine representing a PQL query is composed of the following components:

• a set of states, which includes a start state, a fail state, and an accept state;

• a set of state transitions which may or may not be predicated;

• and a set of query variables taken from the original PQL query.
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A partial query match is given by a current state and a set of bindings — mappings

from variables in a PQL query to objects in the heap at runtime. A state transition

specifies the event for which a current state and current bindings transition to the

next state and a new set of bindings. Because the same event may be interpreted

in different ways by different transitions, a state machine may non-deterministically

transition to different states given the same input.

Special Transitions

State transitions generally represent a single primitive statement corresponding to a

single execution event. There are three special kinds of transitions, though:

Skip transitions. A query specifies a sub-sequence of events to match. Unless

noted otherwise with an exclusion statement, an arbitrary number of events of

any kind are allowed in between consecutive matched statements. We represent

this notion with a skip transition, which connects a state back to itself on any

event that does not match the set of excluded events. Note that the accept

state does not have a skip transition, so matches are reported only once.

ε transitions. An ε transition does not correspond to any event; it is taken imme-

diately when encountered. Any state with outgoing ε transitions must have all

outgoing transitions be ε. They may optionally carry a predicate; the transition

may only be taken if the predicate is true. If it is not, the matcher transitions

directly into the fail state.

Subquery invocation transitions. These behave mostly like ordinary transitions,

but correspond to the matches of entire, possibly recursive, queries.

We preprocess the original PQL queries to ease the translation process. No sub-

query may, directly or indirectly, invoke itself without any intervening events. So, first

we eliminate such situations, a process analogous to the elimination of left-recursion

from a context-free grammar [2]. Second, excluded events are propagated forward

through subquery calls and returns so that each set of excluded events is either at

the end of main or immediately before a primitive statement.
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Transitions Corresponding to Primitive Statements

We now present a syntax-directed approach to constructing the state machine for a

query. The reader is encouraged to refer to the PQL grammar in Figure 2.4 as we

describe how different primitive statements are translated. Before we can proceed,

some additional notation is required.

Associated with each statement s in the query are two states, denoted bef (s)

and aft(s), to refer to the states just before and after s is matched. For a query with

statement s in the matches clause, the start and accept states of the query are states

bef (s) and aft(s), respectively.

Definition 5.2.1 An attribute in event e with value x is unifiable with query state-

ment s and the current set of bindings b if

• it refers to a query variable v that is unbound in b or bound in b to value x;

• or if the corresponding attribute in s has a literal constant value x.

Below we describe how the different PQL primitives are translated into NFAs.

Array and field operations. These are the primitive statements that correspond

to single events during the execution. For a primitive statement s of type t, the

transition from bef (s) to aft(s) is predicated by getting an input event e also of

type t and that the attributes in e must be unifiable with those in statement s

and the current bindings. If the attribute refers to an unbound variable v, the

pair (v, x) is added to the set of known bindings.

Exclusion. For an excluded primitive statement of the form ∼ s′, bef (s) = aft(s).

The default skip transition is modified to be predicated upon not matching s′.

Sequencing. If s = s1; s2, then bef (s) = bef (s1), aft(s) = aft(s2), and aft(s1) =

bef (s2).

Alternation. If s = s1|s2, then bef (s) provides ε transitions to bef (s1) and bef (s2);

similarly, aft(s1) and aft(s2) each have an ε transition to aft(s).
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Method invocation and creation points. If s is a method invocation statement,

we must match the call and return events for that method, as well as all events

between them. To do this, we create a fresh state t and a new event variable

v. We create a transition from bef (s) to t that matches the call, and bind v to

the ID of the event. We create another transition from t to aft(s) that matches

a return with ID v. The skip transition from t back to itself is modified to

exclude the match of the return event. Calls and returns are unified in a manner

analogous to array and field operations. Object creation is handled in Java by

invoking the method “<init>”, and is translated into NFAs like any other

method invocation.

Unification statements. A unification statement denoted by unifyStmt in Fig-

ure 2.4 is represented by a predicated ε transition that requires that the two

variables on the left and right have the same value. If one is unbound, it will

acquire the value of the other.

5.2.2 Instrumenting the Program

The system instruments all instructions in the target application that match any

primitive event or any exclusion event in the query. At an instrumentation point, the

pending event and all relevant objects are sent to the query matcher. The matcher

updates the state of all pending matches and then returns control to the applica-

tion. For instance, the NFA that corresponds to a PQL query that concerns calls to

method StringBuffer.toString() will be notified each time this method is invoked.

Moreover, the value of the this parameter will be passed to the NFA also.

The matcher does not interfere with the behavior of the application except via

completed matches. Therefore, any instrumentation point that can be statically

proven to not contribute to any match need not be instrumented.

5.2.3 The Runtime Query Matcher

The matcher begins with a single partial match at the beginning of the main query,

with no values for any variables. It receives events from the instrumented application
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and updates all currently active partial matches. For each partial match, each transi-

tion from its current state that can unify with the currently processed event produces

a new possible partial match where that transition is taken.

Handling Non-Determinism

A single event may be unifiable with multiple transitions from a state, so multiple new

partial matches are possible. If a skip transition is present and its predicates pass,

the match will persist unchanged. If the skip transition is present but a predicate

fails the match transitions to the fail state. If the skip transition is present but a

predicate’s value is unknown because the variables it refers to as are of yet unbound,

then the variable is bound to a value representing “any object that does not violate

the predicate.” Predicates accumulate if two such objects are unified; unification with

any object that satisfies all such predicates replaces the predicates with that object.

If the new state has ε transitions, they are processed immediately.

Handling Subqueries

If a transition representing a subquery call is available from the new state, a new

partial match based on the subquery’s state machine is generated. This partial match

begins in the subquery’s start state and has initial bindings corresponding to the

arguments the subquery was invoked with.

A unique subquery ID is generated for the subquery call and associated with the

subquery caller’s partial match, with the subquery callee’s partial match, and with

any partial match that results from taking transitions within the subquery callee.

Handling Accept States

Once a partial match transitions into an accept state, it begins to wait for events

named in replaces clauses. When a targeted event is encountered, the instruction

is skipped and the substituted method is run instead. An executes clause runs

immediately once the accept state is reached.
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S
source derived*

* ~{sanitizer1, sanitizer2, ...}

sink

Figure 5.1: State machine that corresponds to the main PQL query.

When a subquery invocation completes, the subquery ID is used to locate the

transition that triggered the subquery invocation. The variables assigned by the

query invocation are then unified with the return values, and the subquery invocation

transition is completed. The original calling partial match remains active to accept

any additional subquery matches that may occur later.

5.3 Translating Vulnerability Queries

The previous section presented a generic procedure for translating from PQL queries

to NFAs. This section discusses the state machines that are created for the specific

vulnerability queries shown in Figures 2.5 — 2.7. For all the NFAs discussed in

this section, S marks the start state and thick-edged graph nodes are accept states.

For edges, ∗ marks an edge that can be taken on any input. Exclusion notation

∼ e1, e2, . . . on graph edges marks an edge that can be taken on any input events

except e1, e2, . . . .

Query main. The NFA in Figure 5.1 for the main PQL query consists of invocations

of subqueries source, sink, and derived∗. This corresponds to a piece of data

that is read from a source, derived from using zero or more steps, and then falls

into a sink. This exactly matches the notion of a tainted object propagation

problem in Section 2.1.1.

It is important to point out that the transition on the sink edge leading to the

accepting node is only allowed when no sanitizer calls are encountered (sanitizers

are denoted by sanitizer1, sanitizer2, etc.). This is important since it is
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Figure 5.2: State machines corresponding to the (a) source and (b) sink PQL queries.

possible for derived∗ query to complete without encountering a sanitizer. Once

the derived∗ step finishes, a sanitizer could be applied to the same object as

the one passed into a sink.

Query source. The source NFA shown in Figure 5.2(a) accepts on methods calls

to source methods such as getParameter, etc. One complication is the treat-

ment of return values of a call to getParameterValues. It is required that

the returned array be indexed, as represented by the edge marked with “[ ]”

for the state machine to accept. A similar technique is used to make values of

a map returned from getParameterMap tainted, except that several possibili-

ties exist: method get needs to be called on the map returned from the call;

alternatively, an iterator could be constructed over the map values by calling

values().iterator() and then method next() could be called on the iterator.

Queries sink and derived. Queries sink and derived consist of an alternation of

methods that correspond to sink and derivation descriptors, respectively. Notice

that the sink and derived NFAs in shown in Figures 5.2(b) and 5.3(a) only

accepts if no sanitizer is encountered.

Query derived∗. The NFA in Figure 5.3(b) is self-recursive and corresponds to

zero or more invocations of subquery derived. When the temp node is reached,

a new state machine is created to interpret the recursive invocation of derived∗.
Eventually, the top branch from the start node will be taken, thus completing

the subquery match.
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Figure 5.3: State machines corresponding to the (a) derived and (b) derived∗ PQL queries.

5.4 Reducing Instrumentation Overhead

Instrumentation code is inserted only at those program points that might generate

an event of interest for the specific query. To reduce the number of instrumentation

points, a simple type analysis excludes operations on types not related to objects

in the query. However, this is often not enough. For example, in the case of query

derived, most String and StringBuffer operations would have to be instrumented.

Since there are many such method calls, this results in a high overhead.

In order to reduce the overhead further, we use the results of our static analysis,

described in Section 3.5.4, to reduce the instrumentation by excluding statements that

cannot refer to objects involved in any match of the query. For queries capturing the

tainted object problem, we only need to instrument calls on a path from a source to

a sink, which account for a small portion of all string-related method calls. Also, as

described in Martin et al. [140], instead of collecting full execution traces and post-

processing them, our system tracks all the partial matches as the program executes

and takes action immediately upon recognizing a match.

5.5 Dynamic Recovery from Vulnerabilities

Figure 5.4 presents an augmented version of query main that has recovery capabilities.

As can be seen from the augmented query, each operation that can unsafely use tainted

data receives a replaces clause in the augmented main query.

When a possibly relevant sink is reached, any match that has completed and
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query main()

returns
object Object sourceObj, sinkObj;

matches {
sourceObj := source();

sinkObj := derived*(sourceObj);

sinkObj := sink();

}
replaces java.sql.PreparedStatement.prepareStatement(sink)

with SQL.SafePrepare(sourceObj, sinkObj);

replaces java.sql.Statement.executeQuery(sink)

with SQL.SafeExecute(sourceObj, sinkObj);

...

Figure 5.4: Augmented main query for recovering from exploits at runtime.

which is consistent with the event being replaced is gathered. If the replaces clause

is present, the replacing method is executed instead. Since every argument to the

replaces clause except sourceObj appears in the replaced event, sourceObj is the

only variable that may have multiple values. The replacement method provides a safe

alternative for each of the sinks in the query. In general, the replacement method

sanitizes tainted values. The kind of sanitization applied is different depending on

both the type of vulnerability and the method being replaced.

5.5.1 Built-in Sanitization

While it is generally up to the user to provide the proper sanitization routines, in the

case of SQL and HTML sanitization, PQL provides a library of simple sanitization

functions that can be used if application-specific sanitizers are unknown.

Example 5.1. SQL sanitization methods SafePrepare and SafeExecute work by

finding all substrings within string sinkObj that match any of the possible values for

string sourceObj. A new SQL query string is constructed with all SQL metachar-

acters in any such substring quoted. This new query is then passed to methods

prepareStatement or executeQuery invoked on the underlying object, respectively.

This is not dissimilar to to the approach taken in Buehrer et al. [26].

To understand how this work for protecting against SQL injections, consider a
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sourceObj that refers to string ′O′Brian′. Suppose sinkObj refers to string

SELECT * FROM Users WHERE name = ’O’Brian’

The result of applying SafePrepare will be

SELECT * FROM Users WHERE name = ’O’’Brian’

which escapes the string sourceObj within the quotation marks. In the MySQL

dialect of SQL, this escaping is achieved by doubling quotation marks. �

Using this relatively simple escaping technique we were able to defend against

two SQL injections in two of our benchmark programs, webgoat and two more in

road2hibernate for which we had derived effective attacks.

5.5.2 Shortcomings of Built-in Sanitizers

However, in general, this escaping mechanism is quite simplistic and may not always

result in the desirable output. For example, if sinkObj uses the upper-case version

of sourceObj, it will not be matched. Similarly, the hibernate object persistence

library performs heavy processing on user input, but fails to actually quote the dan-

gerous components of it verbatim. The following input

bob’ or 1=1

will be converted by hibernate into

bob’ or ’1’=’1’

Because of this existing quoting mechanism, which actually does nothing to protect

against SQL injections, it was necessary to modify the query to perform the substi-

tution step at the interface between road2hibernate and hibernate, an open-source

object-persistence library, rather than between the hibernate and the database itself.

This illustrates a more general point about applying sanitization: where it needs to

be placed is often open for discussion. While our approach of applying it right before

the sink works in most cases, it is not necessarily most efficient. In many cases, the

proper place to insert sanitization — both in the code and at runtime — is between

abstraction boundaries or before a piece of data is placed into a data structure, etc.

An example that further illustrates this dilemma is discussed in Section 6.3.4.



Chapter 6

Experimental Results

This chapter summarizes experimental results for the static and runtime analyses

described in Chapters 3 and 5. Our analyses are applied to two suite of benchmark

applications: large, real-life open source Java programs and a suite of small artificial

test cases. Our focus is to find out what kind of vulnerabilities are discovered by

static analysis and to determine the effect of static analysis features on the number

of false positives. For runtime analysis, our primary focus is to measure the runtime

overhead incurred with our dynamic analysis.

6.1 Experimental Setup

In this section we describe the benchmarks we used in our experiments. There are

two sets of benchmarks we have used. The first one — Stanford SecuriBench —

consists of large real-life open-source applications, most of which are available on

Sourceforge [125]; these are the “macro” benchmarks. The second benchmark suite

is Stanford SecuriBench Micro [127], a collection of small artificial benchmarks we

developed to tests various aspects of static analysis. Both suites of benchmarks are

described in more detail below. Both benchmark suites are made publicly available

from the Griffin project Web page [126] to foster an exchange of ideas as well as

further research in the area of Web application security.
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Our static analysis framework was implemented on top of the Joeq compiler re-

search infrastructure [202] and the bddbddb Datalog solver [203]. Runtime instrumen-

tation was performed with the help of the PQL system [139] build on top of Apache

BCEL instrumentation framework [57]. Finally, analysis times shown in Figure 6.3

and mentioned elsewhere are obtained on an Opteron 150 machine with 4 GB of

memory running Linux.

6.1.1 SecuriBench Benchmark Applications

While there is a fair number of commercial and open-source tools available for testing

Web application security, there are no established benchmarks for comparing tools’

effectiveness. The task of finding suitable benchmarks for our experiments was es-

pecially complicated by the fact that most Web-based applications are proprietary

software, whose vendors are understandably reluctant to reveal their code, not to

mention the vulnerabilities found. At the same time, we did not want to restrict our

attention to artificial micro-benchmarks or student projects that lack the complexities

inherent in real applications.

Evaluation Strategy

While some attempts have been made at constructing artificial large-scale Web appli-

cation benchmarks [58, 164], we believe that real-life programs are much better suited

for comparing security tools. We focused on a set of large, representative open-source

Web-based J2EE applications, most of which are available on SourceForge. We re-

leased the Stanford SecuriBench suite of Web application benchmarks in 2005. We

are making these benchmarks publicly available in hopes of fostering collaboration be-

tween researchers. So far, SecuriBench consists of 11 real-life open-source Web-based

applications written in Java and developed using the J2EE framework.
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Description of Benchmark Applications

The benchmark applications we used are briefly described below. Applications

jboard, jgossip, blojsom, personalblog, snipsnap, pebble, and roller are Web-

based bulletin board and blogging applications. jorganizer is an online personal

information manager. webgoat is a J2EE application designed by the Open Web Ap-

plication Security Project [157, 158] as a test case and a teaching tool for Web applica-

tion security. Finally, road2hibernate is a test program developed for hibernate, a

popular object persistence library, which is not a Web applications that we developed

for exploring injection vectors into the hibernate library.

Applications were selected from among J2EE-based open-source projects on

SourceForge solely on the basis of their size and popularity. Other than webgoat,

which we knew had intentional security flaws, we had no prior knowledge as to

whether the applications had security vulnerabilities. Most of our benchmark ap-

plications are used widely: roller is used on dozens of sites including prominent

ones such as blogs.sun.com. snipsnap has more than 50,000 downloads according

to its authors. road2hibernate is a wrapper around hibernate, a highly popular

object persistence library that is used by multiple large projects, including a news

aggregator and a portal. personalblog has more than 3,000 downloads according to

SourceForge statistics. Finally, blojsom was adopted as a blogging solution for the

Apple Tiger Weblog Server.

Application Statistics

Figure 6.1 summarizes information about our benchmark applications. Notice that

the traditional lines-of-code metric is somewhat misleading in the case of applications

that use large libraries. Many of these benchmarks depend on massive libraries, so,

while the application code may be small, the full amount of code that needs to be

analyzed is quite large. An extreme case is road2hibernate, which is a small 140-line

stub program designed to exercise the hibernate object persistence library; however,

the total number of analyzed classes for road2hibernate exceeded 800.

A better measure of application size called “expanded lines of code” is given in
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the fourth column of Figure 6.1. It combines the total number of lines within the

application and library code. To compute expanded line of code statistics we created

a tool that aggregated lines of code for all classes that are present in the call graph.

When the source code was unavailable for library classes, we used jad, a popular Java

disassembler [110] to obtain a line count estimate. Figure 6.2 contains a graphical

summary of the application size data. Columns 5 — 7 summarize the numbers of

files, classes, and jar (or Java ARchive) libraries each application contains. The high

number of jar files shown in the last column can be explained by the fact that many

applications rely heavily on external libraries, which are distributed as jars.

Analysis Times

Figure 6.3 summarizes the running times for various phases of the static analysis for

SecuriBench applications. The second column of the table shows the times to pre-

process the application to create relations accepted by the pointer analysis. It also

includes the time involved in call graph construction as well as inlining the call graph

to achieve better object naming, as described in Section 3.4.4. Call graph inlining is

a major contributing factor to the cost of call graph construction as well as program

relation generation. Call graph inlining also makes the amount of code that needs to

be analyzed quite a bit larger, slowing down further analysis phases.

The third column of the table shows the time taken by a call graph numbering

pass, required to perform a context-sensitive pointer analysis described in [205]. The

fourth column shows context-sensitive points-to analysis times. Finally, columns 5–7

show the times to find the vulnerabilities statically, as described in Section 3.5.1.

These times are broken down into the times it takes to find sources, sinks, and to

solve the tainted object propagation problem.

6.1.2 SecuriBench Micro Benchmarks

The second testbed for our experiments is a suite of more than a hundred small

synthetic benchmarks designed to test various aspects of static analysis coverage

and precision. All SecuriBench Micro benchmarks are small J2EE servlets that can
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Test category Category description Tests

basic Handling of various simple cases 41

collections Handling of standard collections 14

interprocedural Handling of flow across methods 14

arrays Handling of flow array element accesses 9

predicates Handling of conditionals 9

sanitizers Handling of standard library sanitization routines 6

aliasing Handling of pointer aliasing 6

data structures Handling of recursive data structures 6

strong updates Handling of strong updates to variables 5

factories Handling of factory methods 3

session handline Handling of objects placed inside the Session structure 3

Total 116

Figure 6.4: SecuriBench Micro test case categories.

be deployed on a standard application server. SecuriBench Micro benchmarks were

developed by us as we worked on the static analysis portion of the analysis and are

made available to the public [127]. To date, some researchers and tool vendors have

decided to use SecuriBench Micro. We hope that others will find this benchmark

suite in their own research.

SecuriBench Micro benchmarks are subdivided into 11 categories, each designed

to exercise a different portion of the analysis. More information about benchmark

categories is given in Figure 6.4. Static analysis results are conservative, meaning that

all known vulnerabilities in SecuriBench Micro benchmarks are found by static anal-

ysis. Comparing against a known set of vulnerabilities gives us additional assurance

of the correctness of our implementation.

Example 6.1. A sample test case from SecuriBench Micro is shown in Figure 6.5.

This case tests String and StringBuffer handling within the static analyzer. Class

Basic10 is a simple J2EE servlet that implements method doGet, which is invoked

when a Web form is submitted. Objects req and resp give access to servlet input

and output, respectively. In this case, a cross-site scripting vulnerability is enabled
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1. public class Basic10 extends BasicTestCase implements MicroTestCase {

2. protected void doGet(HttpServletRequest req, HttpServletResponse resp)

3. throws IOException

4. {

5. String s1 = req.getParameter("name"); /* TAINTED */

6. String s2 = s1;

7. String s3 = s2;

8. String s4 = s3;

9. StringBuffer b1 = new StringBuffer(s4);

10. StringBuffer b3 = b1;

11. String s5 = b3.toString();

12. String s6 = s5;

13.

14. PrintWriter writer = resp.getWriter();

15. writer.println(s6); /* BAD */

16. }

17. }

Figure 6.5: Sample benchmark from the SecuriBench Micro suite.

via a call to println on line 15. The source is a tainted parameter s1 obtained on

line 5. Derived objects that participate in the vulnerability trace are s2, s3, s4, b1,

b3, s5, and s6. �

We do not report the runtime for the micro benchmarks separately, as the variation

among them is small. The total time to run the analysis on a single benchmark is

a little over 3 minutes. The preprocessing time is about 2.5 minutes for relation

generation. This is not surprising, as even this small program consists a total of 160

classes and 799 methods when all the libraries are counted. The context-sensitive

points-to analysis takes 12 seconds and the total time taken by the three stages of

the taint analysis is 25 seconds.

SecuriBench Micro Vulnerabilities

Figure 6.1.2 summarizes the vulnerabilities found in SecuriBench Micro. For each

benchmark category shown in column 1, column 2 shows the number of test cases

within that category, column 3 shows the number of vulnerabilities discovered by our

static analysis, and column 4 shows the number of false positives. The results provided

by the Griffin static analysis are conservative, i.e. the analysis finds all vulnerabilities
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1. public class Arrays8 extends BasicTestCase implements MicroTestCase {

2. protected void doGet(HttpServletRequest req, HttpServletResponse resp) {

3. String name = req.getParameter("name"); /* TAINTED */

4. String[] array = new String[] {name, "abc"};

5.

6. PrintWriter writer = resp.getWriter();

7. writer.println(array[0]); /* BAD */

8. writer.println(array[1]); /* OK */

9. }

10. }

Figure 6.6: A false positive related to array handling.

contained in the test cases. The total number of vulnerabilities exceeds the number

of tests because some tests have more than one vulnerability embedded in them. The

analysis reports false positives in a number of test cases; the overall false positive

rate, however, is relatively low: 16% for SecuriBench Micro. Many false positives are

reported in “arrays” and “predicates” categories, as illustrated below.

Example 6.2. An example of such a false positive in the “arrays” category of

SecuriBench Micro is presented in Figure 6.6. While the call to println on line 7

corresponds to a legitimate vulnerability because a tainted piece of data obtained on

line 3 propagates to the output, the call on line 8 is benign because array[1] is the

string constant "abc". The false positive is due to the fact that our static analysis

has the same representation for all elements of the String array array. �

This is not surprising, as our static technique performs no array index disam-

biguation; as a result, all array elements have the same taint status. Nor does our

technique pay attention to predicates so execution paths that are infeasible at run-

time are considered possible by the static analysis. However, neither of these analysis

features appear to be important for macro benchmarks.

6.2 Static Analysis Results

In this section we summarize the experiments we performed and described the security

violations we found. We start by describing our experimental setup, describe some
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Test category Tests Vulnerabilities False positives

basic 41 59 3

collections 14 13 3

interprocedural 14 17 4

arrays 9 8 4

predicates 9 4 4

sanitizers 6 4 2

aliasing 6 11 1

data structures 6 5 1

strong updates 5 1 2

factories 3 3 0

session handling 3 3 1

Total 116 128 25

Figure 6.7: SecuriBench Micro static analysis result summary.

representative vulnerabilities found by our analysis, and analyze the impact of analysis

features on precision.

6.2.1 Experimental Setup

The implementation of our static analysis system is based on the joeq Java compiler

and analysis framework [202]. We applied static analysis to look for all tainted object

propagation problems described in Chapter 2. We used a total of 28 source, 18 sink,

and 29 derivation descriptors in our experiments. Since most sanitizers manufacture

and return a new, fresh object, it was not necessary to mention most. However, we

added two sanitizers, which might under certain conditions return the original string

that is passed in.

6.2.2 Summary of Discovered Vulnerabilities

This presents statistics about the vulnerabilities discovered by the static analysis in

both benchmark suites.
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Benchmark Sources Sinks Vulnerabilities False positives

jboard 1 8 2 0

blueblog 11 32 2 0

webgoat 13 47 5 0

personalblog 45 22 40 0

blojsom 34 29 6 0

snipsnap 138 88 16 0

road2hibernate 2 13 13 0

pebble 123 39 0 0

roller 41 66 5 147

jorganizer 116 20 7 0

jgossip 22 29 0 0

Totals 98 147

Figure 6.8: SecuriBench static analysis result summary.

SecuriBench Vulnerabilities

The static analysis described in this report reports a total of 245 potential security

violations in our 11 benchmarks, out of which 98 turn out to be security errors,

while 147 are false positives. All but two of SecuriBench benchmarks had at least one

security vulnerability. Moreover, except for errors in webgoat and one HTTP splitting

vulnerability in snipsnap [63], none of these security errors had been reported before.

Furthermore, only one benchmark in our experiments produced false positives, which

demonstrates the precision of our technique.

It is not uncommon to have multiple paths connecting the same source and sink

pair. To avoid this sort of double-counting in the data we present below, we have

decided to use the number of source-sink pairs when reporting the numbers of vul-

nerabilities and false positives.

6.2.3 Validating the Vulnerabilities

Not all security errors found by static analysis or code reviews are necessarily ex-

ploitable in practice. The error may not correspond to a path that can be taken
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dynamically. It may not be possible to construct meaningful malicious input. Ex-

ploits may also be ruled out because of the particular configuration of the application.

However, configurations may change over time, potentially making exploits possi-

ble. For example, a SQL injection that may not work on one database may become

exploitable when the application is deployed with a database system that does not

perform sufficient input checking. Code that is dead at one point in the application

lifetime may become not dead after a small code change is introduced. Furthermore,

virtually all static errors we found can be fixed easily by modifying several lines of

Java source code, so there is generally no reason not to fix them in practice.

Reporting Vulnerabilities

After we ran our analysis, we manually examined all the errors reported to make sure

they represent security errors. Since our knowledge of the macro applications was not

sufficient to ascertain that the errors we found were exploitable, to gain additional

assurance, we reported the errors to program maintainers.

We only reported to application maintainers only those errors found in the appli-

cation code rather than general libraries over which the maintainer had no control.

Almost all errors we reported to program maintainers were confirmed, resulting in

more that a dozen code fixes. As mentioned in Section 3.8, the fact that vulnerability

traces consist of objects makes them sometimes more difficult to interpret. Construct-

ing precise exploit scenarios may be difficult because multiple program variables refer

may to the same object.

Our approach was to report vulnerability warnings as exploitable unless the code

they were contained in was obviously unreachable. While somewhat unlikely, it is

possible that some of the reported errors were in dead code, but the fact that appli-

cation maintainers were willing to fix them enhanced our believe in this approach.

In some cases where the control flow was particularly complex, we had to run the

application in the debugger to see if some of the errors were indeed exploitable. This

was the case with the false positives in roller: we were not able to ascertain that

they corresponded to realizable control flow paths and therefore these warnings were

classified as false positives.
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public static String filterNewlines(String s) {

if (s == null) {

return null;

}

StringBuffer buf = new StringBuffer(s.length());

// loop through every character and replace if necessary

int length = s.length();

for (int i = 0; i < length; i++) {

switch (s.charAt(i)) {

case ’\n’:

break;

default :

buf.append(s.charAt(i));

}

}

return buf.toString();

}

Figure 6.10: Typical string sanitization routine in pebble.

Because webgoat is an artificial application designed to contain bugs, we did not

report the errors we found in it. Instead, we dynamically confirmed some of the

statically detected errors by running webgoat, as well as a few other benchmarks, on

a local server and creating actual exploits.

Control Flow

It is important to remind the reader that our current analysis ignores control flow.

Without analyzing predicates that affect the flow of control, our analysis may not

realize that a program has checked its input, so some of the reported vulnerabilities

may turn out to be false positives. However, our analysis shows all the steps involved

in propagating taint from a source to a sink, thus allowing the user to check if the

vulnerabilities found are exploitable.

Most large Web-based application perform some form of input checking. However,

as in the case of the vulnerabilities we found, it is common that some of the checks

are missed. Our analysis did not produce any false positives that were due to the lack
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of predicate analysis. We believe that this is largely because sanitization is primarily

done by manufacturing a new, clean version of the original string, as exemplified

by the sanitizer in Figure 6.10. Method filterNewlines performs character-by-

character blacklisting of the input. If the character s.charAt(i) being processed is

outside the black list, which consists of the new line character, it is added to the

output buffer. Sanitization in scripting languages such as PHP is usually done by

applying boolean tests to potentially malicious input and therefore requires path

sensitivity [88, 95, 207].

6.2.4 Classification of Errors

This section presents a classification of all the errors we found in the SecuriBench

suite on 11 large applications.

Vulnerability Summary

A summary of our experimental results is presented in Figure 6.2. Columns 2 and 3

list the number of source and sink objects for each benchmark. It should be noted

that the numbers of sources and sinks for all of these applications are quite large,

which suggests that security auditing these applications is time-consuming, because

the time a manual security code review takes is roughly proportional to the number

of sources and sinks that need to be considered. The table also shows the number of

vulnerability reports and the number of false positives in columns 4 and 5.

Vulnerability Classification

Figure 6.9 presents a classification of the 98 security vulnerabilities we found, grouped

by the type of the source in the table rows and the sink in table columns. For example,

the cell in row 4, column 1 indicates that there were 15 potential SQL injection

attacks caused by non-Web sources. Notice that we chose not to distinguish between

parameter manipulation and hidden field manipulation when presenting the results,

because these vulnerabilities manifest themselves similarly at the source level.
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Overall, parameter manipulation was the most common technique to inject mali-

cious data (78 cases) and SQL injection was the most popular exploitation technique

(70 cases). Many HTTP splitting vulnerabilities are due to an unsafe programming

idiom where the application redirects the user’s browser to a page whose URL is

user-provided as the following example from snipsnap demonstrates:

response.sendRedirect(request.getParameter("referer"));

Attack Vectors in Library Code

Most of the vulnerabilities we discovered are in application code as opposed to li-

braries. While errors in application code may result from simple coding mistakes

made by programmers unaware of security issues, one would expect library code to

generally be better tested and more secure. Errors in libraries expose all applications

using the library to attack. Despite this fact, we have managed to find several attack

vectors in libraries, including a couple in a commonly used Java library hibernate,

another in castor database used in jorganizer, and another in the J2EE implemen-

tation itself. Some of these attack vectors are described below.

6.3 Discussion of Static Analysis Results

This section describes some of the vulnerabilities we found in more detail. It also

presents several studies we have performed to further explore and characterize the

effectiveness of various static analysis features.

6.3.1 SQL Injection Vector in hibernate

We start by describing a vulnerability vector found in hibernate, an open-source

object-persistence library commonly used in Java applications as a lightweight back-

end database. hibernate provides the functionality of saving program data structures

to disk and loading them at a later time. It also allows applications to search through

the data stored in a hibernate database. Several programs in our benchmark suite,

including personalblog, snipsnap, and roller use hibernate to store user data.
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We have discovered an attack vector in code pertaining to the search functionality

in hibernate, version 2.1.4. The implementation of method Session.find retrieves

objects from a hibernate database by passing its input string argument through

a sequence of calls to a SQL execute statement. As a result, all invocations of

Session.find with unsafe data lead to vulnerabilities, as exemplified by two errors

we found in personalblog.

A few other public methods in the hibernate APIs, such as iterate and delete

also turn out to be attack vectors as well, even though these API methods are not

used in client code of our benchmarks. We validated these vulnerabilities by adding

them as test cases to road2hibernate code and executing it under the debugger1.

The situation with hibernate APIs illustrates a more general pattern: an attack

vector in a commonly used software component can lead to vulnerabilities in all of the

clients of that component. Our findings highlight the importance of securing common

libraries, etc. in order to protect their clients.

6.3.2 Cross-site Tracing Attacks

Analysis of webgoat and several other applications revealed a previously unknown

vulnerability in core J2EE libraries, which are used by thousands of Java applications.

This vulnerability pertains to the TRACE method that is specified as part of the HTTP

protocol. In the HTTP protocol, method TRACE is used to echo the contents of an

HTTP request back to the client for debugging purposes [52].

However, when a TRACE request is issued the contents of user-provided headers

are sent back verbatim to the browser, thus enabling cross-site scripting attacks.

The vulnerable code extracted from class javax.servlet.http.HttpServlet, JDK

version 1.4.1 is shown in Figure 6.11. On lines 13–17, user-controlled tainted header

values are appended to responseString. This string is subsequently sent back to

the user’s browser on line 26.

In fact, this variation of cross-site scripting caused by a vulnerability in HTTP

1In a recently released version 3 of the hibernate library, a new SQL injection-prone API was
introduced, which can now be used instead of the unsafe one. The user is now required to create a
parse tree for the SQL expression they want to send to the database by hand.
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1. protected void doTrace(HttpServletRequest req, HttpServletResponse resp)

2. throws ServletException, IOException

3. {

4.

5. int responseLength;

6.

7. String CRLF = "\r\n";

8. String responseString = "TRACE "+ req.getRequestURI()+

9. " " + req.getProtocol();

10.

11. Enumeration reqHeaderEnum = req.getHeaderNames();

12.

13. while( reqHeaderEnum.hasMoreElements() ) {

14. String headerName = (String)reqHeaderEnum.nextElement();

15. responseString += CRLF + headerName + ": " +

16. req.getHeader(headerName);

17. }

18.

19. responseString += CRLF;

20.

21. responseLength = responseString.length();

22.

23. resp.setContentType("message/http");

24. resp.setContentLength(responseLength);

25. ServletOutputStream out = resp.getOutputStream();

26. out.print(responseString);

27. out.close();

28. return;

29. }

Figure 6.11: Cross-site scripting vulnerability in method doTrace.

protocol specification was discovered before, although the fact that it was present in

J2EE was not previously announced. This type of attack has been dubbed cross-site

tracing and it is responsible for CERT vulnerabilities 244729, 711843, and 728563.

Because this behavior is specified by the HTTP protocol, there is no easy way

to fix this problem at the source level. General recommendations for avoiding cross-

site tracing include disabling TRACE functionality on the server or disabling client-side

scripting, both of which avoid the possibility of cross-site tracing altogether [69]. Since

the vulnerable code is part of the JDK and is present in many Java applications, we

are only counting this vulnerability once.
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Analysis version False positives

Context-insensitive 114

Context-sensitive 84

Context-sensitive and better object naming 43

Context- and map-sensitive, better object naming 5

Context- and map-sensitive, better object naming, sanitizers added 0

Figure 6.12: Number of false positives in blojsom for different pointer analysis versions.

6.3.3 Effect of Analysis Features on False Positives

Figure 6.12 shows the effect of analysis features on reducing the number false positives

in blojsom, one of the medium-sized benchmarks in SecuriBench. In addition to the

false positives studied in this section, our analysis discovered 6 real vulnerabilities in

blojsom code.

The initial “base” analysis version that uses a plain context-insensitive pointer

analysis with no additional enhancements produces a large number of false positives.

Adding analysis features one by one reduces their number significantly. One distin-

guishing characteristic of blojsom is that map sensitivity plays an important role.

This is not the case for some of the other benchmarks. The last row of the table

corresponds to the case where we add missing sanitizers to the specification, thus

suppressing five more warnings.

6.3.4 Connectivity Between Sources and Sinks

It is not uncommon for a single “unprotected” source to enable many vulnerabilities.

Similarly, an sink that does not have sanitization preceding it can also create many

vulnerabilities. We have observed this pattern in several applications and believe it

to be quite widespread. Knowing how sources and sinks are connected within an

application can lead to a better placement of sanitizers.

Example 6.3. Figure 6.13 presents an example of source-sink connectivity extracted

from personalblog. A node of the graph is a static object approximation. Edges
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correspond to derivation edges. Sources and sinks are represented by large single-

and double-bordered circles, respectively. Notice that this graph represents a small

portion of the total object connectivity graph. In this case, we focus on objects that

are reachable from the sources that are on at least one path leading to a sink. Notice

that the bipartite source-sink graph shown in Figure 6.13 is fully connected, i.e. every

source can reach every sink.

The graph in Figure 6.13 can be naturally subdivided into two parts. The first

portion on the graph on the left corresponds to the taint propagation that happens in

the personalblog code. The second portion on the right represents taint propagation

through the hibernate object persistence library. Notice that the hibernate portion

of the graph is much more tightly connected. This is because string parsing and

processing code in hibernate contains many String constructors and there are many

tainted Strings flowing to them through many levels of abstraction in the hibernate

library. The middle portion of the graph corresponds to the Session.find injection

vector in hibernate discussed in Section 6.3.1. Another important observation about

the connectivity graph in Figure 6.13 is that it is not uncommon to have multiple paths

connecting the same source and sink pair. �

A connectivity picture similar to the case of personalblog is observed for roller,

the only application in SecuriBench to suffer from false positives. However, in the

case of roller, our allocation site inlining approach described in Section 3.4.4 is

unable to sufficiently disambiguate one of tainted allocation site within hibernate.

This illustrates how a single tainted object may lead to multiple pairs of connected

sources and sinks, thereby increasing the false positive count.

When the vulnerability traces are reported to the user, it is generally useful to

group traces by the source they start at as well as the sink they reach. This is because

it is common for a single call to a sanitizer added to the code to get rid of a whole

group of vulnerability traces that contain a particular source or a sink.
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Figure 6.14: Vulnerability trace length histogram. The length is displayed on the x axis and the
number of traces of this particular length is shown on the y axis. The dotted vertical line separates
vulnerabilities that exist in application code only from those that span library code.

6.3.5 Shallow vs. Long Vulnerability Traces

The amount of work requited to find a vulnerability is roughly proportional to how

long a particular vulnerability trace is. There is some controversy in the program

analysis community as to how complex some of the bugs in real-life code are, which

affects the sophistication of the analyses built to detect them. Some believe that

relatively simple static analysis suffices for bug detection. In this section we report

vulnerability trace statistics that shed additional light on this subject.

As described earlier, each vulnerability trace is a sequence of static object ap-

proximations h1, ..., hn. A single source-sink pair may correspond to several traces.

Figure 6.14 shows a distribution of trace lengths for all the traces reported for 11

SecuriBench benchmarks. For the results presented in the histogram, we collected

statistics for all such traces.
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The first observation is that there are some really long traces our analysis manages

to find, with 16 objects being the longest. Such a trace is truly difficult to find with

either manual code inspection or a shallow analysis tool. Long traces usually span

dozens of procedures as well as multiple files.

Another important observation is that most long traces are due to injection vec-

tors located in library code, such as the SQL injection in hibernate described in

Section 6.3.1. In fact, when we focus on non-library code only, the longest vulnera-

bility trace located within application code is “only” 7 objects long. It would still be

quite a challenge to find such a vulnerability trace by hand.

6.4 Runtime Analysis Results

Our first test of the runtime system consisted of running exploits that we created

based on statically found vulnerabilities in SecuriBench applications. Our exploits

focused on SQL injection and cross-site scripting attacks, as these are the easiest to

mount and the results are most apparent. All of these exploits were detected and

thwarted when runtime recovery was enabled.

The dynamic checker for the SQL injection query will match whenever a user

controlled string flows in some way to a suspected sink, regardless of whether a user

input is harmful in a particular execution. It will then react to replace the potentially

dangerous string with a safe one. The PQL query is implemented as five separate

state machines, one for each query. The effect of the instrumentation is to track all

Strings that either are directly user-controlled or that are derived from it, and to

report a match if such a user-controlled string falls unsafely into Java’s SQL interface.

Note that even if a given user input is harmless in a particular execution, the

data will still flow the same way, and thus will still be matched. The query does no

direct checking of the value that has been provided by the user, so if harmless data is

passed along a feasible injection vector, it will still trigger a match to the query. As a

result of this, drastic responses such as aborting the application may not be suitable

outside of a debugging context. Implementing a second level of checking that actually

considers the values or just logging potentially malicious input as well as the injection
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Figure 6.16: Runtime analysis overhead comparison.

paths may be appropriate. The rest of this section focuses on performance overhead

incurred with different versions of our runtime instrumentation.

6.4.1 Performance Summary

Figure 6.15 summarized the runtime analysis overhead. Results are presented for both

the unoptimized and the optimized runtime analysis versions. Several SecuriBench

applications are missing from the table, as we were unable to install them for runtime

analysis due to complex configuration and database dependency issues. Columns 2

and 3 show the number of instrumentation points that were inserted by the runtime
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instrumentation described in Chapter 5.

Columns 4 — 6 summarize the running times measured in seconds. Measuring

Web application running times presents a number of unique challenges not present

in command-line applications. The times we report for the Web applications reflect

the average amount of time required to serve a single page in response to a single

HTTP request, as measured by the standard profiling tool JMeter [56]. The only

exception is road2hibernate, which is a command-line program and its time is a

simple start-to-finish timing. Finally, columns 7 and 8 summarize the overhead with

the unoptimized and optimized versions of the analysis.

Overall, our performance numbers indicate that our approach on real applications

is quite efficient. Unoptimized dynamic overhead is generally noticeable, but not

crippling; after optimization it often becomes no longer measurable, though may

still be as high as 37% in heavily instrumented code. Likewise, our static analysis

times are in line with expectations for a context-sensitive pointer analysis over tens

of thousands of classes.

6.4.2 Importance of Static Optimization

Without static optimization, many program locations need to be instrumented. This

is because routines that cause one String to be derived from another are very com-

mon. Heavily processed user inputs that do not ever reach the database would also

be carefully tracked at runtime, introducing significant overhead to the analysis.

Fortunately, the static optimizer effectively removes instrumentation on calls to

string processing routines that are provably not present on any path from user input to

database access. Exploiting static information dramatically reduces both the number

of instrumentation points and the overhead of the system, as shown in Figure 6.15.

Figure 6.16 presents a graphical summary of runtime overhead results.

The reduction in the number of instrumentation points due to static optimization

can be as high as 97% in roller and 99% in personalblog. Reductions in the number

of instrumentation points result in dramatically smaller overheads. For instance, in

webgoat, the overhead was cut almost in half in the optimized version.
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6.5 Chapter Summary

This chapter presents the experimental results of the Griffin project. We have applied

our static and runtime techniques to two sets of benchmarks: large, open-source Java

applications in common use as well as a set of small synthetic micro benchmark

cases that exercise different analysis features. Our static technique finds almost one

hundred vulnerabilities. The static analysis reported false positives for only one of 11

applications we have analyzed.

Two vulnerabilities were located in commonly used libraries, thus subjecting appli-

cations using the libraries to potential vulnerabilities. Most of the security errors we

reported were confirmed as exploitable vulnerabilities by their maintainers, resulting

in more than a dozen code fixes.

While our runtime overhead can be quite high, information we compute statically

allows us to reduce the number of necessary instrumentation points dramatically,

reducing the dynamic overhead to below 10% in the majority of cases.



Chapter 7

Related Work

There has been an explosion of interest in practical analysis techniques for improving

software reliability and security in recent years. Some of the important research

highlights include the Instrinsa Prefix tool [28] that was later acquired by Microsoft

and is now routinely used to find bugs in large code bases [118]. Other success

stories include applying static analysis techniques to find bugs in operating systems

code [16, 80, 93], Clouseau system for finding memory leaks [82], tools for finding

buffer overruns [128, 208], FindBugs [86] for finding a variety of Java errors, etc.

Runtime techniques have been applied to problems of debugging and reliability [81,

210] as well as software security, with StackGuard and Valgrind exemplifying some

of the successes [19, 41, 43, 94, 153, 209].

The rest of this chapter is organized as follows. Section 7.1 summarizes techniques

commonly used in the industry for improving Web application security posture. Sec-

tion 7.2 outlines some relevant theoretical security frameworks. Sections 7.3 and 7.4

focus on static and runtime research for improving security, focusing both on Web

application security issues as well as other types of attacks, such as buffer overruns.

Section 7.5 focuses on some recent alternative approaches to Web application security

that fall outside the domains of static and runtime analysis. Section 7.6 summarizes

work related to reflection and call graph construction. Finally, Section 7.7 describes

research related to PQL.

182
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7.1 Web Application Security Techniques

There has been a great deal of interest in Web application security in recent years.

This lead to the development of a range of technologies to address Web application

vulnerabilities. This section introduces some of the more commonly used solutions.

In addition to manual code reviews and client- or browser-side data validation [160],

which are commonly employed for finding vulnerabilities, the two most commonly

used approaches are penetration testing and application firewalls. These techniques

have already been described extensively in Sections 1.4.2 and 1.4.3.

7.2 Security Frameworks

A considerable amount of theoretical research in language security exists, some of

which is briefly summarized below.

7.2.1 Secure Information Flow

Much of the work in information-flow analysis uses a type-checking approach, as

exemplified by JFlow [150]. Source annotations are required, and security is enforced

by type checking. The compiler reads a program containing labeled types and, in

checking the types, ensures that the program cannot contain improper information

flow at runtime. Security label polymorphism allows for code that is generic with

respect to the security class of the data it manipulates.

The security type system in such a language enforces information-flow policies.

Most information flow systems do not focus on the problem of type inference and

focus on the enforcement problem instead. The annotation effort, however, may be

prohibitively expensive in practice. In contrast, the focus of our static analysis is on

finding violations of information flow properties without requiring annotations.

In addition to explicit information flows our approach addresses, JFlow also deals

with implicit information flows through reverse channels [172].
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7.2.2 Security Automata

Security automata have been widely investigated as a means of implementing security

policies [174]. A security automaton enforces a security policy by monitoring the

execution of a target system, and intercepting instructions which would otherwise

violate the specified policy. For example, a user may specify that after a call to

operation FileRead, the program may not call Send. The corresponding security

automaton would monitor the target system, watching for calls to FileRead. If one

was seen, the automaton would then monitor the system for an attempted call to

Send. If such an attempt were made, it would intercept the call and execute error

handling code instead. Conceptually, this is very similar to runtime error checking

provided by PQL, even though the subquery mechanism of PQL makes it possible to

capture context-free languages.

Walker uses security automata to encode security policies to be enforced in auto-

matically generated code [196]. Erlingsson and Schneider use security automata to

implement software fault isolation security policies, which prevent memory accesses

outside of the allowable address space [49]. In that work, they discuss techniques used

to merge security automata directly into binary code at the x86 assembler and Java

Virtual Machine Language (JVML). Barker and Stuckey investigate role-based and

temporal role-based access control policies, implemented using constraint logic speci-

fications [17]. To the best of our knowledge, the notion of recovery achieved with our

runtime analysis has not been previously explored in security automata literature.

7.3 Static Techniques for Security

A good overview of static analysis approaches applied to security problems is provided

in Chess et al. [34]. Simple lexical approaches employed by scanning tools such as

ITS4 and RATS use a set of predefined patterns to identify potentially dangerous

areas of a program [206]. While a significant improvement on Unix grep, these tools,

however, have no knowledge of how data propagates throughout the program and

therefore cannot be used to automatically and fully solve taint-style problems.
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7.3.1 Finding Vulnerabilities in Type-Unsafe Languages

Buffer overruns have long been the of programming in type-unsafe languages such as

C and C++ for years. While they sometimes allow the hacker to completely take

over the vulnerable system, they are often the enabling mechanism for other types of

exploits, such as worms [149]. Some of the early static analysis approaches for finding

buffer overruns include LCLint [51] and Splint [117], both of which incorporate type-

based analysis techniques.

CSSV is another annotation-driven tool for buffer overrun detection [47]. Pre-

and post-conditions of a function, are used to aid static analysis. CSSV converts

the original C program into an integer program, where variables assume integer val-

ues and linear inequalities are generated from standard string manipulation routines.

Correctness assertions that encode the validity of array accesses are explicitly in-

cluded. Next, a conservative static analysis technique is used to detect faulty integer

manipulations, which directly translate into bugs in the original code. The analysis

is performed on a per-procedure basis, and annotations (called contracts) are used to

make the analysis inter-procedural. The number of false alarms generated by the tool

depends on the accuracy of the contracts. The analysis used by CSSV to check the

correctness of integer manipulations was heavyweight and scaling it is a challenge.

An analysis approach that uses type qualifiers has been proven useful in find-

ing security errors in C for the problems of detecting format string violations and

user/kernel bugs in Linux device drivers [93, 177, 194]. A variety of C features con-

tribute to a high false positive rate of this approach. Context sensitivity significantly

reduces the rate of false positives encountered with this technique; however, it is un-

clear how scalable the context-sensitive approach is. However, this approach handles

certain features of C, such as unions, and type casts unsoundly and also assumes

memory safety, i.e. no buffer overruns.

In contrast to our technique, type qualifiers are part of the source code, whereas

tainted object problem specifications in our framework are located on the side. Re-

cently, there has been interest in extending type qualifier techniques to Java [68, 162].

Doing so would achieve the dual goal of having a more modular analysis and also hav-

ing self-documenting code. The latter factor is especially important when it comes
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to newly developed code.

Ashcraft et al. use system-specific compiler extensions within the metacompilation

framework to find a integer over- and underflows and user pointer dereferences [9].

Their paper uses a terminology of sources, sinks ,and sanitizers similar to that used

in our framework described in Chapter 2. However, there is no explicit notion of

derivation routines, as their focus is on programs written in C and manipulating

characters explicitly. However, the semantics of memcpy and bcopy copying functions

is taken into account. Their work also focuses on leveraging programming beliefs to

find missing sources and sinks. We plan to use a similar approach, only at runtime

to obtain more complete vulnerability specifications, as described in Section 8.2.2.

ARCHER targets unsafe memory and array accesses [208]. It works by symboli-

cally simulating code execution, while maintaining information about variables in a

database as the execution proceeds. At every array access, index values involved in

the access are considered by a constraint solver in an effort to find potential viola-

tions. ARCHER also uses statistical code analysis to automatically infer the set of

functions that it should track; this inference serves as a robust guard against omis-

sions, especially in large systems which can have hundreds of such functions.

Livshits et al. present a program representation designed for bug detection

called IPSSA [128]. A hybrid pointer analysis that tracks actively manipulated point-

ers held in local variables and parameters accurately with path and context sensitivity

and handles pointers stored in recursive data structures less precisely but efficiently is

proposed. IPSSA unsoundly assumes no aliasing between pointers reached from func-

tion parameters. It has been successfully applied to find a number of buffer overruns

with very few false positives, however, scaling the analysis often presents a challenge

for larger benchmarks.

A pointer analysis of Avots et al. is used to find a number of buffer overruns and

format string violations statically [10]. The pointer analysis described there uses the

same Datalog- and bddbddb-based approach described in Chapter 3. A key contri-

bution of this work is that, in addition to a conservative analysis, it proposes an

optimistic analysis that assumes a more restricted C semantics that reflects com-

mon C usage to increase the precision of the analysis. In a manner similar to our
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static/runtime interplay, the analysis described in Avots et al. is also effective at re-

ducing the overhead of the CRED compiler, a previously proposed runtime prevention

technique for memory errors [94].

7.3.2 Static Analysis for Web Application Security

Languages such as C and C++ are not common for Web application development.

As a result, static approaches for improving Web application security have focused

on type-safe languages such as Java and also scripting languages such as PHP.

Analyzing Type-Safe Languages

One particular problem in the Web application security space that has attracted much

attention is that of SQL injections. Static analysis has been applied to analyzing SQL

statements constructed in Java programs that may lead to SQL injection vulnerabil-

ities [36, 66, 67, 198]. The underlying technique is to analyze strings that represent

SQL statements to check for potential type violations and tautologies. This approach

assumes that a flow graph representing how string values can propagate through the

program has been constructed a priori from points-to analysis results. Since accurate

pointer information is necessary to construct an accurate flow graph, at this point it

is unclear whether this technique can achieve the scalability and precision needed to

detect errors in large systems.

Our static analysis approach represents the first comprehensive technique to ad-

dress the issue of flow graph construction. We believe that more precise string analysis

can be added on top of the string provenance results obtained with our approach to

obtain better string approximations for a range of applications.

Analyzing Scripting Languages

Recently, there has been an increased interest in static analysis of scripting languages

such as PHP. The WebSSARI project pioneered this line of research. WebSSARI

uses combined unsound static and dynamic analysis in the context of analyzing PHP

programs [88]. WebSSARI has successfully been applied to find many SQL injection
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and cross-site scripting vulnerabilities in PHP code. However, while practical and

often quite effective, WebSSARI is also unsound. Creating a precise sound analysis

for scripting languages presents a significant challenge in the presence of the eval

construct that allows arbitrary code to be executed.

A limitation of WebSSARI is its analysis power: (1) the analysis is intraproce-

dural and does not infer function pre- and post-conditions, thus requiring extensive

annotations to use; (2) it does not model predicates and conditional branches, which

is a key mechanism for testing and sanitizing input variables in PHP; and (3) it uses

a generic type based algorithm which does not model dynamic features in scripting

languages like PHP. For example, dynamic typing may introduce subtle errors that

WebSSARI misses. The include statement dynamically inserts code to the program

which may contain, induce, or prevent errors.

Several projects that came after WebSSARI improve on the quality of static anal-

ysis used for analyzing PHP code. Xie et al. use a architecture enables us to handle

dynamic features unique to scripting languages such as dynamic typing and code

inclusion, which have not been adequately addressed before [207]. However, recur-

sive function calls are simply ignored instead of being handled correctly. Moreover,

only local alias analysis is performed, which likely contributes to the number of false

negatives incurred with this approach. Multi-dimensional arrays also appear to be un-

supported. Xie et al. apply a heuristic for resolving simple cases of include statements

that seems to yield good results in practice.

The Pixy project [95, 97] implements a more ambitious flow-sensitive, interpro-

cedural, and context-sensitive data flow analysis technique for PHP. As mentioned

before, unlike Java, PHP generally requires a flow-sensitive analysis approach. Addi-

tional literal analysis (a form of copy and constant propagation) and alias analysis [96]

steps performed by Pixy lead to more comprehensive and precise results than those

provided by previous approaches.
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7.4 Runtime Analysis for Security

This section gives an overview of dynamic analysis techniques that address memory

safety vulnerabilities prevalent in C and C++ programs as well as runtime techniques

pertaining to Web application vulnerabilities.

7.4.1 Finding Vulnerabilities in Type-Unsafe Languages

A range of compiler extensions discussed below has been used to protect against

memory-based attacks prevalent in C programs such as format string violations and

buffer overruns. A good overview of these techniques is given in Kc et al. [98].

FormatGuard, a compiler modification, injects code to dynamically check and re-

ject all printf-like function calls where the number of arguments does not match the

number of “%” specifiers in the format string [42]. Of course, only applications that

are re-compiled using FormatGuard will benefit from its protection. Also, one techni-

cal shortcoming of FormatGuard is that it does not protect user-defined wrappers for

the printf family of routines. An unfortunate consequence of the design choices of

FormatGuard is that programs with format string vulnerabilities remain vulnerable

to denial of service attacks.

A wide range of approaches focuses on runtime buffer overrun protection. Prod-

ucts such as StackGuard [41], StackShielf [8] and the /GS switch implemented in the

later version of the Microsoft Visual Studio compilers [39] all use similar techniques

to provide protection against stack smashing exploits. StackGuard works by placing

a “canary” word next to the return address on the stack. If the canary word has been

altered when the function returns, then a stack smashing attack has been attempted

while within the function. The StackGuard-protection program responds by emitting

an intruder alert and then halting the program. Unfortunately, while generally effec-

tive, this sort of stack protection can still be circumvented with more sophisticated

attack techniques such as spoofing the canary, etc. [169, 27].

PointGuard focuses on heap-based buffer overrun exploits [43]. PointGuard-

protected programs encrypts all pointers while they reside in memory and decrypts

them only before they are loaded to a CPU register. Similarly to FormatGuard and
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StackGuard, PointGuard is implemented as an extension to the GCC compiler, which

injects the necessary instructions at compilation time, allowing a pure-software im-

plementation of the scheme. The overhead incurred with PointGuard may, however,

be prohibitively expensive [191].

Kiriansky et al. propose program shepherding, a policy-driven mechanism for

closely monitoring and dynamically controlling the flow of program execution [101].

The advantage of program shepherding is that the original program does not need

to be recompiled. They define different default and customizable security policies

for code based on the nature of its origin, whether it was loaded from the local file

system, generated by the running program itself, or if it self-mutated. Their system

is integrated into an interpreter, which enables the sandboxed checking of running

applications and monitoring of their control-flow. While the functionality of this

approach is attractive, the fact that it is interpreted makes for significant overhead.

7.4.2 Runtime Analysis for Web Application Security

Scott et al. present a structuring technique which helps designers abstract security

policies from large Web applications [176]. Their system consists of a specialized

Security Policy Description Language which is used to program an application-level

firewall. Security policies are written and compiled for execution on the security

gateway. The security gateway dynamically analyses and transforms HTTP requests

and responses to enforce the specialized policy. To the best of our knowledge, this

system has not been applied to large Web applications.

Protection from SQL Injections

Several techniques focus on SQL injections exclusively. Buehrer et al. propose a

technique that is based on comparing, at execution time, the parse tree of the SQL

statement before inclusion of user input with that resulting after the inclusion of user-

provided input [26]. SQLRand used SQL keyword randomization in order to create

SQL language keywords that are not easily guessable by the attacker, thus foiling

most SQL injection techniques that involve adding extra SQL commands [22].
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AMNESIA is a model-based approach that detects illegal queries before they are

executed on the database [76, 77, 78, 79]. In its static part, the technique uses

program analysis to automatically build a model of the legitimate queries that could

be generated by the application. In its dynamic part, this technique uses runtime

monitoring to inspect the dynamically-generated queries and check them against the

statically-built model. Depending on the quality of the statically-derived model,

their technique may suffer from both false positives and false negatives. Moreover, it

is unclear how their static analysis would scale to large programs, as it has only been

evaluated with relatively small benchmarks.

Dynamic Taint Propagation

Dynamic taint propagation described in Haldar et al. borrows much from our runtime

technique [75]. In contrast to our technique, they use heuristics similar to those use

in the Perl taint mode [197] to determine which Strings need to be untainted at

runtime; i.e. matching against regular expressions is assumed to be an untainting

operation. However, unlike the runtime techniques of the Griffin project described in

Chapter 5, their approach is unable to provide recovery from vulnerabilities.

Pietraszek et al. propose CSSE, a system that modifies the PHP interpreter to tag

strings to distinguish those that are developer-supplied from those that are provided

as input. Since CSSE tracks where the different segments of a string originate, it is

able to provide user string escaping or recovery in a manner similar to that of our

runtime technique. Su et al. describe SqlCheck, a similar system for SQL injection

detection that works on both Java and PHP code [183]. SqlCheck has been shown

effective at preventing SQL injections in a range of medium-sized Web applications.

PHPrevent is a project that focuses on securing PHP applications [154]. While

similar in spirit to our runtime protection described in Chapter 5, PHPrevent uses a

modified PHP interpreter to precisely track taint at runtime. Unlike our approach,

however, the granularity of taint tracking is greater: tainting is recorded and propa-

gated at the level of individual characters. Their approach to untainting is to escape

parts of the input contained in the output. However, their notion of white-listing the

allowed input is somewhat arbitrary and will not necessarily work for applications
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such bulletin boards that require some of the HTML tags to pass through. This is

not unlike our notion of built-in sanitizers discussed in Sections 5.5.1 and 5.5.2.

7.5 Other Web Application Security Approaches

Several techniques that fall outside the realm of static and runtime language-based

vulnerability detection are described below.

7.5.1 Intrusion Detection

Kruegel et al. describe several intrusion detection systems that use a variety of dif-

ferent anomaly detection techniques to detect attacks against Web servers and Web-

based applications [114, 115, 193]. These systems analyze client queries that reference

server-side programs and creates models for a wide-range of different features of these

queries. Examples of such features are access patterns of server-side programs or

values of individual parameters in their invocation. As with other types of intrusion

detection techniques, proper patterns can be learned from prior “training” traffic.

In particular, the use of application-specific characterization of the invocation pa-

rameters allows the system to perform focused analysis and produce a reduced num-

ber of false positives. The system automatically derives parameter profiles associated

with Web applications (e.g., length and structure of parameters) and relationships

between queries (e.g., access times and sequences) from the analyzed data. There-

fore, it can be deployed in very different application environments without having to

perform time-consuming tuning and configuration. However, unlike the techniques

in Section 7.4 intrusion detection-based schemes cannot provide strong guarantees on

which vulnerabilities are detected and which are missed.

7.5.2 Client-side Protection

RequestRodeo partly disables the inclusion of authentication information into re-

quests passed to the server [92]. A proxy that resides between the browser and the
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application server identifies HTTP requests which qualify as potential Cross Site Re-

quest Forgery attacks and strips them from all possible authentication credentials.

RequestRodeo is implemented in the form of a proxy instead of integrating it directly

into a Web browser to provide protection for a variety of Web browsers.

Noxes, another browser-based technology, is designed to protect against informa-

tion leakage from the user’s environment while requiring minimal user interaction and

customization effort [100]. For instance, the act of sending the cookie information to

an unknown URL will be detected and the user will be prompted whether this action

should continue. Information leakage is a frequent side-effect of cross-site scripting

attacks.

7.5.3 System Design for Better Application Security

Tahoma is a virtual machine-based execution framework for Web browsers and ap-

plications [44]. It provides a level of isolation between Web applications and the

underlying operating systems and allows limiting the capabilities of individual appli-

cations. For instance, the set of URLs available to a particular application may be

restricted in Tahoma by the application publisher.

Some of the same ideas have been explored in Terra, a flexible architecture for

trusted computing, called Terra, that allows applications with a wide range of secu-

rity requirements to run simultaneously on commodity hardware [62]. Applications

on Terra enjoy the semantics of running on a separate, dedicated, tamper-resistant

hardware platform, while retaining the ability to run side-by-side with normal appli-

cations on a general purpose computing platform. Terra achieves this synthesis by

use of a trusted virtual machine monitor (TVMM) that partitions a tamper-resistant

hardware platform into multiple, isolated virtual machines (VM), providing the ap-

pearance of multiple boxes on a single, general-purpose platform.
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7.6 Reflection and Call Graph Construction

General treatments of reflection in Java are given in Forman and Forman [54] and

Guéhéneuc et al. [74]. The rest of the related work falls into the following broad

categories: projects that explicitly deal with reflection in Java and other languages;

approaches to call graph construction in Java; and finally, static and dynamic analysis

algorithms that address the issue of dynamic class loading.

7.6.1 Reflection and Metadata Research

The metadata and reflection community has a long line of research originating in

languages such as Scheme [186]. We only mention a few highly relevant projects here.

The closest static analysis project to ours we are aware of is the work by Braux and

Noyé on applying partial evaluation to reflection resolution for the purpose of opti-

mization [24]. Their paper describes extensions to a standard partial evaluator to offer

reflection support. The idea is to “compile away” reflective calls in Java programs,

turning them into regular operations on objects and methods, given constraints on

the concrete types of the object involved. The type constraints for performing spe-

cialization are provided by hand.

Our static analysis can be thought of as a tool for inferring such constraints,

however, as our experimental results show, in many cases targets of reflective calls

cannot be uniquely determined and so the benefits of specialization to optimize pro-

gram execution may be limited. Braux and Noyé present a description of how their

specialization approach may work on examples extracted from the JDK, but lacks

a comprehensive experimental evaluation. In related work for languages other than

Java, Ruf explores the use of partial evaluation as an optimization technique in the

context of CLOS [171]. Masuhara et al. explore the use of partial evaluation as applied

to an abstract object-oriented language [143].

The issue of specifying reflective targets is explicitly addressed in Jax [188]. Sim-

ilarly, the Spark pointer analysis implemented within the Soot compiler uses speci-

fications of many reflective targets in the JDK during call graph construction [121].
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Just like our technique, Spark also used on-the-fly call graph construction. Poten-

tial reflective call targets are automatically added to the set of root methods in the

beginning of the analysis. Unlike Spark, which comes with models of many native

methods, our approach is oblivious to native routines. While this is generally un-

likely, not handling such methods can render our points-to results not fully sound.

Handling of native methods in Java is addressed in Zhang et al. [212].

Jax is concerned with reducing the size of Java applications in order to reduce

download time; it reads in the class files that constitute a Java application, and per-

forms a whole-program analysis to determine the components of the application that

must be retained in order to preserve program behavior. Clearly, information about

the true call graph is necessary to ensure that no relevant parts of the application are

pruned away. Jax’s approach to reflection is to employ user-provided specifications

of reflective calls. While our framework also supports user-provided annotations, as

illustrated in Section 4.6.4, determining targets of reflective calls can often be error-

prone, if delegated to the user. To assist the user with writing complete specification

files, Jax relies on dynamic instrumentation to discover the missing targets of reflec-

tive calls. Our analysis based on points-to information can be thought of as a tool

for determining where to insert reflection specifications.

A precise analysis of strings by Christensen et al. mentions reflections as one of the

potential uses of their approach [36]. They treat Class.forName calls as “hotspots”

for their analysis, then trying to determine what the exact values passed as parameters

may be. Their approach, however, relies on an external pointer analysis to determine

the propagation of strings throughout the program. The paper applies their approach

to programs that are all under 4,000 lines long and lacks a detailed experimental eval-

uation of the precision of their approach. Their technique, however, can potentially

address reflective calls that have much more complex string expressions passed as

reflective arguments. For example, knowing that the argument of Class.forName

must end in string "Configuration" will allow the analysis to substantially limit the

number of possibly instantiated classes.
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7.6.2 Call Graph Construction

Much effort has been spent of analyzing function pointers in C [48, 144, 147] as well

as virtual method calls in C++ [3, 12, 30, 161] and Java [71, 72, 166, 184, 189]. They

are described in more detail below.

Function Pointers in C

Emami et al. describe how a context-sensitive pointer analysis for C integrated with

call graph construction in the presence of function pointers [48]. Their approach

introduces the notion of call graph discovery when the call graph is unavailable in

advance.

Milanova et al. evaluate the precision of call graph construction in the presence of

function pointers using an inexpensive pointer analysis approach [211] and conclude

that it is sufficient for most cases [144, 147].

Virtual Calls in C++

Bacon et al. compare the “unique name”, RTA, and CHA virtual call resolution

approaches [12, 11]. They conclude that RTA is both fast and effective and able to

resolve 71% of virtual calls on average.

Aigner and Hölzle investigate the effect virtual call elimination using CHA has on

the runtime of large C++ programs and report a median 18% performance improve-

ment over the original programs [3]. The number of virtual function calls is reduced

by a median factor of five.

Virtual Calls in Java

Grove et al. present a parameterized algorithmic framework for call graph construc-

tion [71, 72]. They empirically assess a multitude of call graph construction algo-

rithms by applying them to a suite of medium-sized programs written in Cecil and

Java. Their experience with Java programs suggests that the effect of using con-

text sensitivity for the task of call graph construction in Java yields only moderate

improvements.
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Tip and Palsberg propose a propagation-based algorithm for call graph construc-

tion and investigate the design space between existing algorithms for call graph con-

struction such as 0-CFA and RTA, including RA, CHA, and four new ones [189].

Sundaresan et al. go beyond the tranditional RTA and CHA approaches in Java and

and use type propagation for the purpose of obtaining a more precise call graph [184].

Their approach of using variable type analysis (VTA) is able to uniquely determine

the targets of potentially polymorphic call sites in 32% to 94% of the cases.

Agrawal et al. propose a demand-driven algorithm for call graph construction [1].

Their work is motivated by the need for just-in-time or dynamic compilation as well as

program analysis used as part of software development environments. They demon-

strate that their demand-driven technique has the same accuracy as the corresponding

exhaustive technique. The reduction in the graph construction time depends upon

the ratio of the cardinality of the set of influencing nodes to the set of all nodes.

Rayside et al. explore the effect various call graph construction techniques have

on automatic clustering approaches used to extract the high level structure of the

program under study [166]. They also used a slightly different notion of the call

graph that supports weighted edges.

7.6.3 Dynamic Analysis Approaches

Our work is motivated to a large extent by the need of error detection tools to have

a static approximation of the true conservative call graph of the application. This

largely precludes dynamic analysis that benefits optimizations such as method inlining

and connectivity-based garbage collection.

A recent paper by Hirzel, Diwan, and Hind addresses the issues of dynamic class

loading, native methods, and reflection in order to deal with the full complexity

of Java in the implementation of a common pointer analysis [85]. Their approach

involves converting the pointer analysis [5] into an online algorithm: they add con-

straints between analysis nodes as they are discovered at runtime. Newly generated

constraints cause re-computation and the results are propagated to analysis clients

such as a method inliner and a garbage collector at runtime. Their approach leverages
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the class hierarchy analysis (CHA) to update the call graph. Our technique uses a

more precise pointer analysis-based approach to call graph construction.

Their paper also contains a comprehensive overview of analysis approaches that

address dynamic class loading. Here we briefly mention some of the highlights. How-

ever, none of the projects mentioned below fully address the issue of reflection.

The ARE tool presented in Gscwind et al. allows tracing of method parameter

and return values at runtime for program comprehension [73]. They point out that

ignoring reflection leads to program traces that are incomplete. ARE instruments the

program and collects data that allows it to provide targets of reflective method calls.

These reflective targets are subsequently displayed by way of sequence diagrams.

Pechtchanski and Sarkar [163] present a framework for interprocedural whole-

program analysis. They discuss how the analysis is triggered (when newly loaded

methods are compiled), and how to keep track of what to de-optimize (when opti-

mistic assumptions are invalidated). Qian and Hendren [165] adapt Tip and Palsbergs

XTA [189] to deal with dynamic class loading. The main contribution of their work is

a low-overhead call edge profiler, which yields a precise call graph upon which XTA

is based.

7.7 PQL and Runtime Matching Formalisms

In addition to PQL, other formalisms have been developed to talk about events that

occur during program execution. We briefly summarize some of that work here.

7.7.1 Aspect-Oriented Formalisms

PQL attaches user-specified actions to subquery matches; this capability puts PQL

in the class of aspect-oriented programming languages [99, 159]. Maya [14] and As-

pectJ [99] attach actions based on syntactic properties of individual statements in the

source code. The DJ system defines aspects as traversals over a graph representing

the program structure [159].
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PQL system may be considered as an aspect-oriented system that defines its as-

pects with respect to the dynamic history of sets of objects. An extension of AspectJ

to include “dataflow pointcuts” has been proposed to represent a statement that re-

ceives a value from a specific source. PQL can represent these with a two-statement

query, and permits much more complex concepts of data flow [142]. Walker and Veg-

gers introduce the concept of declarative event patterns, in which regular expressions

of traditional pointcuts are used to specify when advice should run [196]. Allan et

al. extend this further by permitting PQL-like free variables in the patterns [4]. PQL

differs from these systems in that its matching machinery can recognize non-regular

languages, and in exploiting advanced pointer analysis to prove points irrelevant to

eventual matches.

7.7.2 Other Program Query Languages

Systems like ASTLOG [45] and JQuery [91] permit patterns to be matched against

source code; Liu et al. [124] extend this concept to include parametric pattern match-

ing [13]. These systems, however, generally check only for source-level patterns and

cannot match against widely-spaced events. A key contribution of PQL is a pat-

tern matcher that combines object-based parametric matching across widely-spaced

events. Lencevicius et al. developed an interactive debugger based on queries over the

heap structure [119]. This analysis approach is orthogonal both to the previous sys-

tems named in this section as well as to PQL; however, like PQL, its query language

is explicitly designed to resemble code in the language being debugged.

The Partiqle system [65] uses a SQL-like syntax to extract individual elements of

an execution stream. It does not directly combine complex events out of smaller ones,

instead placing boolean constraints between primitive events to select them as sets

directly. Variables of primitive types are handled easily by this paradigm, and nearly

arbitrary constraints can be placed on them easily, but strict ordering constraints

require many clauses to express.

This reliance on individual predicates makes their language easy to extend with

unusual primitives; in particular, the Partiqle system is capable of trapping events
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characterized by the amount of absolute time that has passed, a capability not present

in the other systems discussed. However, like most other systems, it can still only

quantify over a finite number of variables. PQL’s recursive subquery mechanism

makes it possible to specify arbitrarily long chains of data relations.

7.7.3 Analysis Generators

PQL follows in a tradition of powerful tools that take small specifications and use

them to automatically generate analyses. Metal [80] and SLIC [15] both define state

machines with respect to variables. These machines are used to configure a static

analysis that searches the program for situations where error transitions can occur.

Metal restricts itself to finite state machines, but has more flexible event definitions

and can handle pointers (albeit in an unsound manner).

The Rhodium language [120] uses definitions of dataflow facts combined with

temporal logic operators to permit the definition of analyses whose correctness may

be readily automatically verified. As such, its focus is significantly different from the

other systems, as its intent is to make it easier to directly implement correct compiler

passes than to determine properties of or find bugs in existing applications. Likewise,

though it is primarily intended as a vehicle for predefined analyses, Valgrind [153]

also presents a general technique for dynamic analyses on binaries.
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Conclusions and Future Work

This chapter is organized as follows. Section 8.1 below summarizes the contributions

made by this thesis. Section 8.2 outlines some of the future research directions.

8.1 Thesis Contributions

This thesis describes a solution to the practical problem of Web application security.

Web application security vulnerabilities such as SQL injection and cross-site scripting

attacks now account for the majority of all application security issues. Commonly

used solutions such as client-side sanitization, penetration testing, and application

firewalls do not provide an adequate solution to these problems.

The Griffin project described in this thesis provides a hybrid static and runtime

analysis solution that addresses a wide range of Web application vulnerabilities. The

analysis framework the Griffin project allows the user to specify which vulnerabilities

they are looking for. The vulnerability specification are expressed in a general lan-

guage called PQL, which, while a generic language for describing events on objects,

is well-suited to the task of specifying vulnerabilities.

Our static contribution is in enhancing the precision of points-to information.

While the scalable BDD-based context-sensitive analysis our technique is based on

is quite precise, it does not handle many common patterns present in real programs

such as containers and factory function. More precise allocation site handling used

201
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by our approach allows us to gain extra precision. In addition to this, precision is

obtained by handling maps more precisely. The static analysis approach is sound

modulo specification completeness and correctness.

Our static technique pushes the state of the art in pointer analysis precision. More-

over, our static analysis work constitutes one of the first uses of a context-sensitive

pointer analysis on large programs. The soundness of our technique is another feature

that sets it apart from much work in bug detection. Our static approach constitutes

an important contribution to the area of Web application security. With the advent

of Web application security vulnerabilities, software security now concerns more de-

velopers than ever before. Our contribution in this area raises the hope that one day

Web application vulnerabilities described here will become a thing of the past.

In addition to the core static analysis technique, this thesis also proposes an

analysis of reflection that allows us to obtain much large static call graphs. This is

the first time the issue of reflection is explicitly addressed by a call graph construction

algorithm. Our approach to reflection has since been adapted by others [53].

Our runtime contribution consists of designing a system for preventing vulnerabil-

ities at runtime by maintaining precise and customizable dynamic taint data. What

makes our runtime system unique is that it allows recovery from vulnerabilities by

applying user-provided sanitizers on execution paths that do not have them already.

Our extensive experimental evaluation validates the effectiveness of Griffin static

and runtime techniques. We formulated a variety of widespread vulnerabilities in-

cluding SQL injections, cross-site scripting, HTTP splitting attacks, and other types

of common Web application security issues and applying our static and runtime tech-

niques to 11 large open-source J2EE applications.

Our experimental results show that our analysis is an effective practical tool for

finding security vulnerabilities. We were able to find a total of 98 security errors,

and all but one of our 11 large real-life benchmark applications were vulnerable. Two

vulnerabilities were located in commonly used libraries, thus subjecting applications

using the libraries to potential vulnerabilities. Most of the security errors we reported

were confirmed as exploitable vulnerabilities by their maintainers, resulting in more

than a dozen code fixes. The static analysis reported false positives for only one
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of 11 applications we have analyzed. While our runtime overhead can be quite high,

information we compute statically allows us to reduce the number of necessary in-

strumentation points dramatically, reducing the dynamic overhead to below 10% in

the majority of cases.

8.2 Future Work

This section outlines several extensions for static and runtime analysis techniques

described in earlier chapters. These extensions have the potential to become fruitful

future research directions.

8.2.1 Better Static Analysis Scalability

As described in Section 3.4.3 the default scalable context-sensitive analysis algorithm

is insufficient for our static analysis in practice. An object sensitive analysis as speci-

fied in Milanova et al. [145, 146] does not appear to scale to programs larger than 300

classes. While we have implemented a practical solution as described in Section 3.4.4

this solution has shortcomings and involves manual involvement to keep the false

positives at bay.

A scalable object-sensitive pointer analysis would be a major boost for analysis

precision in object-oriented languages. It is believed that object sensitivity is a much

better match for languages such as Java, compared to the notion of context sensitivity,

which came from languages such as C. Milanova et al. [145] have demonstrated that

object sensitivity archives better precision compared to context sensitivity for a range

of problems and our own experience has been similar.

A possible brute-force approach to better scalability of BDD-based analyses con-

sists of parallelizing the problem. A major scalability bottleneck for Datalog style of

program analysis is the need to come up with a variable order [203]. If the variable

order is not suitable for the problem at hand, the solver usually runs our of memory

quickly or iterates for a long time. A great deal of work goes into choosing a suitable

variable order, however, a global variable order is in a sense a compromise.
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If we are able to analyze the dependencies between the rules within the Datalog

query and then break up the rules into groups so that the inter-group dependencies are

minimized, we will be able to select much more suitable variable orders for individual

rule groups. Each group of rules would be executed on a separate processors and

will complete much faster because the variable order on each processor had been

optimized to the rules being executed. A similar approach for hardware verification

has been shown to work in Iyer et al. [90].

Another approach to achieving better scalability is using a more modular tech-

nique such as a type analysis. LCLint used type annotation for security purposes [51].

CQual has been used successfully to find taint-style vulnerabilities using a type

qualifier-based approach [55]. Recently, there has been interest in incorporating a

type qualifier-based approach to Java [68, 162].

8.2.2 Specification Discovery

Our approach places the burden of coming up with a specification for the vulnerabili-

ties of interest on the end-user. While our basic approach is sound, when applied to a

particular set of taint problems, our analysis only finds all application vulnerabilities

as long as the problem specification is complete.

Namely, for a particular taint problem, care must be taken to ensure that the

sets of source, sink, and derivation descriptors are complete. If a particular source is

missing, potential vulnerabilities caused by this source, if any, may be missed. If a

particular descriptor is omitted from the user-provided specification, propagation of

taint may be stopped prematurely thus potentially also missing some vulnerabilities.

A fruitful research direction is data mining techniques that observe the transfor-

mation of a single piece of data in order to infer the proper processing steps [148].

8.2.3 Model Checking

Model checking can be used in several ways as applied to vulnerabilities in Web-based

applications. While using a pointer analysis allows our approach to tracking tainting

values to scale well, it also makes the analysis results more difficult to explain. A
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vulnerability trace consists of a sequence of static heap object approximations. These

are essentially allocation sites, and the original line number of information is given

to the user, as long as it has been preserved in the original bytecode. However, when

presented with two sequential allocation sites that may be located far apart, deciding

how exactly they are connected may be a challenge, as that can involve multiple levels

of parameter passing and method returns, all details that are abstracted away by the

pointer analysis and thus do not make it into our analysis representation.

However, it is variables, not heap allocation sites that the developer typically

reasons about. Even if we use the pointer analysis results to map from a heap location

back to variables, there may be a multitude of variables corresponding to the same

heap location; this might make result interpretation even more complex.

One approach to explaining the results is to use guided model checking. A static

vulnerability trace discovered by static analysis may be used by the model checker to

find the next “hop” to jump to. For example, if the statically determined vulnerability

trace has heap object h1 in method m1 and h2 in method m2, then once method m2

is accessed after m1 during execution, alternative ways to get to m2 will not be

considered. This considerably reduces the scope of the search that needs to be done

by the model checker. Model checking may be used to validate the feasibility of the

statically obtained results. It is possible for our technique to generate false positives,

when, for example, predicates matter. A model checker would be able to assertain the

validity of a statically detected result. Model checking can be also used as a controlled

execution environment for a developer to examine the located vulnerabilities. Since

the values of all variables can be recorded into “snapshots”, the developer should be

able to go back in forth through a dangerous code path until he or she is certain of

what is going on. This is considerably better than repeatedly rerunning an application

only to hit the necessary breakpoint in the debugger.

Finally, a symbolic execution technique such as DART [64] or EXE [29] may be

used to automatically derive exploits to statically discovered vulnerabilities. Static

analysis tools often have to compete with customer-reported bugs that need to be

urgently fixed. Having an exploit scenario would propel a statically discovered vul-

nerability from the realm of possibility to a real issue requiring urgent attention.
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