
Tracking Pointers with Path and
Context Sensitivity

for
Bug Detection in C Programs

��

������	
���
��������	�������	����
	

{livshits, lam}@cs.stanford.edu

����������

��
����	� ��������������

2

Background

� Software systems are getting bigger
� Harder to develop
� Harder to modify
� Harder to debug and test

� Bug detection needs to be automated
� Classes of automatic error detection tools

� Memory consistency errors
� Locking errors
� Resource consistency: files, sockets, etc.
� Application-specific logical properties and constraints
� NULL pointer dereferences
� Potential security violations
� etc.

3

Motivating Examples

� Bugs from the security world:
� Two previously known security vulnerabilities

� Buffer overrun in gzip, compression utility
� Format string violation in muh, network game

� Unsafe use of user-supplied data
� gzip copies it to a statically-sized buffer, which

may result in an overrun
� muh uses it as the format argument of a call to

vsnprintf – user can maliciously embed %n into
format string

4

Buffer Overrun in gzip
0592 while (optind < argc) {
0593 treat_file(argv[optind++]);
0594 }

0704 local void treat_file(char *iname){
...

0716 if (get_istat(iname, &istat) != OK) return;

0997 local int get_istat(char *iname,
struct stat *sbuf){

...
1009 strcpy(ifname, iname);

gzip.c:593

gzip.c:1009

gzip.c:716

Need a model of
strcpy

0233 char ifname[MAX_PATH_LEN]; /*input file name*/gzip.c:233

5

Format String Violation in muh

0838 s = (char *)malloc(1024);
0839 while(fgets(s, 1023, messagelog)) {
0841 irc_notice(&c_client, status.nickname, s);
0842 }
0843 FREESTRING(s);

257 void irc_notice(con_type *con, char nick[],

char *format, ...){
259 va_list va;
260 char buffer[BUFFERSIZE];
261
262 va_start(va, format);
263 vsnprintf(buffer, BUFFERSIZE - 10, format, va);

muh.c:839

irc.c:263

6

Looking at Applications…

� Some security bugs are easy to find
� There is a number of lexical source auditing tools
� We are not after the easy bugs

� Programs have security violations despite
code reviews and years of use

� Common observation about hard errors:
� Errors on interface boundaries – need to follow

data flow between procedures
� Errors occur along complicated control-flow paths:

need to follow long definition-use chains

7

Need to Understand Data Flow

� Both security examples involve complex flow of data
� Main problem: To track data flow in C/C++ need to

understand relationships between pointers
� Basic example:

*p = 2

� Indirect stores can create new data assignments
� Conservatively would need to assign 2 to everything

� Pointer analysis to determine what may be affected

8

Fast Pointer Analyses
� Typical sound pointer analyses: emphasize

scalability over precision
� Steensgaard’s [1996]

� Flow- and context insensitive
� Essentially linear time
� Used to analyze Microsoft Word – 2.2 MLOC

� Andersen’s [1994] and CLA [2001]
� More precise than Steensgaard’s
� CLA – optimized version of Andersen’s with fields – 1 MLOC a

second
� Still flow- and context-insensitive

� Others…

9

More Precise Analyses?

� Flow- and context-insensitive approaches are fast
� But generally too imprecise for error detection tools:

� Flow- and context-insensitive – all possible flows through a
procedure and all calling contexts are merged together

� Lack of flow- and context-sensitivity can result in a very
high number of false positives

� Flow- and context-sensitive techniques are not
known to scale
� Sagiv et.al., Parametric shape analysis via 3-valued logic, 1999,

everything-sensitive
� Wilson & Lam, Efficient context-sensitive pointer analysis for C

programs, 1995, flow- and context-sensitive

10

Tradeoff: Scalability vs Precision

�!�"�	����#�������

������$���	!	��!���

P
re

ci
si

on

!�"

��%�

Steensgaard

3-value
logic Our analysis

Andersen

Wilson &
Lam

 	��

11

Our Approach to Pointers

� Propose a hybrid approach to pointers – maintain
precision selectively

� Analyze very precisely:
� Local variables
� Procedure parameters
� Global variables
� …their dereferences

and fields
� These are essentially

access paths, i.e.
p.next.data.

� Break all the rest into
coarse equivalence classes

� Represent the rest by
abstract locations:
� Recursive data structures
� Arrays
� Locations accessed

through pointer arithmetic
� etc.

12

Two Levels of Pointer Analysis

x = 1; x0 = 1
x = 2; x1 = 2
y = x; y0 = x1

A[i] = 1; m0 = 1
A[j] = 2; m1 = φ(m0, 2)
b = A[k]; b0 = m1

• Regular assignments result in strong updates

• Break all locations into equivalence classes – ECRs
[Steensgaard, 1996]

• Abstract memory locations correspond to ECRs
• Assignments to abstract memory locations – weak updates
• Conservative approach – don’t overwrite old data

Either 1 or 2

x is 2

13

Error Detection Tools

� Existing tools need to infer data flow:
� Intrinsa
� Dawson
� Others

� Lack of precision – more false warnings
� Too many false warnings – don’t get used
� Lack of soundness guarantee

14

Talk Outline

� Motivation: pointer analysis for error detection
� Pointer analysis and design of IPSSA –

InterProcedural SSA, associated algorithms
� Using data flow information provided by

IPSSA for security applications
� Results and experience: study of security

vulnerability detection tool

15

��������
��	�
��

��

��

�����	
����

�� ���
��������

������
���
��

Our Framework

���
	��
���!	�����

&������&

Abstracts away
many details.

Makes it easy to
write tools

�'��	�	� !�"��� �

16

IPSSA – Intraprocedurally

� Intraprocedurally: an extension of Gated SSA
� Gated SSA [Tu, Padua 1995]

� Give new names (subscripts) to definitions – solves flow-
sensitivity problem

� Create predicated γ functions – combine reaching
definitions of the same variable

� Important extension provided by IPSSA:
� Our version of pointer analysis – pointer resolution
� Replace indirect pointer dereferences with direct

accesses of potentially new temporary locations

17

Pointer Resolution Algorithm

� Iterative process
� At each step definition d

is being dereferenced:
� Terminal resolution node –

resolve and stop
� Otherwise follow all

definitions on RHS
� Occurs-check to deal

with recursion
� See paper for complete

rewrite rules

d2 = γ(<P,d3>, <¬P,d4>)

d1=d2

d4=γ(<Q,d5>,<¬Q,d1)

d5 =ι(…)

*d1

d5 =ι(…)

�

d3 = &xd3 = &x

18

Example of Pointer Resolution

Load resolution

Store resolution

int a=0,b=1;
int c=2,d=3;

if(Q){
p = &a;

}else{
p = &b;

}

c = *p;

*p = d;

p1 = &a

p2 = &b

p3 = γ(<Q, p1>, <¬Q, p2>)

c1 = γ(<Q, a0>, <¬Q, b0>)

a1 = γ(<Q, d0>, <¬Q, a0>)

b1 = γ(<Q, b0>, <¬Q, d0>)

a0 = 0, b0 = 1

c0 = 2, d0 = 3

19

Pointer Resolution Rules

� When resolving definition d, next step
depends on RHS of d

� Expressed as conditional rewrite rules
� A few sample rules:

� d = &x, result is x
� d = ι(…), result is d^
� d = γ(<P1, d1>,…,<Pn, dn>), follow d1…dn

� Refer to the paper for details

20

Interprocedural Algorithm

� Consider program in a bottom-up fashion, one
strongly-connected component (SCC) of the call
graph at a time

� Unsound unaliasing assumption – assume that we
can’t reach the same location through two different
parameters

� For each SCC, within each procedure:
1. Resolve all pointer operations (loads and stores)
2. Create links between formal and actual parameters
3. Reflect stores and assignments to globals at call sites

� Iterate within SCC until the representation stabilizes

21

Unsound Unaliasing Assumption

��������(����	
���
"����"��%����	�	�
 ��
�	����	���!��	����

�����#�)������������
������������

	����Consequence

*�!������
������	%��
�	����

�	��������"�%����
����� 	����	���"������

Justification

+���%����!!�������� �
	��	����	���!��	��������
����	!�	���

��	������	�������!��
�����%���� ������
�	�	
������	���
��������

Assumption

A2: No aliased
abstract locations

A1: No aliased
parameters

22

int f(int* p){
*p = 100;

}

int main(){
int x = 0;
int *q = &x;

c: f(q);
}

p0 = ι(<c,q0>)

Interprocedural Example

� Data flow in and out of functions:
� Create links between formal and actual parameters
� Reflect stores and assignments to globals at the callee

� Can be a lot of work – many parameters and side effects

p^1 = 100

x1 = �(<f,100>)

q0 = &x

Formal-actual
connection for
call site c

Reflect store
inside of f

within main

x0 = 0

23

Summary of IPSSA Features

� Intraprocedural
� Pointers are resolved, replaced w/direct accesses
� Hybrid pointer approach: two levels of pointers
� Assignments to abstract memory locations result

in weak updates
� Treat structure fields as separate variables

� Interprocedural
� Process program bottom up, one SCC at a time
� Unsound unaliasing assumption to speed up the

analysis

24

��������
��	�
��

��

��

�����	
����

�� ���
��������

������
���
��

Our Framework

���
	��
���!	�����

&������&

Framework
makes it easy to

add new
analyses

�'��	�	� !�"��� �

25

Our Application: Security

� Want to detect
� A class of buffer overruns resulting from copying user-

provided data to statically declared buffers
� Format string violations resulting from using user-provided

data as the format parameter of printf, sprintf,
vsnprint, etc.

� Note: not detecting overruns produced by accessing string
buffers through indices, that would require analyzing
integer subscripts

� Want to report
� Detailed error path traces, just like with gzip and muh
� (Optional) Reachability predicate for each trace

26

Analysis Formulation

1. Start at roots – sources of user input such as
� argv[] elements
� Input functions: fgets, gets, recv, getenv, etc.

2. Follow data flow chains provided by IPSSA: for every
definition, IPSSA provides a list of its uses

� Achieve path-sensitivity as a result
� Match call and return sites – context-sensitivity

3. A sink is a potentially dangerous usage such as
� A buffer of a statically defined length
� A format argument of vulnerable functions: printf,

fprintf, snprintf, vsnprintf
4. Report bug, record full path

27

Experimental Setup

Program Version LOC Procedures IPSSA constr.
time, seconds

lhttpd 0.1 888 21 5.2
polymorph 0.4.0 1,015 19 1.0
bftpd 1.0.11 2,946 47 3.2
trollftpd 1.26 3,584 48 11.3
man 1.5h1 4,139 83 29.3
pgp4pine 1.76 4,804 69 17.5
cfingerd 1.4.3 5,094 66 15.5
muh 2.05d 5,695 95 20.4
gzip 1.2.4 8,162 93 17.0
pcre 3.9 13,037 47 22.4

� Implementation
� Uses SUIF2 compiler framework
� Runtime numbers are for Pentium IV 2GHz machine with 2GB of

RAM running Linux

Daemon
programs

Utilities

28

Program Total Buffer Format False Defs Procs Tool's
name # of over- string positives spanned spanned runtime

warnings runs vulner. sec
lhttpd 1 1 0 0 24 14 99
polymorph 2 2 0 0 7,8 3,3 2.4
bftpd 2 1 1 0 5, 7 1, 3 2.3 s
trollftpd 1 1 0 0 23 5 8.5 s
man 1 1 0 0 6 4 9.6 s
pgp4pine 4 4 0 0 5, 5, 5, 5 3, 3, 3, 3 27.1 s
cfingerd 1 0 1 0 10 4 7.4 s
muh 1 0 1 0 7 3 7.5 s
gzip 1 1 0 0 7 5 2.0 s
pcre 1 0 0 1 6 4 9.2 s
Total 15 11 3 1 Previously unknown: 6

Summary of Experimental Results

Many
definitions

Many
procedures

29

False Positive in pcre

� Copying “tainted” user data to a statically-
sized buffer may be unsafe

� Turns out to be safe in this case

sprintf(buffer, “%.512s”, filename)

Limits the length
of copied data.

Buffer is big enough!

Tainted data

30

Conclusions

� Outlined the need for static pointer analysis for
error detection

� IPSSA, a program representation designed for
bug detection and algorithms for its
construction

� Described how analysis can use IPSSA to find
a class of security violations

� Presented experimental data that demonstrate
the effectiveness of our approach

