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JavaScript
+ DHTML

Client-side
computation

Server-side
computation

Client-side
rendering

Static HTML

Web 1.0 → Web 2.0
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Server Clients

Run your code here
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Execution can’t 
start without 

the code 

Move code to 
client for 

responsiveness
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70,000+ lines of 
JavaScript code 

downloaded
2,855 Functions

1+ MB code

Talks to 14 backend 
services

(traffic, images,
directions, ads, …)
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Motivation

 Idea behind Doloto
 Start with a small piece of code on the client

 Download required code on demand (pull)

 Send code when bandwidth available (push)

 Leads to better application responsiveness
 Interleave code download & execution

 Faster startup times

 Rarely executed code is rarely downloaded
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Techniques

1. [training] Runtime training to collect 
access profile

2. [rewriting] Function rewriting or 
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters 
as the application is running
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Experiments

 Instrument every function

 Record the first-execute timestamp

 Look for gaps to find clusters
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Techniques

1. [training] Runtime training to collect 
access profile (AjaxView Fiddler plugin)

2. [rewriting] Function rewriting or 
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters 
as the application is running
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1. [training] Runtime training to collect 
access profiles

2. [rewriting] Function rewriting or 
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters 
as the application is running
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Techniques

C1

C2

 Rewrite JavaScript code one file at a time
 Recombine clusters into individual files
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var g = 10;

function f1(){

var x=g+1;

…

…

…

…

…

return …;

}

var g = 10;

var real_f1;

function f1() {

if(!real_f1){

var code = load(“f1”);

real_f1 = eval(code);

f1 = real_f1;

}

return real_f1.apply(this,

arguments);

}

eval($exp(“f1”), “”); // 21 chars



Techniques

1. [training] Runtime training to collect 
access profiles

2. [rewriting] Function rewriting or 
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters 
as the application is running
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Experiments

Application Download Size

Chi game 104 

Bunny Hunt 16 

Live.com 1,436

Live Maps 1,909

Google Spreadsheets 499
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Experiments
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 Doloto: effective profile-driven optimization

 Our approach is general: Silverlight

 Enables larger more complex distributed apps

 Dynamic code loading for distributed 
applications of the future
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