
Ben Livshits and Emre Kiciman
Microsoft Research

Redmond, WA

Motivation

2

JavaScript
+ DHTML

Client-side
computation

Server-side
computation

Client-side
rendering

Static HTML

Web 1.0 → Web 2.0

3

Motivation

4

Server Clients

Run your code here

Motivation

5

Execution can’t
start without

the code

Move code to
client for

responsiveness

Motivation

70,000+ lines of
JavaScript code

downloaded
2,855 Functions

1+ MB code

Talks to 14 backend
services

(traffic, images,
directions, ads, …)

6

Motivation

7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

www.live.com

spreadsheets.google

maps.live

chi.lexigame

hotmail

gmail

dropthings

maps.google

pageflakes

bunny hunt

Motivation

 Idea behind Doloto
 Start with a small piece of code on the client

 Download required code on demand (pull)

 Send code when bandwidth available (push)

 Leads to better application responsiveness
 Interleave code download & execution

 Faster startup times

 Rarely executed code is rarely downloaded

8

Techniques

1. [training] Runtime training to collect
access profile

2. [rewriting] Function rewriting or
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters
as the application is running

9

10

Experiments

 Instrument every function

 Record the first-execute timestamp

 Look for gaps to find clusters

11

Techniques

1. [training] Runtime training to collect
access profile (AjaxView Fiddler plugin)

2. [rewriting] Function rewriting or
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters
as the application is running

12

Motivation

1. [training] Runtime training to collect
access profiles

2. [rewriting] Function rewriting or
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters
as the application is running

13

Techniques

C1

C2

 Rewrite JavaScript code one file at a time
 Recombine clusters into individual files

14

Techniques

15

var g = 10;

function f1(){

var x=g+1;

…

…

…

…

…

return …;

}

var g = 10;

var real_f1;

function f1() {

if(!real_f1){

var code = load(“f1”);

real_f1 = eval(code);

f1 = real_f1;

}

return real_f1.apply(this,

arguments);

}

eval($exp(“f1”), “”); // 21 chars

Techniques

1. [training] Runtime training to collect
access profiles

2. [rewriting] Function rewriting or
“stubbing” for on-demand code loading

3. [prefetch] Background prefetch of clusters
as the application is running

16

Techniques

17

Experiments

Application Download Size

Chi game 104

Bunny Hunt 16

Live.com 1,436

Live Maps 1,909

Google Spreadsheets 499

18

Experiments

19

Experiments

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chi game Bunny Hunt Live.com Live Maps Google Sp’sheet

50kbs/300ms 300kbs/300ms 300kbs/50ms

 Doloto: effective profile-driven optimization

 Our approach is general: Silverlight

 Enables larger more complex distributed apps

 Dynamic code loading for distributed
applications of the future

21

Ben Livshits (livshits@microsoft.com)

22

Doloto MSR _

mailto:livshits@microsoft.com

