
Ben Livshits and Weidong Cui
Microsoft Research

Redmond, WA

 Web application vulnerabilities are everywhere

 Cross-site scripting (XSS)

 Dominates the charts

 “Buffer overruns of this decade”

 Key enabler of JavaScript worms

2

Worm name Type of site Release date

Samy/MySpace Social networking Oct-05

xanga.com Social networking Dec-05

SpaceFlash/MySpace Social networking Jul-06

Yamanner/Yahoo! Mail Email service Jun-06

QSpace/MySpace Social networking Nov-06

adultspace.com Social networking Dec-06

gaiaonline.com Online gaming Jan-07

u-dominion.com Online gaming Jan-07

 Unleashed by Samy as a proof-of-

concept in October 2005

3

 Samy took down MySpace (October 2005)

 Site couldn’t cope: down for two days

 Came down after 13 hours

 Cleanup costs

 Yamanner (Yahoo mail) worm (June 2006)

 Sent malicious HTML mail to users in the current
user’s address book

 Affected 200,000 users, emails used for spamming

4

 Initial infection:

 Samy’s MySpace page

 Injected JavaScript payload

exploits a XSS hole

 Propagation step:

 User views an infected page

 Payload executes

▪ Adds Samy as friend

▪ Add payload to user’s page

5

 Worms of the previous decade enabled by buffer overruns

 JavaScript worms are enabled by cross-site scripting (XSS)

 Fixing XSS holes is best, but some vulnerabilities remain

 The month of MySpace bugs

 Database of XSS vulnerabilities: xssed.com

6

 Existing solutions rely on signatures

 Ineffective: obfuscated and polymorphic JavaScript worms are

very easy to write

 Most real-life worms are obfuscated

 Fundamental difficulties

 Server can’t tell a user request from worm activity

 Browser doesn’t know where JavaScript comes from

7

9

 u1 uploads to his page
 u2 downloads page of u1

 u2 uploads to his page
 u3 downloads page of u2

 u3 uploads to his page
 …

u1

u2

u3

Propagation chain

payload

1. Preserve causality of uploads, store as a graph

2. Detect long propagation chains

3. Report them as potential worm outbreaks

tag1 -> tag2

Se
rv

er
-s

id
e

ap
p

lic
at

io
n

Spectator proxy

U2requestrequest

C
lie

n
t-

si
d

e
tr

ac
ki

n
g

p
ag

e

p
ag

e
11

tag

tag

U1

 Tagging of uploaded input

<div>
<b onclick="javascript:alert(’...’)">...

</div>

 Client-side request tracking
 Injected JavaScript and response headers

 Propagates causality information through cookies
on the client side

<div spectator_tag=56>

12

 Propagation graph G:

 Records causality between tags (content uploads)

 Records IP address (approximation of user) with each

 Worm: Diameter(G) > threshold d

<t0, ip0> <t1, ip1><t2, ip0>

<t3, ip0>

<t4, ip2>

<t5, ip0>

<t6, ip0>

<t7, ip0>
<t8, ip0>

<t9, ip0>

13

Precise algorithm Approximate algorithm

Upload insertion time O(2n) O(1) on average

Upload insertion space O(n) O(n)

Worm containment time O(n) O(n)
14

 Determining diameter precisely is exponential
 Scalability is crucial

 Thousands of users
 Millions of uploads

 Use greedy approximation of the diameter instead

15

 Large-scale simulation with OurSpace:

 Mimics a social networking site like MySpace

 Experimented with various patterns of site access

 Looked at the scalability

 Real-life case study:

 Uses Siteframe, a third-party social networking app

 Developed a JavaScript worm for it similar to real-life ones

16

 Test-bed: OurSpace

 Every user has their own page

 At any point, a user can read or write to a page
 Write(U1, “hello”); Write(U1, Read(U2)); Write(U3, Read(U1));

 Various access scenarios:

 Scenario 1: Worm outbreak (random topology)

 Scenario 2: A single long blog entry

 Scenario 3: A power law model of worm propagation

17

 Tag addition overhead pretty much constant

18

 Approximate worm detection works well

19

 Real-life worm experimentation is difficult

 Used Siteframe, open-source blogging system

 Found an exploitable XSS

 Developed a worm for it

 Scripted user behavior

 Spectator flags the worm

20

 First defense against JavaScript worms

 Fast and slow, mono- and polymorphic worms

 Scales well with low overhead

 Essence of the approach

 Perform distributed data tainting

 Look for long propagation chains

 Demonstrated scalability and effectiveness

21

