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Abstract

Web browser fingerprinting is the extraction, usually through the use of

JavaScript, of details about the computer system that that particular web

browser is running on. Usually, this consists of attributes such as the browser

user-agent, language, and reported time zone.

In this project, with the use of an external dataset, and a smaller and more

directly curated one of our own, we come to some conclusions and

comparisons about the fingerprintability of various devices, mobile and

desktop, and between the two major platforms that power mobile devices

today (Apple iOS and Google Android).

To this end, we create a basic fingerprinting tool to gather some of our own

data to test and answer specific questions about certain devices, and we

make observations about a recent but previously unpublished part of the

AmIUnique.org dataset, which has been collecting data for several years as

part of a different research project.

We also make observations about the effectiveness of security tools and

methods, such as the use of Tracking Protection and the Tor network.

We find that fingerprinting is really quite effective on “real-world” devices,

mobile and desktop, and that technology that blocks fingerprinting is often

ineffective, or easily worked around by good web design. However, some

fingerprint detection and protection in some browsers is good and could

provide a good base to work with in improving privacy and protection from

trackers and fingerprinting in other web browsers.
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“Privacy is not an option, and it

shouldn’t be the price we accept for

just getting on the Internet.”

Gary Kovacs
CEO of Mozilla Corporation 2010-13 [1]
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Chapter 1

Introduction

1.1 Motivation

It is often noted by people that as

they traverse the web, especially if

they look at a product on a website,

such as Amazon.co.uk, that they will

spend the rest of the day being

followed by ads for the project from

site-to-site. This is known as

tracking, and it uses cookies and

other common web technologies to

“follow” users from site-to-site,

taking note of what they are looking

at, and serving relevant

advertisements, or rather,

advertisements designed to

specifically appeal to that person in

that moment. More follows on this in

section 2.1, focusing on the business

of advertising, and section 2.1.1 with

regards to the blocking of these

advertisements. We’ll also look at the

privacy implications in section 2.1.2.

Extending from this is the idea of

“fingerprinting”, which is like

tracking, but attempts to individually

identify a device from its first use,

even if cookies and other local storage

are deleted (by ‘local storage’, we

here refer to web technologies that

provide local device storage for

websites, as opposed to all forms of

local storage). It uses a variety of

metrics to find out information about

your browser, such as installed fonts,

screen resolution, the user-agent

string sent by the browser and others.

There are a number of websites that

allow you to test your own browser in

this respect, such as the EFF’s1

Panopticlick [2] project, and the “Am

I Unique” website and research

project [3]. We are often surprised by

how identifiable my various browsers

and devices are even on these

1Electronic Frontier Foundation
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relatively small datasets (compared

to, say, all of Google AdWords).

Fingerprinting can use novel features

in new and emerging web

technologies too; these include

analysing WebGL renders made by

browsers, analysing audio output [4],

and on mobile devices, the use of

hardware features such as

accelerometers and compasses [5]

used to identify individuals. We hope

to look at this fingerprinting on

mobile devices, especially iOS

devices, and see how identifiable one

device can be from another to a web

site, even with apparently identical

configurations, software versions and

models of a device. This is made

especially interesting on iOS with the

nature of all web browsers being

essentially wrappers around the

built-in Apple Safari browser, and

makes it harder to distinguish users.

We’ll take a look at current

developments in section 2.2. We’ll

look more clearly at this in Chapter

3, and at the research around both it

and online advertising and tracking

in Chapter 4.

1.2 Project Objectives

We have three main objectives in this

project:

• We hope to attempt to identify

novel ways of fingerprinting web

browsers on mobile devices, with

a focus on iOS devices (which are

very similar within each model).

We hope that this provides a

base for further research in this

area, and that it will perhaps

give users of mobile devices a

greater degree of privacy in their

online interactions.

• We also hope to investigate the

current state of web browser

fingerprinting technologies, and

how they apply to mobile

devices, especially iOS.

• We hope to build on previous

research in fingerprinting iOS

devices such as Kurtz et al. [6],

but with a web-based approach

rather than the described native

mobile app.

In Chapter 7 we’ll evaluate how well

we’ve achieved these objectives.
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1.3 Research Questions

We’d like to achieve this by asking

the following questions:

• Which, of mobile and desktop

devices, is more fingerprintable?

• On mobile devices, of the two

major platforms Android and

iOS, which is more

fingerprintable?

• What fingerprinting vectors

differentiate between identical

phone models?

• What fingerprinting vectors on

mobile differ from desktop

devices?

• Is it easier to evade

fingerprinting on mobile or

desktop devices?

We’ll look at answering these

questions in detail through our own

data collection and analysis, and

analysis of an external dataset in

Chapter 3, and we’ll also find more

context on these in Chapter 4.

1.4 Report Layout

In this report, our primary results

and insights are presented in Chapter

3, and we will present the results in

the format of some data and

discussion, followed by the main

point that we’d like to make about

the data and the discussion, indicated

by the phrase Key Takeaway.
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Chapter 2

Background

In this section, we will be looking at

the current state-of-the-art regarding

online advertising and tracking. We’ll

investigate how online advertising

works, the privacy implications, and

what can be done to block this. We’ll

also look at some current

fingerprinting techniques and

technologies.

2.1 Business of Advert-

ising

Web advertising is a multi-billion

dollar business; according to

eMarketers [7], projected spending in

2017 is to be US$ 229.25bn, rising

further to US$ 335.48bn by the end

of the decade. Large players in this

space include Google (via its

AdWords product), Facebook, and

Twitter (the latter two both using

social media within their own

websites and embedded around the

web). These are the primary revenue

sources for both Facebook and

Google.

Web advertising traditionally (from

the early 1990’s) entailed individual

webmasters adding adverts to their

sites. This is very rare now, though,

with the vast majority of publishers

of web content who run adverts

choosing to effectively outsource the

selection and display of

advertisements to external

companies, such as Google.

With any particular advertisement

agency, that agency is able to track a

user’s presence across the internet,

provided that the advertisement

agency has been employed by pages

across the web. This allows an ad

agency to build up a profile of a user

across the internet by taking note of
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what web pages they have been

looking at — an agency can keep

track of an individual through the

use of cookies. The reasoning behind

this is that adverts are now much

more relevant to a user, making them

more likely to click on them.

For example, it is much cheaper for

an advertiser to pay only for adverts

for some event to be shown to

Women in London, who enjoy

swimming, say, a women-only

swimming class. There is little point

paying for a man aged 70 to see such

an advertisement, as they are unlikely

to be able to partake in such an

activity. A better-informed ad agency

can therefore generate more clicks on

some advert, targeted at some

demographic(s), and thus charge

more for their services, and make a

greater profit. The advertiser also

likes this because it reduces waste

spent on showing adverts to people

who aren’t interested, thus meaning

their allocation of budget is spent

more directly on the demographic(s)

they would actually like to advertise

to. So too do publishers, who are

paid by the ad agency for displaying

the ads, and would also much prefer

them to be relevant to their visitors.

In section 2.1.2, we discuss the

privacy implications of this.

Many publishers are now dependent

upon advertising to survive, as noted

by the FCC [8] (though some

implement other revenue generators,

such as a paywall, or a subsection of

content is “premium’, shown

alongside free content1) [9], but in a

world of increasing pressure on news

publications and other outlets, the

pressure to have ever-increasing

numbers of adverts on a web-page

has sometimes resulted in pages

where it is difficult to discern

advertisements from the actual page

content, as well as intrusive “pop-up”

adverts, either through the use of an

additional browser window, or via

“overlay” elements, which cover up

the viewport entirely or substantially,

and must be manually dismissed.

This sort of intrusive advertising has

possibly been the major driving force

behind the beginnings of many

popular ad-blockers - we’ll discuss

this in Section 2.1.1.

1This model of paid-for premium content
presented alongside free, ad-supported con-
tent is used by The Telegraph, among others
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2.1.1 Ad-blocking and ad-

blockers

Ad-blocking is the techniques used by

ad-blockers to block not only online

advertisements from display to the

user, but also often various tracking

scripts (see section 2.1.2 for more on

that). The most popular ad-blocker

in current use is AdBlock Plus, first

released in 2006, and now with well

over 30 million users [6]. Ad-blockers

use a variety of different rules to

blacklist and whitelist advertisements

of various types, such rules are

detailed in Walls [11]. A number of

studies have been carried out on

various ad-blocking programs, and

the rule lists that they use, [12, 13]

and have found that some ad-blockers

are very efficient and quick, and

others not so much. Indeed,

according to [12], the µBlock tool

gives the best performance out of a

number of mainstream ad-blockers.

An important thing to mention here

is the Acceptable Ads program [14],

previously operated by Eyeo GmbH -

itself the company behind AdBlock

Plus, and as of 2017 by the

independent “Acceptable Ads

committee‘, comprising user groups,

advertising companies, and industry

and academic experts [15].

Acceptable Ads defines criteria for

adverts that should be permitted

through Ad-blockers in order to

support publishers who require

advertisements to fund their work.

The Acceptable Ads criteria provides

a set of rules that publishers must

follow for inclusion in the program,

which sees the ads that follow the

criteria whitelisted (by default2) on

AdBlock Plus. Most advertising

agencies do not have to pay for

access, though “large” ones may be

required to pay a fee to Eyeo, who

use it to support their operations

including the further development of

AdBlock Plus and other products.

In Walls et al. [11], we see some

interesting results from an analysis of

the program, revealing that, at the

time of its writing (Oct 2015), it

allows some ads to be displayed on

59% of the top 5000 websites, plus

another 2.6 million parked domains.

There were some concerns about the

openness of the program mentioned

by Walls et al., namely that it did

not seem to be clear what qualified as

2An individual user is at liberty to disable
the Acceptable Ads program on their own
device, and there is no restriction on doing
so.
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Figure 1: How AdBlock Plus Works
Source: [10]

a “large” organisation - with the

difference seemingly being arbitrary,

and some companies that paid for

access having rules added with

seemingly no community input.

Whether or not processes have

changed in the intervening two years

it yet to be seen. However, the new

“Acceptable Ads Committee” will

probably address these concerns

head-on. It is noted that the

AdBlock Plus website also reveals

that there is now a formal definition

of what a “large” advertiser entails ,

namely that it is such “when it gains

more than 10 million additional ad

impressions per month due to

participation in the Acceptable Ads

initiative’ [10].

This may give the impression that all

is well and good for users, but more

recently [8, 16] small JavaScript

programs have been developed to try

and detect the use of ad-blocking

software by users. As a result, some

sites may refuse to display content

(forbes.com), display a pop-up

message asking the user to disable

their ad-blocker (telegraph.co.uk), or

replace adverts with a similar

message about disabling the

ad-blocker. These usually operate by

creating a “bait” element and then

testing to see if it has been deleted or

otherwise hidden from view (i.e.

display=none, maxHeight=0, etc.).

The test may be as soon as the

document loads, or a short delay
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after the document has loaded (to

give additional time for the

ad-blocking program to run), or may

run every few seconds once a page

has loaded (to get around any

ad-blocker that may run repeatedly

or after a longer delay).

Developments in this area continue,

and is widely expected to continue

being an arms race, with one side

bettering the other for a few months,

and then their roles reversing [16, 17].

2.1.2 Privacy & Tracking

As mentioned in section 2.1,

advertising agencies, such as Google,

gain a large amount of information

on users who visit pages that contain

adverts served by that agency. Such

information brings with it privacy

concerns, because it may be used to

infer demographic and personal

information about individual users.

The International Association of

Privacy Professionals gives a

hypothetical example whereby the

increase of tracking users

cross-devices creates the risk that

some potentially compromising

personal information could be

mistakenly revealed to people in the

vicinity, on the same network, or to

advertisers. [18] Indeed, Adrian

Chen, writing in Gawker, revealed an

instance in 2010 of the latter taking

place at Facebook. Stanford’s

Aleksandra Korolova revealed that

she was able to use advertising

campaign tools within Facebook to

expose the “Interested in” setting of

a particular user’s account, which

displays sexual orientation. This user

had their “Interested in” privacy

setting set to be visible to “Friends

only”, but using inference from ad

impressions, was able to show that a

user had the setting set one way

rather than another. Facebook, upon

being notified, modified their

algorithms, but as Korolova notes,

their apparent implementation is far

from perfect [19, 20].

These sorts of issues are deeply

concerning to many people who value

their own privacy, and don’t want

necessarily for specific aspects of

their self to be either discovered, or

to otherwise become known through

inference as described by Korolova

[20]. As a result the AdChoices

program was established as a self

regulatory program [9, 21], along

with a number of others, in order to

try to dissuade consumers from
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Figure 2: Anti-adblock message on telegraph.co.uk

Figure 3: AdChoices Icon
Source: [21]

enabling ad-blocking software (which

hurts advertisers and publishers), and

to try to undo the bad name and

reputation that online advertising

had become famous for. However,

according to Vratonjic et al. [9],

consumer awareness remains low and

is rising only very slowly (from 5% in

2011 to 6% in 2013). The program is

supposed to allow consumers to

“opt-out” of being tracked on a

per-browser basis (somewhat

ironically, it does this by setting

cookies). It is not the only

technology that exists to attempt to

stop tracking (or more accurately,

provide a means to inform a company

electronically when connecting to

their servers that you do not wish to

be tracked), however.

In 2011, Mozilla announced and

submitted to the IETF a proposal for

a new HTTP header to be sent by

browsers, known as Do Not

Track [22]. This allows a browser to

be configured to send with all HTTP

requests an “opt-out” from tracking,

an explicit “opt-in’, or (by default)

give no preference. It is implemented

as a single bit (1 or 0), and when the
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default “no preference” is selected,

the header is not sent with requests.

However, The Register ’s Iain

Thomson [4], notes that if more than

15% of users were to enable such a

feature, most networks would ignore

it and track them anyway. Indeed,

the feature was described by Sophos

as “the privacy standard that’s

melting away’ [23]. Nonetheless, the

feature is supported by the five major

browsers (Chrome, Firefox, Internet

Explorer, Opera, and Safari).

Many users also use Ad-Blockers

(such as AdBlock Plus and µBlock,

now renamed uBlock Origin3), as well

as similar tools (such as Ghostery) in

order to try and improve their own

privacy, but as concluded by Gervais

et al. [25], not all of these tools are

brilliant at achieving greater privacy.

Indeed, Ghostery in its default state

will do nothing - one must explicitly

block trackers. AdBlock Plus in its

default settings will provide some

protection, but to avoid tracking

altogether one must change the

settings of both to be their strictest

in terms of blocking. For most users

using adblockers, they are unlikely to

3There is a dispute over the name, how-
ever, with details available at the project’s
homepage [24]

have done so, because most

adblockers will do an acceptable

amount of adblocking with no

configuration change from the

defaults, and that is likely to block

ads sufficiently to please the vast

majority of adblocking usrs.

2.2 Fingerprinting

Moving away from “tracking”

specifically, which usually uses

cookies to determine whether or not

a user is the same across websites

and, in some operating systems (iOS,

Windows 10), across devices, we also

have the concept of “fingerprinting’,

which is the attempt to extract as

much information out of a device

such that we can individually identify

it without it necessarily providing

any personal identification of the user

of said device. AmIUnique.org [3]

and Panopticlick [2] are good

examples of websites that fingerprint

people, and are able to detect a range

of facts about web browsers, which

when combined produce an often

unique fingerprint. This is achieved

with information from a number of

sources including:

• Data sent to the server directly
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by the web browser (e.g. IP

address, User-agent - Operating

System and Browser Version)

• WebGL information (Graphics

Card / Driver)

• Information inferable with

JavaScript (e.g. screen

resolution)

• Information provided by Adobe

Flash Player if installed (e.g. list

of installed fonts)

Altogether these provide a

remarkable fingerprint of any

particular browser. For illustration,

Table 1 shows a subset of information

provided by one browser we have used

(some details redacted & truncated):

Just from this subset of information,

we know that we’re using Firefox

58.0, running on Windows 7, that

Adobe Flash version 28.0 is enabled,

as well as information about the

monitor. Most useful is probably the

Fonts list, as some fonts come with

specific programs; it might be

possible to infer, for example, that

Adobe CC products are installed, for

example, if lots of fonts associated

with it are present. A huge number

of systems do have unusual font

configurations, so the use of Flash to

detect this is a very good step on the

way to fingerprinting someone.

On Mobile devices we have a harder

time getting the list of fonts - due to

the fact that most mobile devices do

not run Adobe Flash Player. This

will also change from 2020 too, as

Adobe drops support for the aging

product - from then we can expect

that most desktop browsers will no

longer have the plugin installed by

default. Additionally, in modern

browsers, the plugin is usually

available only in “Click-to-Run”

mode, meaning that users must

explicitly opt-in to running Flash.

When we look at our project, which

is using web browsers to fingerprint

mobile devices, this contrasts nicely

with Kurtz et al. [6], in which we

discover ways of fingerprinting iOS

using a native application, which has

direct access to the various iOS

frameworks and certain parts of the

local filesystem. Web browser access

is considerably more restrictive, so

doing some detailed study of

techniques usable from the browser

will be fascinating.

More directly related to our project

is Laperdrix et al. [26], the team
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Figure 4: Fingerprintable features of iOS, and how they change over time
Source: Kurtz et al., [6] p.12.
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Attribute Value

User-agent Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:58.0) ..
Plugins Plugin 0: Shockwave Flash; Shockwave Flash 28.0 r0..

Platform Win64
Cookies Enabled

Do Not Track NC (Not sent)
Time zone 0
Resolution 1280x1024x24

HTML5 Canvas
(obfuscated)

Fonts Arial, Arial Black, Arial Rounded MT Bold ..

Table 1: Some browser attributes used by amiunique.org to fingerprint
browsers.

behind AmIUnique.org [3], which is

the most recent large-scale study of

fingerprinting with published results.

It’s not dissimilar to Panopticlick [2,

27], but we will in Chapter 3 be

looking at a more recent subset of the

data collected as part of the

AmIUnique project.

2.3 Defeating Trackers

Tracking engines are of course

extremely keen to avoid you defeating

them, and a litany of browsers and

browser extensions are available to

that end, as well as, for the paranoid,

defeating fingerprinting techniques as

well.

Such solutions range from standard

ad-blocking tools that we’ve

previously described, right up to the

“nuclear option” (so to speak), of

running the Tor browser.

Extensions like AdBlockPlus [10],

and uBlock [24] serve a very specific

purpose, which is to block

advertisements, though a user can

certainly configure them to block

more than just adverts. In these

extensions, this is usually through

the use of element and URL-based

filters, though some other methods

have been proposed. [28]

The Tor project [30] has spearheaded

the development of the Tor Network,

which is made up of a series of nodes,

split into “relay” and “exit” nodes.
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Figure 5: Routing traffic through Tor
Source: [29]

Traffic is routed at random from the

client, through three separate nodes,

and then onto the server. The third

of the nodes is known as the “exit”

node for a particular “circuit” (read

connection). Each connection

through a node is via an encrypted

tunnel, with three layers of encrypted

tunnels to the first node, then the

inner two layers to the second, and

then the innermost to the exit node,

with no Tor-provided encryption

between the exit node and the server.

This does not preclude the use of

TLS to secure websites. Figure 5

shows this visually.

As long as enough people volunteer

network bandwidth, then it should be

impossible to effectively spy on the

network, as the only way to do so

would be to control all three nodes

that a particular user was using,

which is unlikely as nodes are

selected for use at random. As well

as encryption, Tor and the Tor

Browser use various other obfuscation

technologies to defeat trackers and

network snoopers, such as the

padding of packets, and is

deliberately obtuse to use plugins

with. The latter is particularly

noteworthy as Flash cannot be

guaranteed to connect through the

Tor network, thus defeating its

purpose. Flash can also be used to

fingerprint a desktop system much

more than JavaScript alone, as it can

provide the full list of installed fonts

to a fingerprinting system.
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Tor also provides for the creation and

operation of hidden services, which

provide a similar level of protection

to website operators. This is known

as the dark web in the media, and is

used both by illegal sites, such as the

infamous Silk Road website [31], and

by dissident groups in countries with

fewer freedoms for individuals. Some

publishers and bloggers may operate

exclusively via hidden services in this

way, in order to protect their identity

more thoroughly. Connecting to a

hidden service (which have urls

ending in .onion) effectively makes a

Tor circuit with six nodes (see Figure

6), to protect both the hidden service

and the user/client from being

identified. The Tor browser displays

this, but the identity of the three

nodes that the hidden service uses

are hidden from the user.

Finally, Tor has a concept called

bridges, which are like relay nodes in

the Tor network, but unlike “normal”

relay nodes, these are not listed in

any public place. They are designed

to allow access to the Tor network for

those whose networks do not permit

access to the Tor network directly

through the blacklisting of Tor nodes

(such as those in mainland China, for

(a) For ordinary websites

(b) For .onion hidden services

Figure 6: Tor Browser displays Tor
circuits

example). Tor also provides some

protection against fingerprinting, and

we’ll discuss how Tor, amongst

others, evades fingerprinting in

Section 3.2.5.



Chapter 3

Experiments and Studies

in Fingerprinting

In this section, we’ll look at the way

we collected data, and how we

analysed external data.

We will also attempt to answer the

following research questions:

1. Mobile vs. Desktop: Which
device type is more
fingerprintable?

2. iOS vs. Android: Which
platform is more fingerprintable?

3. What sources of fingerprinting
exist on identical device models?

4. How does mobile differ from
desktop in fingerprinting
vectors?

5. Is it easier to evade

fingerprinting on mobile or

desktop?

3.1 Experimental Setup

We collected both a small amount of

data manually, and used a temporal

slice of the AmIUnique.org dataset,

which was kindly provided to me by

one of the project leaders; Professor

Benoit Baudry, now of the KTH

Royal Institute of Technology in

Stockholm.

The reason for this is that we knew it

would be an enormous challenge to

collect a huge amount of data, as it

would require us to not only build a

tool and provide sufficient resources

to power potential interest from

around the world, but also to

publicise it as well. Typically this

would be done by a research group

(as is the case for both AmIUnique,

and the EFF’s Panopticlick project.
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Such resources were not available to

us, and so instead the

manually-collected dataset is a much

smaller and more direct look at some

devices we were able to acquire.

We were able to overcome this

problem of scale by making use of

analysis of the much larger and more

complete AmIUnique.org dataset,

and a more recent version than the

original paper [26] had available at

the time; it being published in May

2016, and the data provided to us

being the three months from

November 2017 to the end of January

2018. This allows us to look at some

more recent developments and more

current models of mobile devices that

had been made available in the

interim twenty-one months.

3.1.1 Manually Curated Data-

set

To gather our own data on iOS, we

acquired some iPads from the

Imperial College Department of

Computing, all the same model. We

then produced a small PHP script to

collect fingerprint data with

JavaScript, and store it in an SQL

database (see Figure 7 — it won’t

win any design awards, but it is

functional). This method did not

gain much data (nor was it meant

to), but it was useful for small-scale

analysis for this project. Some useful

observations can be made regarding

anonymity sets on iPads and some

other mobile and desktop devices and

browsers (see Section 3.2). This used

the fingerprintjs2 library, which is an

open-source JavaScript library

available on GitHub [32]. The

“fingerprint hash” field was generated

in the browser, rather than

configuring SQL to do it (see Section

3.1.2). It also uses ClientJS [33] to

generate some of the niceties around

specific OS and Browser names,

rather than just showing the

user-agent — though we don’t

actually store this data. We refer to

the data collected as the manually

curated dataset.

3.1.2 AmIUnique Dataset

Then some analysis was performed

on the much larger (˜2.6 GiB)

dataset from AmIUnique.org [3]. We

first had to define what variables that

the original team had collected we

wanted to count towards a device

fingerprint, and then we had to
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(a) The home screen (b) The submission screen

Figure 7: The tool for manual data collection
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create a virtual column in our SQL

database that would create an

appropriate fingerprint. We did this

by concatenating the chosen fields

together as strings, and then creating

the MD5 hash of this new, long

string with all the variables contained

within it — the SQL code for this is

in Figure 8.

You will notice that some fields have

been omitted; namely hostHttp,

orderHttp, addressHttp and time.

These refer to the way the data was

generated (i.e. amiunique), how the

HTTP connection should be kept

(usually “close”, indicating that it is

closed as soon as the request is

fulfilled), a hash of the IP address

(which may often change on the same

device, especially mobile), and the

time of submission, which will also

change for the same device. The rest

should however remain

approximately the same, unless the

user consciously makes configuration

changes (except for user-agent which

may change if the OS or Browser are

updated). We refer to this dataset as

the AIU Dataset.

3.2 Research Questions

In this section we address a set of

research questions, designed to

highlight the differences in

fingerprinting between mobile and

desktop devices.

3.2.1 RQ1: Mobile vs.

Desktop: Which is More

Fingerprintable?

We would like to find out how we can

compare the fingerprintability of web

browsers between mobile and desktop

browsers. Essentially, we want to

know whether being on mobile makes

one more or less identifiable?

AIU Dataset: Here, we have defined

a desktop and a mobile device to be

as shown by the SQL code fragments

in Figure 9. The data in Figure 10,

taken from the AmIUnique dataset,

shows a comparison between Desktop

and Mobile/Tablet devices. This

clearly shows that the plurality of

devices that are out there is not

invisible to the browser (and

therefore to websites that are

visited). On Desktop devices, we are

able to use WebGL to ascertain the
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1 ALTER TABLE ‘‘fpData ‘

2 CHANGE ‘‘fp_Hash ‘ ‘‘fp_Hash ‘ VARCHAR (32) AS

3 (md5(concat(‘userAgentHttp ‘,‘acceptHttp ‘,

4 ‘connectionHttp ‘,‘encodingHttp ‘,

5 ‘languageHttp ‘,‘pluginsJS ‘,‘platformJS ‘,

6 ‘cookiesJS ‘,‘dntJS ‘,‘timezoneJS ‘,

7 ‘resolutionJS ‘,‘localJS ‘,‘sessionJS ‘,

8 ‘IEDataJS ‘,‘canvasJS ‘,‘webGLJs ‘,

9 ‘fontsFlash ‘,‘resolutionFlash ‘,

10 ‘languageFlash ‘,‘platformFlash ‘,

11 ‘adblock ‘,‘vendorWebGLJS ‘,‘rendererWebGLJS ‘,

12 ‘octaneScore ‘,‘sunspiderTime ‘,

13 ‘pluginsJSHashed ‘,‘canvasJSHashed ‘,

14 ‘webGLJsHashed ‘,‘fontsFlashHashed ‘))) VIRTUAL;

Figure 8: SQL generation of fingerprint hashes

1 -- DESKTOP OPERATING SYSTEMS

2 WHERE userAgentHttp LIKE ’%( Windows NT%’’ OR userAgentHttp LIKE

’%( Macintosh%’’ OR userAgentHttp LIKE ’%X11; Linux%’

3

4 -- MOBILE OPERATING SYSTEMS

5 WHERE userAgentHttp LIKE ’%iPad%’’ OR userAgentHttp LIKE ’%CPU

iPhone OS%’’ OR userAgentHttp LIKE ’%Android%’

Figure 9: Definitions of Mobile and Desktop devices

name of the Graphics card, and from

that we can infer specific information

about what a desktop computer is

running with regards to CPU (in the

case of integrated graphics) or GPU

when a discrete graphics controller is

installed.

Key Takeaway: No difference in

terms of unique fingerprints. The

anonymity sets of size 1 correspond

to 91% of all desktop entries, and

90% of all mobile (that is, Android

and iOS) entries — this is shown

clearly in Figure 11, which shows the

top quartile of anonymity sets. We

have elected to exclude other mobile

platforms as they do not make up a

significant enough chunk of the data,

and we are most interested in

common devices, the vast majority of
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Figure 10: Desktop and Mobile/Tablet Anonymity set sizes.

which run Android or iOS.

Some other interesting information

about comparing these two sets are

to look at just how large the

anonymity sets can be: on desktop

the largest anonymity set is of

size 1,729 — representing (alone)

around 2% of all desktop devices.

However, on Mobile, this is reduced

to merely 32 — see Table 2

If we choose to interpret the data on

a per-device basis rather than

per-anonymity set, then the data will

be weighted more towards the set

sizes that balance large membership

with size alone, though devices in a

set of size 1 still contribute by far the

largest number of members. We can

see this by comparing this weighted

per-device data (Figure 12) with

Figure 10.

Our opinion on this question, having

inspected these results, is that there

is no substantial difference in

anonymity granted by Desktop and

Mobile browsers — at least in

normal configurations — whilst the

Tor Browser, for example, is almost

certainly among the browsers that

will have connected, the number will

be insignificant compared to ordinary

configurations.

It is however, important to note that

desktop gets a greater number of

large anonymity sets, which mobile

simply cannot compete with. This

allows us to tip the balance very

slightly in favour of desktops for

being less fingerprintable, but the

vast majority of gathered fingerprints
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Figure 11: Desktop and Mobile anonymity sets sizes count as percentages of
all anonymity sets
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# Desktop Mobile

5 188 26
4 232 28
3 302 30
2 452 31
1 1729 32

Table 2: Top 5 largest anonymity sets for Desktop and Mobile Browsers
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Figure 12: Number of devices in anonymity sets of size X (Desktop/Mobile)

fall within their own anonymity set

for both platforms.

3.2.2 RQ2: iOS vs. Android:

Which Platform is More

Fingerprintable?

AIU Dataset: The comparison

between iOS and Android as shown

in Figure 13 is remarkable. The

shapes of the graphs are striking by

their similarity to the mobile and

desktop results. These results are

based on the AmIUnique.org dataset,

and includes a wide variety of models

of iOS and Android devices. Notably,

one might expect iOS to have a

greater number of large anonymity

sets, due to the smaller number of

models of devices that are extant

within it (being limited only to

devices produced by Apple), but

proportionally, this doesn’t prove to

be true.
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Figure 13: iOS Anonymity Set Sizes vs Android

In this case, more than 90% of

Android and just over 87% of iOS

anonymity sets, representing 75%

and 71% of individual devices,

respectively, are of size 1.

Taking a look at devices, we can see

in Figure 14 that the graphs continue

to reflect the same pattern between

mobile and desktop, though once

again this skews the results towards

larger anonymity sets. Just over 2%

of fingerprints were repeated 4 or

more times in both Android and iOS,

but these accounted for 12% and 10%

of devices respectively, so although

the numbers are very similar, it could

be said that this suggests that iOS

provides a marginally more private

experience, but it should also be

noted that the largest iOS anonymity

set is only of size 17, whereas

Android’s largest is of size 32.

Other browsers on Android

Manually Curated

Dataset: Within other—that is,

non-Google Chrome—browsers on

Android, our enquiries showed that

the vast majority were simply

Android WebView (identifiable by its

user-agent). Of the 178 browsers that

we looked at, 150 of them were

merely Android WebView. 6 of those

150 appended something unusual or

identifying to their user-agent string.

All six did so to provide one or both

of an identifier of the browser

program, and a version string.

One of them, Amigo Browser,
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Figure 14: Number of devices in anonymity sets of size X (iOS/Android)

provided by mail.ru, went further;

actually appending a UUID string to

the user-agent, which is very peculiar

and worth noting — it essentially

fingerprints instances of the browser

for you, meaning very little work is

actually required by a website to

fingerprint it. It is probably only

used for mail.ru services, but it does

seem a bit odd when a browser

cookie would suffice, and would not

also leak that UUID information to

other web services. It would be very

interesting to know if that UUID can

be linked back to the computer in the

Department of Computing where we

ran our test, (but we haven’t made

any enquiries at mail.ru, and that is

mere conjecture).

Putting that aside, we also took a

more detailed look at a subset of

browsers with the fingerprintjs2 tool.

The browsers we tested were:

• InBrowser

• Firefox Focus

• Dolphin Browser

• Opera

• Brave

• Ghostery

• Firefox

• Microsoft InTune

• Yandex

• Chrome

• WebView Browser Tester

These were done on four different

emulated devices — an LG Nexus 5
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droid
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Mozilla/5.0 (Linux; Android 8.0.0; Android SDK built for x86

Build/OSR1.170901.043; wv) AppleWebKit/537.36 (KHTML, like

Gecko) Version/4.0 Chrome/64.0.3282.137 Mobile Safari/537.36

Figure 16: Android WebView user-agent String, recognisable by the “wv” in
the OS section

Mozilla/5.0 (Linux; Android 8.0.0; Android SDK built for x86

Build/OSR1.170901.043; wv) AppleWebKit/537.36 (KHTML, like

Gecko)

Version/4.0 Chrome/64.0.3282.137 Mobile Safari/537.36

AMIGOAPP UUID 0e0cc18ceabf47bef704fec82b8eb1ba APP VERSION -

1.10.187

Figure 17: Amigo Browser user-agent string

and 5X, with both Android 7.1.1 and

8.0.0.

What was striking was that between

these (emulated) devices, there were

no fingerprints that were repeated,

but within each device/OS version,

two browsers were identical to

another browser each. These were

Brave, which had the same

fingerprint as Chrome (unsurprising

as the former’s code base for Android

is based on that of Chrome for

Android), and Ghostery Browser,

which was identical to the Android

WebView test program. We can only

assume that this is because it is

essentially the same but with

tracker-blocking capabilities.

Another curiosity was the differences

between Firefox and Firefox Focus,

with the latter marketed as a

privacy-conscious browser by Mozilla.

They do not appear to share the

same codebase (at least not in terms

of JS or rendering engine), as Firefox

Focus appears to use WebKit,

whereas Firefox proper uses its

desktop namesake’s Gecko engine.

We believe that with the vast

majority of Android users being

Chrome users, with a small number

of Firefox users, that anyone using a

different browser will be fairly

obvious. This disregarded other

browsers, such as the webviews found

within common applications, such as

the Facebook Messenger webview, or

the BBC News webview. However,

these are not typically used beyond

the page they initially visit
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— though of course it is fun to

attempt to break out of a webview by

trying to reach google.com!

iPhone vs. iPad

AIU Dataset: Looking at

Figure 18, we see the same data as

Figure 14 for iOS, split into iPad and

iPhone — which are the two devices

that run iOS (as distinct from

watchOS or macOS).

All that can really be said is that the

iPhones appear to have something of

an upper hand with regards to having

larger anonymity sets (with their

largest being 17, compared to the

iPads” 11), but this should be

tempered with the fact that there

simply aren’t very many iPads in the

data.

The pattern is once again very

similar in general to the previous

patterns that we’ve seen, again

repeating the shape of graph that

we’ve already seen.

3.2.3 RQ3: What Sources of

Fingerprinting Exist on

Identical Device Models?

Manually Curated Dataset: We

studied a small number of iPads

provided by the Department of

Computing. All four were the same

model (2017 iPad Pro). However,

only two of them returned the same

fingerprint within Safari, despite

them all running the same version of

iOS (11.3). They were all also reset,

wiping all settings and content before

the fingerprint was collected.

If we look at Table 3, then we can see

what the primary differentiators are:

• Do Not Track setting

• Language Setting

• Time Zone

• user-agent (and therefore Model

Number / Hardware Revision)

AIU Dataset: We will pick a

uniquely identifiable device model

— in our case, the iPhone 7. We are

able to do this as we know from

Apple Data Sheets [34] that the

iPhone 7 has the Apple A10 Chip

(picked up as the “Apple A10 GPU”

as the WebGL Renderer), and has a

smaller resolution than the iPhone 7

Plus or the 2018 model of the iPad.

However, we know that although the

Data Sheet gives a resolution of
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Figure 18: Devices per anonymity set of size X (iPad/iPhone)

Id DNT Language tzOffset userAgent

A 1 en-GB -60 .../11.0 Mobile/15E148 Safari/604.1
B 0 en-GB 420 .../11.0 Mobile/15E148 Safari/604.1
C 0 en-US -60 .../11.0 Mobile/15E148 Safari/604.1
D 0 en-GB -60 .../11.0 Mobile/15D100 Safari/604.1

Table 3: Changed variables across DoC iPads

1334x750, the reported resolution by

the browser is actually 375x667. You

will note that this is exactly

one-quarter of the above resolution,

rotated by 90◦. This is so that web

pages display at an acceptable size on

high-DPI (dots-per-inch) screens that

typify smartphones.

We can then see in Figure 19,

showing that 26 of our 57 iPhone 7s

are unique, and that the largest

anonymity set is merely of size 7.

Key Takeaway: It is possible to

distinguish between individual

devices in a group of identical ones.

We should also take a look at what

these distinguishing variables are. In

Table 4, we can see that just under

half of the iPhone 7s are set to US

English, and a further 20% are set to

Brazilian Portuguese.

Key Takeaway: Language/locale

setting is a very good discriminator

on a per-device model basis.

We also have an interesting set of

time zones (which show a large
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Figure 19: iPhone 7 Anonymity Sets

Language Frequency

en-us 25
pt-br 11
fr-fr 4
en-au 2
zh-cn 2
vi-vn 2
en-gb 2

There are also 1 each of:
it-it, en-ca, tr-tr, nl-nl, ru, de-at, pl-pl, en-ie, pt-pt

Table 4: Language discriminators in iPhone 7

Time zone Frequency

120 5
360 4
300 4
-60 4
480 3

-120 3
-540 1
420 1

Table 5: Time zones in the en-US locale
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number of Brazilian users in DST

(UTC–02:00). We also note that

there are 3 devices shown in the ’0”

time zone, representing GMT/UTC,

and this corresponds to the 3 devices

using British (2) and Irish (1) English

as their language setting — no other

locales are mentioned in the language

list that are in the GMT/UTC time

zone. As the data was collected in

the Northern Hemisphere’s winter,

this is expected. Note also the large

number of Time zones within en-US;

this acts as a further discriminator

for that language, both splitting up

actual U.S. users into the four time

zones that make up the contiguous

U.S., but also those users using en-US

(as a default) elsewhere in the world.

The breakdown of the en-US locale

by time zone is given in Table 5.

Key Takeaway: Time zones are

another excellent discriminator

within a language, especially en-US,

and on their own.

AIU Dataset: Roughly 60% of

devices had no “Do Not Track”

setting enabled, with the rest mostly

requesting that they not be tracked,

and two explicitly allowing tracking.

It should be noted that according to

Quantable [35], only around 15% of

real-world web users actually use

DNT (many of them Internet

Explorer 10/11 users, which default

to DNT: On). The AmIUnique data,

on the other hand, shows a much

higher percentage with the setting

enabled, but this can likely be put

down to the fact that such

fingerprinting study tools are far

more likely to be visited by the sort

of people that already know that

Fingerprinting and tools like Do Not

Track exist.

Key Takeaway: DNT might be

useful in helping to re-identify users

who use it, but is probably not useful

in identifying a user/browser

outright.

3.2.4 RQ4: What Different

Browser Fingerprinting

Vectors Exist on Mobile?

Mobile Browsers generally have the

same capabilities as their desktop

equivalents: in Mac OSX Safari for

iOS; and on Android: either Google

Chrome or themselves, in the case of

browsers like Firefox which

implement the same rendering engine.

This means that they can easily
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collect a large number of data points

as we’ve discussed above, including:

• IP Address

• Operating System

• Browser Name and Version

• System Language

• System Time zone (relative to

UTC)

• HTTP Referer (previous page if

clicked by hyperlink)

• Installed plugins and versions

• Screen Resolution

• Local Data Storage configuration

• Installed Fonts

• Execution profiles via HTML5

Canvas and WebGL APIs

• Additional data from specific

plugins/extensions

Some other work then goes into

further details, especially about the

last two points: execution profiles,

and data from specific plugins or

extensions. In particular, Mowery et

al. [36] was able to use the SunSpider

benchmark and V8 benchmark [37,

38] to gain further information about

the performance profiles of particular

browser, allowing them to identify a

browser version even if the user-agent

was being faked by the browser.

Key Takeaway: It is still possible

to correctly identify browsers to the

OS and Browser Name/Version level,

even if the user-agent is false.

If we want to be more specific to

mobile, we can look at the various

HTML5 APIs. However, many of

these have been carefully designed in

order to avoid giving away too much

information, and mobile platforms

won’t pass data through unless that

browser is actually the active

application. In some cases, browsers

will need to seek specific

permission — from the user via the

operating system — in order to use

certain APIs, such as the Location

API. However, others such as the

accelerometer, do not require such

permission. Some studies have been

done in this area are showing promise

that this may become very real in the

future, not only as a fingerprinting

technique with concerns for user

privacy, but also as a method of

authentication or as a second factor
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for authentication [5, 39, 40].

In order to build up a picture of a

user using, for example, the

gyroscope, the collection utility

would need to run constantly in the

background (for example, Android

has a feature that on some phones

allows it to be unlocked by

fingerprinting a user’s walk’s effect on

the gyroscope).

However, using momentary requests,

like Location, might be more useful

for fingerprinting someone if they

tend to use a device in the same

place repeatedly (though such devices

tend to keep the same IP address).

Again, this can’t track a user’s

location over time without the user

actually visiting the web page(s) that

collect the data.

Key Takeaway: Some HTML5

sensor APIs can be used for relatively

effective fingerprinting, but are not as

straightforward to use as more

traditional fingerprinting methods.

Other APIs are not very useful, or at

least, not useful if fingerprinting is to

be done transparently (or secretly).

If we actually ask ourselves what

these different fingerprinting vectors

on mobile devices are, it is clear that

the answer is the access that is

available to physical sensors that

aren’t typically available on desktop

devices. The utility of these in

recognising users is emerging, and as

we’ve discussed in previous sections,

standard desktop-based

fingerprinting methods are still

sufficient to uniquely identify a high

proportion of devices. Further, these

methods are more useful for

identifying a user, rather than a

device, and are more useful in the

context of a native application than a

web browser. However, they

shouldn’t be discounted as more data

is available to web applications.

3.2.5 RQ5: Is Fingerprinting

Detection Easier to Evade

on Mobile Devices?

Browsers in general seem to have a

very limited set of options when it

comes to defeating fingerprinting.

The primary recourse, judging from

our own data collection, is that they

disable JavaScript, which is actually

quite reasonable from a privacy point

of view. However, many websites will

not function correctly, and in the

Web 2.0 world, where JavaScript is
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Figure 20: uBlock Origin’s controls
are not very granular

prevalent on websites to provide a

good user experience, this is simply

not acceptable to most users. Some

blockers, like uBlock Origin [24],

when disabled by users for this

purpose, turn themselves off entirely

for that website/domain, and

therefore provide no fingerprinting

protection at all. Others, like

NoScript [41] (Figure 27), provide a

granular set of permissions that can

be applied at the domain level

(though not at the individual script

level, though this can be acheived

with Adblocking lists used in

extensions like uBlock or

AdBlockPlus [10]

Manually Curated Dataset: In

general, browsers returned one of two

things; either the correct information,

or no information at all, as the

information is nearly all collated by

JavaScript. In the modern world, if

we want to make much sense out of

it, we’d probably need to as well,

though we could collect a subset of

the data (such as user-agent, other

browser headers, and the UUID

cookie) using PHP (or another

server-side language) only. Of course,

whilst this could be considered

evasion of fingerprinting, it’s not

hugely effective — very few web

users actually disable JavaScript

nowadays, and so it stands out like a

sore thumb in the results. Of course,

many online trackers don’t submit

data using POST requests like we

did, so they might not show up in

real-life datasets.

We here discuss “normal” browsers

by operating system, and then some

browsers specifically designed for use

with the Tor network.

iOS

In our iOS investigation, we studied

both Firefox and Safari running on a
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DoC iPad, with and without private

browsing mode, and in the case of

Safari, with various content blockers,

as well as the Brave web browser.

Firefox was notable as the iOS

version does not support content

blockers, and even with its tracking

protection feature turned on in

private browsing, did not produce a

different fingerprint.

Safari on the other hand, did manage

to change its fingerprint in private

browsing mode, but this was very

conspicuous — the only change is

that the “Do Not Track” header was

explicitly enabled. This is a peculiar

default behaviour as it immediately

singles out anyone using private

browsing mode on Safari (which does

not seem to have DNT turned on by

default).

With content blockers in their default

state, the fingerprint data sent from

Safari was identical, though it should

be noted that when AdGuard (one

such blocker) had its tracking

protection turned up, it did block our

fingerprint script from running and

so returned empty results. Something

interesting to note is that all of the

iOS browsers that did return results

for fingerprinting all had identical

canvas values. This reflects the fact

that Apple requires all web browsers

on the platform to use the

platform-provided rendering engine

(i.e., that of Safari, that being Apple

WebKit).

Key Takeaway: Blocking of the

JavaScript that performs

fingerprinting is probably sufficient,

as a lot of data is transferred via

AJAX rather than HTTP POST

requests. This should not translate

into complacency however, as there

are ways other than AJAX to get

that data back.

Brave for iOS successfully defeats the

fingerprinting script by blocking its

execution, but not by default; only

when the appropriate “shield” is

enabled. However Brave for iOS,

which is based on Firefox, has a

peculiar addition to the user-agent

string, which seems to identify the

particular tab that a particular page

is being opened on. Other than that,

the instances of brave were not

distinguishable from each other.

However, they were distinguishable

from Safari on iOS, which is

potentially problematic if our goal is

to be in the largest anonymity set.

Key Takeaway: Brave successfully



3.2. RESEARCH QUESTIONS Page 37 of 78

Figure 21: Brave features an array of
different privacy options

defeats fingerprinting when it

promises to do so, but again does this

by preventing the script from

execution, rather than by providing

false information.

Android

On Android, we’ve studied four

browsers, two of these being stalwarts

Google Chrome and Firefox, and the

other two being privacy-focused

Firefox Focus, and Brave.

Something notable is the way the

collected canvas data clearly shows

the rendering engines that each

browser is based on: Firefox using its

own Gecko engine; and Chrome,

Brave, and peculiarly, Firefox Focus,

using Blink (based on WebKit).

Indeed, Brave does a good job of

impersonating Chrome, and at the

time of our test only gets a different

fingerprint hash because it did not

quite have the same version number

as Chrome in the user-agent

— though an earlier test showed

both with the same version number.

This is a symptom of software

development cycles with rapid-release

though, rather than a mistake on the

part of the developers, and is not

likely to make a browser more

fingerprintable. When we used

Brave’s “fingerprinting protection”

mode, it no longer allowed our

fingerprinting script to run, thus

preventing fingerprinting. It’s also

been the only browser that makes

direct reference to fingerprinting by

name.

Firefox Focus, on the other hand,

does not succeed in blocking

fingerprinting at all, and in fact its

fingerprint is identical in both its

“ordinary” mode, and it’s “disable

tracking” mode, which is a little

disappointing, and does not appear

to attempt to make the user blend in
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Figure 22: Firefox Focus automatic-
ally erases browsing history

in any particular way. Even more

unhelpfully, as it’s not a very

common browser, its user-agent

clearly identifies that Firefox Focus is

being used, which will show it up

very clearly to anyone trying to

fingerprint a user across the web.

Firefox proper for Android, unlike its

iOS counterpart, is able to make full

use of its own rendering engine, and

has support for add-ons. We’ve

tested it in and out of private

browsing mode, and with popular

extensions uBlock origin, and

AdBlockPlus. In almost all of our

tests, Firefox returns the same results

each time, with the singular

exception of uBlock Origin being

enabled, which successfully blocks the

use of the fingerprinting script. It is

unfortunate that Firefox’s private

browsing mode, which touts

“Tracking Protection” amongst its

various features, does not successfully

block the fingerprinting script for

what it is.

Google Chrome for Android does not

presently support extensions or

add-ons, and so the only available

modes are for ordinary browsing, and

private browsing, known as incognito

mode. Both modes produce a full

fingerprint, and it is identical

between them. However, unlike

Firefox, Chrome does not advertise

“Tracking Protection” in its private

browsing mode, and so this is not an

unexpected result.

Key Takeaway: Fingerprinting

protection for major browsers on

Android is lacking, though Brave will

successfully recognise and block

fingerprinting — or at least, the

fingerprinting we were doing

— from taking place.

Desktop

On the desktop, we tested both

Chrome and Firefox running on
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Windows 7, with some different

extensions.

Firefox on Windows 7 windows 7

behaved similarly to Firefox for

Android, though generated a different

canvas image value. We tested it

with uBlock Origin and with

NoScript. We achieved a full

fingerprint from Firefox in normal

and private browsing mode, and with

NoScript enabled but not blocking

JavaScript from the domain of the

fingerprint tool — by default it

allowed JavaScript from the CDNs

that the fingerprinting libraries were

running from. With uBlock Origin,

however, the fingerprinting script was

blocked, and thus no information was

collected.

Chrome, with combinations of

AdBlockPlus and uBlock Origin,

always returned the same fingerprint.

This is peculiar and worth noting,

because uBlock Origin has otherwise

blocked the tool from running, but it

did not do so in Chrome. This seems

like a peculiar behaviour, as one

would expect it to exhibit the same

behaviour across browsers. This may

be due to a slightly different default

filter list setting, or perhaps down to

a quirk in the way the Chrome

desktop version of the extension is

written. The only extension that

successfully blocked fingerprinting

was noJS, but as that is merely a

simple switch that prevents any

JavaScript from running, this would

not appear to be

fingerprinting-specific.

Brave, this time for Windows rather

than for Android, performed well.

Once again it is very similar to

Chrome, but there are some

differences (which would be out of

place for a “true” Chrome instance).

The major one is that the Chrome

PDF plugin does not come with

Brave, or rather Brave does not

identify that it does. By default, this

plugin is enabled in Chrome and

would be reported by the

fingerprinting tool. Whilst it’s

arguably more private not to reveal

any plugins, we would argue that it

makes more sense for Brave to

imitate Chrome as much as possible,

including by possibly falsifying the

list of installed plugins to include the

Chrome PDF viewer.

On the desktop, Brave has the option

to allow “all”, “none”, or “all except

third-party” fingerprinting. In our

test, the fingerprinting library we are
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Figure 23: Brave for Desktop has a slightly different set of options compared
to Android

using is technically from a

third-party domain, being on the

CloudFlare CDN. However, we

suspect that well-known CDNs are on

some form of third-party whitelist, as

scripts on those sites are used in a

vast number of websites. Curiously,

changing the shield setting between

allowing all and allowing all except

third party fingerprinting sometimes

caused the WebGL value to change.

This is a very peculiar result and

Brave may wish to investigate how

this occurred — though of course it

could also be down to other factors,

such as the VM it was running in,

the graphics drivers, or, everybody’s

favourite, cosmic rays.

Key Takeaway: Fingerprinting on

mainstream desktop browsers is

almost always possible, though some

extensions on certain browsers or in

certain configurations will block

fingerprinting JavaScript from

execution. Brave also blocks some

fingerprinting, but is also not perfect

and when it does not block

fingerprinting, it gives way to

suggestions that it might not be an

instance of Chrome.

In the next section we’ll look at the

Tor browser and how it compares to

its desktop rivals.
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Tor Browsers

The Tor project itself provides an

official browser only to Desktop

devices, though Android is also

provided with the Orbot Tor client

and Orfox browser by the Guardian

Project, which is endorsed by the

official tor project. On iOS the field

is less clear, with browsers being

provided by unknown (and therefore

not necessarily trustworthy vendors,

including some that charge a

subscription fee to connect to .onion

hidden services, or even to be used at

all. The closest thing to Orfox on

iOS would appear to be the “Onion

Browser”, which claims to have

support from the Guardian project

(who create Orbot and Orfox for

Android).

Tor on the Desktop

On desktop devices, we ran the Tor

browser on two computers, one

running Windows 7 and the other

running Ubuntu. We also set up our

fingerprinting tool as a hidden service

so that it could be accessed (behind a

firewall as it is) from the Tor

network. First, without maximising

the window, we tested the browser on

its three default security levels, which

do the following:

Standard All Browser and website

features are enabled (except

plugins, which aren’t available in

the Tor browser)

Safer Disables some features that

could be dangerous

• Disables JavaScript on

non-HTTPS websites (by

default).

• Some web fonts and

mathematical symbols are

disabled.

• HTML5 media (audio and

video) are click-to-play.

Safest Only allows features required

for static sites by default.

• Disables JavaScript on all

sites (by default).

• Some fonts, icons,

mathematical symbols and

images are disabled.

• HTML5 media are

click-to-play.

In the first security level, we were

able to fingerprint as normal, though
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Figure 24: Tor Browser blocks canvas data collection by default

we were prompted about the

collection of canvas data (Figure 24).

In the second and third level, we had

to explicitly allow scripts for any form

of fingerprinting to take place. In all

three security levels, we had the same

fingerprint result; until we maximised

the browser, when a different result

was given (due to the resolution

change). All of the Tor Browsers that

blocked the collection of canvas data

returned the same value for the

canvas data, which means that it

successfully works across platforms.

However, there were some

discrepancies. Although the Tor

Browser does its best, bearing in

mind that it is cross-platform (based

on Firefox ESR), with identical

results for platform (Win32),

user-agent (Firefox 52 on Windows

7), and for other things like colour

depth, the fonts list differed between

the Windows and Linux versions,

with the Windows version producing

a list of fonts clearly identifying it as

Windows with fonts such as MS

Gothic and Segoe UI, whereas the

Linux version returned no fonts.

Key Takeaway: Tor Browser on

desktop does a good job of

obfuscating and hiding

fingerprintable characteristics.

However, it’s not perfect and some

platforms will still return slightly

different results.

Tor on Android

Running Orfox on Android, which

connects through Orbot, the default

position is to block the execution of

the fingerprinting script, and as such

no results are returned. As we’ve

discussed, most tracking is done

through JavaScript-only, and

therefore this likely isn’t a concern.
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Figure 25: Tor Browser warns users who maximise it against tracking

However, if the user manually

intervenes and enables JavaScript,

then the full fingerprint script can

run. Pleasingly, it returns the same

HTML5 canvas data as the Tor

browser on Windows and Linux

(when blocking canvas data). It does

however return a resolution

consistent with the viewport — this

matches the behaviour of the Tor

browser in general, but a limitation

of mobile devices is that all phones of

the same model and DPI setting will

return the same result for the

resolution. and identifies itself as an

Android device running an ARMv8

processor. This differs from the Tor

Browser which always self-identifies

as Windows 7 and does not disclose

the type of processor (though it can

probably be safely assumed it’s Intel

x86 64 — though some new

Windows 10 computers actually do

have an ARM processor).

Key Takeaway: Tor on Android in

the form of Orbot and Orfox provides

a reasonable level of protection, but

would only be fully anonymous

amongst other Android Orfox users

on a device with the same screen

resolution and DPI setting.

Tor on iOS

iOS was somewhat disappointing in

some ways, though potentially good

in others. We tried a number of

different Tor browsing apps,

specifically: Tob, Torr, Evil Onion,

Onion Browser, and “Tor Browser”1.

Torr and Evil Onion both require

various levels of subscription (the

former to connect at all, and the

latter to connect to .onion

addresses), and so like earlier

sections, we will discount them as we

only want to look at free-of-charge

browsers. Of the remaining three,

“Tor Browser” does not successfully

connect to the Tor network — we

can discount network problems here

1Not to be confused with the desktop Tor
browser: the app store and iOS interface
names are different — in the App Store
it is referred to as “TOR DeepWeb Browser
by Art Fusion”
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as both Tob and Onion Browser

succeed.

Tob does not appear to run the

fingerprinting tool at all, no matter

what the settings are regarding the

blocking and unblocking of ads,

trackers, whitelists, etc., so it always

returns a blank result. As we

discussed earlier, this is probably not

a bad thing. Tob also crashed quite

regularly, though, so whether or not

this is by design is questionable.

Onion Browser appears to be the

pinnacle of Tor browsers available on

iOS, providing a fairly decent user

experience and various customisable

options (including the concept of

security levels that we saw on the

desktop). Its default and permissive

modes both permitted the

fingerprinting script to run, and it

returned the same results for both. It

was identified, like all the other iOS

browsers we’ve looked at, as Mobile

Safari, and had the same canvas data

corresponding to the particular iPad

hardware we were using. In fact, the

only difference in the collected data

between Onion Browser and Safari

itself is that the former appears to

append some numbers to the

user-agent — though it is unclear

what these numbers refer to — they

don’t match the version or build

numbers found in the “About” page

of the app, or in the App Store.

When run in strict mode, Onion

Browser blocks all JavaScript from

execution, and therefore no data is

collected from the fingerprinter.

Key Takeaway: Although Onion

Browser seems to be fairly good at

anonymisation, it still has a slightly

distinguishing user-agent, which

means it could be identified in a

crowd of ordinary Safari users. The

general offering of Tor on iOS still

seems to be poor and in need of

further development.

Subverting extensions

Mowery et al. [36] were also able to

subvert extensions in the use of

fingerprinting, in this case the

NoScipt extension [41] (Figure 27),

which at the time of writing has

almost one million users. Of interest

is that Mowery et al. were able to

subvert the whitelisting mechanism of

NoScript, by making requests to the

Alexa Top 1000 domains. They were

able to identify 689 sites with

suitable JavaScript that when fetched
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Mozilla/5.0 (iPad; CPU OS 11 2 6 like Mac OS X)

AppleWebKit/604.5.6 (KHTML, like Gecko)

Version/11.0 Mobile/15D100 Safari/604.1

(a) Mobile Safari

Mozilla/5.0 (iPad; CPU OS 11 2 6 like Mac OS X)

AppleWebKit/604.5.6 (KHTML, like Gecko)

Version/11.0 Mobile/15D100 Safari/604.5.6/7651480384

(b) Onion Browser

Figure 26: Comparison of Mobile Safari and Onion Browser user-agents

Figure 27: The NoScript Browser Extension running in Firefox

wouldn’t cause problems (like web

browser crashes, or alert() calls). It

took around 22 seconds to test all

scripts, but it could do 95% of them

within 1500ms (which would be the

case if NoScript were disabled). It

should also be noted that NoScript

actually prevents HTTP requests to

GET the blocked scripts. With

NoScript turned on and blocking, the

vast majority of domains could be

checked within 100ms.

Key Takeaway: It is possible to use

leverage popular extensions to

increase fingerprinting efficacy.

Because NoScript is favoured by

privacy advocates, it is possible that

in places where surveillance of

“subversives” is common, that this

method could be used to expose

them, as NoScript whitelists tend to

be fairly unique across all sites (the

author speaking as a user of

NoScript). It is possible that such a

technique is used by law enforcement

agencies both here and abroad
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— though this is mere speculation.

Key Takeaway: Ironically, privacy

extensions like NoScript can actually

increase the effectiveness of

fingerprinting.

Answering the Question

We started this section by asking: on

which platform is it easier to evade

fingerprinting. In my view, this is

still the desktop’s domain — though

we look forward to up-and-coming

browsers like Brave turning this

around. Far and away the best (and

most anonymising experience) seems

to be the Tor browser, running on

Windows, in terms of being in as

large an anonymity set as possible.

However, we would also say that

Brave, should it make some tweaks in

the way it reports plugins, may well

leap past the Tor Browser in the

same terms. However, some of these,

such as enforcing window sizes, are

not especially user-friendly, and so

may not be especially popular.

Mobile in general seems to be pretty

poor at preventing or defeating

fingerprinting, though as we mention



Chapter 4

Related Work

By far, the most closely related study

to ours in the literature is Laperdrix

et al. [26]. It is based on the dataset

of AmIUnique.org at the time of

publication (and the full dataset

rather than the subset we are

working with). They also discuss the

future of fingerprinting, and whether

or not it will become more pervasive

and effective in the future, or less so,

with the rise of new technologies like

HTML5, and the decline of plugins

such as Adobe Flash.

4.1 Studies of Finger-

printing

Fingerprintability of devices:

The team behind AmIUnique.org [3]

gathered 118,934 fingerprints

composed of 17 attributes using

recent web technologies for their main

study based on the entire dataset.

HTML5 provide access to many parts

of a system, notably with the use of

the Canvas API which relies on

multiple components, hardware and

software, working together. They also

show that browser fingerprinting is as

effective on mobile devices as it is on

traditional desktop-form devices.

They also evaluate how browser

fingerprinting could stop being a

threat to user privacy if some

technological evolutions continue

(such as the long decline of browser

plugins like Adobe Flash), or the

incorporation of new technologies

into web browsers by their various

creators. [26]

Execution characteristics of

JavaScript engines and

fingerprinting of extensions: In

2011, Mowery et al. looked at two

possible methods of fingerprinting; by
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studying of a browser’s JavaScript

engine’s execution characteristics,

which are hard to imitate or fake;

and attempting to work out what a

user’s NoScript whitelist is

— though this relies on the user

having that particular extension

installed. Seven years on, in 2018, we

could actually do something similar

using AdBlock lists and the Ghostery

configuration to fingerprint

request-blocking extensions as well as

the browser they are running on. [36]

HTML5 APIs: The ability of

HTML5 to track users is brought up

by Princeton’s Arvind Narayanan,

and referenced in The Register,

whereby users could be fingerprinted

using novel APIs now available to

web developers that were previously

only available in the realm of native

applications. These include audio

playback, where different browsers

played audio with slightly different

characteristics, and when combined

with other new indicators, such as

the gyroscope of a mobile phone, we

may see in the future detailed

fingerprints being made possible

using only HTML5. [4, 42]

iOS app fingerprinting: The

authors of Kurtz et al. noted in 2016

that Apple removed access to various

device hardware identifiers that were

frequently misused by iOS apps to

track users. They studied just how

much they were able to glean from

the operating system despite this.

Using Apples iOS as an example,

they were able to gather 29 different

individual data points per device.

These features can be queried from

arbitrary third-party apps via the

official SDK. Their data, comprising

13,000 fingerprints from

approximately 8,000 different

real-world devices show that all these

native app-based fingerprints are

entirely unique, and were able to use

a supervised machine learning

technique to correctly re-identify a

device even when its fingerprint had

changed in 97% of cases. Notably,

this work demonstrated just how

much information is available to

native iOS apps, including the user’s

music library and no. of plays for

each song. Figure 4, which is taken

from this paper, shows the

fingerprintable features, and how

much they change. [6]

Fingerprinting of devices by

malware: Bulazel et al. make the

point that much malware uses
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fingerprinting techniques to

determine if it is being analysed or

not — for example, can it detect a

virtual machine hypervisor, or is this

somehow recognisably part of a

malware analysis tool like Cuckoo, or

does it exhibit strange behaviour that

would only happen in a laboratory?

They discuss techniques used by

malware to evade automated analysis

through the use of fingerprinting

(including environmental artefacts

— such as system settings or files

— as well as Timing Attacks, such

as checking how long certain

operations take to run, which can be

detected in JavaScript in a web

browser, and also other peculiarities

associated with Virtual Machines,

such as strange CPU instruction

execution results or emulated device

sensors in the case of mobile devices.

They also discuss how to detect and

evade this evasion, thus allowing the

malware to be properly analysed. [43]

4.2 Preventing Finger-

printing

Fingerprintability of browsers:

In Vastel et al., they presented

Fp-Tester, which is an approach to

automatically test the

fingerprintability of web browsers,

and they implement a toolkit for

doing so. They also look into the

effectiveness of countermeasures that

may be taken by a browser natively

or by an extension or add-on, and

into whether the side-effects of that

attempt to block fingerprinting or

tracking actually make the browser

more identifiable. They also look at

how such countermeasures impact the

amount of time it takes for a

fingerprinter to be able to gather

enough data for a fingerprint. [44]

Private browsing privacy: Wu et

al. compared the ‘Private Browsing’

modes available on popular desktop

and mobile browsers, finding in their

results many disagreements between

browser vendors as to what would be

blocked or changed, and

inconsistency in the same vendor’s

approach to desktop and mobile

browsers. Some of these are a

trade-off between privacy and

security, but they did find that even

if private browsing mode leaks no

information about the user, an

attacker (fingerprinter) could still

fingerprint the browser and trace the

user that way. It had been suggested
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that browsers could defeat

fingerprinting by reporting random

data for such attributes as installed

fonts and plugins, but in this paper,

they authors showed that such an

approach is insecure, via an attack

based on statistical methods

— which they found to be both easy

and effective as an attack. [45]

Quantifying tracking protection

tools: Merzdovnik et al. quantifies

the effectiveness of tracking

protection tools at scale. They

analyse the architecture of various

solutions and compare them. and

study on effectiveness of popular

tracker-blocking tools. They are able

to quantify through their analysis the

protection that tools give against

trackers present on more

than 100,000 popular websites

and 10,000 popular Android

applications. They also provide some

insight into the ongoing “Ad Wars.”

Among other things, they discover

that rule-based browser extensions

give a better performance than ones

based in machine learning (which is

interesting for any company or

person who uses primarily

human-curated rules as a primary

method of classifying things),

trackers with smaller footprints (such

as uBlock Origin [24]) are more

successful at avoiding being blocked,

and there is great concern about the

role that CDNs are playing and will

play in the future with regards to

tracker-blocking tools. [46]

4.3 Tracking users Online

Desktop tracking: In Sculley et al.

of Google, large scale data mining

effort is presented that detects and

blocks such adversarial

advertisements for the benefit and

safety of Google’s users. Due to the

cost of both false negatives (danger

to users) and false positives (loss of

revenue to Google), the system

combines both automated and

semi-automated methods in order to

learn from the highly skewed data

that their systems collect. To do this,

they bring in humans, with domain

expertise, and independently assess

the system’s effectiveness.[47]

Person-centric tracking: In

Zimmeck et al., the concept of

person–centric, as opposed to

application or device –centric

tracking is introduced.
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Person–centric tracking attempts to

instead attempts to track a person

across all their devices and

applications. They show that they

are able to match desktop to mobile

devices with an F1 score of 0.91, and

highlight the increasing accuracy this

is likely to give way to as machine

learning comes to be more prevalent

amongst technology and advertising

companies. [48]

Privacy in Mobile: Apps vs

Browsers: Papadopoulos et al. ask

whether or not using a mobile native

app as opposed to a mobile browser

is the best option for an individual’s

privacy. To do so they study a

number of apps to search for privacy

leaks, using a man-in-the-middle

method to inspect traffic from the

app. They then implement a

mechanism called antiTrackDroid

that works to try and prevent

tracking, enabling users to access

online services via a mobile app

without risking their privacy. The

system reduces the leaking identifiers

of apps by nearly 30% whilst

imposing a virtually negligible impact

on latency. [49]

Use of user profiles in

advertisement selection: Barford

et al. study the correlation between

certain advertisements and user

profiles, with over 175,000 distinct

adverts collected by their crawler.

Despite the amount of tracking and

profiling that advertising companies

do online, they found that the variety

of adverts shown to a user across all

websites was much greater than those

shown to all users of a particular

website. However, they did find that

in general the user profile was the

most important factor in determining

a particular advert, rather than the

site itself. They also make

observations about how online

advertising has advanced from its

infancy in the 1990s to today. [50]

4.4 Online advertising

and ad-blocking

Stealthy blocking of adverts:

Storey et al. implemented some new

methods for adblocking, including

methods to try and disguise the

presence of adblocking (or lack of

presence of adverts) from publishers.

It does this by, among other things,

borrowing ideas from rootkits and

replacing some calls to the DOM

with functions of their own in order
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to disguise the fact of adblocking

from publishers. They also evaluate

the legalities of adblocking (both

blocker providers and users), and

discuss where the arms race between

adblockers and publishers is heading.

They challenge the assumption that

many (including me) have made,

which is that the arms race will

escalate indefinitely, but will instead

settle down in the near future. [28]

Effectiveness of adblock filter

lists: Iqbal et al. take a retrospective

look, using the Internet Archive’s

Wayback Machine and historical

versions of adblock filter lists, at the

effectiveness of those lists against

websites at the time of that version of

the list, over the five years to 2017.

They find that the effectiveness of

those lists has increased significantly

since 2014. They also detect

anti-adblock scripts running on about

9% of the Alexa Top 5K websites.

[13]

Effectiveness of Adblockers: In a

world where many internet sites have

relied on advertising for their

revenue, they run the risk of running

too many advertisements. This

makes users far more likely to enable

an ad-blocker, which then means that

the publisher loses out on revenue.

Garimella et al. study the

performance of a number of popular

adblockers on news websites, and the

effect of adblockers on both user

privacy and browser performance.

[12]

Acceptable Ads Program: The

Acceptable Ads program was created

in order to encourage advertising that

isn’t annoying to users, and does this

by whitelisting advertisers and

websites that have appropriately

non-intrusive advertising. Walls et al.

have studied the growth of the

program, and show that currently the

acceptable ads whitelist of 2015

(when the study was carried out) is

triggered (that is, overrides the

blacklist to allow some adverts) on

59% of the Alexa Top 5,000 websites.

They also suggest some ways to make

the process more transparent, and

criticise it for at times being opaque.

[11]

Monetising sites in spite of

Adblocking: Vratonjic et al. study

the different ways that sites monetise

themselves (e.g. ad-supported,

freemium, premium sections, paywall)

and study the best way to monetise a

site to maximise return, in the
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knowledge that some users will use

an adblocker. It would be preferred

for all users not to use adblocking, as

then the free, ad-supported model for

content will work very well, but

knowing that they don’t, the study

authors show that the “best” way

(that is, maximise the utility function

of revenue) to monetise a site is to do

so differently depending on the user,

and that one single monetisation

technique for all users on a site may

not be the best method of generating

revenue. They also show that it’s

hugely important for companies to

know both about users who may

block ads (because they don’t like

them), and also about how much

consumers value the content that is

being monetised (i.e. is it worth

paying for). [9]

Blocking the ad-blockers: The

arms race between adblockers and

publishers trying to evade blocking

had only intensified. Nithyanande et

al. study the way that third-parties

are shared across multiple websites

(enabling tracking), and they study

the presence of attempts to evade

ad-blocking across websites, finding

that the scripts they were studying

could be found on nearly 7% of the

Alexa Top 5,000 websites, though

potentially many more might have

been using some form of

anti-adblocking. They also find that

in half of cases, at least one of the

three adblocking browser extensions

they studied — AdBlockPlus,

Privacy Badger, and Ghostery

— was able to itself avoid the

anti-adblocking techniques being

used by websites. [17]

Identifying anti-adblockers: In

this study, by Mughees et al. in 2017,

the authors use a machine

learning-based approach to

identifying anti-adblocker scripts

running in the wild, and identify 686

websites in the Alexa Top 100,000

websites that change their page

content if ad-blocking is detected.

They look at the spectrum of

responses, which range from a small

message asking users to disable

adblocking on their site, to denying

any access to the site at all until

adblocking is disabled. Unlike Storey

et al. [28] they suggest that this

“cat-and-mouse” game of escalation

between the publishers and the

adblockers will continue. [16]

Adblocking in the Wild: In a

study of HTTP header information
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taken from a “Major European ISP”,

Pujol et al. analyse the usage of

adblocking tools in the wild, and

leverage AdBlockPlus to identify

when adblocking is or is not taking

place, combined with their own

system for fetching web pages (to

identify when ads ought to be being

loaded). They find that a large

minority (22%) of active web users in

this particular ISP’s residential

broadband network use an adblocker

when browsing, but in the context of

AdBlockPlus, most do not disable

the Acceptable Ads whitelist, which

is a very useful thing to know. [8]

4.5 Mobile Device Finger-

printing

Fingerprinting using device

sensors: Bojinov et al. did an

extensive study into over 10,000

mobile devices, running both iOS and

Android, using physical sensors and

their imperfections to re-identify

devices based on fingerprints from

those physical sensors. They found

that using a combination of these

sensors in concert allowed them to

re-identify devices with a high degree

of accuracy, even after a hard reset of

the device, in which all data is

deleted. [39]

Fingerprinting using device

sensors: Das et al. carried out a

similar study to Bojinov et al., with

the idea of using hardware sensors

such as the accelerometers and

gyroscopes in modern smartphones to

generate fingerprints, alongside

inaudible audio stimulation. They

were able to generate a fingerprint in

around 30-40 seconds, which could

itself be used to identify a user within

5-8 seconds. [40]

Applying desktop fingerprinting

techniques to mobile devices:

Hupperich et al. study the

applicability of “traditional”, or

desktop-based fingerprint techniques

to mobile devices, and furthermore

attempt to show that it is possible to

build a fingerprinting system for

extremely similar devices such as

mobile devices, rather than the much

more customisable and varied world

of desktop machines. They also

investigate how users may evade

fingerprinting techniques. [51]

Authentication using device

sensors: Wang et al. investigate the

possibility of using the sensors on
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mobile devices for user

authentication, in such a way that is

simple for the user to use, but hard

for an attacker to bypass. They use

the geometry and movement of the

user’s hand, using the touch input

and the gyroscope of the mobile

device. In a study of 70 subjects,

they were able to achieve a false

negative/positive rate of only 2.5%.

[5]
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Chapter 5

Conclusions

In this project, we’ve used a mix of

analysis of historical data and

proactive collection and curation of

specific device data. The historical

data we’ve taken from the

AmIUnique project, informed by the

related work, and with a small

implementation we’ve been able to

collect some relevant data of our own,

using a small number of devices that

we’ve had access to. In general, we’ve

found that a surprising number of

identifying features could potentially

be used to re-identify users if

collected by a malicious actor (either

through a website directly, or

through the use of Man in the Middle

attacks to insert scripts).

We’ve also looked a a wealth of other

studies to find out what the

state-of-the-art is in the

fingerprinting of both desktop and

mobile devices via both web browsers

and native applications [5, 6, 26, 36,

39, 40, 44, 45, 48, 49, 51].

We’ve found some interesting things

out too. We first asked which of

mobile and desktop devices are more

fingerprintable, and came to the

conclusion that really, they’re

approximately equally

fingerprintable, and quite

fingerprintable at that. We saw in

Figure 11 how both had

approximately 90% of collected

fingerprints being in their own

anonymity set, and how they each

had a similar proportion of other

sizes of sets.

Taking the same measures, we’ve also

found no substantial difference

between iOS and Android in the

analysis of the AIU Dataset. They

appear to have very similar

proportions of anonymity sets in the

data (which reflects more recent
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models of device).

On otherwise identical devices (using

the iPhone 7 as an example), we

discovered that we could in fact

distinguish between specific devices;

the primary differentiator between

devices was language, and then

within that, time zone. However, it’s

unclear how one could distinguish

between, for example, all British

iPhone 7 users (who will share the

same time zone and will likely have

their locale set to en-GB or en-US).

However, it’s still important to note

that of the 57 iPhone 7s in the AIU

dataset, nearly half were uniquely

identifiable, and the largest

anonymity set was only 7

identically-identified phones.

We’ve also found that protection

from fingerprinting is limited, with

only some extensions blocking

fingerprinting in mainstream

browsers by default (uBlock Origin),

and the Brave browser, which will

explicitly attempt to prevent

fingerprinting tools from running.

However, the only browser that

actually attempts to evade

fingerprinting by feeding false

information is the Tor Browser (on

desktop), which rather than result in

the discrepancy of having no data or

incomplete data, will have a complete

set of data. However the Tor browser

is distinctive all by itself, it just isn’t

amongst other Tor Browser users.

We were somewhat surprised at some

of these results, especially the way

that configuration options between

apparently identical hardware acted

as a significant discriminator. We’ve

also been a little surprised at the

slightly more bizarre ways that

browsers have identified themselves,

such as the Amigo browser

mentioned in Section 3.2.2.

It was also astonishing just how

many Android browsers are identical

to each other, being just a webview

with a slightly different interface

(though often very similar). It is

worth noting however, that this is

not the case for popular browsers,

and that many of these webview-only

browsers would be notable for not

being stock Chrome. Having used

several of them, we can attest to the

fact that many of them are

low-quality, with poor interfaces and

frequent crashes (with some not even

able to start up on our hardware).

Something especially unexpected is

the fact that enabling the Do Not
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Track setting will actually make a

particular configuration more unique

and fingerprintable, thus somewhat

defeating the point of the DNT

standard.

Final Thoughts: This project has

given some interesting insight into

the fingerprintability of various types

of devices and platforms against each

other.
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Chapter 6

Future Work

We would like to know how else we

can further extend this work and

field, as this is an exciting and fairly

new field with many recent

developments. Here we present some

thoughts about different directions

we can move in:

Native app fingerprinting: We

can further extend this project with

work similar to that acheived by

Kurtz et al. [6] in 2016, by

fingerprinting with direct access to

the mobile device platform APIs. It

would be fascinating to run a similar

project a few years down the line in

order to find out what fingerprinting

techniques and options are still

available to us.

New HTML5 APIs: As newer

HTML5 APIs are proposed, and as

they come into support in

mainstream browsers, more and more

data, much of which could potentially

be used for fingerprinting and

identification purposes, will be

available to web browsers on all types

of devices, but especially mobile

devices. We particularly would be

interested to know if information

about hardware components, such as

batteries, networking components,

and security identifiers, could be used

in the future to attempt to

fingerprint devices.

Execution profiles: Following on

from this, and Mowery et al. [36], it

would be helpful and useful for the

fingerprinting community at large, in

my opinion, to take and keep up to

date execution profiles such as those

recorded by Mowery et al., but for

many different browsers running on

different mobile devices, operating

systems, and versions of those

browsers and operating systems.
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Operating Systems as a Service:

It has been indicated by both

Microsoft and Google that their

respective flagship desktop operating

systems (Windows 10 and Chrome

OS) are to follow the Operating

Systems as a Service model, where

the system is continually updated

and upgraded with new features,

with little to no choice in the matter

for consumers — much like web

applications have been until now.

Particularly as Windows 10 subsumes

its primary predecessor, Windows 7,

it shall be interesting to watch how

this affects the fingerprintability of

machines.

Fingerprinting Tor: The Tor

network and its browsers and various

apps make a concerted effort to hide

the identity of the users, and

additionally, to prevent

fingerprinting, such as by blocking

certain uses of HTML5 canvas. Some

future work in this area may wish to

more closely examine the

fingerprintability and security

properties of the Tor network and its

various software.

Data analysis of industry data:

We alluded to the limited size of the

datasets that have been collected for

research purposes back in Section 1.1,

at least compared to the datasets

that large advertising companies can

gather. It would be fascinating to see

how effective fingerprinting would be

on such an enormous scale, and what

novel techniques would be effective

against such a wide cross-section of

internet users. Such datasets could

be from products such as Google

Analytics, Google AdWords,

Facebook, and Microsoft Bing Ads.

However, such work would require

co-operation from one of these

companies, and the results may not

be made available for public

consumption.



Chapter 7

Evaluation

In Section 1.2, we laid out three

objectives for this project and report.

In this evaluation chapter, we’ll try

to see how well we did on each of

these points.

The objectives were as follows:

1. We hope to attempt to identify

novel ways of fingerprinting web

browsers on mobile devices, with

a focus on iOS devices (which are

very similar within each model).

We hope that this provides a

base for further research in this

area, and that it will perhaps

give users of mobile devices a

greater degree of privacy in their

online interactions.

2. We also hope to investigate the

current state of web browser

fingerprinting technologies, and

how they apply to mobile

devices, especially iOS.

3. We hope to build on previous

research in fingerprinting iOS

devices such as [6], but with a

web-based approach rather than

the described native mobile app.

One of the biggest criticisms of this

project from the author is that it cast

the net a little too widely in the end.

Although we had originally intended

to look at just iOS devices, we

actually found ourselves looking at

larger selection of devices, operating

systems, and web browsers, including

Android, Windows Desktop, Linux

Desktop, and various means of

connection to the Tor network.

7.1 Fingerprinting on mo-

bile devices

We’re pleased that in mobile devices

in general, analysis of existing data
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showed that mobile devices are as

fingerprintable as desktop devices

are, using the same techniques

— looking at Figure 11 we can see

this clearly. We’ve also looked at

some of the more novel ways of

fingerprinting mobile devices using

sensors, and the ways that various

academic studies have found of doing

some form of fingerprinting, though

these methods are not necessarily

useful outside of a lab environment.

We think this is now a base for

further research, and it’s good that

we’ve been able to look at some more

recent devices not yet shown in a

study of the AIU dataset. We’ve also

been able to do some analysis of our

own and have found some specific

identifying features between

apparently identical models.

7.2 Current state of

fingerprinting

On this criterion, we’ve done quite

well; we’ve looked at a wide range of

studies on fingerprinting [5, 6, 26, 39,

44, 51], on tracking [40, 45, 48, 49],

and some on web advertising in

general [8, 9, 11, 12, 13, 16, 17, 28,

46, 47, 50]. Much of this is referenced

in Chapter 4, and Section 3.2.4,

which together serve as a good

summing up of the field.

7.3 iOS Device finger-

printing

As suggested above, this project has

not managed to do particularly well

in this objective. Most of the things

we’ve found out as a result have been

broadly applicable to mobile devices

in general, rather than iOS. This is a

little disappointing, but we were also

prepared to find that there were no

iOS-specific features that were

fingerprintable, and this was

suggested in the interim report’s

evaluation criteria, six months ago.

However, we have found some things,

such as hardware identifiers leaked in

the Apple-mandated User-Agent

string can be used to identify

different devices (see Table 3). We’ve

also found that even within identical

models, in the AIU dataset, that

nearly half of all of a particular model

of iPhone were uniquely identifiable.
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7.4 Tracking Meetings

We’ve met regularly with Ben, our

supervisor since the end of the spring

examination period in March, usually

every two weeks, and slightly more

often in the last month or so of the

project runtime. These meetings

were intended to ensure that the

project is still moving forward and

that it’s suitably academic — indeed

Ben’s advice has been extremely

useful in coming up with conclusions

and in the presentation of results, as

well as how to write a story, rather

than just presenting some dry data.

More meetings earlier on would

probably have been helpful, and may

have resulted in a higher quality tool

more specific to mobile devices, but

nonetheless we have collected most

variables that can be generated by a

browser without a user needing to be

present (as is the case for collecting

fingerprints from hardware sensors

like gyroscopes).

7.5 Fingerprinting Tool

The tool that we’ve produced reuses

existing libraries to collect data

— namely fingerprintjs2 [32], though

ClientJS [33] was also used to give

some more refined details about

fingerprints. However, no ClientJS

data was actually stored in the end

by the tool. As we noted in the

interim report, we did not expect to

collect a vast amount of data with

this tool, given that to do so would

require a publicity campaign after

the tool had been produced. This

isn’t something that we can’t rule out

for the future though. The tool is

basic in its presentation and design,

and is not especially user-friendly

(see Figure 7), but this would be

fairly trivial to resolve — it just

wasn’t considered hugely important

in the context of what we wanted to

acheive with this project. We have

however, been able to collect

appropriate fingerprinting data in an

easily analysable format, which is

something we wanted to acheive. The

tool doesn’t push the boundaries of

fingerprint collection though; it’s

primary purpose was and remains to

enable me to collect data for the

manually-curated dataset, which is a

small private dataset, orders of

magnitude smaller than large public

projects like AmIUnique [3].
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7.6 Data Analysis

A major criticism we would make of

our data analysis is that it was all

done manually, with SQL queries on

the two datasets, or — especially in

the case of the manually-curated

dataset — using a spreadsheet

application to compare small

numbers of results. It might have

been more useful, and might have

made analysis quicker (enabling more

to take place), to have an automated

tool that would automatically

generate low-level SQL queries based

on higher-level ones, and upon

retrieving the results, creating

appropriate graphs and tables. This

could be considered to be

out-of-scope of this project, but it

would have made the data analysis

(which constitutes the substantial

part of this project) easier to do, and

would have produced more results

either backing up or creating new

insight.

7.7 Overall Evaluation

This project has met its objectives

reasonably well, bar the

disappointment about iOS-specific

features. We’re pleased to have come

out with some novel and surprising

results, and we’re pleased to have

provided some objective analysis

about some security claims made by

software authors, and have tested the

limits of these with regards to

fingerprinting (as opposed to

tracking).

We’ve managed to add some value to

existing work — so far as we know,

nobody had directly compared the

fingerprintability of mobile and

desktop, or of the two major mobile

platforms before. Of course, the

results we’ve come up with indicate

that they are broadly similar, but

this is important to know too for

anybody who wants to keep their

communications and identity a secret.

If this project were to be repeated,

we would probably focus more closely

on only two or three of the research

questions, perhaps the first, second,

and fifth, delving deeper into those

specific subjects (namely mobile

compared to desktop; mobile

platforms compared; and

fingerprinting evasion techniques

employed by browsers).

Alternatively, we could focus just on
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research questions three and four

(fingerprinting of identical models

and mobile-only fingerprinting

methods).

Final Thoughts This project has

been enjoyable to carry out and we

hope to look further into this area in

the future, and at the wider context

of user tracking and the security

protections afforded to users of

computers and different software. We

hope that there will be further

research in this area, focusing more

closely on individual parts of the

project, and believe that this project

provides a good base for such further

research. �
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Appendix A

Glossary

AdWords Google’s primary advertising program, and a major source of

revenue for the company.

Anonymity set An anonymity set is a set of entries within some data that

cannot be distinguished from each other, excluding any ID number that

might have been assigned (assuming that such an ID number is

independent of the content of the rest of the data). An anonymity set of

size 1 means that there is no other data that completely matches the

data item inside the set, whereas an anonymity set of size 1,000 means

that there are 1,000 identical pieces of data within a set. One dataset

can have up to its own size in anonymity sets, with each entry being in

its own anonymity set, or can have as little as one anonymity set, with

all entries in the same set.

Blink The rendering and layout engine used by Chromium and its

derivatives, including Google Chrome.

Chrome Both the name of a popular web browser, and the name given to

the UI of a web browser around the viewport.

Cookie A small file stored on a client computer that can store information

from a website. The contents of the file are sent back to the website

when a webpage from that site is loaded.
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Desktop A traditional personal computer system. In this study, we use

desktop to refer not only to traditional “tower” PCs, but also to laptops,

ultrabooks, netbooks and all-in-ones, where the monitor is also the

computer system.

Discrete graphics A device separate from the CPU is responsible for most

graphics. This is usually known as a graphics card.

DoC Department of Computing, Imperial College London.

DOM Document object model; the API that allows for the manipulation of

HTML documents. JavaScript can usually interact with the DOM to

modify the HTML of a webpage as well as to perform other functions.

Fingerprinting Gathering information from a system in an attempt to

uniquely identify it. In web browsers, this is usually done by JavaScript

manipulating the DOM.

Gecko Mozilla Firefox’s rendering and layout engine for HTML and CSS.

Integrated graphics The graphics controller of a computer system is part

of its CPU.

ISP Internet service provider; provides internet services to businesses and

private individuals, usually through a street cabinet, or fibre-optic cable

installed into the address where the service is required.

Man-in-the-middle The interception of a particular user’s network

communications, which may be modified before being sent on, either to

the user, or to the other computer that they are trying to communicate

with.

Mobile device A computer device that is not a desktop, nor an embedded

system (like a POS), nor a server. Usually refers to smartphones and

tablets, and to the hybrid of both, phablets.
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Paywall Forces all users (of a website) to pay in order to access any content.

An example of a site that does this is that of The Times & The Sunday

Times

TLS Transport Layer Security; often (incorrectly) known as SSL, which is

its predecessor, or as HTTPS. Provides encrypted connections from

clients to websites using public-key cryptography.

Tor The Onion Router: so-named because traffic routed through the Tor

network is surrounded by layers (of encryption). Tor is designed so that

traffic cannot be traced back to its original source.

Tracking The use of an identifier, usually a cookie, to track a particular

user across the web.

UUID Universally unique identifier; used to identify a particular object,

which in this context, may well be a web user or their browser.

Viewport Part of the web browser that actually displays the webpage

WebKit Apple’s rendering engine used in Safari and all iOS browsers, and

formerly used in Chromium and its derivatives (including Google

Chrome)

Webview A simple web page viewer within a mobile application. Many web

browser applications on Android, and all on iOS (due to Apple

mandating so), are webviews with different interfaces and with different

built-in ways of controlling the DOM. A common use-case is to open a

company’s support forum or terms of service page, rather than showing

them within the confines of the app. Webviews can often be “broken

out” of resulting in access to the entire web within an app not

necessarily designed to do so — this can often be done on the BBC

News app, for example.

Windows NT Often now referred to just as Windows, or Microsoft

Windows, is the name both of the old Windows NT brand, and of newer

business operating systems like Windows 2000, and of the consumer and



Page 78 of 78 APPENDIX A. GLOSSARY

business operating system produced since Windows XP and through to

Windows 10.
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