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Abstract

Applications ranging from malware detection to graphics to
Web security sanitization depend on string transformations,
but writing such transformations is a challenge. Making
these transformations run in parallel on a cluster of machines
or special hardware is an even greater challenge. We answer
this challenge with fast, parallel string manipulating code
compiled from Bek, a domain-specific language for writing
complex string manipulation routines[9].

First, our new compilation pipeline maps a Bek pro-
gram to an intermediate format consisting of symbolic finite
state transducers, which extend classical transducers with
symbolic predicates. We present a novel algorithm that we
call exploration which performs a symbolic partial evaluation
of these transducers to obtain simplified, stateless versions
of the original program. These simplified versions can be
lifted back to Bek, and from there compiled to C#, C, or
JavaScript. Next, we show how the resulting transducers,
post-exploration, fit into a recent advance in data-parallel
compilation of finite state machines. Finally, we describe a
concrete implementation built on the Windows High Perfor-
mance Computing framework in a cluster.

We have implemented our code generation pipeline for
Bek code corresponding to several real string manipulating
functions, such as security sanitizers for Web applications.
We use an automatic testing approach to compare our gen-
erated code to the original C# implementations and found
no semantic deviations. Our generated C# code outperforms
the previous handwritten code by a factor of up to 3 and we
generate code in C that is a factor of 5 faster. For a cluster
with 32 nodes, we see speedups of 13.7 times compared to
sequential C# code for an HTML sanitizer over 32GB of
data.

1. Introduction

We produce an optimizing data-parallel code pipeline for
Bek, a domain-specific language for writing string manipu-
lating programs. The original motivation for Bek came from
Web programs called sanitizers that are evaluated on inputs
from untrusted sources [9]. The language, however, is more
general that Web sanitization and can express a variety of
string-manipulating programs. Previous work described how
image blurring, GPS trace anonymization, and malware fin-
gerprinting can be expressed in this way [21].

The strength of Bek is that it enables fast and precise
analysis: previous work has showed how to perform composi-
tion, equivalence checking, and commutativity checking that
scale quadratically in the number of states, and which are

fast in practice. Simply put, Bek is a tool for programmers
to specify arbitrary finite state transformations. Combined
with the analyses possible for Bek programs, the language
can be applied widely.

After analysis, we need to actually execute the pro-
gram. Generating efficient code from Bek is a novel chal-
lenge and the subject of this work. Through a series of case
studies, we demonstrate a compilation step that generates
faster code than manually-written string-manipulating rou-
tines.We combine a novel exploration algorithm described
in this paper with recent advances in data-parallel compila-
tion to obtain a data-parallel back-end for Bek programs.
By data-parallel we mean that the computation can be
distributed across the data with minimal need for cross-
communication between threads. Data-parallelism enables
processing gigabytes of text in a short time using multiple
cores or multiple machines, as we show in Section 5. Our
end result is a fully-automatic compilation from programs
in Bek to the LINQ-to-HPC data-parallel framework run-
ning on a cluster.

1.1 The Bek Language

We briefly describe the Bek domain-specific language for
writing string transformations. As introduced in [9], the core
construct in Bek is an iteration over each character in an
input string. Programs can then have case statements that
describe different behavior for different input characters.
Typically the program will perform some local computation,
then yield, or output, a new character. In this way a new
string is built up based on the characters of the input string.

Programs can also have register variables that keep state
during the iteration. Figure 1 shows a sample Bek program
that checks each character and then updates a register
variable r. Depending on input character, the program may
then output the contents of the register, or it may simply
pass through the character unchanged. For more details
on Bek we refer to previous work or to the online Bek
evaluator at http://rise4fun.com/bek. While the language
is limited, the key point is that Bek is expressive enough
to capture a wide range of string-manipulating functions,
including many of the functions commonly used in Web
sanitization and functions used in graphics processing [9, 21].

1.2 Symbolic Branching Transducers

Previous work provided a semantics for Bek in terms of
symbolic finite transducers (SFTs). An SFT is an extension
of a traditional finite transducer in which edges may be
labeled with formulas instead of concrete characters. Recall
that a finite transducer is a generalization of deterministic
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program Decode67 ( t ) {
return i t e r ( c in t ) [ r := 0 ; ] {

case ( ( r==0)&&(c>=’ 6 ’ )&&(c<=’ 7 ’ ) ) :
r := c ;

case ( ( r !=0)&&(c>=’ 6 ’ )&&(c<=’ 7 ’ ) ) :
yield (10∗( r−48)+c−48);
r :=0;

case ( ( r==0)&&(c != ’ 6 ’ )&&(c != ’ 7 ’ ) ) :
yield ( c ) ;

case ( true ) :
yield ( r , c ) ;
r :=0;

} ;
}

Figure 1. Sample Bek program.
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r:=0

((r==0)&&(c>='6')&&(c<='7')) []

[]  
r:=c

T

(!(r==0)&&(c>='6')&&(c<='7'))

F

[((10*(r-48))+(c-48))]
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((r==0)&&!((c>='6')&&(c<='7')))
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T

[r, c]
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F

Figure 2. Depiction of the STb corresponding to the pro-
gram in Figure 1. The dashed arrow corresponds to the “fi-
nal rule,”which terminates execution when fired. Oval nodes
correspond to branch conditions and rectangular nodes cor-
respond to basic rules.

finite automaton that allows transitions from one state to
another to be annotated with outputs: if the input character
matches the transition, the automaton outputs a specified
sequence of characters. In symbolic finite transducers [21],
transitions are annotated with logical formulas instead of
specific characters, and the transducer takes the transition
on any input character that satisfies the formula.

We introduce a novel semantics for Bek programs in
terms of symbolic branching transducers, an extension of
SFTs that allow for additional structure. Our symbolic rep-
resentation allows us to use satisfiability modulo theories
(SMT) solvers, tools that take a formula and attempt to find
inputs satisfying the formula. These solvers have become ro-
bust in the last several years and are used to solve compli-
cated formulas in a variety of contexts. At the same time, our
representation allows leveraging automata-theoretic meth-
ods to reason about strings of unbounded length, which is
not possible via direct encoding to SMT formulas. SMT
solvers allow working with formulas from any theory sup-
ported by the solver, while other previous approaches, such
as using binary decision diagrams, are specialized to specific
types of inputs.

We extend SFTs with branching rules and exception
rules, called STbs. These branching rules allow us to pre-
cisely model exceptions, which was not possible with SFTs.
At the same time, the extension is a conservative extension

of SFTs. Branching rules do not increase expressiveness, but
they allow code generation to preserve the original branch-
ing structure and avoid duplication of branch conditions.
For analysis tasks, such as domain equivalence and partial
equivalence, we first need to eliminate registers in order to
use the SFT algorithms introduced in [21]. We introduce an
algorithm for partial evaluation of STbs that preserves the
branching structure of rules. As a special case, the algorithm
also works for symbolic transducers without branching rules.
As an example, Figure 2 shows the STbcorresponding to the
Bek program in Figure 1.

1.3 Exploration and Data-Parallelism

The register variables in Bek are important for making it
easy to translate string-manipulating functions written in
C# or other languages to Bek, because existing functions
typically keep state through an iteration. These variables
are also convenient for writing functions in Bek directly.
Unfortunately, these register variables are enemies of data-
parallelism, because they introduce control flow that de-
pends on the registers and not on the individual character.
Recent advances in data-parallel compilation of finite trans-
ducers allow us to automatically translate Bek programs
without registers into parallel implementations, which we
describe in Section 4.

Fortunately, a key contribution of this work is a novel
partial symbolic evaluation algorithm that enables removing
registers from Bek programs. We describe the algorithm
in detail in Section 3. While the algorithm is not guaran-
teed to work in all cases, when it does work it produces a
STbthat is semantically equivalent to the original, but with-
out register state variables. We then put this algorithm into
a fully-automatic pipeline that compiles Bek into a parallel
implementation in the C# LINQ-to-HPC framework. This
relieves the programmer from the burden of explicitly de-
scribing parallelism in Bek programs. In particular, elimi-
nating register state is difficult to perform manually because
it requires reasoning about the different behavior exhibited
by the program for different values of the register.

1.4 Paper Contributions

This paper has the following contributions.

• We extend symbolic transducers with branching rules.
The purpose of this extension is to more faithfully sup-
port code generation by preserving branching structure
and avoiding duplication of branch conditions.

• Previous work on Bek introduced an extension to sym-
bolic transducers with registers [21]. Registers, such as
r in Figure 1, can be used to remember small amounts
of state and are essential for modeling real sanitizers.
In this paper, we present a novel partial-evaluation al-
gorithm modulo theories for STbs that is complete for
finite-valued register update functions and works mod-
ulo arbitrary background theories. The algorithm, if it
terminates, outputs new STbs that are equivalent to the
input but have no registers present.

• Our algorithm has several interesting features. First,
the algorithm uses an SMT solver to eliminate regis-
ters (by folding them into control states) while main-
taining symbolic representation from input sequences to
output sequences. Next, the algorithm uses the model-
generation feature of state-of-the-art SMT solvers to
compute a finite control state partitioning as a dynamic
forward reachability analysis. Finally, it uses unsatisfi-
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ablity checks to prune provably unreachable states as a
dynamic backward reachability analysis.

• We show how to compile from Bek into C#, JavaScript,
and C. We show how to check the resulting code for
semantic differences from the original code. For server-
side C# and C code, we achieve significant speedups:
our transformation from Bek to C# results in code
that outperforms production hand-written versions of the
same function by as much as 3x and our C code is up to
5x faster. For JavaScript, our compiled code is sometimes
faster and sometimes slower than common Web libraries,
but our JavaScript comes with a guarantee that today’s
libraries cannot match: that the code will have the same
semantics as the server-side filter.

• As our main application of the partial-evaluation or ex-
ploration algorithm, we show how to combine it with
a recent advance by Mytkowicz and Schulte to obtain
a fully-automatic data-parallel compilation of Bek pro-
grams into the LINQ-to-HPC framework. To the best
of out knowledge, this is the first fully-automatic paral-
lelization of string manipulating code that combines ad-
vanced automata theory with state-of-the-art SMT tech-
nology. We achieve between 8.7x and 13.7x speedup on a
32 GB file transformed with representative benchmarks
on a 32 machine cluster.

1.5 Paper Organization

The rest of this paper is organized as follows. Section 2
introduces symbolic branching transducers (STbs). Section 3
presents algorithms for transducer exploration. Section 4
describes the Bek back-end, focusing on the translation
process for C#, C++, and JavaScript. Section 5 provides
our experiment evaluation. Finally, Sections 6 and 7 describe
related work and conclude.

2. Symbolic Branching Transducers

We now formally introduce symbolic branching transducers
or STbs and give examples of how STbs capture behavior
of programs. We assume a background structure that has
an effectively enumerable background universe U , and is
equipped with a language of function and relation symbols
with fixed interpretations.

We use τ , σ and γ to denote types, and we write Uτ for
the corresponding sub-universe of elements of type τ . The
Boolean type is bool, with Ubool = {t, f}, the integer type is
int, and the type of k-bit bit-vectors is bvk. The Cartesian
product type of types σ and γ is σ × γ. The type σ∗ is the
type for finite sequences of elements of type σ. The universe
U (σ∗) is the Kleene closure (Uσ)∗ of the universe Uσ. We
also write type σk as a semantic subtype of σ∗ of sequences
of elements of length at most k ≥ 0.

Terms and formulas are defined by induction over the
background language and are assumed to be well-typed. The
type τ of a term t is indicated by t : τ . Terms of type bool, or
Boolean terms, are treated as formulas, i.e., no distinction
is made between formulas and Boolean terms. All elements
in U are also assumed to have corresponding constants in
the background language and we use elements in U also as
constants. The set of free variables in a term t is denoted
by FV(t), t is closed when FV(t) = ∅, and closed terms
t have Tarski semantics [[t]] over the background structure.
Substitution of a variable x : τ in t by a term u : τ is denoted
by t[x/u]. In the following we let Σ = Uσ, Γ = Uγ and
Q = Uτ .

A λ-term f is an expression of the form λx.t, where x :σ
is a variable, and t : γ is a term such that FV(t) ⊆ {x}; the
type of f is σ → γ; [[f ]] denotes the function that maps
a ∈ Σ to [[t[x/a]]] ∈ Γ. As a convention, we use f and g to
stand for λ-terms. A λ-term of type σ → bool is called a σ-
predicate. We write ϕ and ψ for σ-predicates and, for a ∈ Σ,
we write a ∈ [[ϕ]] for [[ϕ]](a) = t. We often treat [[ϕ]] as a
subset of Σ. Given a λ-term f = (λx.t) :σ → γ and a term
u :σ, f(u) stands for t[x/u]. A predicate ϕ is unsatisfiable
when [[ϕ]] = ∅; satisfiable, otherwise.

The main building block of an STb is a rule. A rule is
an expression that denotes a partial function corresponding
to a straight-line conditional statement of a program that
may yield outputs, produce updates, and raise exceptions.
We first provide an inductive definition of rules that omits
type annotations. We then define additional well-formedness
criteria and the semantics for rules.

• ⊥ is the exception rule.
• If f is a λ-term then br(f) is a basic rule.
• If ϕ is a predicate and r1, r2 are rules then ite(ϕ, r1, r2)

is an if-then-else (ite) rule.

We say that a rule r is well-formed with respect to the type
σ → γ, denoted r : σ → γ, when one of the following
conditions holds:

• r is the rule ⊥.
• r is a rule br(f :σ → γ).
• r is a rule ite(ϕ :σ → bool, r1 :σ → γ, r2 :σ → γ).

A rule r :σ → γ represents a function [[r]] from Uσ to P(Uγ)
For all a ∈ Uσ:

[[⊥]](a)
def
= ∅

[[br(f)]](a)
def
= {[[f ]](a)}

[[ite(ϕ, r1, r2)]](a)
def
=

{
[[r1]](a), if a ∈ [[ϕ]];
[[r2]](a), otherwise.

We now introduce the central definition of a symbolic
branching transducer that uses the definition of rules.

Definition 1: A Symbolic Branching Transducer or STb A
with input type σ, output type γ and state type τ is a tuple
(q0, R, F ), where

• q0 ∈ Uτ is the initial state;
• R is a finite set of rules of type (σ × τ) → (γk × τ), for

some k ≥ 0, rules in R are called the input rules of A;
• F is a finite set of rules of type τ → γk, for some k ≥ 0,

rules in F are called the final rules of A.

For a basic subrule r = br(λ(x, y).〈f(x, y), g(x, y)〉) of an
input rule, f is called the yield and g the update of r. A
basic subrule of a final rule is called a final yield. �

We write p
a/b−−→A q for a concrete transition of A: it

means that there exists r ∈ RA such that [[r]](a, p) =

{(b, q)}. Similarly, we write q
/b−→A for a final output of A:

it means that there exist r ∈ FA such that [[r]](q) = {b}.
Intuitively, a final output is a special case of an input-
epsilon move of a classical finite state transducer into a
final state, but it is algorithmically useful to keep final rules
separate from general input-epsilon moves. Unlike input-
epsilon moves in general, final rules do not affect the core
algorithms, while providing a very convenient mechanism to
yield additional outputs upon reaching the end of the input
tape.
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We write Aσ/γ;τ to indicate the input/output types σ/γ
and the state type τ of an STb A.

The reachability relation p
a/b−−→→A q for a ∈ Σ∗, b ∈ Γ∗,

and p, q ∈ Q is defined through the closure under the
following conditions, where ‘·’ is concatenation of sequences:

• For all q ∈ Q, q
ε/ε−−→→A q.

• If p
a/b−−→→A p

′ a/c−−→A q then p
a·a/b·c−−−−−→→A q.

Definition 2: The transduction of an STb A, TA, is the
following function from Σ∗ to P(Γ∗).

TA(a)
def
= {b · c | ∃ q ∈ Q (q0A

a/b−−→→A q
/c−→A)}

�

We say that A is single-valued when |TA(a)| ≤ 1 for
all a ∈ Σ∗. A is deterministic when |RA| = 1 and
|FA| = 1. Note that determinism immediately implies single-
valuedness. The definition of STbs is consistent with the def-
inition of STs in [21].

In the rest of the paper we will only consider deterministic
STbs and we will identify RA (resp. FA) with the rule it
contains. The exploration algorithm can be extended to
nondeterministic STbs, but for most analysis tasks the STbs
are required to be at least single-valued. For the data-parallel
translation explained in Section 4 the STbs are required to
be deterministic, that is naturally the case for the kinds of
string transformations we have in mind with this approach.

The following example illustrates the use of STbs on a
typical string transformation scenario and introduces the
concrete language Bek that we use for describing STbs in
this paper.

Example 1 Let the input type, output type, and state
type be bv7. (Intuitively Ubv7 corresponds to the set of
ASCII characters). The Bek program in Figure 1 corre-
sponds to an STb that decodes certain occurrences of pairs
of digits by their corresponding ASCII letters. For example
Decode67("a77") is "aM". The initial state is 0 that corre-
sponds to the initial value of register r. The case statements
map to the following input rule where we lift the λ-prefix to
be in the front:

λ(c, r). ite(r = 0 ∧ ‘6’ ≤ c ≤ ‘7’,
br([], c),
ite(r 6= 0 ∧ ‘6’ ≤ c ≤ ‘7’,

br([(10 ∗ (r − 48)) + (c− 48)], 0),
ite(r = 0 ∧ ¬(‘6’ ≤ c ≤ ‘7’),

br([c], r),
br([r, c], 0))))

The final rule is λr.[] (produces the empty sequence). There
are no exception rules, i.e., the STb is a total function over
strings of ASCII characters. The graphical illustration of
the STb for Decode67 is shown in Figure 2. All graphs in
the paper are produced automatically from our analysis
framework. This example is also available in the online
version of Bek1.

3. Exploration of STbs

In this section we develop an algorithm that allows us to
eliminate either all or some of the state registers used in a
deterministic STb A. In particular, we focus on two cases:
Full exploration and Boolean exploration.

1 http://www.rise4fun.com/Bek/Nv4

Explore(Aσ/γ;τ1×τ2 )
def
=

p0 := first(q0A);

q0 := second(q0A);

S := stack(p0);

P := {p0};

Add(p)
def
= if p /∈ P then P := P ∪ {p}; Push(S, p);

R := {7→};
F := {7→};
while S 6= ∅
p := Pop(S);

R(p) := Expl(λy : τ2.t, Inst(λy : τ2.t, RA, p),Add);

F (p) := Expl(λy : τ2.t, Inst(λy : τ2.t, FA, p),Add);

return (p0, q0, R, F );

Inst(ϕ,⊥, p) def
= return ⊥;

Inst(ϕ, br(f, g), p)
def
= return br(λy.f(p, y), λy.g(p, y));

Inst(ϕ, ite(ψ, t, f), p)
def
=

ϕt := λy.ϕ(y) ∧ ψ(p, y);

ϕf := λy.ϕ(y) ∧ ¬ψ(p, y);

if IsUnsatisfiable(ϕt) return Inst(ϕf , f, p);

else if IsUnsatisfiable(ϕf ) return Inst(ϕt, t, p);

else return ite(λy.ψ(p, y), Inst(ϕt, t, p), Inst(ϕf , f, p));

Expl(ϕ,⊥, )
def
= return ⊥;

Expl(ϕ, ite(ψ, t, f),Add)
def
=

return ite(ϕ,Expl(ϕ ∧ ψ, t,Add),Expl(ϕ ∧ ¬ψ, f,Add);

Expl(ϕ, br(f, g),Add)
def
=

ψ := λy z .ϕ(y) ∧ (z = first(g(y)));

r := ⊥;

while ∃M |= ψ

let p = zM ;

r := ite(λy.p = first(g(y)), br(f, λy.second(g(y)), p), r);

ψ := λy z .ψ(y, z) ∧ z 6= p;

Add(p);

return r;

Figure 3. Exploration algorithm of STbs.

0

('6'!=c&&'7'!=c)/[c]                           

2

('6'==c)/[]

1

('7'==c)/[]

('6'==c||'7'==c)/[12+c]

('6'!=c&&'7'!=c)/['6',c]

('6'==c||'7'==c)/[22+c]

('6'!=c&&'7'!=c)/['7',c]

Figure 4. Full exploration of Decode67 in Figure 1.

4 2012/7/10



For the purpose of explaining the exploration algorithm,
we extend A = (q0, R, F ) with a component P that is a finite
set of control states and an initial control state p0 ∈ P . The
sets R and F are extended to be maps from P to rules, and
each basic subrule of an input rule in R has an additional
control state component p ∈ P . With this extension in mind,
we write a basic rule as br(yield , update, p). We say that A
is stateless when the register type τ is the unit type T0
(UT0 = {〈〉}), i.e., registers are not used in a stateless STb,
and thus R has the equivalent form

{p1 7→ r1, p2 7→ r2, . . . , p|R| 7→ r|R|}

where each rule ri corresponds to a conditional statement
that may yield outputs and transition to new control states
but does not make use of registers by storing intermediate
results in registers. This extension is useful for separation
of concerns, it helps to keep the control state separate from
the data state.

For example, the STb is Example 1 is not stateless be-
cause the rules depend on the register r.

By full exploration of A, we mean a construction of a
stateless STb Af such that TA = TAf , i.e., A and Af are
equivalent. Full exploration is not always possible, because
equivalence of stateless STbs reduces to equivalence of sym-
bolic finite transducers (SFTs), and equivalence of SFTs is
decidable [21] modulo a decidable label theory, while equiv-
alence of STbs is undecidable already for very restricted de-
cidable label theories. Even when full exploration is possible,
Af may still be exponentially larger than A.

By Boolean exploration of A, we mean a construction of
an STb Ab such that TA = TAb where all Boolean registers
of A have been eliminated. For example, if the state type
of A is (bool × bool) × int then the the state type of Ab is
int, i.e., the two Boolean registers have been eliminated by
adding new control states.

Note that, in order to completely eliminate the symbolic
update of a rule br([], λ(x, y).ϕ(x)), where ϕ is a σ-predicate,
i.e., to replace ϕ by λx.t (resp. λx.f) we would need to decide
if ∀xϕ(x) holds, i.e., ¬ϕ is unsatisfiable, (resp. if ∀x¬ϕ(x)
holds, i.e., ϕ is unsatisfiable).

3.1 Algorithm Explore.

The generic exploration algorithm of STbs is described in
Figure 3. The algorithm takes as its input an STb A, and
assumes a projection of the state type τ of A into two
parts τ1 and τ2. We assume, without loss of generality,
that τ = τ1 × τ2. The algorithm uses an SMT solver,
as a black box, to decide satisfiability and to generate
models for formulas. No assumptions are made about the
particular types. In the concrete case studies the types are
typically numeric (bitvector, integer or real), but could also
be algebraic datatypes or array types.

The algorithm generates a new STb by exploring the rules
with respect to τ1, effectively eliminating τ1, i.e. turning the
first state component into an explicit control state. At the
topl level, the algorithm is a depth first search algorithm,
starting from the initial state q0

In order to avoid special cases, we may always assume
that either τ1 or τ2 can be unit types T0 (UT0 = {〈〉}).
Now, full exploration of A corresponds to the case when τ2
is the unit type, and Boolean exploration corresponds to the
case when τ1 is a Cartesian combination of Boolean registers
and τ2 is a Cartesian combination of all the non Boolean
registers.

Inst Inst(ϕ,r,p) creates an instance of the rule r with the
path condition ϕ with respect to the fixed register values
given by p. For the exception rule this is a noop. For a basic
rule this is a partial instantiation of the yield and update
with respect to p, where λy.f(p, y) instantiates the first pro-
jection of the state register with the value p. An impor-
tant point for the rules is that unreachable rule instances
are eliminated by deciding satisfiability of corresponding ac-
cumulated path conditions. For best utilization of the ar-
chitecture of modern SMT solvers, the path conditions are
accumulated implicitly by pushing and popping logical con-
texts of the SMT solver, e.g., Inst(ϕf , f, p) is evaluated in a
newly pushed context where ψ(p, y) has been asserted, pro-
vided that the context is still satisfiable. This step is similar
to how path conditions are incrementally constructed during
symbolic execution for example in the context of parameter-
ized unit testing. Here the use of branching rules is needed
for exploiting logical contexts.

Expl Expl(ϕ,r,Add) performs partial exploration of r with
respect to τ1 (or the projection function first). For the
exception rule the operation is a noop. For an ite rule, the
step is a direct propagation of the concretizations of the
branches. The core of the computation takes place during
concretization of basic rules. Suppose for simplicity that τ2
is empty, or equivalently that τ1 = τ , i.e., cosider the case
of full exploration. Notice that f (yield) and g (update) do
not depend on the register variable that has been eliminated
at this point due to Inst . The variable y here is the input
parameter, that should, if possible, remain symbolic. The
while loop searches for all possible distinct interpretations
of g(y) such that ϕ(y) holds. Suppose that g(y) is the
arithmetic expression (y mod 3) and that ϕ is the condition
(y mod 3) > 0. Then ψ is initially the fromula (y mod 3) >
0 ∧ z = (y mod 3). A model M |= ψ exists, e.g., zM = 1.
Now 1 is pushed to the search stack and ψ is strengthened
to be (y mod 3) > 0∧ z = (y mod 3)∧ z 6= 1. The rule r is
case-split using the new value of z = 1. The step is repeated
yielding another solution z = 2. A third solution does not
exist and the while loop terminates returning the rule

ite(2 = (y mod 3), br(f, 〈〉, 2),
ite(1 = (y mod 3), br(f, 〈〉, 1),⊥))

that is now case-split according to all the possible feasible
values of the original register.

Theorem 1: Let A be a deterministic STb with state type
τ1 × τ2. If Explore(A) terminates then the result is an STb

that is equivalent to A and whose state type is τ2.

We omit the formal proof of the theorem but note that
termination of the algorithm depends on two factors: decid-
ability of the background theory, and finiteness of the reach-
able subset of Uτ1 . The first point is already needed in the
Inst procedure that eliminates unsatisfiable branches. The
second point is needed both, for termination of construc-
tion of r in Expl, as well as for guaranteeing that the search
stack S is bounded in the top level depth first search loop
of the algorithm. A sufficient condition for the second point
is when the functions used for computing the first state pro-
jection have the finite-range property, i.e., when Uτ1 can be
assumed to be finite.

Example 2 The STb after full exploration of Decode67
from Figure 1, is illustrated in Figure 4. The unexplored
STb (in Figure 2) has a single control state 0, while the fully
explored STb has 3 control states.
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r:=0

((65534==c)||(6
5535==c))
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((65534==c)||(6
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InvalidSurrogat
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InvalidUnicodeV
alueException

T

!(!(56320<=c)||
!(c<=57343))

F

InvalidSurrogat
ePairException

T

!(!(55296<=c)||
!(c<=56319))

F

['\', ite(!(1=
  =(((c>>6)>>0)
  &1))||!(1==((
  (c>>6)>>1)&1)
  )||!(1==(((c>
  >6)>>2)&1))||
  !(1==(((c>>6)
  >>3)&1)),'0',
  '1'), (((1+(c
  >>6))&0xF)+it
  e(((1+(c>>6))
  &0xF)<=9, 48,
   55)), (((c>>
  2)&0xF)+ite((
  (c>>2)&0xF)<=
  9, 48, 55))] 
r:=(c&3)       

T

!(c<=255)

F

['\', '0', '0'
  , (((c>>12)&0
  xF)+ite(((c>>
  12)&0xF)<=9, 
  48, 55)), (((
  c>>8)&0xF)+it
  e(((c>>8)&0xF
  )<=9, 48, 55)
  ), (((c>>4)&0
  xF)+ite(((c>>
  4)&0xF)<=9, 4
  8, 55)), ((c&
  0xF)+ite((c&0
  xF)<=9, 48, 5
  5))]         

T

(!(!('0'<=c)||!
(c<='9'))||!(!(
'A'<=c)||!(c<='
Z'))||!(!('a'<=
c)||!(c<='z'))|
|!(!(128<=c)||!
(c<=144))||!(!(
147<=c)||!(c<=1
54))||!(!(160<=
c)||!(c<=165)))

F

[c]

T

['\', '0', '0'
  , '0', '0', (
  ((c>>4)&0xF)+
  ite(((c>>4)&0
  xF)<=9, 48, 5
  5)), ((c&0xF)
  +ite((c&0xF)<
  =9, 48, 55))]

F

InvalidUnicodeV
alueException

T

(!(56320<=c)||!
(c<=57343))

F

InvalidSurrogat
ePairException

T

[((((r<<2)|((c>
  >8)&3))&0xF)+
  ite((((r<<2)|
  ((c>>8)&3))&0
  xF)<=9, 48, 5
  5)), (((c>>4)
  &0xF)+ite(((c
  >>4)&0xF)<=9,
   48, 55)), ((
  c&0xF)+ite((c
  &0xF)<=9, 48,
   55))]       
r:=0           

F

Figure 5. STb corresponding to the Web sanitizer
CssEncode after Boolean exploration. The original
STbcontained a register which has been eliminated by
exploration. Full exploration introduces three more control
states and enables us to apply the matrix data-parallel
approach.

4. Data-Parallel Translation

In this section we describe how to compile a symbolic STb

so it can exploit data-parallel hardware. In particular, we
demonstrate an end to end compilation of STb to a large
cluster running LINQ to HPC [5].

Recently, Mytkowicz and Schulte framed the evaluation
of finite state transducers as associative operations over vec-
tors and matrices [14]. Because their approach uses associa-
tive operations, it can take advantage of data-parallel hard-
ware. Their approach, however, requires that the number of
states in the finite automata be small in order to be efficient.

Our key insight that allows us to combine STb and the
approach of Mytkowicz and Schulte is that STb exploration
reduces the number of states in the STb and pushes the
complexity of the STb into the edges, which in turn allows
us to efficiently target data-parallel hardware.

4.1 Data-Parallel Operators

Before we get into the details of our translation, we intro-
duce two higher-order data-parallel primitives. These primi-
tives are well-known data-parallel operators and are easy to
implement on a variety of hardware platforms.

zipwith takes a binary function and maps that function
over two sequences of equal sized length. For example,
to pairwise add the numbers in two sequences we could
use

zipwith(+, [0, 1, 2], [3, 4, 5]) = [3, 5, 7]

scan applies a binary associative function, ⊕, over every
prefix of a sequence. For example, given a sequence of
n elements

[x0, x1, x2, . . . , xn]

scan produces a new sequence

[x0, (x0 ⊕ x1), (x0 ⊕ x1 ⊕ x2), . . . , (x0 ⊕ x1 ⊕ . . . xn)]

We next show how to define STb in terms of these primitives.

4.2 Describing STb With Higher-Order Functions

Recall that a STb is a tuple (q0, R, F ) where q0 is the initial
state, R is a finite set of input rules, and F is a finite set
of final rules. Each rule defines a transition from a pair of
input symbol and state to an output symbol and a new state.
Let φ(q, s) be the (flattened) transition function, implicitly
defined by the rule sets R and F , which takes as arguments
a state and a symbol and produces a new state. (In this view
we assume that that the final rule from a state is trigered by
a special “end-of-input” symbol and leads to a unique final
state.)

To transduce a string s by a STb, the STb starts in state
q0 and sequentially reads the symbols of s. When the STb

reads the i’th symbol, si from s, it enters state q = δ(q, si)
and calls function φ(q, si) with state q and symbol si, which
maps to symbols in the output alphabet.

We call the algorithm to transduce a string by a STb,
Transduce which takes as input a STb and a string s and
produces a new string s′ which is the result of applying φ to
each state of the STb, after the STb reads the ith symbol in
s. Using the higher-order functions introduced in Section 4.1,
we can write Transduce as:

Transduce(STb, s) = zipwith(φ, scan(δ, q0, s), s)

4.3 Translating STb to δ and φ

We then produce the following pipeline. First, a programmer
writes string manipulating functions in Bek. Next, we com-
pile from Bek into a STb. Finally, we compile from the STb

to C# functions which encode φ and δ. These functions can
then be applied as part of our data-parallel computation.

For example, consider a simple Bek program that corre-
sponds to the full exploration of the Bek program Decode67
in Figure 1, the fully explored STb is also depicted in Fig-
ure 4.

program sample ( t ) {
return i t e r ( c in t ) [ s t a t e := 0 ; ] {
case ( s t a t e ==0):
i f ( c==’ 6 ’ ){ s t a t e :=2;}
else i f ( c==’ 7 ’ ){ s t a t e :=1;}
else { s t a t e :=0; yield ( c ) ;}

case ( s t a t e ==1):
i f ( ( c==’ 6 ’ ) | | ( c==’ 7 ’ ) ){ s t a t e :=0; yield (22+c ) ;}
else { s t a t e :=0; yield ( ’ 7 ’ ) ; yield ( c ) ;}

case ( s t a t e ==2):
i f ( ( c==’ 6 ’ ) | | ( c==’ 7 ’ ) ){ s t a t e :=0; yield (12+c ) ;}
else { s t a t e :=0; yield ( ’ 6 ’ ) ; yield ( c ) ;}

} ;
}
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A simple syntax-directed translation produces the follow-
ing sequential C# implementation which takes state as an
out parameter and the current character and (i) updates the
state of the STb and (ii) returns an enumeration of output
characters based on both the current state and the character
passed in.

IEnumerator<char> Apply (out int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ ) { s t a t e = 2 ; yield break ;}
else i f ( c == ’ 7 ’ ) { s t a t e = 1 ; yield break ;}
else { s t a t e = 0 ; yield return c ;}

}
case ( 1 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
s t a t e =0; yield return 22+c ;

}
else {

s t a t e =0; yield return ’ 7 ’ ; yield return c ;
}

}
case ( 2 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
s t a t e =0; yield return 12+c ;

}
else {

s t a t e =0; yield return ’ 6 ’ ; yield return c ;
}

}
}

}

To build a data-parallelversion of this STb we need two
functions δ and φ. We alter the syntax directed translation of
a STb to C# to produce Delta such that we keep the control
flow during the translation but remove the statements in
Apply that generate output (e.g. the yield statements).

int Delta ( int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ ) { return 2 ;}
else i f ( c == ’ 7 ’ ) { return 1 ;}
else { return 0 ;}

}
case ( 1 ) : {

return 0 ;
}
case ( 2 ) : {

return 0 ;
}

}
}

Likewise, to produce φ, we no longer update the state
variable, we use the current state and character to produce
an enumeration of output characters.

IEnumerable<char> Phi ( int s tate , char c ) {
switch ( s t a t e ){

case ( 0 ) : {
i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) { yield break ; }
else { yield return c ; }

}
case ( 1 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
yield return ( char )(22+(( int ) c ) ) ;

}
else {

yield return ’ 7 ’ , yield return c ;
}

}
case ( 2 ) : {

i f ( c == ’ 6 ’ | | c == ’ 7 ’ ) {
yield return ( char )(12+(( int ) c ) ) ;

}
else {

yield return ’ 6 ’ , yield return c ;
}

}
}

}

4.4 Data-Parallel STb

The prior section formalized STb in terms of higher-order
data parallel primitives. If the function on which these primi-
tives operate (e.g. δ and φ) are not associative, they must ex-
ecute sequentially. If the BEK code contains registers, then
in general it is not possible to directly write the resulting
STb with an associative δ and φ. Fortunately, as we saw in
the previous section, the exploration algorithm can remove
registers in many cases.

We now demonstrate how to turn δ and φ into associative
operations on vectors and matrices. Our insight is that ma-
trix multiplication is an associative operation that encodes
graph traversals.

Graph Traversals with Matrix Multiplication: A con-
venient way to view STb is as a graph where nodes in the
graph are states in the set of states Q and there exists an
edge from state i to state j on symbol s if δ(i, s) = j. A
graph is simple to represent as an adjacency matrix: the set
of allowed transitions for each symbol s ∈ Σ can be described
by Ms, a n× n adjacency matrix, where n = |Q|, such that
(Ms)ij = 1 if state i transitions to state j on symbol s, and
(Ms)ij = 0, otherwise. In other words, a adjacency matrix
is a symbolic representation of how a symbol from Σ tran-
sitions every state in a STb.

Given this formulation, we use matrix multiplication as
a mechanism for graph traversal; if the adjacency matrix
that encodes the state of the STb after reading the empty
string, ε, is MI , then the adjacency matrix that encodes the
state STb after reading the first symbol so in an input s
is MI ·Ms0 . Further, the adjacency matrix that encode the
state of the STb after reading the second symbol, s1 in an
input s is MI ·Ms0 ·Ms1 , and so on.

From STb to Matrices: To transform a STb to operations
on vectors and matrices, we define the following two func-
tions, inflate and project. [inflate] generates a matrix
from each input symbol s ∈ Σ. Given a symbol s, inflate
returns a n× n matrix Ms such that:

inflate(s) = (Ms)ij =

{
1 if δ(i, s) = j
0 otherwise

Next, [project] extracts from matrix Ms the state of the
STb after reading symbol s, starting from state q0:

project(Ms) = Vq0 ·Ms · VF
where Vq0 is an n-component row vector

Vq0 =

{
1 if i = q0
0 otherwise

and VF , an n-component column vector

V TF =
(

0, 1, . . . , n
)

Given this formulation, we can now implement an asso-
ciative version of the transition function, δ.

δ̂(M, si) = M · inflate(si)

where M is a matrix that encodes the state of the STb, and
si is the ith symbol in string s.
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With an associative version of δ, we can now implement a
data parallel version of Transduce as:

Transduce(STb, s) =

zipwith(φ, map(project, scan(δ̂,MI , s)), s)

To increase efficiency (e.g. remove a pass over the input)
we take advantage of the fact that functions compose. For
example:

map(f, map(g, list)) = map(f · g, list)
and thus we can compose φ with project to rewrite
Transduce as:

Transduce(STb, s) = zipwith(φ · project, scan(δ̂,MI , s), s)

In other words, given a STb, this section describes an au-
tomatic method to compile a STb into an implementation
that is suitable to data-parallel hardware. The end-to-end
pipeline is shown in Figure 6. After a brief example, we
demonstrate how we implement Transduce on a LINQ to
HPC cluster.

A Concrete Example: In this section we walk through
how to build a data-parallel implementation of the simple
BEK program introduced in Section 4.3.

In order to simplify the exposition we use a for the digit
6, we use b for the digit 7, and we use c for any other
character besides a and b. More precisely, a, b, and c are
character predicates that partition the alpbabet Ubv7, but
it is convenient for the exposition to view them as three
distinct characters.

In this view, the STb has control states {0, 1, 2}, input
alphabet Σ = {a, b, c}, initial state 0, and whose δ and φ can
be depicted as:

0

c/[c]       

2

a/[]

1

b/[]

a/[12+a]

b/[12+b]

c/[a,c]

a/[22+a]

b/[22+b]

c/[b,c]

There are three symbols in our input alphabet a, b and
c: thus we have three adjacency matrices (Ma, Mb and Mc)
that describe how every state in the STb transitions when
reading symbols a, b and c, respectively.

Ma = inflate(a) =

 0 0 1
1 0 0
1 0 0



Mb = inflate(b) =

 0 1 0
1 0 0
1 0 0



Mc = inflate(c) =

 1 0 0
1 0 0
1 0 0



Suppose we are given the input s = εab. To Transduce(s), we
first calculate a scan over the symbols in s which produces
the sequence

[(MI), (MI ·Ma), (MI ·Ma ·Mb)]

With matrices:

[

 1 0 0
0 1 0
0 0 1

,
 0 0 1

1 0 0
1 0 0

,
 1 0 0

0 1 0
0 1 0

]

We then compute the higher-order functions

zipwith(φ · project, [(MI), (MI ·Ma), (MI ·Ma ·Mb)], εab)

to produce the output string: [12 + b]

4.5 Implementing STb on Parallel Hardware

LINQ-to-HPC is a data-parallel framework that translates
declarative SQL like queries into a dataflow graph, which it
then compiles to run on a large cluster [5]. Unfortunately,
LINQ-to-HPC does not implement the data-parallel primi-
tives scan and zipwith and thus we were forced to imple-
ment these primitives.

In particular, scan is non-trivial to implement
efficiently[17, 20]. Our first implementation in LINQ-
to-HPC that was based off the implementations detailed
in prior work had terrible performance; in these imple-
mentations, at each step of the parallel algorithm, each
processor has to communicate with another and thus
parallel performance is dominated by communication. In
a GPU, where on-chip memory is used for communication
between threads this may be sufficient to get good parallel
performance. However, in a LINQ-to-HPC cluster where
communication occurs over the network, we were unable to
get good performance.

Given this first failed attempt, our second and final im-
plementation was optimized to reduce the amount of com-
munication required during scan to a minimum. We did this
by making each machine perform a sequential scan on large
amounts of data before communicating the result of that
scan to other processors in the cluster.

Our implementation is a few hundred lines of C#. The
intuition behind our approach is that we can break the input
up into sections, so each processor in a cluster works on an
isolated contiguous section of the input. If each processor
knew the starting state of the STb for its section of the input,
the problem would be embarrassingly parallel (e.g. each
processor works in isolation over its part of the input). Our
implementation of scan is designed to efficiently calculate
the starting state of the STb for each of the P processors in
the cluster. Our implementation has the following steps:

1. Local Reduce: Given an input string s with N = |s|
symbols and P processors, each processor computes a
local sequential reduction of δ̂ over N/P consecutive
symbols in s. This results in P matrices where Mp is

the partial reduction of δ̂ over processor p’s section of
the symbols in s.

2. Scan: One processor does a scan, using δ̂, of the P
matrices computed in the prior step. After this scan,
matrix Mp encodes the starting state of the STb for
processor p.

3. Local Zipwith: The problem has now become embar-
rassingly parallel: the prior two steps calculated the start-
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BEK Program Transducer
φ· project

scan(δ,M,s)
zipwith out

Figure 6. The pipeline for compiling from Bek to a data-parallel implementation. We start with a Bek program, then

compile the program to a symbolic branching transducer. From the transducer we derive the associative operators φ and δ̂.
We plug these operators into the data-parallel primitives scan and project along with the input string s and a matrix M
that encodes the state of the transducer. Finally we feed these to the zipwith primitive which in turn yields the output out.

ing state of the STb for each of the P processors in the
cluster. Each of the P processors takes a second pass over
its section of the input, calling φ ·project for each matrix

The following picture shows the communication pattern:

1) Local Reduce

2) Scan

3) Local Zipwith

p0 p1 p2 p3

p0

p0 p1 p2 p3

Note that our approach has little communication; each pro-
cessor works in isolation in both the first and third steps.
The only serialization of the algorithm occurs when a sin-
gle processor does a scan over the partial reductions com-
puted in the Step 1. If p is the number of processors, and
n is the size of the input, then when p << n our im-
plementation will have good performance and scaling be-
cause p bounds the amount of communication—and thus
performance-killing serialization—in the cluster.

5. Evaluation

This section is organized as follows. Section 5.1 talks about
the exploration overhead. Section 5.2 discusses consistency
of our Bek encoders and those from other libraries. Sec-
tion 5.3 focuses on compiling to JavaScript, C, and C# from
Bek. Finally, Section 5.4 talks about compiling Bek pro-
grams to run on a data-parallel cluster and discusses the
significant throughput improvements achieved with this ap-
proach.

5.1 Exploration Overhead

Figure 7 shows the number of states in four representative
sanitizers before exploration, compared with Boolean ex-
ploration, and with full exploration. These encoders match
those extracted from Microsoft AntiXSS and other simi-
lar sanitization libraries [9]. Their Bek translations can be
found online at http://rise4fun.com/bek. The speed of the
exploration algorithms depends on the size of the reachable
state space. For our examples, this is small due to restricted
range of the values stored in the registers. The time to do
full exploration is less than .1 second for the encoders in
Figure 7.

States

Sanitizer Original Explored

UTF8Encode 1 5
CssEncode 1 5
HtmlDecode 1 113
HtmlEncode 1 113

Figure 7. Input statistics and
number of control states in
unexplored and fully-explored
transducers.

First, we discuss
the cost of our explo-
ration algorithm in
terms of the speed to
perform exploration
and the number of
states added.

In terms of states,
STbs provide an expo-
nential reduction, in
terms of the size of
the alphabet, com-
pared to classical fi-
nite state transducers. Classical transducers would need in
the order of 216 transitions in all cases. This enables us to
perform additional analysis on STbs, by reduction to STs,
that would not scale on the corresponding classical transduc-
ers. In this section, we use suffix F refers to full exploration.

5.2 Consistency of Encoders

Our approach to checking the consistency of
the Bek-generated sanitizers with the orig-
inal versions relies on large-scale testing.

0 0-D7FF|E000-FFFF

1

D800-DBFF       DC00-DFFF

We generate a set
of 1,000 strings
and evaluate
both the original
sanitizer and the
generated code on
each input. The
strings are chosen
randomly and
then checked to
ensure that they
are accepted by
the finite state
automaton to the right to ensure that the inputs are legal.

Routine Lib. Ver. LOC

CSSEncode AntiXSS 2.4 206

UTF8Encode .NET 4.5 310

HTMLDecode AntiXSS 2.4 110

HTMLEncode AntiXSS 2.4 110

Figure 8. Pre-existing sanitiz-
ers used for comparison.

We used
independently-
produced imple-
mentations in C#
listed in Figure 8
for comparison. The
independent imple-
mentations came
from .NET 4.5 core
libraries and the
AntiXSS encoder
library.

5.3 Serial
Execution

We discuss client-side complication to JavaScript and server-
side compilation to C and C# in turn. We evaluated
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Impl. Running time
Language Routine 50 500

UTF8Encode implementations compared

C#
.NET 2 16
Bek 2 14
Bek explored 1 10

C Bek explored 1.06 3.35

CSSEncode implementations compared

C#
AntiXSS hand-written 7 73
Bek default 2 21
Bek explored 2 25

C
Bek 2.44 14.28
Bek explored 2.41 15.07

HtmlDecode implementations compared

C#
Bek default <1 5
Bek explored <1 6

HtmlEncode implementations compared

C#
AntiXSS hand-written 6 55
Bek default 3 25
Bek explored 3 30

Figure 9. Running times for inputs of size 50 and 500.

the running time of our client-side JavaScript implemen-
tations obtained from Bek using Google Chrome ver-
sion 20.0.1132.47, build 144678, with the V8 JavaScript en-
gine version 3.10.8.19. We run for 100 iterations each on two
sets consisting of 1, 000 randomly generated test strings. The
first set contains strings of 50 characters while the second
contains strings of 500 characters.

Client-side: compiling to JavaScript: The results
forJavaScript compilation are shown in Figure 10.
Overall, the running times for the Bek-provided
implementatatin in JavaScript are comparable to
those for other libraries. In some cases (UTF8Encode)
we run slower, in some cases (CSSEncode) faster.

Impl. Running time
Language Routine 50 500

UTF8Encode implementations compared

JavaScript
PHP.JS 0.79 5.39
WebTK 2.34 15.17
Bek 9.83 88.45

CSSEncode implementations compared

JavaScript
OWASP 196.73 1,976.02
Bek 9.47 80.68

HtmlDecode implementations compared

JavaScript Bek 9.45 81.16

HtmlEncode implementations compared
JavaScript Bek 21.66 201.05

Figure 10. Client-side running times
for inputs of size 50 and 500.

We believe
that part of
our speed
difference
may arise
from edge
case checks
performed by
Bek code that
are not in the
other imple-
mentations. In
practice, hav-
ing encoders
that run the
same no mat-
ter where
the code is
executed is
necessary to fluidly migrate code between the server and
the client. The main advantage of using Bek is the ability
to achieve parity with server-side implementations in
JavaScript.

Server-side: Compiling to C and C#: Next, we focus
on compiling to C# and C so that our encoders can run on
the server. Figure 9 shows a speed comparison.

The C# running times are competitive with other library
implementatoins, beating AntiXSS 3-fold for CSSEncode

and 2-fold for HtmlEncode. Translating to C gives a consid-
erable boost in terms of execution time, especially noticable
for larger inputs (strings of length 500). Speed improvements
range from 2x to about 5x. These increases in execution time
are consistent with the overall speed of a managed runtime
such as .NET compared to a C version. We hypothesize that
in our case, for small inputs, the overhead of explicit memory
allocation calls to malloc and free dominates the execution
time. for UTF8Encode at length 500, the built-in .NET ver-
sion is about 60% slower than the Bek-generated version
and is almost 5 times slower than the C version.

5.4 Cloud: Compiling to a Data-Parallel Cluster

While sequential performance is of great practical value,
our translation from Bek really shines when we use par-
allel hardware as a translation target. In this section we
demonstrate our translation approach on a small LINQ-to-
HPC cluster and show multi-factor performance improve-
ments over a sequential baseline.

Platform: We conducted all experiments on an un-
loaded cluster of 32-machines. Each machine is an In-
tel 2 GHz (L5420) workstation with 16 GB of RAM per
machine. During our experiments, one machine of the 32
is used as a “head node” to coordinate communication and
schedule jobs across the cluster. This means we have 31 ma-
chines for core computation.

Distributed Measurement: For our experiments in this
section, we used a very large 32 GB HTML file, obtained
from the web. We distributed the 32 GB of data to each of
the 31 machines; each machine stored a little over 1 GB of
HTML locally on its hard disk. We measured the time it
takes to complete a single transduction of the HTML (e.g.
reading HTML from disk, computing the transduction, and
finally writing the transformed input to disk). We then com-
puted the Bek program’s throughput by dividing the num-
ber of bytes encoded by the time it takes to do the encoding.
To get statistically significant results, we ran each experi-
ment 10 times and reported the mean and 95% confidence
interval of the mean.

Throughput of Data-Parallel Bek Programs: We eval-
uate the performance of the four Bek encoders intro-
duced in Section 5.1: CSSEncode, UTF8Encode, HTMLDecode,
HTMLEncode.

In Figure 11 we show our data-parallel implementations
are much faster at 13x, 9.5x, 13.7x, and 8.7x respectively, for
UTF8Encode, CSSEncode, HTMLDecode, and HTMLEncode than
their sequential C# implementations. To compute a baseline
for each encoder, we ran the sequential C# encoders over a
32 GB data file obtained from the Bing search engine. We
then ran each data-parallel version of the encoder on a 32
node cluster running the LINQ-to-HPC framework.

There are two interesting features of this graph.

• Our data-parallel Bek programs are fast: the through-
put for 32 GB of data (far right point of x -axis)
are 141, 205, 196, and 126 megabytes per second, re-
spectively, for CSSEncode, UTF8Encode, HTMLDecode, and
HTMLEncode, respectively. The reason for the difference is
due to the amount of data each encoder writes. For ex-
ample, most HTML input is already in UTF8 so for every
byte in the input, the encoder writes a single byte. In con-
trast, HTML encoding sometimes writes more than one
byte for any input byte (e.g. to encode the & character
the encoder writes &amp;). Furthermore, CSSEncode does
the most encoding and thus has the lowest throughput.
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Figure 11. The throughput of various Bek encoders on
large data, shown in GB/s on the y axis, as function on
input size on the x axis.

• We see nice scaling as we increase the size of the input
from 1 megabyte up to 5,000 megabytes (e.g. as we
move along the x axis). At this point, throughput of the
algorithm ceases to scale. We suspect this is due to disk
IO being the bottleneck in the computation. Because our
approach is data-parallel, we expect that if we increase
the size of the cluster, we can amortize this IO across
more machines and thus get more scaling.

Overall, these order-of-magnitude throughput improvements
across the board are significant and enable considerably
larger amounts of cloud-based data processing than would
be possible on a single machine.

6. Related Work

Symbolic finite transducers (SFTs) and Bek were originally
introduced in [9] with a focus on security analysis of san-
itizers. The key properties that are studied in [9] from a
practical point of view are idempotence, commutativity and
equivalence checking of sanitizers. The formal foundations
and the theoretical analysis of the underlying SFT algo-
rithms, in particular, an algorithm for deciding equivalence
of SFTs, modulo a decidable background theory is studied
in [21], including a more general 1-equality algorithm that
factors out the decision problem for single-valuedness, and
allows non-determinism without violating single-valuedness.
The formalism of SFTs is also extended in [21] to Symbolic
Transducers (STs) that allow the use of registers. The fo-
cus of the current paper and the motivation is code gener-
ation. The two extensions of STs that we introduce in the
current paper are conditional branching and exception han-
dling. From the point of view of analysis, such as equivalence
checking, the branching rules do not offer more expressive-

ness, because the branching rules can be flattened, however
the branching rules maintain the evaluation order of con-
ditions, and, more importantly, maintain the semantics of
exception handling that is essential for correct code gen-
eration. Exploration algorithms for STs are not studied or
analyzed in [9, 21], nor is efficient compilation.

In recent years there has been considerable interest in au-
tomata over infinite languages [19], starting with the work on
finite memory automata [11], also called register automata.
Finite words over an infinite alphabet are often called data
words in the literature. Other automata models over data
words are pebble automata [15] and data automata [4]. Sev-
eral characterizations of logics with respect to different mod-
els of data word automata are studied in [3]. This line of
work focuses on fundamental questions about definability,
decidability, complexity, and expressiveness on classes of au-
tomata on one hand and fragments of logic on the other
hand. A different line of work on automata with infinite al-
phabets introduces lattice automata [7] that are finite state
automata whose transitions are labeled by elements of an
atomic lattice with motivation coming from verification of
symbolic communicating machines. To the best of our knowl-
edge, we do not know of prior work that has investigated the
use of extensions of transducers for code generation.

Streaming transducers [1] provide another recent sym-
bolic extension of finite transducers where the label theories
are restricted to be total orders, in order to maintain de-
cidability of equivalence. Streaming transducers are largely
orthogonal to SFTs or the extension of STs with branch-
ing rules, as presented in the current paper. For example,
streaming transducers allow reversing the input, which is
not possible with STbs, while arithmetic is not allowed in
streaming transducers but plays a central role in our ap-
plications of STbs to string encoders. The work in [16] in-
troduces a different symbolic extension to finite state trans-
ducers called predicate-augmented finite state transducers.
Besides identities, it is not possible to establish functional
dependencies from input to output that are needed for ex-
ample to encode transformations such as UTF8Encode.

We use the SMT solver Z3 [6] for incrementally solv-
ing label constraints that arise during the exploration al-
gorithm. Similar applications of SMT techniques have been
introduced in the context of symbolic execution of programs
by using path conditions to represent under and over approx-
imations of reachable states [8]. The distinguishing feature
of our exploration algorithm is that it computes a precise
transformation that is symbolic with respect to input labels,
while allowing different levels of concretization with respect
to the state variables. The resulting STb is not an under
or over approximation, but functionally equivalent to the
original STb. This is important for correct code generation,
as opposed to other applications such as test case genera-
tion, where under approximations are used, or verification
of safety properties, where over approximations are used.

Finite state transducers have been used for dynamic and
static analysis to validate sanitization functions in web ap-
plications in [2], by an over-approximation of the strings
accepted by the sanitizer using static analysis of exist-
ing PHP code. Other security analysis of PHP code, e.g.,
SQL injection attacks, use string analyzers to obtain over-
approximations (in form of context-free grammars) of the
HTML output by a server [13, 22]. Yu et.al. show how mul-
tiple automata can be composed to model looping code [23].
Our work is complementary to previous efforts in using
SMT solvers to solve problems related to list transforma-
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tions. HAMPI [12] and Kaluza [18] extend the STP solver
to handle equations over strings and equations with multiple
variables. The work in [10] shows how to solve subset con-
straints on regular languages. We are not aware of previous
work investigating the use of finite transducers for efficient
code generation. One obvious explanation for this is that
classical finite transducers are not directly suited for this
purpose; as we have demonstrated, finite state STbs can be
exponentially more succinct than classical finite transducers
with respect to alphabet size.

7. Conclusions

We showed how to compile a domain-specific language called
Bek to produce consistent and fast sanitizers across a range
of languages, some server- and others client-based. At the
core of Bek is a novel representation called symbolic branch-
ing transducers. We introduced a new exploration algorithm
on symbolic branching transducers that performs partial
symbolic evaluation and can in some cases remove regis-
ter state that impedes parallelism. We showed how to com-
pile the resulting finite state transducers to data-parallel
hardware. Our compilation results in significant runtime im-
provements: our generated C# code outperforms the previ-
ous hand-tuned code by a factor of up to 3. Our data-parallel
compilation acheives more impressive results of up to 13.7
times speedup on a 32-node cluster, compared to a sequen-
tial implementation.
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