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Abstract

JavaScript is a language that is widely-used for both web-based and standalone applications

such as those in the Windows 8 operating system. Analysis of JavaScript has long been known

to be challenging due to the language’s dynamic nature. On top of that, most JavaScript

applications rely on large and complex libraries and frameworks, often written in a combination

of JavaScript and native code such as C and C++. Stubs have been commonly employed as

a partial specification mechanism to address the library problem; alas, they are tedious and

error-prone.

However, the manner in which library code is used within applications often sheds light on

what library APIs return or pass into callbacks declared within the application. In this paper,

we propose a technique which combines pointer analysis with a novel use analysis to handle

many challenges posed by large JavaScript libraries. Our techniques have been implemented

and empirically validated on a set of 25 Windows 8 JavaScript applications, averaging 1,587

lines of code, together with about 30,000 lines of library code, demonstrating a combination

of scalability and precision.
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I. INTRODUCTION

While JavaScript is increasingly used for both web and
server-side programming, it is a challenging language for
static analysis due to its highly dynamic nature. Recently
much attention has been directed at handling the peculiar
features of JavaScript in pointer analysis [7, 13, 14], data flow
analysis [17, 18], and type systems [25, 26].

The majority of work thus far has largely ignored the fact
that JavaScript programs usually execute in a rich execution
environment. Indeed, Web applications run in a browser-based
environment interacting with the page through the extensive
HTML DOM API or sophisticated libraries such as jQuery.
Similarly, node.js applications run inside an application
server. Finally, JavaScript applications in the Windows 8 OS,
which are targets of the analysis in this paper, call into the
underlying OS through the Windows 8 runtime. In-depth static
analysis of these application hinges on our understanding of
libraries and frameworks.

Unfortunately, environment libraries such as the HTML
DOM and the Windows 8 runtime lack a full JavaScript
implementation, relying on underlying C or C++, which is
outside of what a JavaScript static analyzers can reason
about. Popular libraries, such as jQuery, have a JavaScript
implementation, but are hard to reason about due to their
heavy use of reflective JavaScript features, such as eval,
computed properties, runtime addition of fields, etc. The stan-
dard solution to overcome these problems is to write partial
JavaScript implementations (also known as stubs) to partially
model library API functionality. Unfortunately, writing stubs
is tedious, time-consuming, and error-prone.

Use analysis: The key technical insight that motivates this
paper is that observing uses of library functionality within
application code can shed much light on the structure and
functionality of (unavailable) library code. By way of analogy,
observing the effect on surrounding planets and stars can
provide a way to estimate the mass of an (invisible) black
hole. This paper describes how to overcome the challenges
described above using an inference approach that combines
pointer analysis and use analysis to recover necessary infor-
mation about the structure of objects returned from libraries
and passed into callbacks declared within the application.

Example 1 We open with an example illustrating several of
the challenges posed by libraries, and how our technique can
overcome these challenges. The code below is representative
of much DOM-manipulating code that we see in JavaScript
applications.

var canvas = document.querySelector("#leftcol .logo");
var context = canvas.getContext("2d");
context.fillRect(20, 20, c.width / 2, c.height / 2);
context.strokeRect(0, 0, c.width, c. height);

In this example, the call to querySelector retrieves
a <canvas> element represented at runtime by an
HTMLCanvasElement object; the context variable points to
a CanvasRenderingContext2D object at runtime. context
is then used for drawing both a filled and stroked rectangle

on the canvas. Since these objects and functions are imple-
mented as part of the browser API and HTML DOM, no
JavaScript implementation that accurately represents them is
readily available. Furthermore, note that the return value of the
querySelector call depends on the CSS expression provided
as a string parameter, which is difficult to reason about without
an accurate model of the underlying HTML page. There are
two common approaches for attempting to analyze this code
statically:
• model querySelector as (unsoundly) returning a refer-

ence to HTMLElement.prototype. This approach suffers
from a simple problem: HTMLElement.prototype does
not define getContext, so this call will still be unre-
solved. This is the approach used for auto-completion
suggestions in the Eclipse IDE.

• model querySelector as returning any HTML element
within the underlying page. While this approach correctly
includes the canvas element, it suffers from returning
elements on which getContext is undefined. While
previous work [17] has focused on tracking elements
based on their ids and types, extending this to tracking
CSS selector expressions is non-trivial.

Neither solution is really acceptable. In contrast, our anal-
ysis will use pointer information to resolve the call to
document.querySelector and then apply use analysis to
discover that the returned object must have at least three
properties: getContext, width, and height, assuming the
program runs correctly. Looking through the static heap
approximation, only the HTMLCanvasElement has all three
properties. Assuming we have the whole program available for
analysis, this must be the object returned by querySelector.
From here on, pointer analysis can resolve the remaining calls
to fillRect and strokeRect. �

A. Applications of the Analysis

The idea of combining pointer analysis and use analysis
turns out to be powerful and useful in a variety of settings,
some of which we outline below.

Call graph discovery: Knowledge about the call graph is use-
ful for a range of analysis tools. Unlike C or Java, in JavaScript
call graphs are surprisingly difficult to construct. Reasons for
this include reflection, passing anonymous function closures
around the program, and lack of static typing, combined with
an ad-hoc namespace creation discipline.

API surface discovery: Knowing the portion of an important
library such as WinRT utilized by an applications is useful for
determining the application’s attack perimeter. In aggregate,
running this analysis against many applications can provide
general API use statistics for a library helpful for maintaining
it (e.g., by identifying APIs that are commonly used and which
may therefore be undesirable to deprecate).
Capability analysis The Windows 8 application model
involves a manifest that requires capabilities such as
camera access or gps location access to be statically
declared. However, in practice, because developers tend to
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over-provision capabilities in the manifest [15], static analysis
is a useful tool for inferring capabilities that are actually
needed [10].
Automatic stub creation Our analysis technique can create
stubs from scratch or identify gaps in a given stub collection.
When aggregated across a range of application, over time this
leads to an enhanced library of stubs useful for analysis and
documentation.
Auto-complete Auto-complete or code completion has tradi-
tionally been a challenge for JavaScript. Our analysis makes
significant strides in the direction of better auto-complete,
without resorting to code execution, as shown in Section V-D.
Concrete types Since JavaScript does not have declared types,
pointer analysis information is especially useful for computing
concrete types. Use analysis increases precision by observing
how objects are used.

Throughout this paper, our emphasis is on providing a
practically useful analysis, favoring practical utility even if
it occasionally means sacrificing soundness. Note that our
analysis can be a useful building block for (sound) verification
tools [?]. We further explain the soundness trade-offs in
Section II-D.

B. Contributions

Our paper makes the following contributions:
• We propose a strategy for analyzing JavaScript code in

the presence of large complex libraries, often imple-
mented in other languages. As a key technical contribu-
tion, our analysis combines pointer analysis with a novel
use analysis that captures how objects returned by and
passed into libraries are used within application code,
without analyzing library code.

• Our analysis is declarative, expressed as a collection of
Datalog inference rules, allowing for easy maintenance,
porting, and modification.

• Our techniques in this paper include partial and full
iterative analysis, the former depending on the existence
of stubs, the latter analyzing the application without any
stubs or library specifications.

• Our analysis is useful for a variety of applications.
Use analysis improves points-to results, thereby improv-
ing call graph resolution and enabling other important
applications such as inferring structured object types,
interactive auto-completion, and API use discovery.

• We experimentally evaluate our techniques based on a
suite of 25 Windows 8 JavaScript applications, averag-
ing 1,587 line of code, in combination with about 30,000
lines of partial stubs. When using our analysis for call
graph resolution, a highly non-trivial task for JavaScript,
the median percentage of resolved calls sites increases
from 71.5% to 81.5% with partial inference.

• Our analysis is immediately effective in two practical
settings. First, our analysis finds about twice as many
WinRT API calls compared to a naı̈ve pattern-based
analysis (Section V-C). Second, in our auto-completion
case study (Section V-D) we out-perform four major

widely-used JavaScript IDEs in terms of the quality of
auto-complete suggestions.

C. Paper Organization

The rest of the paper is organized as follows. Section II
outlines inherent analysis challenges our approach needs to ad-
dress. Section III gives motivation for the inference techniques
this paper uses. Section IV provides a detailed description
of our implementation as well as Datalog inference rules.
Section V describes our experimental evaluation. Finally,
Sections VI and VII describe related work and conclude.

II. ANALYSIS CHALLENGES

Before we proceed further, we summarize the challenges
faced by any static analysis tool when trying to analyze
JavaScript applications that depend on libraries.

A. Whole Program Analysis

Whole program analysis in JavaScript has long been known
to be problematic [7, 14]. Indeed, libraries such as the Browser
API, the HTML DOM, node.js and the Windows 8 API
are all implemented in native languages such as C and C++;
these implementations are therefore often simply unavailable
to static analysis. Since no JavaScript implementation exists,
static analysis tool authors are often forced to create stubs.
This, however, brings in the issues of stub completeness as
well as development costs. Finally, JavaScript code frequently
uses dynamic code loading, requiring static analysis at run-
time [14], further complicating whole-program analysis.

B. Underlying Libraries & Frameworks

While analyzing code that relies on rich libraries has
been recognized as a challenge for languages such as Java,
JavaScript presents a set of unique issues.

Complexity: Even if the application code is well-behaved
and amenable to analysis, complex JavaScript applications
frequently use libraries such as jQuery and Prototype. While
these are implemented in JavaScript, they present their own
challenges because of extensive use of reflection such as eval
or computed property names. Recent work has made some
progress towards understanding and handling eval [16, 23],
but these approaches are still fairly limited and do not fully
handle all the challenges inherent to large applications.

Scale of libraries: Underlying libraries and frameworks are
often very large. In the case of Windows 8 applications,
they are around 30,000 lines of code, compared to 1,587
for applications on average. Requiring them to be analyzed
every time an application is subjected to analysis results in
excessively long running times for the static analyzer.
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C. Tracking Interprocedural Flow

Points-to analysis effectively embeds an analysis of inter-
procedural data flow to model how data is copied across
the program. However, properly modeling interprocedural data
flow is a formidable task.

Containers: The use of arrays, lists, maps, and other com-
plex data structures frequently leads to conflated data flow
in static analysis; an example of this is when analysis
is not able to statically differentiate distinct indices of
an array. This problem is exacerbated in JavaScript be-
cause of excessive use of the DOM, which can be ad-
dressed both directly and through tree pointer traversal.
For instance document.body is a direct lookup, whereas
document.getElementsByName("body")[0] is an indirect
lookup. Such indirect lookups present special challenges for
static analyses because they require explicit tracking of the as-
sociation between lookup keys and their values. This problem
quickly becomes unmanageable when CSS selector expres-
sions are considered (e.g., the jQuery $() selector function),
as this would require the static analysis to reason about the
tree structure of the page.

Reflective calls: Another typical challenge of analyzing
JavaScript code stems from reflective calls into application
code being “invisible” [20]. As a result, callbacks within the
application invoked reflectively will have no actuals linked
to their formal parameters, leading to variables within these
callback functions having empty points-to sets.

D. Soundness

While soundness is a highly attractive goal for static anal-
ysis, it is not one we are pursuing in this paper, opting
for practical utility on a range of applications that do not
necessarily require soundness. JavaScript is a complex lan-
guage with a number of dynamic features that are difficult
or impossible to handle fully statically [16, 23] and hard-to-
understand semantic features [9, 21].

We have considered several options before making the deci-
sion to forgo conservative analysis. One approach is defining
language subsets to capture when analysis results are sound.
While this is a well-known strategy, we believe that following
this path leads to unsatisfactory results.

First, language restrictions are too strict for real programs:
dealing with difficult-to-analyze JavaScript language con-
structs such as with and eval and intricacies of the execution
environment such as the Function object, etc. While language
restrictions have been used in the past [13], these limitations
generally only apply to small programs (i.e. Google Widgets,
which are mostly under 100 lines of code). When one is
faced with bodies of code consisting of thousands of lines and
containing complex libraries such as jQuery, most language
restrictions are immediately violated.

Second, soundness assumptions are too difficult to under-
stand and verify statically. For example, in Ali et al. [1] merely
explaining the soundness assumptions requires three pages of
text. It is not clear how to statically check these assumptions,

Win8 Application

DOM
(45k objects)

Builtin
(1k objects)

WinJS
(1k objects)WinRT

(13k objects)

Fig. 1: Composition of a typical Windows 8 JavaScript application.
Name Lines Functions Alloc. sites Fields

Builtin 225 161 1,039 190
DOM 21,881 12,696 44,947 1,326
WinJS 404 346 1,114 445
Windows 8 API 7,213 2,970 13,989 3,834
Total 29,723 16,173 61,089 5,795

Fig. 2: Approximate stub sizes for widely-used libraries.

either, not to mention doing so efficiently, bringing the prac-
tical utility of such an approach into question.

Example 2 Consider the code below as an illustration of
why pursuing a fully sound approach will yield results that
unusable in practice:

var x = getLibraryObject();
if (P) {

y = x.foo();
} else {

y = x.toString();
}

indeed, in this case, a conservative analysis will conclude
that x may have function toString on it, unifying x with all
objects, whereas our analysis will flow-insensitively conclude
that it must have both toString and foo, only unifying x

with (fewer) objects that have function foo available. �

III. OVERVIEW

The composition of a Windows 8 (or Win8) JavaScript
application is illustrated in Figure 1. These are frequently
complex applications that are not built in isolation: in addition
to resources such as images and HTML, Win8 applications
depend on a range of JavaScript libraries for communicating
with the DOM, both using the built-in JavaScript DOM API
and rich libraries such as jQuery and WinJS (an applica-
tion framework and collection of supporting APIs used for
Windows 8 HTML development), as well as the underlying
Windows runtime. To provide a sense of scale, information
about commonly used stub collections is shown in Figure 2.

A. Analysis Overview

The intuition for the work in this paper is that despite
having incomplete information about this extensive library
functionality, we can still discern much from observing how
developers use library code. For example, if there is a call
whose base is a variable obtained from a library, the variable
must refer to a function for the call to succeed. Similarly, if
there is a load whose base is a variable returned from a library
call, the variable must refer to an object that has that property
for the load to succeed.
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Example 3 A summary of the connection between the con-
crete pointer analysis and use analysis described in this paper
is graphically illustrated in Figure 3. In this example, function
process invokes functions mute and playSound, depending
on which button has been pressed. Both callees accept vari-
able a, an alias of a library-defined Windows.Media.Audio,
as a parameter. The arrows in the figure represent the flow of
constraints.

Points-to analysis (downward arrows) flows facts from
actuals to formals — functions receive information about the
arguments passed into them, while the use analysis (upward
arrows) works in the opposite direction, flowing demands on
the shape of objects passed from formals to actuals.

Specifically, the points-to analysis flows variable a, defined
in process, to formals x and y. Within functions playSound
and mute we discover that these formal arguments must have
functions Volume and Mute defined on them, which flows back
to the library object that variable a must point to. Its shape
as a result must contain at least functions Volume and Mute.
�

Use analysis: The notion of use analysis above leads us to an
inference technique, which comes in two flavors: partial and
full.

Partial inference assumes that stubs for libraries are avail-
able. Stubs are not required to be complete implementations,
instead, function implementations are frequently completely
omitted, leading to missing data flow. What is required is
that all objects, functions and properties (JavaScript term for
fields) exposed by the library are described in the stub. Partial
inference solves the problem of missing flow between library
and application code by linking together objects of matching
shapes, a process we call unification (Section IV-C).

Full inference is similar to partial inference, but goes further
in that it does not depend on the existence of any stubs.
Instead it attempts to infer library APIs based on uses found
in the application. Paradoxically, full inference is often faster
than partial inference, as it does not need to analyze large
collections of stubs, which is also wasteful, as a typical
application only requires a small portion of them.

In the rest of this section, we will build up the intuition for
the analysis we formulate. Precise analysis details are found
in Section IV.

Library stubs: Stubs are commonly used for static analysis
in a variety of languages, starting from libc stubs for C
programs, to complex and numerous stubs for JavaScript built-
ins and DOM functionality.

Example 4 Here is an example of stubs from the WinRT
library. Note that stub functions are empty.

Windows.Storage.Stream.FileOutputStream = function() {};
Windows.Storage.Strean.FileOutputStream.prototype = {

writeAsync = function() {},
flushAsync = function() {},
close = function() {}

}

function playSound(x){
  x.Volume(30);
  ...
}

function process(button){
  var a = Windows.Media.Audio;
  if(button == ‘Mute’)
    mute(a);
  if(button == ‘Play’)
    playSound(a);
  ...

a flows to parameter x

function mute(y){
  y.Mute();
}

$AudioPrototype$ = 
 { 
   Volume = function(){},
   Mute = function(){}
}

a flows to parameter y

Constraint “x has 
function Volume” 
propagates to a

Constraint “y has 
function Mute” 
propagates to a

Fig. 3: Points-to flowing facts downwards and use analysis flowing
data upwards.

This stub models the structure of the FileOuputStream

object and its prototype object. It does not, however, capture
the fact that writeAsync and flushAsync functions return
an AsyncResults object. Use analysis can, however, discover
this if we consider the following code:

var s = Windows.Storage.Stream;
var fs = new s.FileOutputStream(...)
fs.writeAsync(...).then(function() {

...
});

We can observe from this that fs.writeAsync should re-
turn an object whose then is a function. These facts al-
low us to unify the return result of writeAsync with the
PromiseJProtoK object, the prototype of the Promise object
declared in the WinJS library. �

B. Symbolic Locations and Unification

Abstract locations are typically used in program analyses
such as a points-to analysis to approximate objects allocated
in the program at runtime. We employ the allocation site
abstraction as an approximation of runtime object allocation
(denoted by domain H in our analysis formulation). In this
paper we consider the partial and full inference scenarios.

It is useful to distinguish between abstract locations in the
heap within the application (denoted as HA) and those within
libraries (denoted as HL). Additionally, we maintain a set of
symbolic locations HS ; these are necessary for reasoning about
results returned by library calls. In general, both library and
application abstract locations may be returned from such a
call.

It is instructive to consider the connections between the
variable V and heap H domains. Figure 4a shows a connection
between variables and the heap H = HA ∪ HS ∪ HL in
the context of partial inference. Figure 4b shows a similar
connection between variables and the heap H = HA ∪HS in
the context of full inference, which lacks HL. Variables within
the V domain have points-to links to heap elements in H; H
elements are connected with points-to links that have property
names.
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Fig. 4: Partial (a, above) and full (b, below) heaps.

Since at runtime actual objects are either allocated within
the application (HA) or library code (HL), we need to unify
symbolic locations HS with those in HA and HL.

C. Inference Algorithm

Because of missing interprocedural flow, a fundamental
problem with building a practical and usable points-to analysis
is that sometimes variables do not have any abstract locations
that they may point to. Of course, with the exception of dead
code or variables that only point to null and undefined, this
is a static analysis artifact. In the presence of libraries, several
distinct scenarios lead to
• dead returns: when a library function stub lacks a return

value;
• dead arguments: when a callback within the application

is passed into a library and the library stub fails to
properly invoke the callback;

• dead loads: when the base object reference (receiver) has
no points-to targets.

Strategy: Our overall strategy is to create symbolic locations
for all the scenarios above. We implement an iterative algo-
rithm. At each iteration, we run a points-to analysis pass and
then proceed to collect dead arguments, returns, and loads,
introducing symbol locations for each. We then perform a
unification step, where symbolic locations are unified with
abstract locations. A detailed description of this process is
given in Section IV.

Iterative solution: An iterative process is required because
we may discover new points-to targets in the process of
unification. As the points-to relation grows, additional dead
arguments, returns, or loads are generally discovered, requiring
further iterations. Iteration is terminated when we can no

NEWOBJ(v1 : V, h : H, v2 : V ) object instantiation
ASSIGN(v1 : V, v2 : V ) variable assignment
LOAD(v1 : V, v2 : V, p : P ) property load
STORE(v1 : V, p : P, v2 : V ) property store
FORMALARG(f : H, z : Z, v : V ) formal argument
FORMALRET(f : H, v : V ) formal return
ACTUALARG(c : C, z : Z, v : V ) actual argument
ACTUALRET(c : C, v : V ) actual return

CALLGRAPH(c : C, f : H) indicates that f may be
invoked by a call site c

POINTSTO(v : V, h : H) indicates that v may
point to h

HEAPPTSTO(h1 : H, p : P, h2 : H) indicates that h1’s p
property may point to
h2

PROTOTYPE(h1 : H,h2 : H) indicates that h1 may
have h2 in its internal
prototype chain

Fig. 5: Datalog relations used for program representation and pointer
analysis.

longer find dead arguments, dead returns, or dead loads, and
no more unification is possible. Note that the only algorith-
mic change for full analysis is the need to create symbolic
locations for dead loads. We evaluate the iterative behavior
experimentally in Section V-E.
Unification strategies: Unification is the process of linking or
matching symbolic locations with matching abstract locations.
In Section IV-C, we explore three strategies: unify based on
matching of a single property, all properties, and prototype-
based unification.

IV. TECHNIQUES

We base our technique on pointer analysis and use analy-
sis. The pointer-analysis is a relatively straightforward flow-
and context-insensitive subset-based analysis described in
Guarnieri et al. [13]. The analysis is field-sensitive, meaning
that it distinguishes properties of different abstract objects.
The call-graph is constructed on-the-fly because JavaScript
has higher-order functions, and so the points-to and call graph
relations are mutually dependent. The use analysis is based

APPALLOC(h : H),
APPVAR(v : V )

represents that the allocation
site or variable originates from
the application and not the
library

SPECIALPROPERTY(p : P ) properties with special seman-
tics or common properties, such
as prototype or length

PROTOTYPEOBJ(h : H) indicates that the object is used
as a prototype object

Fig. 6: Additional Datalog facts for use analysis.
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POINTSTO(v, h) : – NEWOBJ(v, h, _).
POINTSTO(v1, h) : – ASSIGN(v1, v2), POINTSTO(v2, h).
POINTSTO(v2, h2) : – LOAD(v2, v1, p), POINTSTO(v1, h1), HEAPPTSTO(h1, p, h2).

HEAPPTSTO(h1, p, h2) : – STORE(v1, p, v2), POINTSTO(v1, h2), POINTSTO(v2, h2).
HEAPPTSTO(h1, p, h3) : – PROTOTYPE(h1, h2), HEAPPTSTO(h2, p, h3).
PROTOTYPE(h1, h2) : – NEWOBJ(_, h1, v), POINTSTO(v, f), HEAPPTSTO(f, "prototype", h3).

CALLGRAPH(c, f) : – ACTUALARG(c, 0, v), POINTSTO(v, f).
ASSIGN(v1, v2) : – CALLGRAPH(c, f), FORMALARG(f, i, v1), ACTUALARG(c, i, v2), z > 0.
ASSIGN(v2, v1) : – CALLGRAPH(c, f), FORMALRET(f, v1), ACTUALRET(c, v2).

(a) Inference rules for an inclusion-based points-to analysis expressed in Datalog.

RESOLVEDVARIABLE(v) : – POINTSTO(v, _).
PROTOTYPEOBJ(h) : – PROTOTYPE(_, h).

DEADARGUMENT(f, i) : – FORMALARG(f, i, v),¬RESOLVEDVARIABLE(v), APPALLOC(f), i > 1.
DEADRETURN(c, v2) : – ACTUALARG(c, 0, v1), POINTSTO(v1, f), ACTUALRET(c, v2),

¬RESOLVEDVARIABLE(v2),¬APPALLOC(f).

DEADLOAD(h, p) : – LOAD(v1, v2, p), POINTSTO(v2, h),¬HASPROPERTY(h, p), APPVAR(v1), APPVAR(v2).
DEADLOAD(h2, p) : – LOAD(v1, v2, p), POINTSTO(v2, h1), PROTOTYPE(h1, h2),

¬HASPROPERTY(h2, p), SYMBOLIC(h2), APPVAR(v1), APPVAR(v2).
DEADLOADDYNAMIC(v1, h) : – LOADDYNAMIC(v1, v2), POINTSTO(v2, h),¬RESOLVEDVARIABLE(v1),

APPVAR(v1), APPVAR(v2).

DEADPROTOTYPE(h1) : – NEWOBJ(_, h, v), POINTSTO(v, f), SYMBOLIC(f),¬HASSYMBOLICPROTOTYPE(h).

CANDIDATEOBJECT(h1, h2) : – DEADLOAD(h1, p), HASPROPERTY(h2, p), SYMBOLIC(h1),¬SYMBOLIC(h2),
¬HASDYNAMICPROPS(h1),¬HASDYNAMICPROPS(h2),¬SPECIALPROPERTY(p).

CANDIDATEPROTO(h1, h2) : – DEADLOAD(h1, p), HASPROPERTY(h2, p), SYMBOLIC(h1),¬SYMBOLIC(h2),
¬HASDYNAMICPROPS(h1),¬HASDYNAMICPROPS(h2), PROTOTYPEOBJ(h2).

NOLOCALMATCH(h1, h2) : – PROTOTYPE(h2, h3),
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h2, p),
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h3, p),
CANDIDATEPROTO(h1, h2), CANDIDATEPROTO(h1, h3), h2 6= h3.

UNIFYPROTO(h1, h2) : – ¬NOLOCALMATCH(h1, h2), CANDIDATEPROTO(h1, h2).
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h2, p).

FOUNDPROTOTYPEMATCH(h) : – UNIFYPROTO(h, ).
UNIFYOBJECT(h1, h2) : – CANDIDATEOBJECT(h1, h2),¬FOUNDPROTOTYPEMATCH(h1)

∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h2, p).

(b) Use analysis inference.

Fig. 7: Inference rules for both points-to and use analysis.

on unification of symbolic and abstract locations based on
property names.

A. Pointer Analysis

The input program is represented as a set of facts in relations
of fixed arity and type summarized in Figure 5 and described
below. Relations use the following domains: heap-allocated
objects and functions H , program variables V , call sites C,
properties P , and integers Z.

The pointer analysis implementation is formulated declar-
atively using Datalog, as has been done in range of prior
projects such as Whaley for Java et al. [27] and Gatekeeper for
JavaScript [13]. The JavaScript application is first normalized
and then converted into a set of facts. These are combined
with Datalog analysis rules resolved using the Microsoft Z3
fixpoint solver [8].

Rules for the Andersen-style inclusion-based [2] points-to
analysis are shown in Figure 7a. In the rest of this section, we
shall use the ∀ quantifier and⇒ implication connectives in our
Datalog rules to ease presentation. While these connectives are
usually not supported in Datalog engines, they can be encoded
as follows: C(x, z) : – ∀y.A(x, y)⇒ B(y, z). is equivalent to

the Datalog rules:

N(x, z) : – A(x, y),¬B(y, z).
C(x, z) : – A(x, y), B(y, z),¬N(x, z).

B. Extending with Partial Inference

We now describe how the basic pointer analysis can be
extended with use analysis in the form of partial inference.
In partial inference we assume the existence of stubs that
describe all objects, functions and properties. Function imple-
mentations, as stated before, may be omitted. The purpose of
partial inference is to recover missing flow due to missing
implementations. Flow may be missing in three different
places: arguments, return values, and loads.

• DEADLOAD(h : H, p : P ) where h is an abstract location
and p is a property name. Records that property p is
accessed from h, but h lacks a p property. We capture
this with the rule:

DEADLOAD(h, p) : – LOAD(v1, v2, p),
POINTSTO(v2, h),
¬HASPROPERTY(h, p),
APPVAR(v1),
APPVAR(v2).

Here the POINTSTO(v2, h) constraint ensures that the base
object is resolved. The two APPVAR constraints ensure that

8



the load actually occurs in the application code and not
the library code.

• DEADARGUMENT(f : H, i : Z) where f is a function and i
is an argument index. Records that the i’th argument has
no value. We capture this with the rule:

DEADARGUMENT(f, i) : – FORMALARG(f, i, v),
¬RESOLVEDVARIABLE(v),
APPALLOC(f),
z > 1.

Here the APPALLOC constraint ensures that the argument
occurs in a function within the application code, and not
in the library code; argument counting starts at 1.

• DEADRETURN(c : C, v : V ) where c is a call site and v
is the result value. Records that the return value for call
site c has no value.

DEADRETURN(c, v2) : – ACTUALARG(i, 0, v1),
POINTSTO(v1, f),
ACTUALRET(i, v2),
¬RESOLVEDVARIABLE(v2),
¬APPALLOC(f).

Here the POINTSTO(v1, f) constraint ensures that the call
site has call targets. The ¬APPALLOC(f) constraint ensures
that the function called is not an application function, but
either (a) a library function or (b) a symbolic location.

We use these relations to introduce symbolic locations into
POINTSTO, HEAPPTSTO, and PROTOTYPE as shown in Figure 8.
In particular for every dead load, dead argument and dead
return we introduce a fresh symbolic location. We restrict the
introduction of dead loads by requiring that the base object
is not a symbolic object, unless we are operating in full
inference mode. This means that every load must be unified
with an abstract object, before we consider further unification
for properties on that object. In full inference we have to
drop this restriction, because not all objects are known to the
analysis.

C. Unification

Unification is the process of linking or matching symbolic
locations s with matching abstract locations l. The simplest
form of unification is to do no unification at all. In this case no
actual flow is recovered in the application. Below we explore
unification strategies based on property names.
∃ shared properties: The obvious choice here is to link
objects which share at least one property. Unfortunately, with
this strategy, most objects quickly become linked. Especially
problematic are properties with common names, such as
length or toString, as all objects have these properties.
∀ shared properties: We can improve upon this strategy
by requiring that the linked object must have all proper-
ties of the symbolic object. This drastically cuts down the
amount of unification, but because the shape of s is an over-
approximation, requiring all properties to be present may
link to too few objects, introducing unsoundness. It can also
introduce imprecision: if we have s with function trim(),
we will unify s to all string constants in the program. The
following rule

INFERENCE(constraints, facts, isFull)

1 relations = SOLVE-CONSTRAINTS(constraints, facts)
2 repeat
3 newFacts = MAKE-SYMBOLS(relations, isFull)
4 facts = facts ∪ newFacts
5 relations = SOLVE-CONSTRAINTS(constraints, facts)
6 until newFacts = = ∅

MAKE-SYMBOLS(relations, isFull)

1 facts = ∅
2 for (h, p) ∈ relations.DEADLOAD : H×P
3 if ¬SYMBOLIC(h) or isFull
4 facts ∪ = new HEAPPTSTO(h, p, new H)
5 for (f, i) ∈ relations.DEADARGUMENT : H×Z
6 v = FORMALARG[f, i]
7 facts ∪ = new POINTSTO(v, new H)
8 for (c, v) ∈ relations.DEADRETURN : C×V
9 facts ∪ = new POINTSTO(v, new H)

10 // Unification:
11 for h ∈ relations.DEADPROTOTYPE : H
12 facts ∪ = new PROTOTYPE(h, new H)
13 for (h1, h2) ∈ relations.UNIFYPROTO : H×H
14 facts ∪ = new PROTOTYPE(h1, h2)
15 for (h1, h2) ∈ relations.UNIFYOBJECT : H×H
16 for (h3, p, h1) ∈ relations.HEAPPTSTO : H×P×H
17 facts ∪ = new HEAPPTSTO(h3, p, h2)
18 return facts

Fig. 8: Iterative inference algorithms.

CANDIDATEOBJECT(h1, h2) : – DEADLOAD(h1, p),
HASPROPERTY(h2, p),
SYMBOLIC(h1),
¬SYMBOLIC(h2),
¬HASDYNAMICPROPS(h1),
¬HASDYNAMICPROPS(h2),
¬SPECIALPROPERTY(p).

expresses which symbolic and abstract locations h1 and h2 are
candidates for unification. First, we require that the symbolic
and abstract location share at least one property. Second,
we require that neither the symbolic nor the abstract object
have dynamic properties. Third, we disallow commonly-used
properties, such as prototype and length, as evidence for
unification. The relation below captures when two locations h1

and h2 are unified:
UNIFYOBJECT(h1, h2) : – CANDIDATEOBJECT(h1, h2),

∀p.DEADLOAD(h1, p)⇒
HASPROPERTY(h2, p).

This states that h1 and h2 must be candidates for unification
and that if a property p is accessed from h1 then that property
must be present on h2. If h1 and h2 are unified then the
HEAPPTSTO relation is extended such that any place where h1

may occur h2 may now also occur.

Prototype-based unification: Instead of attempting to unify
with all possible abstract locations l, an often better strategy is
to only unify with those that serve as prototype objects. Such
objects are used in a two-step unification procedure: first, we
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see if all properties of a symbolic object can be satisfied by a
prototype object, if so we unify them and stop the procedure.
If not, we consider all non-prototype objects. We take the
prototype hierarchy into consideration by unifying with the
most precise prototype object.

Example 5 The following example illustrates how this can
improve precision:

var firstName = "Lucky";
var lastName = "Luke";
var favoriteHorse = "Jolly Jumper";
function compareIgnoreCase(s1, s2) {

return s1.toLowerCase() < s2.toLowerCase();
}

Here we have three string constants and a comparator function.
Assume that the comparator is passed into a library as a
callback. In this case the pointer analysis does not know what
the two arguments s1 and s2 may point to, but the use anal-
ysis knows that these arguments must have a toLowerCase

property. The unification, described so far, would continue by
linking the arguments to all abstract locations which have the
toLowerCase property.

Unfortunately, all string constants have this property, so this
over-approximation is overly imprecise. We obtain better uni-
fication by first considering prototype objects. In this case we
discover that the StringJProtoK object has the toLowerCase
property. In prototype-based unification, we merely conclude
that the prototype of s1 and s2 must be StringJProtoK. �

In the above discussion we did not precisely define what
we consider to be prototype objects: we consider all objects
which may flow to the prototype property of some object to
be prototype objects. Furthermore built-in prototype objects,
such as ArrayJProtoK and StringJProtoK, are known to be
prototype objects. This is captured by the PROTOTYPEOBJ rule.

One issue remains: What if multiple prototype objects are
possible for unification? In this case we select the most precise
object in the prototype hierarchy, i.e. the object that is highest
in the prototype chain. This rule captures the fact that it is
possible to unify h1 with h2, but there is also some h3 in
the prototype chain of h2 that could be unified with h1. This
means that h1 and h2 should not be unified.

NOLOCALMATCH(h1, h2) : –
PROTOTYPE(h2, h3),
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h2, p),
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h3, p),
CANDIDATEPROTO(h1, h2),
CANDIDATEPROTO(h1, h3),
h2 6= h3.

We can define prototype-based unification as

UNIFYPROTO(h1, h2) : –
¬NOLOCALMATCH(h1, h2),
CANDIDATEPROTO(h1, h2).
∀p.DEADLOAD(h1, p)⇒ HASPROPERTY(h2, p).

The above captures that h1 and h2 are compatible and there
is no matching object in the prototype chain of h2.

D. Extending with Full Inference

As shown in the pseudo-code in Figure 8, we can extend
the analysis to support full inference with a simple change.
Recall, in full inference we do not assume the existence of
any stubs, and the application is analyzed completely by itself.
We implement this by dropping the restriction that symbolic
locations are only introduced for non-symbolic locations.
Instead we will allow a property of a symbolic location to
point to another symbolic location.

Introducing these symbolic locations will resolve a load,
and in doing so potentially resolve the base of another load.
This is in turn may cause another dead load to appear for
that base object. In this way the algorithm can be viewed as
a frontier expansion along the known base objects. At each
iteration the frontier is expanded by one level. This process
cannot go on forever, as there is only a fixed number of loads,
and thereby dead loads, and at each iteration at least one dead
load is resolved.

E. Namespace Mechanisms

JavaScript has no built-in namespace mechanism and lacks
features for proper encapsulation. Thus, many libraries pro-
vide functionality for emulating these features. A common
approach is to have a function which takes a string (the
namespace) and an object literal, and then creates a namespace
of the shape captured by the object literal:

Example 6 Namespace creation.

WinJS.Namespace.define("GameManager", {
scoreHelper: new ScoreHelper()

});
GameManager.scoreHelper.newScore(...);

This, of course, presents a challenge to static analysis. Luckily,
based on the shape information, use analysis and unification
can infer that the global variable GameManager points to the
object literal passed into the define function. As a result, we
are able to resolve the call to newScore. While unification
succeeds for the above example, some namespace mechanisms
require more work:

var AssetManager = WinJS.Class.define(null, {
playSound: function (sound, volume) { ... }

});
var assetManager = new AssetManager();
assertManager.playSound();

Here the namespace mechanism is used to create a constructor.
The prototype of this function is set to the object literal passed
into define. Of course, the analysis has no way of knowing
this, since no implementation is available. �

We remedy situations like the one described above by
considering objects with dead prototypes. We introduce

DEADPROTOTYPE(h1) : – NEWOBJ(_, h, v),
POINTSTO(v, f),
SYMBOLIC(f),
¬HASSYMBOLICPROTOTYPE(h).
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to track objects that may have missing prototypes. As shown
in Figure 8, at each analysis iteration, for every dead prototype,
we introduce a symbolic object into the prototype chain. This
symbolic object is then subject to unification like all other
symbolic objects. One issue remains: this symbolic prototype
object is never considered in the definition of DEADLOAD and
so is not subject to unification. We handle this by allowing
use analysis to propagate dead loads upwards in the prototype
chain:

DEADLOAD(h2, p) : – LOAD(v1, v2, p),
POINTSTO(v2, h1),
PROTOTYPE(h1, h2),
¬HASPROPERTY(h2, p),
SYMBOLIC(h2),
APPVAR(v1),
APPVAR(v2).

Applied to the example above, the analysis will introduce a
symbolic prototype object for the new statement. The (un-
resolved) access to playSound is then propagated up the
prototype chain. Thus the access to playSound becomes a
dead load on the symbolic prototype object. This in turn
allows unification of the symbolic object and the object literal.
Finally, the call to playSound is properly resolved using the
newly unified object in the prototype chain.

F. Array Access and Dynamic Properties

We now show how our technique can be extended to deal
with array accesses and computed (non-static) property names.
We refer to such loads as dynamic loads. Unfortunately,
reasoning about such loads precisely usually requires more
expensive analysis features, such as flow sensitivity and anal-
ysis of symbolic expressions. As we do not wish to extend
our analysis with these techniques, we opt for a light-weight
approach. We extend the analysis to track dead dynamic loads:
• DEADLOADDYNAMIC(v, h) where v is a variable and h is an

abstract location, states that there is load of an unknown
property from h and the result of this load flows into v.

Unlike regular DEADLOADs we do not wish to introduce a
symbolic object for every possible property of H , instead we
introduce a single symbolic object and inject it directly into V .
This creates a “disconnect” in the heap, but allows the use
analysis to proceed.

Example 7 Here is an example demonstrating this:
function copyAll(files, ext, toDir) {

for(var i = 0; i < files.length; i++) {
var f = files[i];
if (f.FileType == ext) {

f.CopyAsync(toDir);
}

}
}

The dynamic load occurs within expression files[i]. Our
analysis does not track integers and conservatively believes
that any property could be read from files. This in turn
causes the use analysis to conclude that files may have all

Alloc. Call
Lines Functions sites sites Properties Variables

245 11 128 113 231 470
345 74 606 345 298 1,749
402 27 236 137 298 769
434 51 282 194 336 1,007
488 53 369 216 303 1,102
627 59 341 239 353 1,230
647 36 634 175 477 1,333
711 315 1,806 827 670 5,038
735 66 457 242 363 1,567
807 70 467 287 354 1,600
827 33 357 149 315 1,370
843 63 532 268 390 1,704

1,010 138 945 614 451 3,223
1,079 84 989 722 396 2,873
1,088 64 716 266 446 2,394
1,106 119 793 424 413 2,482
1,856 137 991 563 490 3,347
2,141 209 2,238 1,354 428 6,839
2,351 192 1,537 801 525 4,412
2,524 228 1,712 1,203 552 5,321
3,159 161 2,335 799 641 7,326
3,189 244 2,333 939 534 6,297
3,243 108 1,654 740 515 4,517
3,638 305 2,529 1,153 537 7,139
6,169 506 3,682 2,994 725 12,667

1,587 134 1,147 631 442 3,511

Fig. 9: Benchmarks, sorted by lines of code.

possible properties. Usually, this will cause unification to fail
and never find any abstract locations to unify with.

We deal with this situation by introducing a single special
symbolic location. This symbolic location is never unified
with anything and so is left unresolved, but it does allow
the use-analysis to continue for properties read from that
symbolic object. In the above example, this special symbolic
location is introduced for files and the use analysis pro-
ceeds to discover that f must have properties FileType and
CopyAsync. This information is then used for unification of f
with StorageFile. �

V. EXPERIMENTAL EVALUATION

This section talks about our experimental setup in Sec-
tion V-A. Call graph resolution is discussed in Section V-B.
Sections V-C and V-D presents case studies of WinRT API
use inference and auto-completion. Finally, Section V-E talks
about analysis performance.
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Fig. 12: Progression of full inference on a single benchmark.

A. Experimental Setup

We have implemented both the partial and full inference
techniques described in this paper. Our tool is split into a
front-end written in C# and a back-end which uses analysis
rules encoded in Datalog, as shown in Section IV. The front-
end parses JavaScript application files and library stubs and
generates input facts from them. The back-end iteratively
executes the Z3 Datalog engine [8] to solve these constraints
and generate new symbolic facts, as detailed in Section IV. All
times are reported for a Windows 7 machine with a Xeon 64-
bit 4-core CPU at 3.07 GHz with 6 GB of RAM.

We evaluate our tool on a set of 25 JavaScript applications
obtained from the Windows 8 application store. For privacy
and anonymization reasons, we do not mention names of in-
dividual applications, however, http://bit.ly/Trvlux
contains some 175 sample JavaScript similar applications for
Windows 8. To provide a sense of scale, Figure 9 shows line
numbers and sizes of the abstract domains for these applica-
tions. It is important to note the disparity in application size
compared to library stub size presented in Figure 2. In fact,
the average application has 1,587 lines of code compared to
almost 30,000 lines of library stubs, with similar discrepancies
in terms of the number of allocation sites, variables, etc. Partial
analysis takes these sizable stubs into account.

B. Call Graph Resolution

We start by examining call graph resolution. As a baseline
measurement we use the standard pointer analysis provided
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Fig. 13: % of resolved call sites for baseline (points-to without stubs)
and partial inference.

with stubs without use analysis. Figure 13 shows a histogram
of resolved call sites for baseline and partial inference across
our 25 applications. We see that the resolution for baseline is
often poor, with many applications having less than 70% of
call sites resolved. For partial inference, the situation is much
improved with most applications having over 70% call sites
resolved. This conclusively demonstrates that the unification
approach is effective in recovering previously missing flow.
Full inference, as expected, has 100% of call sites resolved.
Full inference, as mentioned previously, is different from
partial inference in that the analysis assumes that no stubs are
provided. That is, there are abstract objects that the analysis
does not know about, so if unification of a symbolic object
fails, full analysis assumes that this is because the object is
actually some concrete object from the library which it does
not know about. This implies that function call resolution for
full inference succeeds in 100% of cases by construction. Note
that the leftmost two bars in Figure 13 for partial inference
are outliers, corresponding to a single application each.

C. Case study: WinRT API Resolution

We have applied analysis techniques described in this paper
to the task of resolving calls to WinRT API in Windows 8
JavaScript applications. WinRT functions serve as an interface
to system calls within the Windows 8 OS. Consequently, this is
a key analysis to perform, as it can be used to compute an ap-
plication’s actual (as compared to declared) capabilities. This
information can identify applications that are over-privileged
and which might therefore be vulnerable to injection attacks or
otherwise provide a basis for authoring malware. The analysis
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Fig. 14: Analysis techniques compared for resolving WinRT API
calls.

can also be used for triaging applications for further validation
and testing.

Figures in the text show aggregate statistics across all bench-
marks, whereas Figure 14 represents the results of our analysis
across 15 applications, those that are largest in our set. To
provide a point of comparison, we implemented a naı̈ve grep-
like analysis by means of a JavaScript language parser which
attempts to detect API use merely by extracting fully-qualified
identifier names used for method calls, property loads, etc.

Technique APIs used

naı̈ve analysis 684
points-to 800

points-to + partial 1,304
points-to + full 1,320

Total 4,108

Techniques compared:
As expected, we observe
that the naı̈ve analysis is
very incomplete in terms
of identifying WinRT us-
age. The base points-to
analysis provides a no-
ticeable improvement in results but is still very incomplete
as compared to the full and partial techniques. Partial and full
analysis are generally comparable in terms of recall, with the
following differences:
• All analysis approaches are superior to naı̈ve analysis.
• The number of API uses found by partial and full is

roughly comparable.
• Results appearing only in full analysis often indicate

missing information in the stubs.
• Partial analysis is effective at generating good results

given fairly minimal observed in-application use when
coupled with accurate stubs.

• As observed previously, common property names lead
to analysis imprecision for partial analysis. Examples of
common property names observed in the WinRT APIs
are name and version.

Examples: We want to highlight several examples that come
from us further examining analysis results.
• Observing the following call

driveUtil.uploadFilesAsync(
server.imagesFolderId).

then( function (results) {...} ))

leads the analysis to correctly map then to
WinJS.Promise.prototype.then.

• Observing a load of the form
var json = Windows.Storage.ApplicationData.current.

localSettings.values[key];

correctly resolves localSettings to an instance of
Windows.Storage.ApplicationDataContainer.

• Partial analysis is able to match results
without many observed uses. For instance,
the call x.getFolderAsync(’backgrounds’) is
correctly resolved to getFolderAsync on object
Windows.Storage.StorageFolder.prototype.

1) Unification Precision: We evaluate the unification tech-
nique based on its effectiveness and its precision. We determine
its effectiveness by measuring how often the technique is able
to unify symbolic locations to abstract locations. Unification
may fail for several reasons: (1) if no use information is
available, (2) if no objects exists with all the required proper-
ties, (3) if the required properties are special properties which
are explicitly excluded, such as the length and prototype

properties. (4) if the symbolic or abstract object has dynami-
cally constructed properties.

We measure precision by examining the new flow intro-
duced by unification. Ideally, as little flow as necessary should
be introduced. Introducing excessive flow will cause spurious
information in the analysis. The balancing act is to be as
effective as possible, without hurting precision.

Figure 10 shows how often the analysis is able to unify
a symbolic location with some number of abstract locations.
The figure shows numbers for both prototype and regular
unification. For prototype unification the median is 8% and
for regular unification it is 28%. The reason regular unifica-
tion succeeds more often than prototype unification is likely
because many application objects are not part of the prototype
hierarchy (i.e. they are simply object literals) or there are
no properties defined on the actual prototype object. We find
the overall unification median to be 35%. Included in these
numbers are symbolic locations for which the use analysis has
no information and so cannot perform any unification. This
happens, for instance, if the return value of a library function
is unused.

Figure 11 shows how often the analysis is able to unify
a symbolic object with a single abstract object. The figure
shows numbers for both prototype and regular unification.
For prototype unification the median is 43.8% and for regular
unification it is 20.0%.
Property Names: The analysis relies on the names of prop-
erties to perform unification of symbolic and abstract objects.
If the application and/or library share property names across
multiple classes and objects spurious unification may occur.
This does not affect soundness, but may hurt precision and
scalability. The problem is typically exacerbated for applica-
tions which have been subject to minification (i.e. the process
of systematically compressing the application by renaming
identifiers). In our data set, we found few minified Windows 8
applications with the result that property names were suffi-
ciently distinct for the analysis to be tractable.
Prototype Hierarchy: The prototype hierarchy of both the
application and the library stubs is used to increase precision of
unification. If no prototype hierarchy is available, either due to
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Eclipse IntelliJ VS 2010 VS 2012
Category Code X # X # X # X #

PARTIAL INFERENCE

1 DOM Loop
var c = document.getElementById("canvas");
var ctx = c.getContext("2d");
var h = c.height;
var w = c.w

7 0 X 35 7 26 X 1

2 Callback

var p = {firstName : "John", lastName : "Doe"};
function compare(p1, p2) {
var c = p1.firstName < p2.firstName;
if(c ! = 0) return c;
return p1.last
}

7 0 X 9 7 7 X? k

3 Local Storage

var p1 = {firstName : ”John”, lastName : ”Doe”};
localStorage.putItem(”person”, p1);
var p2 = localStorage.getItem(”person”);
document.writeln(”Mr.” + p2.lastName+
”, ” + p2.f );

7 0 X 50+ 7 7 7 7

FULL INFERENCE

4 Namespace

WinJS.Namespace.define(”Game.Audio”,
play : function() {}, volume : function() {}

);
Game.Audio.volume(50);
Game.Audio.p

7 0 X 50+ 7 1 X? k

5 Paths var d = new Windows.UI.Popups.MessageDialog();
var m = new Windows.UI.

7 0 7 250+ 7 7 X? k

Fig. 15: Auto-complete comparison. ? means that inference uses all identifiers in the program. “ ” marks the auto-complete point, the point
where the developer presses Ctrl+Space or a similar key stroke to trigger auto-completion.

missing stubs or for libraries which have a flat hierarchy, less
precision can be regained with this strategy. As a consequence
more spurious unification may take place. In practice, both the
DOM API and Windows APIs do not lead to a great deal of
spurious unification due to the uniqueness of identifier names.

D. Case Study: Auto-complete

We show how our technique improves auto-completion by
comparing it to four popular JavaScript IDEs: Eclipse Indigo
SR2 for JavaScript developers, IntelliJ IDEA 11, Visual Stu-
dio 2010, and Visual Studio 2012. Figure 15 shows five small
JavaScript programs designed to demonstrate the power of our
analysis. The symbol “ ” indicates the placement of the cursor
when the user asks for auto-completion suggestions. For each
IDE, we show whether it gives the correct suggestion (X) and
how many suggestions it presents (#); these tests have been
designed to have a single correct completion.

We illustrate the benefits of both partial and full inference
by considering two scenarios. For snippets 1–3, stubs for the
HTML DOM and Browser APIs are available, so we use
partial inference. For Windows 8 application snippets 4–5, no
stubs are available, so we use full inference. For all snippets,
our technique is able to find the right suggestion without giving
any spurious suggestions. We further believe our analysis to
be incrementalizable, because of its iterative nature, allowing
for fast, incremental auto-complete suggestion updates.

1) A canvas element is retrieved from the DOM. Its
getContext and height properties are accessed and
the programmer wishes to auto-complete the width

property. Eclipse and Visual Studio 2010 fail to provide
the right suggestion. IntelliJ IDEA provides the right
suggestion amid many spurious suggestions. Visual Stu-
dio 2012 provides the right suggestion without spurious
suggestions.

2) A comparator function, for person objects, is passed into
a library. The firstName property of the first and sec-
ond argument are accessed, and the programmer wishes
to auto-complete the lastName property. IntelliJ IDEA
and Visual Studio 2012 provide the right suggestion,
but also includes many spurious suggestion. In fact,
Visual Studio 2012 resorts to suggesting all identifiers
in the file.

3) A person object is persisted to the local storage and
retrieved again. The lastName property of the retrieved
object is accessed, and the programmer wishes to auto-
complete firstName. Only IntelliJ IDEA provides the
right suggestion, among many spurious suggestions.

4) The WinJS namespace mechanism is used to popu-
late the Game.Audio namespace of the global object.
The volume() function is invoked and the programmer
wishes to auto-complete the play() function. Again
IntelliJ IDEA and Visual Studio 2012 find the right
suggestion, but among many spurious suggestions.

5) The Windows namespace Windows.UI.Popups is ac-
cessed to create a dialog box, and then the programmer
wishes to auto-complete the path Windows.UI. . Here
Visual Studio 2012 is the only IDE to provide the right
suggestion, but only by falling back to suggesting all
identifiers in the file. IntelliJ IDEA fails to provide the
right suggestion, but does provide over 250 spurious
suggestions.

Several observations about IDE behavior: Eclipse never pro-
vides any suggestions when there is no flow. IntelliJ IDEA
is less conservative and often suggests all possible property
names (from both the application and the stubs). Visual Stu-
dio 2010 takes a middle ground and suggests properties
available on the ObjectJProtoK object. Visual Studio 2012
departs from this approach and instead suggests all identifiers
in the current file. To us, none of these approaches seem
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Fig. 16: Running times, in seconds. Gray is partial inference. Black
is full inference. Sorted by lines of code.
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Fig. 17: Number of iterations to complete the analysis. Black is
partial inference; gray is full inference. The data is sorted by the
number of iterations for partial inference.

satisfactory compared to partial or full inference.

E. Analysis Running Time

Figure 16 shows the running times for partial and full
inference. Both full and partial analysis running times are quite
modest, with full usually finishing under 2–3 seconds on large
applications. This is largely due to the fast Z3 Datalog engine.

Figure 17 shows the number iterations required to reach the
fixpoint. Full inference requires approximately two to three
times as many iterations as partial inference. This happens
because the full inference algorithm has to discover the
namespaces starting from the global object, whereas for partial
inference namespaces are known from the stubs. While we do
not provide a formal proof, in practice we observe that the
number of iterations for full analysis is bounded by the depth
of namespace nesting in our libraries.

Perhaps surprisingly, despite the extra iterations, full infer-
ence is approximately two to four times faster than partial
inference. The primary reason is that the size and processing
costs of library stubs are high relative to those of application
code. To be fair, as applications increase in size, we would
expect the speed advantage to diminish.

Figure 12 illustrates how the full inference technique dis-
covers flow on a single application. Recall that symbolic lo-
cations are only introduced at resolved call sites and for loads
with resolved base objects. In contrast there is not a similar
requirement for arguments. Thus, all symbolic locations for
arguments are always introduced in the first iteration whereas

symbolic locations for loads and return values are introduced
incrementally as more flow is discovered. The figure shows
that as more and more flow is covered by the analysis less
and less flow needs to be introduced until finally the fixpoint
is reached.

VI. RELATED WORK

Due to space limitations, we only provide a brief summary
of related work.
Pointer analysis and call graph construction: Declarative
points-to analysis explored in this paper has long been subject
of research [5, 19, 27]. In this paper our focus is on call
graph inference through points-to, which generally leads to
more accurate results, compared to more traditional type-based
techniques [11, 12, 22]. Ali et al. [1] examine the problem of
application-only call graph construction for the Java language.
Their work relies on the separate compilation assumption
which allows them to reason soundly about application code
without analyzing library code, except for inspecting library
types. While the spirit of their work is similar to ours, the
separate compilation assumption does not apply to JavaScript,
resulting in substantial differences between our techniques.
Static analysis of JavaScript: A project by Chugh et al. fo-
cuses on staged analysis of JavaScript and finding information
flow violations in client-side code [7]. Chugh et al. focus on
information flow properties such as reading document cookies
and URL redirects. A valuable feature of that work is its
support for dynamically loaded and generated JavaScript in
the context of what is generally thought of as whole-program
analysis. The Gatekeeper project [13] proposes a points-to
analysis based on bddbddb together with a range of queries for
security and reliability. Gulfstream [14] is a successor of the
Gatekeeper project whose focus is on incremental analysis and
dynamic code loading. Sridharan et al. [24] presents a tech-
nique for tracking correlations between dynamically computed
property names in JavaScript programs. Their technique allows
them to reason precisely about properties that are copied from
one object to another as is often the case in libraries such
as jQuery. Their technique only applies to libraries written in
JavaScript, so stubs for the DOM and Windows APIs are still
needed.
Type systems for JavaScript: Researchers have noticed that
a more useful type system in JavaScript could prevent errors
or safety violations. Since JavaScript does not have a rich
type system to begin with, the work here is devising a correct
type system for JavaScript and then building on the proposed
type system. Soft typing [6] might be one of the more logical
first steps in a type system for JavaScript. Much like dynamic
rewriters insert code that must be executed to ensure safety,
soft typing must insert runtime checks to ensure type safety.
Several project focus on type systems for JavaScript [3, 4, 25].
These projects focus on a subset of JavaScript and provide
sound type systems and semantics for their restricted subsets.
As far as we can tell, none of these approaches have been
applied to large bodies of code. In contrast, we use pointer
analysis for reasoning about (large) JavaScript programs. The
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Type Analysis for JavaScript (TAJS) project [18] implements a
data flow analysis that is object-sensitive and uses the recency
abstraction. The authors extend the analysis with a model
of the HTML DOM and browser APIs, including a complete
model of the HTML elements and event handlers [17].

VII. CONCLUSIONS

This paper presents an approach that combines traditional
pointer analysis and a novel use analysis to analyze large and
complex JavaScript applications. We experimentally evaluate
our techniques based on a suite of 25 Windows 8 JavaScript
applications, averaging 1,587 lines of code, in combination
with about 30,000 lines of stubs each. The median percentage
of resolved calls sites goes from 71.5% to 81.5% with partial
inference, to 100% with full inference. Full analysis generally
completes in less than 4 seconds and partial in less than 10
seconds. We demonstrated that our analysis is immediately
effective in two practical settings in the context of analyzing
Windows 8 applications: both full and partial find about twice
as many WinRT API calls compared to a naı̈ve pattern-based
analysis; in our auto-completion case study we out-perform
four major widely-used JavaScript IDEs in terms of the quality
of auto-complete suggestions.
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